forked from mirrors/gecko-dev
1171 lines
46 KiB
C++
1171 lines
46 KiB
C++
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include "lib/jxl/enc_heuristics.h"
|
|
|
|
#include <jxl/cms_interface.h>
|
|
#include <jxl/memory_manager.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "lib/jxl/ac_context.h"
|
|
#include "lib/jxl/ac_strategy.h"
|
|
#include "lib/jxl/base/common.h"
|
|
#include "lib/jxl/base/compiler_specific.h"
|
|
#include "lib/jxl/base/data_parallel.h"
|
|
#include "lib/jxl/base/override.h"
|
|
#include "lib/jxl/base/rect.h"
|
|
#include "lib/jxl/base/status.h"
|
|
#include "lib/jxl/butteraugli/butteraugli.h"
|
|
#include "lib/jxl/chroma_from_luma.h"
|
|
#include "lib/jxl/coeff_order.h"
|
|
#include "lib/jxl/coeff_order_fwd.h"
|
|
#include "lib/jxl/common.h"
|
|
#include "lib/jxl/dec_group.h"
|
|
#include "lib/jxl/dec_xyb.h"
|
|
#include "lib/jxl/enc_ac_strategy.h"
|
|
#include "lib/jxl/enc_adaptive_quantization.h"
|
|
#include "lib/jxl/enc_cache.h"
|
|
#include "lib/jxl/enc_chroma_from_luma.h"
|
|
#include "lib/jxl/enc_gaborish.h"
|
|
#include "lib/jxl/enc_modular.h"
|
|
#include "lib/jxl/enc_noise.h"
|
|
#include "lib/jxl/enc_params.h"
|
|
#include "lib/jxl/enc_patch_dictionary.h"
|
|
#include "lib/jxl/enc_quant_weights.h"
|
|
#include "lib/jxl/enc_splines.h"
|
|
#include "lib/jxl/epf.h"
|
|
#include "lib/jxl/frame_dimensions.h"
|
|
#include "lib/jxl/frame_header.h"
|
|
#include "lib/jxl/image.h"
|
|
#include "lib/jxl/image_ops.h"
|
|
#include "lib/jxl/passes_state.h"
|
|
#include "lib/jxl/quant_weights.h"
|
|
|
|
namespace jxl {
|
|
|
|
struct AuxOut;
|
|
|
|
void FindBestBlockEntropyModel(const CompressParams& cparams, const ImageI& rqf,
|
|
const AcStrategyImage& ac_strategy,
|
|
BlockCtxMap* block_ctx_map) {
|
|
if (cparams.decoding_speed_tier >= 1) {
|
|
static constexpr uint8_t kSimpleCtxMap[] = {
|
|
// Cluster all blocks together
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, //
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, //
|
|
};
|
|
static_assert(
|
|
3 * kNumOrders == sizeof(kSimpleCtxMap) / sizeof *kSimpleCtxMap,
|
|
"Update simple context map");
|
|
|
|
auto bcm = *block_ctx_map;
|
|
bcm.ctx_map.assign(std::begin(kSimpleCtxMap), std::end(kSimpleCtxMap));
|
|
bcm.num_ctxs = 2;
|
|
bcm.num_dc_ctxs = 1;
|
|
return;
|
|
}
|
|
if (cparams.speed_tier >= SpeedTier::kFalcon) {
|
|
return;
|
|
}
|
|
// No need to change context modeling for small images.
|
|
size_t tot = rqf.xsize() * rqf.ysize();
|
|
size_t size_for_ctx_model = (1 << 10) * cparams.butteraugli_distance;
|
|
if (tot < size_for_ctx_model) return;
|
|
|
|
struct OccCounters {
|
|
// count the occurrences of each qf value and each strategy type.
|
|
OccCounters(const ImageI& rqf, const AcStrategyImage& ac_strategy) {
|
|
for (size_t y = 0; y < rqf.ysize(); y++) {
|
|
const int32_t* qf_row = rqf.Row(y);
|
|
AcStrategyRow acs_row = ac_strategy.ConstRow(y);
|
|
for (size_t x = 0; x < rqf.xsize(); x++) {
|
|
int ord = kStrategyOrder[acs_row[x].RawStrategy()];
|
|
int qf = qf_row[x] - 1;
|
|
qf_counts[qf]++;
|
|
qf_ord_counts[ord][qf]++;
|
|
ord_counts[ord]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t qf_counts[256] = {};
|
|
size_t qf_ord_counts[kNumOrders][256] = {};
|
|
size_t ord_counts[kNumOrders] = {};
|
|
};
|
|
// The OccCounters struct is too big to allocate on the stack.
|
|
std::unique_ptr<OccCounters> counters(new OccCounters(rqf, ac_strategy));
|
|
|
|
// Splitting the context model according to the quantization field seems to
|
|
// mostly benefit only large images.
|
|
size_t size_for_qf_split = (1 << 13) * cparams.butteraugli_distance;
|
|
size_t num_qf_segments = tot < size_for_qf_split ? 1 : 2;
|
|
std::vector<uint32_t>& qft = block_ctx_map->qf_thresholds;
|
|
qft.clear();
|
|
// Divide the quant field in up to num_qf_segments segments.
|
|
size_t cumsum = 0;
|
|
size_t next = 1;
|
|
size_t last_cut = 256;
|
|
size_t cut = tot * next / num_qf_segments;
|
|
for (uint32_t j = 0; j < 256; j++) {
|
|
cumsum += counters->qf_counts[j];
|
|
if (cumsum > cut) {
|
|
if (j != 0) {
|
|
qft.push_back(j);
|
|
}
|
|
last_cut = j;
|
|
while (cumsum > cut) {
|
|
next++;
|
|
cut = tot * next / num_qf_segments;
|
|
}
|
|
} else if (next > qft.size() + 1) {
|
|
if (j - 1 == last_cut && j != 0) {
|
|
qft.push_back(j);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Count the occurrences of each segment.
|
|
std::vector<size_t> counts(kNumOrders * (qft.size() + 1));
|
|
size_t qft_pos = 0;
|
|
for (size_t j = 0; j < 256; j++) {
|
|
if (qft_pos < qft.size() && j == qft[qft_pos]) {
|
|
qft_pos++;
|
|
}
|
|
for (size_t i = 0; i < kNumOrders; i++) {
|
|
counts[qft_pos + i * (qft.size() + 1)] += counters->qf_ord_counts[i][j];
|
|
}
|
|
}
|
|
|
|
// Repeatedly merge the lowest-count pair.
|
|
std::vector<uint8_t> remap((qft.size() + 1) * kNumOrders);
|
|
std::iota(remap.begin(), remap.end(), 0);
|
|
std::vector<uint8_t> clusters(remap);
|
|
size_t nb_clusters =
|
|
Clamp1(static_cast<int>(tot / size_for_ctx_model / 2), 2, 9);
|
|
size_t nb_clusters_chroma =
|
|
Clamp1(static_cast<int>(tot / size_for_ctx_model / 3), 1, 5);
|
|
// This is O(n^2 log n), but n is small.
|
|
while (clusters.size() > nb_clusters) {
|
|
std::sort(clusters.begin(), clusters.end(),
|
|
[&](int a, int b) { return counts[a] > counts[b]; });
|
|
counts[clusters[clusters.size() - 2]] += counts[clusters.back()];
|
|
counts[clusters.back()] = 0;
|
|
remap[clusters.back()] = clusters[clusters.size() - 2];
|
|
clusters.pop_back();
|
|
}
|
|
for (size_t i = 0; i < remap.size(); i++) {
|
|
while (remap[remap[i]] != remap[i]) {
|
|
remap[i] = remap[remap[i]];
|
|
}
|
|
}
|
|
// Relabel starting from 0.
