fune/tools/profiler/core/platform.cpp
2020-03-28 13:57:21 +00:00

5112 lines
192 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// There are three kinds of samples done by the profiler.
//
// - A "periodic" sample is the most complex kind. It is done in response to a
// timer while the profiler is active. It involves writing a stack trace plus
// a variety of other values (memory measurements, responsiveness
// measurements, markers, etc.) into the main ProfileBuffer. The sampling is
// done from off-thread, and so SuspendAndSampleAndResumeThread() is used to
// get the register values.
//
// - A "synchronous" sample is a simpler kind. It is done in response to an API
// call (profiler_get_backtrace()). It involves writing a stack trace and
// little else into a temporary ProfileBuffer, and wrapping that up in a
// ProfilerBacktrace that can be subsequently used in a marker. The sampling
// is done on-thread, and so Registers::SyncPopulate() is used to get the
// register values.
//
// - A "backtrace" sample is the simplest kind. It is done in response to an
// API call (profiler_suspend_and_sample_thread()). It involves getting a
// stack trace via a ProfilerStackCollector; it does not write to a
// ProfileBuffer. The sampling is done from off-thread, and so uses
// SuspendAndSampleAndResumeThread() to get the register values.
#include "platform.h"
#include "GeckoProfiler.h"
#include "GeckoProfilerReporter.h"
#include "PageInformation.h"
#include "ProfiledThreadData.h"
#include "ProfilerBacktrace.h"
#include "ProfileBuffer.h"
#include "ProfilerIOInterposeObserver.h"
#include "ProfilerMarkerPayload.h"
#include "ProfilerParent.h"
#include "RegisteredThread.h"
#include "shared-libraries.h"
#include "ThreadInfo.h"
#include "VTuneProfiler.h"
#include "js/TraceLoggerAPI.h"
#include "js/ProfilingFrameIterator.h"
#include "memory_hooks.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/Atomics.h"
#include "mozilla/AutoProfilerLabel.h"
#include "mozilla/ExtensionPolicyService.h"
#include "mozilla/extensions/WebExtensionPolicy.h"
#include "mozilla/Printf.h"
#include "mozilla/Services.h"
#include "mozilla/StackWalk.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/SystemGroup.h"
#include "mozilla/ThreadLocal.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Tuple.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Vector.h"
#include "BaseProfiler.h"
#include "nsDirectoryServiceDefs.h"
#include "nsDirectoryServiceUtils.h"
#include "nsIDocShell.h"
#include "nsIHttpProtocolHandler.h"
#include "nsIObserverService.h"
#include "nsIPropertyBag2.h"
#include "nsIXULAppInfo.h"
#include "nsIXULRuntime.h"
#include "nsJSPrincipals.h"
#include "nsMemoryReporterManager.h"
#include "nsProfilerStartParams.h"
#include "nsScriptSecurityManager.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
#include "prdtoa.h"
#include "prtime.h"
#include <algorithm>
#include <errno.h>
#include <fstream>
#include <ostream>
#include <sstream>
#include <type_traits>
#ifdef MOZ_TASK_TRACER
# include "GeckoTaskTracer.h"
#endif
#if defined(GP_OS_android)
# include "GeneratedJNINatives.h"
# include "GeneratedJNIWrappers.h"
#endif
// Win32 builds always have frame pointers, so FramePointerStackWalk() always
// works.
#if defined(GP_PLAT_x86_windows)
# define HAVE_NATIVE_UNWIND
# define USE_FRAME_POINTER_STACK_WALK
#endif
// Win64 builds always omit frame pointers, so we use the slower
// MozStackWalk(), which works in that case.
#if defined(GP_PLAT_amd64_windows)
# define HAVE_NATIVE_UNWIND
# define USE_MOZ_STACK_WALK
#endif
// AArch64 Win64 doesn't seem to use frame pointers, so we use the slower
// MozStackWalk().
#if defined(GP_PLAT_arm64_windows)
# define HAVE_NATIVE_UNWIND
# define USE_MOZ_STACK_WALK
#endif
// Mac builds only have frame pointers when MOZ_PROFILING is specified, so
// FramePointerStackWalk() only works in that case. We don't use MozStackWalk()
// on Mac.
#if defined(GP_OS_darwin) && defined(MOZ_PROFILING)
# define HAVE_NATIVE_UNWIND
# define USE_FRAME_POINTER_STACK_WALK
#endif
// Android builds use the ARM Exception Handling ABI to unwind.
#if defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
# define HAVE_NATIVE_UNWIND
# define USE_EHABI_STACKWALK
# include "EHABIStackWalk.h"
#endif
// Linux builds use LUL, which uses DWARF info to unwind stacks.
