fune/third_party/rust/wpf-gpu-raster/examples/draw.rs
Lee Salzman cc4019f675 Bug 1799402 - Vendor wpf-gpu-raster Rust crate. r=jrmuizel,supply-chain-reviewers
This adds the wpf-gpu-raster Rust crate so we can use it for the accelerated
Canvas2D project.

Differential Revision: https://phabricator.services.mozilla.com/D161477
2022-11-12 08:06:43 +00:00

354 lines
11 KiB
Rust

/* The rasterization code here is based off of piglit/tests/general/triangle-rasterization.cpp:
/**************************************************************************
*
* Copyright 2012 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
*/
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
use euclid::{default::Transform2D, point2};
use wpf_gpu_raster::{PathBuilder};
use std::ops::Index;
const WIDTH: u32 = 800;
const HEIGHT: u32 = 800;
fn over(src: u32, dst: u32) -> u32 {
let a = src >> 24;
let a = 255 - a;
let mask = 0xff00ff;
let t = (dst & mask) * a + 0x800080;
let mut rb = (t + ((t >> 8) & mask)) >> 8;
rb &= mask;
rb += src & mask;
// saturate
rb |= 0x1000100 - ((rb >> 8) & mask);
rb &= mask;
let t = ((dst >> 8) & mask) * a + 0x800080;
let mut ag = (t + ((t >> 8) & mask)) >> 8;
ag &= mask;
ag += (src >> 8) & mask;
// saturate
ag |= 0x1000100 - ((ag >> 8) & mask);
ag &= mask;
(ag << 8) + rb
}
pub fn alpha_mul(x: u32, a: u32) -> u32 {
let mask = 0xFF00FF;
let src_rb = ((x & mask) * a) >> 8;
let src_ag = ((x >> 8) & mask) * a;
(src_rb & mask) | (src_ag & !mask)
}
fn write_image(data: &[u32], path: &str) {
use std::path::Path;
use std::fs::File;
use std::io::BufWriter;
let mut png_data: Vec<u8> = vec![0; (WIDTH * HEIGHT * 3) as usize];
let mut i = 0;
for pixel in data {
png_data[i] = ((pixel >> 16) & 0xff) as u8;
png_data[i + 1] = ((pixel >> 8) & 0xff) as u8;
png_data[i + 2] = ((pixel >> 0) & 0xff) as u8;
i += 3;
}
let path = Path::new(path);
let file = File::create(path).unwrap();
let w = &mut BufWriter::new(file);
let mut encoder = png::Encoder::new(w, WIDTH, HEIGHT); // Width is 2 pixels and height is 1.
encoder.set_color(png::ColorType::Rgb);
encoder.set_depth(png::BitDepth::Eight);
let mut writer = encoder.write_header().unwrap();
writer.write_image_data(&png_data).unwrap(); // Save
}
#[derive(Debug)]
struct Vertex {
x: f32,
y: f32,
coverage: f32
}
#[derive(Debug)]
struct Triangle {
v: [Vertex; 3],
}
impl Index<usize> for Triangle {
type Output = Vertex;
fn index(&self, index: usize) -> &Self::Output {
&self.v[index]
}
}
// D3D11 mandates 8 bit subpixel precision:
// https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#CoordinateSnapping
const FIXED_SHIFT: i32 = 8;
const FIXED_ONE: f32 = (1 << FIXED_SHIFT) as f32;
/* Proper rounding of float to integer */
fn iround(mut v: f32) -> i64 {
if v > 0.0 {
v += 0.5;
}
if v < 0.0 {
v -= 0.5;
}
return v as i64
}
/* Based on http://devmaster.net/forums/topic/1145-advanced-rasterization */
fn rast_triangle(buffer: &mut [u32], stride: usize, tri: &Triangle, color: u32) {
let center_offset = -0.5;
let mut coverage1 = tri[0].coverage;
let mut coverage2 = tri[1].coverage;
let mut coverage3 = tri[2].coverage;
/* fixed point coordinates */
let mut x1 = iround(FIXED_ONE * (tri[0].x + center_offset));
let x2 = iround(FIXED_ONE * (tri[1].x + center_offset));
let mut x3 = iround(FIXED_ONE * (tri[2].x + center_offset));
let mut y1 = iround(FIXED_ONE * (tri[0].y + center_offset));
let y2 = iround(FIXED_ONE * (tri[1].y + center_offset));
let mut y3 = iround(FIXED_ONE * (tri[2].y + center_offset));
/* Force correct vertex order */
let cross = (x2 - x1) * (y3 - y2) - (y2 - y1) * (x3 - x2);
if cross > 0 {
std::mem::swap(&mut x1, &mut x3);
std::mem::swap(&mut y1, &mut y3);
// I don't understand why coverage 2 and 3 are swapped instead of 1 and 3
std::mem::swap(&mut coverage2, &mut coverage3);
} else {
std::mem::swap(&mut coverage1, &mut coverage3);
}
/* Deltas */
let dx12 = x1 - x2;
let dx23 = x2 - x3;
let dx31 = x3 - x1;
let dy12 = y1 - y2;
let dy23 = y2 - y3;
let dy31 = y3 - y1;
/* Fixed-point deltas */
let fdx12 = dx12 << FIXED_SHIFT;
let fdx23 = dx23 << FIXED_SHIFT;
let fdx31 = dx31 << FIXED_SHIFT;
let fdy12 = dy12 << FIXED_SHIFT;
let fdy23 = dy23 << FIXED_SHIFT;
let fdy31 = dy31 << FIXED_SHIFT;
/* Bounding rectangle */
let mut minx = x1.min(x2).min(x3) >> FIXED_SHIFT;