|
|
std::vector<uint8_t> remap_remap(remap.size(), remap.size());
|
|
size_t num = 0;
|
|
for (size_t i = 0; i < remap.size(); i++) {
|
|
if (remap_remap[remap[i]] == remap.size()) {
|
|
remap_remap[remap[i]] = num++;
|
|
}
|
|
remap[i] = remap_remap[remap[i]];
|
|
}
|
|
// Write the block context map.
|
|
auto& ctx_map = block_ctx_map->ctx_map;
|
|
ctx_map = remap;
|
|
ctx_map.resize(remap.size() * 3);
|
|
// for chroma, only use up to nb_clusters_chroma separate block contexts
|
|
// (those for the biggest clusters)
|
|
for (size_t i = remap.size(); i < remap.size() * 3; i++) {
|
|
ctx_map[i] = num + Clamp1(static_cast<int>(remap[i % remap.size()]), 0,
|
|
static_cast<int>(nb_clusters_chroma) - 1);
|
|
}
|
|
block_ctx_map->num_ctxs =
|
|
*std::max_element(ctx_map.begin(), ctx_map.end()) + 1;
|
|
}
|
|
|
|
namespace {
|
|
|
|
Status FindBestDequantMatrices(JxlMemoryManager* memory_manager,
|
|
const CompressParams& cparams,
|
|
ModularFrameEncoder* modular_frame_encoder,
|
|
DequantMatrices* dequant_matrices) {
|
|
// TODO(veluca): quant matrices for no-gaborish.
|
|
// TODO(veluca): heuristics for in-bitstream quant tables.
|
|
*dequant_matrices = DequantMatrices();
|
|
if (cparams.max_error_mode || cparams.disable_percepeptual_optimizations) {
|
|
constexpr float kMSEWeights[3] = {0.001, 0.001, 0.001};
|
|
const float* wp = cparams.disable_percepeptual_optimizations
|
|
? kMSEWeights
|
|
: cparams.max_error;
|
|
// Set numerators of all quantization matrices to constant values.
|
|
float weights[3][1] = {{1.0f / wp[0]}, {1.0f / wp[1]}, {1.0f / wp[2]}};
|
|
DctQuantWeightParams dct_params(weights);
|
|
std::vector<QuantEncoding> encodings(DequantMatrices::kNum,
|
|
QuantEncoding::DCT(dct_params));
|
|
JXL_RETURN_IF_ERROR(DequantMatricesSetCustom(dequant_matrices, encodings,
|
|
modular_frame_encoder));
|
|
float dc_weights[3] = {1.0f / wp[0], 1.0f / wp[1], 1.0f / wp[2]};
|
|
DequantMatricesSetCustomDC(memory_manager, dequant_matrices, dc_weights);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void StoreMin2(const float v, float& min1, float& min2) {
|
|
if (v < min2) {
|
|
if (v < min1) {
|
|
min2 = min1;
|
|
min1 = v;
|
|
} else {
|
|
min2 = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CreateMask(const ImageF& image, ImageF& mask) {
|
|
for (size_t y = 0; y < image.ysize(); y++) {
|
|
const auto* row_n = y > 0 ? image.Row(y - 1) : image.Row(y);
|
|
const auto* row_in = image.Row(y);
|
|
const auto* row_s = y + 1 < image.ysize() ? image.Row(y + 1) : image.Row(y);
|
|
auto* row_out = mask.Row(y);
|
|
for (size_t x = 0; x < image.xsize(); x++) {
|
|
// Center, west, east, north, south values and their absolute difference
|
|
float c = row_in[x];
|
|
float w = x > 0 ? row_in[x - 1] : row_in[x];
|
|
float e = x + 1 < image.xsize() ? row_in[x + 1] : row_in[x];
|
|
float n = row_n[x];
|
|
float s = row_s[x];
|
|
float dw = std::abs(c - w);
|
|
float de = std::abs(c - e);
|
|
float dn = std::abs(c - n);
|
|
float ds = std::abs(c - s);
|
|
float min = std::numeric_limits<float>::max();
|
|
float min2 = std::numeric_limits<float>::max();
|
|
StoreMin2(dw, min, min2);
|
|
StoreMin2(de, min, min2);
|
|
StoreMin2(dn, min, min2);
|
|
StoreMin2(ds, min, min2);
|
|
row_out[x] = min2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Downsamples the image by a factor of 2 with a kernel that's sharper than
|
|
// the standard 2x2 box kernel used by DownsampleImage.
|
|
// The kernel is optimized against the result of the 2x2 upsampling kernel used
|
|
// by the decoder. Ringing is slightly reduced by clamping the values of the
|
|
// resulting pixels within certain bounds of a small region in the original
|
|
// image.
|
|
Status DownsampleImage2_Sharper(const ImageF& input, ImageF* output) {
|
|
const int64_t kernelx = 12;
|
|
const int64_t kernely = 12;
|
|
JxlMemoryManager* memory_manager = input.memory_manager();
|
|
|
|
static const float kernel[144] = {
|
|
-0.000314256996835, -0.000314256996835, -0.000897597057705,
|
|
-0.000562751488849, -0.000176807273646, 0.001864627368902,
|
|
0.001864627368902, -0.000176807273646, -0.000562751488849,
|
|
-0.000897597057705, -0.000314256996835, -0.000314256996835,
|
|
-0.000314256996835, -0.001527942804748, -0.000121760530512,
|
|
0.000191123989093, 0.010193185932466, 0.058637519197110,
|
|
0.058637519197110, 0.010193185932466, 0.000191123989093,
|
|
-0.000121760530512, -0.001527942804748, -0.000314256996835,
|
|
-0.000897597057705, -0.000121760530512, 0.000946363683751,
|
|
0.007113577630288, 0.000437956841058, -0.000372823835211,
|
|
-0.000372823835211, 0.000437956841058, 0.007113577630288,
|
|
0.000946363683751, -0.000121760530512, -0.000897597057705,
|
|
-0.000562751488849, 0.000191123989093, 0.007113577630288,
|
|
0.044592622228814, 0.000222278879007, -0.162864473015945,
|
|
-0.162864473015945, 0.000222278879007, 0.044592622228814,
|
|
0.007113577630288, 0.000191123989093, -0.000562751488849,
|
|
-0.000176807273646, 0.010193185932466, 0.000437956841058,
|
|
0.000222278879007, -0.000913092543974, -0.017071696107902,
|
|
-0.017071696107902, -0.000913092543974, 0.000222278879007,
|
|
0.000437956841058, 0.010193185932466, -0.000176807273646,
|
|
0.001864627368902, 0.058637519197110, -0.000372823835211,
|
|
-0.162864473015945, -0.017071696107902, 0.414660099370354,
|
|
0.414660099370354, -0.017071696107902, -0.162864473015945,
|
|
-0.000372823835211, 0.058637519197110, 0.001864627368902,
|
|
0.001864627368902, 0.058637519197110, -0.000372823835211,
|
|
-0.162864473015945, -0.017071696107902, 0.414660099370354,
|
|
0.414660099370354, -0.017071696107902, -0.162864473015945,
|
|
-0.000372823835211, 0.058637519197110, 0.001864627368902,
|
|
-0.000176807273646, 0.010193185932466, 0.000437956841058,
|
|
0.000222278879007, -0.000913092543974, -0.017071696107902,
|
|
-0.017071696107902, -0.000913092543974, 0.000222278879007,
|
|
0.000437956841058, 0.010193185932466, -0.000176807273646,
|
|
-0.000562751488849, 0.000191123989093, 0.007113577630288,
|
|