#if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_x86_linux) || \
defined(GP_PLAT_amd64_android) || defined(GP_PLAT_x86_android) || \
defined(GP_PLAT_mips64_linux) || defined(GP_PLAT_arm64_linux) || \
defined(GP_PLAT_arm64_android)
# define HAVE_NATIVE_UNWIND
# define USE_LUL_STACKWALK
# include "lul/LulMain.h"
# include "lul/platform-linux-lul.h"
// On linux we use LUL for periodic samples and synchronous samples, but we use
// FramePointerStackWalk for backtrace samples when MOZ_PROFILING is enabled.
// (See the comment at the top of the file for a definition of
// periodic/synchronous/backtrace.).
//
// FramePointerStackWalk can produce incomplete stacks when the current entry is
// in a shared library without framepointers, however LUL can take a long time
// to initialize, which is undesirable for consumers of
// profiler_suspend_and_sample_thread like the Background Hang Reporter.
# if defined(MOZ_PROFILING)
# define USE_FRAME_POINTER_STACK_WALK
# endif
#endif
// We can only stackwalk without expensive initialization on platforms which
// support FramePointerStackWalk or MozStackWalk. LUL Stackwalking requires
// initializing LUL, and EHABIStackWalk requires initializing EHABI, both of
// which can be expensive.
#if defined(USE_FRAME_POINTER_STACK_WALK) || defined(USE_MOZ_STACK_WALK)
# define HAVE_FASTINIT_NATIVE_UNWIND
#endif
#ifdef MOZ_VALGRIND
# include <valgrind/memcheck.h>
#else
# define VALGRIND_MAKE_MEM_DEFINED(_addr, _len) ((void)0)
#endif
#if defined(GP_OS_linux) || defined(GP_OS_android)
# include <ucontext.h>
#endif
using namespace mozilla;
using mozilla::profiler::detail::RacyFeatures;
LazyLogModule gProfilerLog("prof");
#if defined(GP_OS_android)
class GeckoJavaSampler
: public java::GeckoJavaSampler::Natives<GeckoJavaSampler> {
private:
GeckoJavaSampler();
public:
static double GetProfilerTime() {
if (!profiler_is_active()) {
return 0.0;
}
return profiler_time();
};
};
#endif
// Return all features that are available on this platform.
static uint32_t AvailableFeatures() {
uint32_t features = 0;
#define ADD_FEATURE(n_, str_, Name_, desc_) \
ProfilerFeature::Set##Name_(features);
// Add all the possible features.
PROFILER_FOR_EACH_FEATURE(ADD_FEATURE)
#undef ADD_FEATURE
// Now remove features not supported on this platform/configuration.
#if !defined(GP_OS_android)
ProfilerFeature::ClearJava(features);
#endif
#if !defined(HAVE_NATIVE_UNWIND)
ProfilerFeature::ClearStackWalk(features);
#endif
#if !defined(MOZ_TASK_TRACER)
ProfilerFeature::ClearTaskTracer(features);
#endif
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
if (getenv("XPCOM_MEM_BLOAT_LOG")) {
// The memory hooks are available, but the bloat log is enabled, which is
// not compatible with the native allocations tracking. See the comment in
// enable_native_allocations() (tools/profiler/core/memory_hooks.cpp) for
// more information.
ProfilerFeature::ClearNativeAllocations(features);
}
#else
// The memory hooks are not available.
ProfilerFeature::ClearNativeAllocations(features);
#endif
if (!JS::TraceLoggerSupported()) {
ProfilerFeature::ClearJSTracer(features);
}
return features;
}
// Default features common to all contexts (even if not available).
static uint32_t DefaultFeatures() {
return ProfilerFeature::Java | ProfilerFeature::JS | ProfilerFeature::Leaf |
ProfilerFeature::StackWalk | ProfilerFeature::Threads;
}
// Extra default features when MOZ_PROFILER_STARTUP is set (even if not
// available).
static uint32_t StartupExtraDefaultFeatures() {
// Enable mainthreadio by default for startup profiles as startup is heavy on
// I/O operations, and main thread I/O is really important to see there.
return ProfilerFeature::MainThreadIO;
}
// The class is a thin shell around mozglue PlatformMutex. It does not preserve
// behavior in JS record/replay. It provides a mechanism to determine if it is
// locked or not in order for memory hooks to avoid re-entering the profiler
// locked state.
class PSMutex : private ::mozilla::detail::MutexImpl {
public:
PSMutex() : ::mozilla::detail::MutexImpl() {}
void Lock() {
const int tid = profiler_current_thread_id();
MOZ_ASSERT(tid != 0);
// This is only designed to catch recursive locking:
// - If the current thread doesn't own the mutex, `mOwningThreadId` must be
// zero or a different thread id written by another thread; it may change
// again at any time, but never to the current thread's id.