let mut maxx = x1.max(x2).max(x3) >> FIXED_SHIFT;
let mut miny = y1.min(y2).min(y3) >> FIXED_SHIFT;
let mut maxy = y1.max(y2).max(y3) >> FIXED_SHIFT;
minx = minx.max(0);
maxx = maxx.min(WIDTH as i64 - 1);
miny = miny.max(0);
maxy = maxy.min(HEIGHT as i64 - 1);
/* Half-edge constants */
let mut c1 = dy12 * x1 - dx12 * y1;
let mut c2 = dy23 * x2 - dx23 * y2;
let mut c3 = dy31 * x3 - dx31 * y3;
/* Correct for top-left filling convention */
if dy12 < 0 || (dy12 == 0 && dx12 < 0) { c1 += 1 }
if dy23 < 0 || (dy23 == 0 && dx23 < 0) { c2 += 1 }
if dy31 < 0 || (dy31 == 0 && dx31 < 0) { c3 += 1 }
let mut cy1 = c1 + dx12 * (miny << FIXED_SHIFT) - dy12 * (minx << FIXED_SHIFT);
let mut cy2 = c2 + dx23 * (miny << FIXED_SHIFT) - dy23 * (minx << FIXED_SHIFT);
let mut cy3 = c3 + dx31 * (miny << FIXED_SHIFT) - dy31 * (minx << FIXED_SHIFT);
/* Perform rasterization */
let mut buffer = &mut buffer[miny as usize * stride..];
for _y in miny..=maxy {
let mut cx1 = cy1;
let mut cx2 = cy2;
let mut cx3 = cy3;
for x in minx..=maxx {
if cx1 > 0 && cx2 > 0 && cx3 > 0 {
// cross is equal to 2*area of the triangle.
// we can normalize cx by 2*area to get barycentric coords.
let area = cross.abs() as f32;
let bary = (cx1 as f32 / area, cx2 as f32/ area, cx3 as f32 / area);
let coverages = coverage1 * bary.0 + coverage2 * bary.1 + coverage3 * bary.2;
let color = alpha_mul(color, (coverages * 256. + 0.5) as u32);
buffer[x as usize] = over(color, buffer[x as usize]);
}
cx1 -= fdy12;
cx2 -= fdy23;
cx3 -= fdy31;
}
cy1 += fdx12;
cy2 += fdx23;
cy3 += fdx31;
buffer = &mut buffer[stride..];
}
}
fn main() {
let opt = usvg::Options::default();
let rtree = usvg::Tree::from_file("tiger.svg", &opt).unwrap();
let mut image = vec![0; (WIDTH * HEIGHT) as usize];
for _ in 0..1 {
let mut total_vertex_count = 0;
let mut total_time = std::time::Duration::default();
for node in rtree.root().descendants() {
use usvg::NodeExt;
let t = node.transform();
let transform = Transform2D::new(
t.a as f32, t.b as f32,
t.c as f32, t.d as f32,
t.e as f32, t.f as f32,
);
let s = 1.;
if let usvg::NodeKind::Path(ref usvg_path) = *node.borrow() {
let color = match usvg_path.fill {
Some(ref fill) => {
match fill.paint {
usvg::Paint::Color(c) => 0xff000000 | (c.red as u32) << 16 | (c.green as u32) << 8 | c.blue as u32,
_ => 0xff00ff00,
}
}
None => {
continue;
}
};
let mut builder = PathBuilder::new();
//dbg!(&usvg_path.segments);
for segment in &usvg_path.segments {
match *segment {
usvg::PathSegment::MoveTo { x, y } => {
let p = transform.transform_point(point2(x as f32, y as f32)) * s;
builder.move_to(p.x, p.y);
}
usvg::PathSegment::LineTo { x, y } => {
let p = transform.transform_point(point2(x as f32, y as f32)) * s;
builder.line_to(p.x, p.y);
}
usvg::PathSegment::CurveTo { x1, y1, x2, y2, x, y, } => {
let c1 = transform.transform_point(point2(x1 as f32, y1 as f32)) * s;
let c2 = transform.transform_point(point2(x2 as f32, y2 as f32)) * s;
let p = transform.transform_point(point2(x as f32, y as f32)) * s;
builder.curve_to(
c1.x, c1.y,
c2.x, c2.y,
p.x, p.y,
);
}
usvg::PathSegment::ClosePath => {
builder.close();
}
}
}
let start = std::time::Instant::now();
let result = builder.rasterize_to_tri_list(0, 0, WIDTH as i32, HEIGHT as i32);
let end = std::time::Instant::now();
total_time += end - start;
println!("vertices {}", result.len());
total_vertex_count += result.len();
if result.len() == 0 {
continue;
}
for n in (0..result.len()).step_by(3) {
let vertices = {
[&result[n], &result[n+1], &result[n+2]]
};
let src = color;
let tri = Triangle { v: [
Vertex { x: vertices[0].x, y: vertices[0].y, coverage: vertices[0].coverage},
Vertex { x: vertices[1].x, y: vertices[1].y, coverage: vertices[1].coverage},
Vertex { x: vertices[2].x, y: vertices[2].y, coverage: vertices[2].coverage}
]
};
rast_triangle(&mut image, WIDTH as usize, &tri, src);
}
}
}
println!("total vertex count {}, took {}ms", total_vertex_count, total_time.as_secs_f32()*1000.);
}
write_image(&image, "out.png");
use std::{hash::{Hash, Hasher}, collections::hash_map::DefaultHasher};
use crate::*;
fn calculate_hash<T: Hash>(t: &T) -> u64 {
let mut s = DefaultHasher::new();
t.hash(&mut s);
s.finish()
}
assert_eq!(calculate_hash(&image),
if cfg!(debug_assertions) { 0x5973c52a1c0232f3 } else { 0xf15821a5bebc5ecf});
}