0.044592622228814, 0.000222278879007, -0.162864473015945,
|
|
-0.162864473015945, 0.000222278879007, 0.044592622228814,
|
|
0.007113577630288, 0.000191123989093, -0.000562751488849,
|
|
-0.000897597057705, -0.000121760530512, 0.000946363683751,
|
|
0.007113577630288, 0.000437956841058, -0.000372823835211,
|
|
-0.000372823835211, 0.000437956841058, 0.007113577630288,
|
|
0.000946363683751, -0.000121760530512, -0.000897597057705,
|
|
-0.000314256996835, -0.001527942804748, -0.000121760530512,
|
|
0.000191123989093, 0.010193185932466, 0.058637519197110,
|
|
0.058637519197110, 0.010193185932466, 0.000191123989093,
|
|
-0.000121760530512, -0.001527942804748, -0.000314256996835,
|
|
-0.000314256996835, -0.000314256996835, -0.000897597057705,
|
|
-0.000562751488849, -0.000176807273646, 0.001864627368902,
|
|
0.001864627368902, -0.000176807273646, -0.000562751488849,
|
|
-0.000897597057705, -0.000314256996835, -0.000314256996835};
|
|
|
|
int64_t xsize = input.xsize();
|
|
int64_t ysize = input.ysize();
|
|
|
|
JXL_ASSIGN_OR_RETURN(ImageF box_downsample,
|
|
ImageF::Create(memory_manager, xsize, ysize));
|
|
CopyImageTo(input, &box_downsample);
|
|
JXL_ASSIGN_OR_RETURN(box_downsample, DownsampleImage(box_downsample, 2));
|
|
|
|
JXL_ASSIGN_OR_RETURN(ImageF mask,
|
|
ImageF::Create(memory_manager, box_downsample.xsize(),
|
|
box_downsample.ysize()));
|
|
CreateMask(box_downsample, mask);
|
|
|
|
for (size_t y = 0; y < output->ysize(); y++) {
|
|
float* row_out = output->Row(y);
|
|
const float* row_in[kernely];
|
|
const float* row_mask = mask.Row(y);
|
|
// get the rows in the support
|
|
for (size_t ky = 0; ky < kernely; ky++) {
|
|
int64_t iy = y * 2 + ky - (kernely - 1) / 2;
|
|
if (iy < 0) iy = 0;
|
|
if (iy >= ysize) iy = ysize - 1;
|
|
row_in[ky] = input.Row(iy);
|
|
}
|
|
|
|
for (size_t x = 0; x < output->xsize(); x++) {
|
|
// get min and max values of the original image in the support
|
|
float min = std::numeric_limits<float>::max();
|
|
float max = std::numeric_limits<float>::min();
|
|
// kernelx - R and kernely - R are the radius of a rectangular region in
|
|
// which the values of a pixel are bounded to reduce ringing.
|
|
static constexpr int64_t R = 5;
|
|
for (int64_t ky = R; ky + R < kernely; ky++) {
|
|
for (int64_t kx = R; kx + R < kernelx; kx++) {
|
|
int64_t ix = x * 2 + kx - (kernelx - 1) / 2;
|
|
if (ix < 0) ix = 0;
|
|
if (ix >= xsize) ix = xsize - 1;
|
|
min = std::min<float>(min, row_in[ky][ix]);
|
|
max = std::max<float>(max, row_in[ky][ix]);
|
|
}
|
|
}
|
|
|
|
float sum = 0;
|
|
for (int64_t ky = 0; ky < kernely; ky++) {
|
|
for (int64_t kx = 0; kx < kernelx; kx++) {
|
|
int64_t ix = x * 2 + kx - (kernelx - 1) / 2;
|
|
if (ix < 0) ix = 0;
|
|
if (ix >= xsize) ix = xsize - 1;
|
|
sum += row_in[ky][ix] * kernel[ky * kernelx + kx];
|
|
}
|
|
}
|
|
|
|
row_out[x] = sum;
|
|
|
|
// Clamp the pixel within the value of a small area to prevent ringning.
|
|
// The mask determines how much to clamp, clamp more to reduce more
|
|
// ringing in smooth areas, clamp less in noisy areas to get more
|
|
// sharpness. Higher mask_multiplier gives less clamping, so less
|
|
// ringing reduction.
|
|
const constexpr float mask_multiplier = 1;
|
|
float a = row_mask[x] * mask_multiplier;
|
|
float clip_min = min - a;
|
|
float clip_max = max + a;
|
|
if (row_out[x] < clip_min) {
|
|
row_out[x] = clip_min;
|
|
} else if (row_out[x] > clip_max) {
|
|
row_out[x] = clip_max;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Status DownsampleImage2_Sharper(Image3F* opsin) {
|
|
// Allocate extra space to avoid a reallocation when padding.
|
|
JxlMemoryManager* memory_manager = opsin->memory_manager();
|
|
JXL_ASSIGN_OR_RETURN(
|
|
Image3F downsampled,
|
|
Image3F::Create(memory_manager, DivCeil(opsin->xsize(), 2) + kBlockDim,
|
|
DivCeil(opsin->ysize(), 2) + kBlockDim));
|
|
downsampled.ShrinkTo(downsampled.xsize() - kBlockDim,
|
|
downsampled.ysize() - kBlockDim);
|
|
|
|
for (size_t c = 0; c < 3; c++) {
|
|
JXL_RETURN_IF_ERROR(
|
|
DownsampleImage2_Sharper(opsin->Plane(c), &downsampled.Plane(c)));
|
|
}
|
|
*opsin = std::move(downsampled);
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// The default upsampling kernels used by Upsampler in the decoder.
|
|
const constexpr int64_t kSize = 5;
|
|
|
|
const float kernel00[25] = {
|
|
-0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f,
|
|
-0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f,
|
|
-0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f,
|
|
-0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f,
|
|
-0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f,
|
|
};
|
|
const float kernel01[25] = {
|
|
-0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f,
|
|
-0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f,
|
|
-0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f,
|
|
-0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f,
|
|
-0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f,
|
|
};
|
|
const float kernel10[25] = {
|
|
-0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f,
|
|
-0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f,
|
|
-0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f,
|
|
-0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f,
|
|
-0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f,
|
|
};
|
|
const float kernel11[25] = {
|
|
-0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f,
|
|
-0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f,
|
|
-0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f,
|
|
-0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f,
|
|
-0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f,
|
|
};
|
|
|
|
// Does exactly the same as the Upsampler in dec_upsampler for 2x2 pixels, with
|
|
// default CustomTransformData.
|
|
// TODO(lode): use Upsampler instead. However, it requires pre-initialization
|
|
// and padding on the left side of the image which requires refactoring the
|
|
// other code using this.