// - If the current thread owns the mutex, `mOwningThreadId` must be its id.
MOZ_ASSERT(mOwningThreadId != tid);
::mozilla::detail::MutexImpl::lock();
// We now hold the mutex, it should have been in the unlocked state before.
MOZ_ASSERT(mOwningThreadId == 0);
// And we can write our own thread id.
mOwningThreadId = tid;
}
void Unlock() {
// This should never trigger! But check just in case something has gone
// very wrong (e.g., memory corruption).
AssertCurrentThreadOwns();
// We're still holding the mutex here, so it's safe to just reset
// `mOwningThreadId`.
mOwningThreadId = 0;
::mozilla::detail::MutexImpl::unlock();
}
// Does the current thread own this mutex?
// False positive or false negatives are not possible:
// - If `true`, the current thread owns the mutex, it has written its own
// `mOwningThreadId` when taking the lock, and no-one else can modify it
// until the current thread itself unlocks the mutex.
// - If `false`, the current thread does not own the mutex, therefore either
// `mOwningThreadId` is zero (unlocked), or it is a different thread id
// written by another thread, but it can never be the current thread's id
// until the current thread itself locks the mutex.
bool IsLockedOnCurrentThread() const {
return mOwningThreadId == profiler_current_thread_id();
}
void AssertCurrentThreadOwns() const {
MOZ_ASSERT(IsLockedOnCurrentThread());
}
void AssertCurrentThreadDoesNotOwn() const {
MOZ_ASSERT(!IsLockedOnCurrentThread());
}
private:
// Zero when unlocked, or the thread id of the owning thread.
// This should only be used to compare with the current thread id; any other
// number (0 or other id) could change at any time because the current thread
// wouldn't own the lock.
Atomic<int, MemoryOrdering::SequentiallyConsistent> mOwningThreadId{0};
};
// RAII class to lock the profiler mutex.
class MOZ_RAII PSAutoLock {
public:
explicit PSAutoLock(PSMutex& aMutex) : mMutex(aMutex) { mMutex.Lock(); }
~PSAutoLock() { mMutex.Unlock(); }
private:
PSMutex& mMutex;
};
// Only functions that take a PSLockRef arg can access CorePS's and ActivePS's
// fields.
typedef const PSAutoLock& PSLockRef;
#define PS_GET(type_, name_) \
static type_ name_(PSLockRef) { \
MOZ_ASSERT(sInstance); \
return sInstance->m##name_; \
}
#define PS_GET_LOCKLESS(type_, name_) \
static type_ name_() { \
MOZ_ASSERT(sInstance); \
return sInstance->m##name_; \
}
#define PS_GET_AND_SET(type_, name_) \
PS_GET(type_, name_) \
static void Set##name_(PSLockRef, type_ a##name_) { \
MOZ_ASSERT(sInstance); \
sInstance->m##name_ = a##name_; \
}
static const size_t MAX_JS_FRAMES = 1024;
using JsFrameBuffer = JS::ProfilingFrameIterator::Frame[MAX_JS_FRAMES];
// All functions in this file can run on multiple threads unless they have an
// NS_IsMainThread() assertion.
// This class contains the profiler's core global state, i.e. that which is
// valid even when the profiler is not active. Most profile operations can't do
// anything useful when this class is not instantiated, so we release-assert
// its non-nullness in all such operations.
//
// Accesses to CorePS are guarded by gPSMutex. Getters and setters take a
// PSAutoLock reference as an argument as proof that the gPSMutex is currently
// locked. This makes it clear when gPSMutex is locked and helps avoid
// accidental unlocked accesses to global state. There are ways to circumvent
// this mechanism, but please don't do so without *very* good reason and a
// detailed explanation.
//
// The exceptions to this rule:
//
// - mProcessStartTime, because it's immutable;
//
// - each thread's RacyRegisteredThread object is accessible without locking via
// TLSRegisteredThread::RacyRegisteredThread().
class CorePS {
private:
CorePS()
: mProcessStartTime(TimeStamp::ProcessCreation()),
// This needs its own mutex, because it is used concurrently from
// functions guarded by gPSMutex as well as others without safety (e.g.,
// profiler_add_marker). It is *not* used inside the critical section of
// the sampler, because mutexes cannot be used there.