|
|
void UpsampleImage(const ImageF& input, ImageF* output) {
|
|
int64_t xsize = input.xsize();
|
|
int64_t ysize = input.ysize();
|
|
int64_t xsize2 = output->xsize();
|
|
int64_t ysize2 = output->ysize();
|
|
for (int64_t y = 0; y < ysize2; y++) {
|
|
for (int64_t x = 0; x < xsize2; x++) {
|
|
const auto* kernel = kernel00;
|
|
if ((x & 1) && (y & 1)) {
|
|
kernel = kernel11;
|
|
} else if (x & 1) {
|
|
kernel = kernel10;
|
|
} else if (y & 1) {
|
|
kernel = kernel01;
|
|
}
|
|
float sum = 0;
|
|
int64_t x2 = x / 2;
|
|
int64_t y2 = y / 2;
|
|
|
|
// get min and max values of the original image in the support
|
|
float min = std::numeric_limits<float>::max();
|
|
float max = std::numeric_limits<float>::min();
|
|
|
|
for (int64_t ky = 0; ky < kSize; ky++) {
|
|
for (int64_t kx = 0; kx < kSize; kx++) {
|
|
int64_t xi = x2 - kSize / 2 + kx;
|
|
int64_t yi = y2 - kSize / 2 + ky;
|
|
if (xi < 0) xi = 0;
|
|
if (xi >= xsize) xi = input.xsize() - 1;
|
|
if (yi < 0) yi = 0;
|
|
if (yi >= ysize) yi = input.ysize() - 1;
|
|
min = std::min<float>(min, input.Row(yi)[xi]);
|
|
max = std::max<float>(max, input.Row(yi)[xi]);
|
|
}
|
|
}
|
|
|
|
for (int64_t ky = 0; ky < kSize; ky++) {
|
|
for (int64_t kx = 0; kx < kSize; kx++) {
|
|
int64_t xi = x2 - kSize / 2 + kx;
|
|
int64_t yi = y2 - kSize / 2 + ky;
|
|
if (xi < 0) xi = 0;
|
|
if (xi >= xsize) xi = input.xsize() - 1;
|
|
if (yi < 0) yi = 0;
|
|
if (yi >= ysize) yi = input.ysize() - 1;
|
|
sum += input.Row(yi)[xi] * kernel[ky * kSize + kx];
|
|
}
|
|
}
|
|
output->Row(y)[x] = sum;
|
|
if (output->Row(y)[x] < min) output->Row(y)[x] = min;
|
|
if (output->Row(y)[x] > max) output->Row(y)[x] = max;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the derivative of Upsampler, with respect to input pixel x2, y2, to
|
|
// output pixel x, y (ignoring the clamping).
|
|
float UpsamplerDeriv(int64_t x2, int64_t y2, int64_t x, int64_t y) {
|
|
const auto* kernel = kernel00;
|
|
if ((x & 1) && (y & 1)) {
|
|
kernel = kernel11;
|
|
} else if (x & 1) {
|
|
kernel = kernel10;
|
|
} else if (y & 1) {
|
|
kernel = kernel01;
|
|
}
|
|
|
|
int64_t ix = x / 2;
|
|
int64_t iy = y / 2;
|
|
int64_t kx = x2 - ix + kSize / 2;
|
|
int64_t ky = y2 - iy + kSize / 2;
|
|
|
|
// This should not happen.
|
|
if (kx < 0 || kx >= kSize || ky < 0 || ky >= kSize) return 0;
|
|
|
|
return kernel[ky * kSize + kx];
|
|
}
|
|
|
|
// Apply the derivative of the Upsampler to the input, reversing the effect of
|
|
// its coefficients. The output image is 2x2 times smaller than the input.
|
|
void AntiUpsample(const ImageF& input, ImageF* d) {
|
|
int64_t xsize = input.xsize();
|
|
int64_t ysize = input.ysize();
|
|
int64_t xsize2 = d->xsize();
|
|
int64_t ysize2 = d->ysize();
|
|
int64_t k0 = kSize - 1;
|
|
int64_t k1 = kSize;
|
|
for (int64_t y2 = 0; y2 < ysize2; ++y2) {
|
|
auto* row = d->Row(y2);
|
|
for (int64_t x2 = 0; x2 < xsize2; ++x2) {
|
|
int64_t x0 = x2 * 2 - k0;
|
|
if (x0 < 0) x0 = 0;
|
|
int64_t x1 = x2 * 2 + k1 + 1;
|
|
if (x1 > xsize) x1 = xsize;
|
|
int64_t y0 = y2 * 2 - k0;
|
|
if (y0 < 0) y0 = 0;
|
|
int64_t y1 = y2 * 2 + k1 + 1;
|
|
if (y1 > ysize) y1 = ysize;
|
|
|
|
float sum = 0;
|
|
for (int64_t y = y0; y < y1; ++y) {
|
|
const auto* row_in = input.Row(y);
|
|
for (int64_t x = x0; x < x1; ++x) {
|
|
double deriv = UpsamplerDeriv(x2, y2, x, y);
|
|
sum += deriv * row_in[x];
|
|
}
|
|
}
|
|
row[x2] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Element-wise multiplies two images.
|
|
template <typename T>
|
|
void ElwiseMul(const Plane<T>& image1, const Plane<T>& image2, Plane<T>* out) {
|
|
const size_t xsize = image1.xsize();
|
|
const size_t ysize = image1.ysize();
|
|
JXL_CHECK(xsize == image2.xsize());
|
|
JXL_CHECK(ysize == image2.ysize());
|
|
JXL_CHECK(xsize == out->xsize());
|
|
JXL_CHECK(ysize == out->ysize());
|
|
for (size_t y = 0; y < ysize; ++y) {
|
|
const T* const JXL_RESTRICT row1 = image1.Row(y);
|
|
const T* const JXL_RESTRICT row2 = image2.Row(y);
|
|
T* const JXL_RESTRICT row_out = out->Row(y);
|
|
for (size_t x = 0; x < xsize; ++x) {
|
|
row_out[x] = row1[x] * row2[x];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Element-wise divides two images.
|
|
template <typename T>
|
|
void ElwiseDiv(const Plane<T>& image1, const Plane<T>& image2, Plane<T>* out) {
|
|
const size_t xsize = image1.xsize();
|
|
const size_t ysize = image1.ysize();
|
|
JXL_CHECK(xsize == image2.xsize());
|
|
JXL_CHECK(ysize == image2.ysize());
|
|
JXL_CHECK(xsize == out->xsize());
|
|
JXL_CHECK(ysize == out->ysize());
|
|
for (size_t y = 0; y < ysize; ++y) {
|
|
const T* const JXL_RESTRICT row1 = image1.Row(y);
|
|
const T* const JXL_RESTRICT row2 = image2.Row(y);
|
|
T* const JXL_RESTRICT row_out = out->Row(y);
|
|
for (size_t x = 0; x < xsize; ++x) {
|
|
row_out[x] = row1[x] / row2[x];
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReduceRinging(const ImageF& initial, const ImageF& mask, ImageF& down) {
|
|
int64_t xsize2 = down.xsize();
|
|
int64_t ysize2 = down.ysize();
|
|
|
|
for (size_t y = 0; y < down.ysize(); y++) {
|
|
const float* row_mask = mask.Row(y);
|
|
float* row_out = down.Row(y);
|
|
for (size_t x = 0; x < down.xsize(); x++) {
|
|
float v = down.Row(y)[x];
|
|
float min = initial.Row(y)[x];
|
|
float max = initial.Row(y)[x];
|
|
for (int64_t yi = -1; yi < 2; yi++) {
|
|
for (int64_t xi = -1; xi < 2; xi++) {
|
|
int64_t x2 = static_cast<int64_t>(x) + xi;
|
|
int64_t y2 = static_cast<int64_t>(y) + yi;
|
|
if (x2 < 0 || y2 < 0 || x2 >= xsize2 || y2 >= ysize2) continue;
|
|
min = std::min<float>(min, initial.Row(y2)[x2]);
|
|
max = std::max<float>(max, initial.Row(y2)[x2]);
|
|
}
|
|
}
|
|
|
|
row_out[x] = v;
|
|
|
|
// Clamp the pixel within the value of a small area to prevent ringning.
|
|
// The mask determines how much to clamp, clamp more to reduce more
|
|
// ringing in smooth areas, clamp less in noisy areas to get more
|
|
// sharpness. Higher mask_multiplier gives less clamping, so less
|
|
// ringing reduction.
|
|
const constexpr float mask_multiplier = 2;
|
|
float a = row_mask[x] * mask_multiplier;
|
|
float clip_min = min - a;
|
|
float clip_max = max + a;
|
|
if (row_out[x] < clip_min) row_out[x] = clip_min;
|
|
if (row_out[x] > clip_max) row_out[x] = clip_max;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(lode): move this to a separate file enc_downsample.cc
|
|
Status DownsampleImage2_Iterative(const ImageF& orig, ImageF* output) {
|
|
int64_t xsize = orig.xsize();
|
|
int64_t ysize = orig.ysize();
|
|
int64_t xsize2 = DivCeil(orig.xsize(), 2);
|
|
int64_t ysize2 = DivCeil(orig.ysize(), 2);
|
|
JxlMemoryManager* memory_manager = orig.memory_manager();
|
|
|
|
JXL_ASSIGN_OR_RETURN(ImageF box_downsample,
|
|
ImageF::Create(memory_manager, xsize, ysize));
|
|
CopyImageTo(orig, &box_downsample);
|
|
JXL_ASSIGN_OR_RETURN(box_downsample, DownsampleImage(box_downsample, 2));
|
|
JXL_ASSIGN_OR_RETURN(ImageF mask,
|
|
ImageF::Create(memory_manager, box_downsample.xsize(),
|
|
box_downsample.ysize()));
|
|
CreateMask(box_downsample, mask);
|
|
|
|
output->ShrinkTo(xsize2, ysize2);
|
|
|
|
// Initial result image using the sharper downsampling.
|
|
// Allocate extra space to avoid a reallocation when padding.
|
|
JXL_ASSIGN_OR_RETURN(
|
|
ImageF initial,
|
|
ImageF::Create(memory_manager, DivCeil(orig.xsize(), 2) + kBlockDim,
|
|
DivCeil(orig.ysize(), 2) + kBlockDim));
|
|
initial.ShrinkTo(initial.xsize() - kBlockDim, initial.ysize() - kBlockDim);
|
|
JXL_RETURN_IF_ERROR(DownsampleImage2_Sharper(orig, &initial));
|
|
|
|
JXL_ASSIGN_OR_RETURN(
|
|
ImageF down,
|
|
ImageF::Create(memory_manager, initial.xsize(), initial.ysize()));
|
|
CopyImageTo(initial, &down);
|
|
JXL_ASSIGN_OR_RETURN(ImageF up, ImageF::Create(memory_manager, xsize, ysize));
|
|
JXL_ASSIGN_OR_RETURN(ImageF corr,
|
|
ImageF::Create(memory_manager, xsize, ysize));
|
|
JXL_ASSIGN_OR_RETURN(ImageF corr2,
|
|
ImageF::Create(memory_manager, xsize2, ysize2));
|
|
|
|
// In the weights map, relatively higher values will allow less ringing but
|
|
// also less sharpness. With all constant values, it optimizes equally
|
|
// everywhere. Even in this case, the weights2 computed from
|
|
// this is still used and differs at the borders of the image.
|
|
// TODO(lode): Make use of the weights field for anti-ringing and clamping,
|
|
// the values are all set to 1 for now, but it is intended to be used for
|
|
// reducing ringing based on the mask, and taking clamping into account.
|
|
JXL_ASSIGN_OR_RETURN(ImageF weights,
|
|
ImageF::Create(memory_manager, xsize, ysize));
|
|
for (size_t y = 0; y < weights.ysize(); y++) {
|
|
auto* row = weights.Row(y);
|
|
for (size_t x = 0; x < weights.xsize(); x++) {
|
|
row[x] = 1;
|
|
}
|
|
}
|
|
JXL_ASSIGN_OR_RETURN(ImageF weights2,
|
|
ImageF::Create(memory_manager, xsize2, ysize2));
|
|
AntiUpsample(weights, &weights2);
|
|
|
|
const size_t num_it = 3;
|
|
for (size_t it = 0; it < num_it; ++it) {
|
|
UpsampleImage(down, &up);
|
|
JXL_ASSIGN_OR_RETURN(corr, LinComb<float>(1, orig, -1, up));
|
|
ElwiseMul(corr, weights, &corr);
|
|
AntiUpsample(corr, &corr2);
|
|
ElwiseDiv(corr2, weights2, &corr2);
|
|
|
|
JXL_ASSIGN_OR_RETURN(down, LinComb<float>(1, down, 1, corr2));
|
|
}
|
|
|
|
ReduceRinging(initial, mask, down);
|
|
|
|
// can't just use CopyImage, because the output image was prepared with
|
|
// padding.
|
|
for (size_t y = 0; y < down.ysize(); y++) {
|
|
for (size_t x = 0; x < down.xsize(); x++) {
|
|
float v = down.Row(y)[x];
|
|
output->Row(y)[x] = v;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Status DownsampleImage2_Iterative(Image3F* opsin) {
|
|
JxlMemoryManager* memory_manager = opsin->memory_manager();
|
|
// Allocate extra space to avoid a reallocation when padding.
|
|
JXL_ASSIGN_OR_RETURN(
|
|
Image3F downsampled,
|
|
Image3F::Create(memory_manager, DivCeil(opsin->xsize(), 2) + kBlockDim,
|
|
DivCeil(opsin->ysize(), 2) + kBlockDim));
|
|
downsampled.ShrinkTo(downsampled.xsize() - kBlockDim,
|
|
downsampled.ysize() - kBlockDim);
|
|
|
|
JXL_ASSIGN_OR_RETURN(
|
|
Image3F rgb,
|
|
Image3F::Create(memory_manager, opsin->xsize(), opsin->ysize()));
|
|
OpsinParams opsin_params; // TODO(user): use the ones that are actually used
|
|
opsin_params.Init(kDefaultIntensityTarget);
|
|
OpsinToLinear(*opsin, Rect(rgb), nullptr, &rgb, opsin_params);
|
|
|
|
JXL_ASSIGN_OR_RETURN(
|
|
ImageF mask,
|
|
ImageF::Create(memory_manager, opsin->xsize(), opsin->ysize()));
|
|
ButteraugliParams butter_params;
|
|
JXL_ASSIGN_OR_RETURN(std::unique_ptr<ButteraugliComparator> butter,
|
|
ButteraugliComparator::Make(rgb, butter_params));
|
|
JXL_RETURN_IF_ERROR(butter->Mask(&mask));
|
|
JXL_ASSIGN_OR_RETURN(
|
|
ImageF mask_fuzzy,
|
|
ImageF::Create(memory_manager, opsin->xsize(), opsin->ysize()));
|
|
|
|
for (size_t c = 0; c < 3; c++) {
|
|
JXL_RETURN_IF_ERROR(
|
|
DownsampleImage2_Iterative(opsin->Plane(c), &downsampled.Plane(c)));
|
|
}
|
|
*opsin = std::move(downsampled);
|
|
return true;
|
|
}
|
|
|
|
StatusOr<Image3F> ReconstructImage(
|
|
const FrameHeader& orig_frame_header, const PassesSharedState& shared,
|
|
const std::vector<std::unique_ptr<ACImage>>& coeffs, ThreadPool* pool) {
|
|
const FrameDimensions& frame_dim = shared.frame_dim;
|
|
JxlMemoryManager* memory_manager = shared.memory_manager;
|
|
|
|
FrameHeader frame_header = orig_frame_header;
|
|
frame_header.UpdateFlag(shared.image_features.patches.HasAny(),
|
|
FrameHeader::kPatches);
|
|
frame_header.UpdateFlag(shared.image_features.splines.HasAny(),
|
|
FrameHeader::kSplines);
|
|
frame_header.color_transform = ColorTransform::kNone;
|
|
|
|
const bool is_gray = shared.metadata->m.color_encoding.IsGray();
|
|
PassesDecoderState dec_state(memory_manager);
|
|
JXL_RETURN_IF_ERROR(
|
|
dec_state.output_encoding_info.SetFromMetadata(*shared.metadata));
|
|
JXL_RETURN_IF_ERROR(dec_state.output_encoding_info.MaybeSetColorEncoding(
|
|
ColorEncoding::LinearSRGB(is_gray)));
|
|
dec_state.shared = &shared;
|
|
JXL_CHECK(dec_state.Init(frame_header));
|
|
|
|
ImageBundle decoded(memory_manager, &shared.metadata->m);
|
|
decoded.origin = frame_header.frame_origin;
|
|
JXL_ASSIGN_OR_RETURN(
|
|
Image3F tmp,
|
|
Image3F::Create(memory_manager, frame_dim.xsize, frame_dim.ysize));
|
|
decoded.SetFromImage(std::move(tmp),
|
|
dec_state.output_encoding_info.color_encoding);
|
|
|
|
PassesDecoderState::PipelineOptions options;
|
|
options.use_slow_render_pipeline = false;
|
|
options.coalescing = false;
|
|
options.render_spotcolors = false;
|
|
options.render_noise = true;
|
|
|
|
JXL_CHECK(dec_state.PreparePipeline(frame_header, &shared.metadata->m,
|
|
&decoded, options));
|
|
|
|
hwy::AlignedUniquePtr<GroupDecCache[]> group_dec_caches;
|
|
const auto allocate_storage = [&](const size_t num_threads) -> Status {
|
|
JXL_RETURN_IF_ERROR(
|
|
dec_state.render_pipeline->PrepareForThreads(num_threads,
|
|
/*use_group_ids=*/false));
|
|
group_dec_caches = hwy::MakeUniqueAlignedArray<GroupDecCache>(num_threads);
|
|
return true;
|
|
};
|
|
std::atomic<bool> has_error{false};
|
|
const auto process_group = [&](const uint32_t group_index,
|
|
const size_t thread) {
|
|
if (has_error) return;
|
|
if (frame_header.loop_filter.epf_iters > 0) {
|
|
ComputeSigma(frame_header.loop_filter,
|
|
frame_dim.BlockGroupRect(group_index), &dec_state);
|
|
}
|
|
RenderPipelineInput input =
|
|
dec_state.render_pipeline->GetInputBuffers(group_index, thread);
|
|
JXL_CHECK(DecodeGroupForRoundtrip(frame_header, coeffs, group_index,
|
|
&dec_state, &group_dec_caches[thread],
|
|
thread, input, nullptr, nullptr));
|
|
if (!input.Done()) {
|
|
has_error = true;
|
|
return;
|
|
}
|
|
};
|
|
JXL_CHECK(RunOnPool(pool, 0, frame_dim.num_groups, allocate_storage,
|
|
process_group, "ReconstructImage"));
|
|
if (has_error) return JXL_FAILURE("ReconstructImage failure");
|
|
return std::move(*decoded.color());
|
|
}
|
|
|
|
float ComputeBlockL2Distance(const Image3F& a, const Image3F& b,
|
|
const ImageF& mask1x1, size_t by, size_t bx) {
|
|
Rect rect(bx * kBlockDim, by * kBlockDim, kBlockDim, kBlockDim, a.xsize(),
|
|
a.ysize());
|
|
float err2 = 0.0f;
|
|
static const float kXYBWeights[] = {36.0f, 1.0f, 0.2f};
|
|
for (size_t y = 0; y < rect.ysize(); ++y) {
|
|
const float* row_a_x = rect.ConstPlaneRow(a, 0, y);
|
|
const float* row_a_y = rect.ConstPlaneRow(a, 1, y);
|
|
const float* row_a_b = rect.ConstPlaneRow(a, 2, y);
|
|
const float* row_b_x = rect.ConstPlaneRow(b, 0, y);
|
|
const float* row_b_y = rect.ConstPlaneRow(b, 1, y);
|
|
const float* row_b_b = rect.ConstPlaneRow(b, 2, y);
|
|
const float* row_mask = rect.ConstRow(mask1x1, y);
|
|
|
|
for (size_t x = 0; x < rect.xsize(); ++x) {
|
|
float mask = row_mask[x];
|
|
for (size_t c = 0; c < 3; ++c) {
|
|
float diff_x = row_a_x[x] - row_b_x[x];
|
|
float diff_y = row_a_y[x] - row_b_y[x];
|
|
float diff_b = row_a_b[x] - row_b_b[x];
|
|
err2 += (kXYBWeights[0] * diff_x * diff_x +
|
|
kXYBWeights[1] * diff_y * diff_y +
|
|
kXYBWeights[2] * diff_b * diff_b) *
|
|
mask * mask;
|
|
}
|
|
}
|
|
}
|
|
return err2;
|
|
}
|
|
|
|
Status ComputeARHeuristics(const FrameHeader& frame_header,
|
|
PassesEncoderState* enc_state,
|
|
const Image3F& orig_opsin, const Rect& rect,
|
|
ThreadPool* pool) {
|
|
const CompressParams& cparams = enc_state->cparams;
|
|
PassesSharedState& shared = enc_state->shared;
|
|
const FrameDimensions& frame_dim = shared.frame_dim;
|
|
const ImageF& initial_quant_masking1x1 = enc_state->initial_quant_masking1x1;
|
|
ImageB& epf_sharpness = shared.epf_sharpness;
|
|
JxlMemoryManager* memory_manager = enc_state->memory_manager();
|
|
|
|
if (cparams.butteraugli_distance < kMinButteraugliForDynamicAR ||
|
|
cparams.speed_tier > SpeedTier::kWombat ||
|
|
frame_header.loop_filter.epf_iters == 0) {
|
|
FillPlane(static_cast<uint8_t>(4), &epf_sharpness, Rect(epf_sharpness));
|
|
return true;
|
|
}
|
|
|
|
std::vector<uint8_t> epf_steps;
|
|
if (cparams.butteraugli_distance > 4.5f) {
|
|
epf_steps.push_back(0);
|
|
epf_steps.push_back(4);
|
|
} else {
|
|
epf_steps.push_back(0);
|
|
epf_steps.push_back(3);
|
|
epf_steps.push_back(7);
|
|
}
|
|
static const int kNumEPFVals = 8;
|
|
std::array<ImageF, kNumEPFVals> error_images;
|
|
for (uint8_t val : epf_steps) {
|
|
FillPlane(val, &epf_sharpness, Rect(epf_sharpness));
|
|
JXL_ASSIGN_OR_RETURN(
|
|
Image3F decoded,
|
|
ReconstructImage(frame_header, shared, enc_state->coeffs, pool));
|
|
JXL_ASSIGN_OR_RETURN(error_images[val],
|
|
ImageF::Create(memory_manager, frame_dim.xsize_blocks,
|
|
frame_dim.ysize_blocks));
|
|
for (size_t by = 0; by < frame_dim.ysize_blocks; by++) {
|
|
float* error_row = error_images[val].Row(by);
|
|
for (size_t bx = 0; bx < frame_dim.xsize_blocks; bx++) {
|
|
error_row[bx] = ComputeBlockL2Distance(
|
|
orig_opsin, decoded, initial_quant_masking1x1, by, bx);
|
|
}
|
|
}
|
|
}
|
|
std::vector<std::vector<size_t>> histo(4, std::vector<size_t>(kNumEPFVals));
|
|
std::vector<size_t> totals(4, 1);
|
|
for (size_t by = 0; by < frame_dim.ysize_blocks; by++) {
|
|
uint8_t* JXL_RESTRICT out_row = epf_sharpness.Row(by);
|
|
uint8_t* JXL_RESTRICT prev_row = epf_sharpness.Row(by > 0 ? by - 1 : 0);
|
|
for (size_t bx = 0; bx < frame_dim.xsize_blocks; bx++) {
|
|
uint8_t best_val = 0;
|
|
float best_error = std::numeric_limits<float>::max();
|
|
uint8_t top_val = by > 0 ? prev_row[bx] : 0;
|
|
uint8_t left_val = bx > 0 ? out_row[bx - 1] : 0;
|
|
float top_error = error_images[top_val].Row(by)[bx];
|
|
float left_error = error_images[left_val].Row(by)[bx];
|
|
for (uint8_t val : epf_steps) {
|
|
float error = error_images[val].Row(by)[bx];
|
|
if (val == 0) {
|
|
error *= 0.97f;
|
|
}
|
|
if (error < best_error) {
|
|
best_val = val;
|
|
best_error = error;
|
|
}
|
|
}
|
|
if (best_error < 0.995 * std::min(top_error, left_error)) {
|
|
out_row[bx] = best_val;
|
|
} else if (top_error < left_error) {
|
|
out_row[bx] = top_val;
|
|
} else {
|
|
out_row[bx] = left_val;
|
|
}
|
|
int context = ((top_val > 3) ? 2 : 0) + ((left_val > 3) ? 1 : 0);
|
|
++histo[context][out_row[bx]];
|
|
++totals[context];
|
|
}
|
|
}
|
|
const float context_weight =
|
|
0.14f + 0.007f * std::min(10.0f, cparams.butteraugli_distance);
|
|
for (size_t by = 0; by < frame_dim.ysize_blocks; by++) {
|
|
uint8_t* JXL_RESTRICT out_row = epf_sharpness.Row(by);
|
|
uint8_t* JXL_RESTRICT prev_row = epf_sharpness.Row(by > 0 ? by - 1 : 0);
|
|
for (size_t bx = 0; bx < frame_dim.xsize_blocks; bx++) {
|
|
uint8_t best_val = 0;
|
|
float best_error = std::numeric_limits<float>::max();
|
|
uint8_t top_val = by > 0 ? prev_row[bx] : 0;
|
|
uint8_t left_val = bx > 0 ? out_row[bx - 1] : 0;
|
|
int context = ((top_val > 3) ? 2 : 0) + ((left_val > 3) ? 1 : 0);
|
|
const auto& ctx_histo = histo[context];
|
|
for (uint8_t val : epf_steps) {
|
|
float error =
|
|
error_images[val].Row(by)[bx] /
|
|
(1 + std::log1p(ctx_histo[val] * context_weight / totals[context]));
|
|
if (val == 0) error *= 0.93f;
|
|
if (error < best_error) {
|
|
best_val = val;
|
|
best_error = error;
|
|
}
|
|
}
|
|
out_row[bx] = best_val;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Status LossyFrameHeuristics(const FrameHeader& frame_header,
|
|
PassesEncoderState* enc_state,
|
|
ModularFrameEncoder* modular_frame_encoder,
|
|
const Image3F* linear, Image3F* opsin,
|
|
const Rect& rect, const JxlCmsInterface& cms,
|
|
ThreadPool* pool, AuxOut* aux_out) {
|
|
const CompressParams& cparams = enc_state->cparams;
|
|
const bool streaming_mode = enc_state->streaming_mode;
|
|
const bool initialize_global_state = enc_state->initialize_global_state;
|
|
PassesSharedState& shared = enc_state->shared;
|
|
const FrameDimensions& frame_dim = shared.frame_dim;
|
|
ImageFeatures& image_features = shared.image_features;
|
|
DequantMatrices& matrices = shared.matrices;
|
|
Quantizer& quantizer = shared.quantizer;
|
|
ImageF& initial_quant_masking1x1 = enc_state->initial_quant_masking1x1;
|
|
ImageI& raw_quant_field = shared.raw_quant_field;
|
|
ColorCorrelationMap& cmap = shared.cmap;
|
|
AcStrategyImage& ac_strategy = shared.ac_strategy;
|
|
BlockCtxMap& block_ctx_map = shared.block_ctx_map;
|
|
JxlMemoryManager* memory_manager = enc_state->memory_manager();
|
|
|
|
// Find and subtract splines.
|
|
if (cparams.custom_splines.HasAny()) {
|
|
image_features.splines = cparams.custom_splines;
|
|
}
|
|
if (!streaming_mode && cparams.speed_tier <= SpeedTier::kSquirrel) {
|
|
if (!cparams.custom_splines.HasAny()) {
|
|
image_features.splines = FindSplines(*opsin);
|
|
}
|
|
JXL_RETURN_IF_ERROR(image_features.splines.InitializeDrawCache(
|
|
opsin->xsize(), opsin->ysize(), cmap));
|
|
image_features.splines.SubtractFrom(opsin);
|
|
}
|
|
|
|
// Find and subtract patches/dots.
|
|
if (!streaming_mode &&
|
|
ApplyOverride(cparams.patches,
|
|
cparams.speed_tier <= SpeedTier::kSquirrel)) {
|
|
JXL_RETURN_IF_ERROR(
|
|
FindBestPatchDictionary(*opsin, enc_state, cms, pool, aux_out));
|
|
PatchDictionaryEncoder::SubtractFrom(image_features.patches, opsin);
|
|
}
|
|
|
|
const float quant_dc = InitialQuantDC(cparams.butteraugli_distance);
|
|
|
|
// TODO(veluca): we can now run all the code from here to FindBestQuantizer
|
|
// (excluded) one rect at a time. Do that.
|
|
|
|
// Dependency graph:
|
|
//
|
|
// input: either XYB or input image
|
|
//
|
|
// input image -> XYB [optional]
|
|
// XYB -> initial quant field
|
|
// XYB -> Gaborished XYB
|
|
// Gaborished XYB -> CfL1
|
|
// initial quant field, Gaborished XYB, CfL1 -> ACS
|
|
// initial quant field, ACS, Gaborished XYB -> EPF control field
|
|
// initial quant field -> adjusted initial quant field
|
|
// adjusted initial quant field, ACS -> raw quant field
|
|
// raw quant field, ACS, Gaborished XYB -> CfL2
|
|
//
|
|
// output: Gaborished XYB, CfL, ACS, raw quant field, EPF control field.
|
|
|
|
AcStrategyHeuristics acs_heuristics(cparams);
|
|
CfLHeuristics cfl_heuristics;
|
|
ImageF initial_quant_field;
|
|
ImageF initial_quant_masking;
|
|
|
|
// Compute an initial estimate of the quantization field.
|
|
// Call InitialQuantField only in Hare mode or slower. Otherwise, rely
|
|
// on simple heuristics in FindBestAcStrategy, or set a constant for Falcon
|
|
// mode.
|
|
if (cparams.speed_tier > SpeedTier::kHare ||
|
|
cparams.disable_percepeptual_optimizations) {
|
|
JXL_ASSIGN_OR_RETURN(initial_quant_field,
|
|
ImageF::Create(memory_manager, frame_dim.xsize_blocks,
|
|
frame_dim.ysize_blocks));
|
|
JXL_ASSIGN_OR_RETURN(initial_quant_masking,
|
|
ImageF::Create(memory_manager, frame_dim.xsize_blocks,
|
|
frame_dim.ysize_blocks));
|
|
float q = 0.79 / cparams.butteraugli_distance;
|
|
FillImage(q, &initial_quant_field);
|
|
float masking = 1.0f / (q + 0.001f);
|
|
FillImage(masking, &initial_quant_masking);
|
|
if (cparams.disable_percepeptual_optimizations) {
|
|
JXL_ASSIGN_OR_RETURN(
|
|
initial_quant_masking1x1,
|
|
ImageF::Create(memory_manager, frame_dim.xsize, frame_dim.ysize));
|
|
FillImage(masking, &initial_quant_masking1x1);
|
|
}
|
|
quantizer.ComputeGlobalScaleAndQuant(quant_dc, q, 0);
|
|
} else {
|
|
// Call this here, as it relies on pre-gaborish values.
|
|
float butteraugli_distance_for_iqf = cparams.butteraugli_distance;
|
|
if (!frame_header.loop_filter.gab) {
|
|
butteraugli_distance_for_iqf *= 0.73f;
|
|
}
|
|
JXL_ASSIGN_OR_RETURN(
|
|
initial_quant_field,
|
|
InitialQuantField(butteraugli_distance_for_iqf, *opsin, rect, pool,
|
|
1.0f, &initial_quant_masking,
|
|
&initial_quant_masking1x1));
|
|
float q = 0.39 / cparams.butteraugli_distance;
|
|
quantizer.ComputeGlobalScaleAndQuant(quant_dc, q, 0);
|
|
}
|
|
|
|
// TODO(veluca): do something about animations.
|
|
|
|
// Apply inverse-gaborish.
|
|
if (frame_header.loop_filter.gab) {
|
|
// Unsure why better to do some more gaborish on X and B than Y.
|
|
float weight[3] = {
|
|
1.0036278514398933f,
|
|
0.99406123118127299f,
|
|
0.99719338015886894f,
|
|
};
|
|
JXL_RETURN_IF_ERROR(GaborishInverse(opsin, rect, weight, pool));
|
|
}
|
|
|
|
if (initialize_global_state) {
|
|
JXL_RETURN_IF_ERROR(FindBestDequantMatrices(
|
|
memory_manager, cparams, modular_frame_encoder, &matrices));
|
|
}
|
|
|
|
JXL_RETURN_IF_ERROR(cfl_heuristics.Init(memory_manager, rect));
|
|
acs_heuristics.Init(*opsin, rect, initial_quant_field, initial_quant_masking,
|
|
initial_quant_masking1x1, &matrices);
|
|
|
|
auto process_tile = [&](const uint32_t tid, const size_t thread) {
|
|
size_t n_enc_tiles = DivCeil(frame_dim.xsize_blocks, kEncTileDimInBlocks);
|
|
size_t tx = tid % n_enc_tiles;
|
|
size_t ty = tid / n_enc_tiles;
|
|
size_t by0 = ty * kEncTileDimInBlocks;
|
|
size_t by1 =
|
|
std::min((ty + 1) * kEncTileDimInBlocks, frame_dim.ysize_blocks);
|
|
size_t bx0 = tx * kEncTileDimInBlocks;
|
|
size_t bx1 =
|
|
std::min((tx + 1) * kEncTileDimInBlocks, frame_dim.xsize_blocks);
|
|
Rect r(bx0, by0, bx1 - bx0, by1 - by0);
|
|
|
|
// For speeds up to Wombat, we only compute the color correlation map
|
|
// once we know the transform type and the quantization map.
|
|
if (cparams.speed_tier <= SpeedTier::kSquirrel) {
|
|
cfl_heuristics.ComputeTile(r, *opsin, rect, matrices,
|
|
/*ac_strategy=*/nullptr,
|
|
/*raw_quant_field=*/nullptr,
|
|
/*quantizer=*/nullptr, /*fast=*/false, thread,
|
|
&cmap);
|
|
}
|
|
|
|
// Choose block sizes.
|
|
acs_heuristics.ProcessRect(r, cmap, &ac_strategy, thread);
|
|
|
|
// Always set the initial quant field, so we can compute the CfL map with
|
|
// more accuracy. The initial quant field might change in slower modes, but
|
|
// adjusting the quant field with butteraugli when all the other encoding
|
|
// parameters are fixed is likely a more reliable choice anyway.
|
|
AdjustQuantField(ac_strategy, r, cparams.butteraugli_distance,
|
|
&initial_quant_field);
|
|
quantizer.SetQuantFieldRect(initial_quant_field, r, &raw_quant_field);
|
|
|
|
// Compute a non-default CfL map if we are at Hare speed, or slower.
|
|
if (cparams.speed_tier <= SpeedTier::kHare) {
|
|
cfl_heuristics.ComputeTile(
|
|
r, *opsin, rect, matrices, &ac_strategy, &raw_quant_field, &quantizer,
|
|
/*fast=*/cparams.speed_tier >= SpeedTier::kWombat, thread, &cmap);
|
|
}
|
|
};
|
|
JXL_RETURN_IF_ERROR(RunOnPool(
|
|
pool, 0,
|
|
DivCeil(frame_dim.xsize_blocks, kEncTileDimInBlocks) *
|
|
DivCeil(frame_dim.ysize_blocks, kEncTileDimInBlocks),
|
|
[&](const size_t num_threads) {
|
|
acs_heuristics.PrepareForThreads(num_threads);
|
|
cfl_heuristics.PrepareForThreads(num_threads);
|
|
return true;
|
|
},
|
|
process_tile, "Enc Heuristics"));
|
|
|
|
JXL_RETURN_IF_ERROR(acs_heuristics.Finalize(frame_dim, ac_strategy, aux_out));
|
|
|
|
// Refine quantization levels.
|
|
if (!streaming_mode && !cparams.disable_percepeptual_optimizations) {
|
|
ImageB& epf_sharpness = shared.epf_sharpness;
|
|
FillPlane(static_cast<uint8_t>(4), &epf_sharpness, Rect(epf_sharpness));
|
|
JXL_RETURN_IF_ERROR(FindBestQuantizer(frame_header, linear, *opsin,
|
|
initial_quant_field, enc_state, cms,
|
|
pool, aux_out));
|
|
}
|
|
|
|
// Choose a context model that depends on the amount of quantization for AC.
|
|
if (cparams.speed_tier < SpeedTier::kFalcon && initialize_global_state) {
|
|
FindBestBlockEntropyModel(cparams, raw_quant_field, ac_strategy,
|
|
&block_ctx_map);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace jxl
|