mCoreBlocksRingBuffer(BlocksRingBuffer::ThreadSafety::WithMutex)
#ifdef USE_LUL_STACKWALK
,
mLul(nullptr)
#endif
{
}
~CorePS() {}
public:
static void Create(PSLockRef aLock) {
MOZ_ASSERT(!sInstance);
sInstance = new CorePS();
}
static void Destroy(PSLockRef aLock) {
MOZ_ASSERT(sInstance);
delete sInstance;
sInstance = nullptr;
}
// Unlike ActivePS::Exists(), CorePS::Exists() can be called without gPSMutex
// being locked. This is because CorePS is instantiated so early on the main
// thread that we don't have to worry about it being racy.
static bool Exists() { return !!sInstance; }
static void AddSizeOf(PSLockRef, MallocSizeOf aMallocSizeOf,
size_t& aProfSize, size_t& aLulSize) {
MOZ_ASSERT(sInstance);
aProfSize += aMallocSizeOf(sInstance);
for (auto& registeredThread : sInstance->mRegisteredThreads) {
aProfSize += registeredThread->SizeOfIncludingThis(aMallocSizeOf);
}
for (auto& registeredPage : sInstance->mRegisteredPages) {
aProfSize += registeredPage->SizeOfIncludingThis(aMallocSizeOf);
}
// Measurement of the following things may be added later if DMD finds it
// is worthwhile:
// - CorePS::mRegisteredThreads itself (its elements' children are
// measured above)
// - CorePS::mRegisteredPages itself (its elements' children are
// measured above)
// - CorePS::mInterposeObserver
#if defined(USE_LUL_STACKWALK)
if (sInstance->mLul) {
aLulSize += sInstance->mLul->SizeOfIncludingThis(aMallocSizeOf);
}
#endif
}
// No PSLockRef is needed for this field because it's immutable.
PS_GET_LOCKLESS(TimeStamp, ProcessStartTime)
// No PSLockRef is needed for this field because it's thread-safe.
PS_GET_LOCKLESS(BlocksRingBuffer&, CoreBlocksRingBuffer)
PS_GET(const Vector<UniquePtr<RegisteredThread>>&, RegisteredThreads)
PS_GET(JsFrameBuffer&, JsFrames)
static void AppendRegisteredThread(
PSLockRef, UniquePtr<RegisteredThread>&& aRegisteredThread) {
MOZ_ASSERT(sInstance);
MOZ_RELEASE_ASSERT(
sInstance->mRegisteredThreads.append(std::move(aRegisteredThread)));
}
static void RemoveRegisteredThread(PSLockRef,
RegisteredThread* aRegisteredThread) {
MOZ_ASSERT(sInstance);
// Remove aRegisteredThread from mRegisteredThreads.
for (UniquePtr<RegisteredThread>& rt : sInstance->mRegisteredThreads) {
if (rt.get() == aRegisteredThread) {
sInstance->mRegisteredThreads.erase(&rt);
return;
}
}
}
PS_GET(Vector<RefPtr<PageInformation>>&, RegisteredPages)
static void AppendRegisteredPage(PSLockRef,
RefPtr<PageInformation>&& aRegisteredPage) {
MOZ_ASSERT(sInstance);
struct RegisteredPageComparator {
PageInformation* aA;
bool operator()(PageInformation* aB) const { return aA->Equals(aB); }
};
auto foundPageIter = std::find_if(
sInstance->mRegisteredPages.begin(), sInstance->mRegisteredPages.end(),
RegisteredPageComparator{aRegisteredPage.get()});
if (foundPageIter != sInstance->mRegisteredPages.end()) {
if ((*foundPageIter)->Url().EqualsLiteral("about:blank")) {
// When a BrowsingContext is loaded, the first url loaded in it will be
// about:blank, and if the principal matches, the first document loaded
// in it will share an inner window. That's why we should delete the
// intermittent about:blank if they share the inner window.
sInstance->mRegisteredPages.erase(foundPageIter);
} else {
// Do not register the same page again.
return;
}
}
MOZ_RELEASE_ASSERT(
sInstance->mRegisteredPages.append(std::move(aRegisteredPage)));
}
static void RemoveRegisteredPage(PSLockRef,
uint64_t aRegisteredInnerWindowID) {
MOZ_ASSERT(sInstance);
// Remove RegisteredPage from mRegisteredPages by given inner window ID.
sInstance->mRegisteredPages.eraseIf([&](const RefPtr<PageInformation>& rd) {
return rd->InnerWindowID() == aRegisteredInnerWindowID;
});
}
static void ClearRegisteredPages(PSLockRef) {
MOZ_ASSERT(sInstance);
sInstance->mRegisteredPages.clear();
}
PS_GET(const Vector<BaseProfilerCount*>&, Counters)
static void AppendCounter(PSLockRef, BaseProfilerCount* aCounter) {
MOZ_ASSERT(sInstance);
// we don't own the counter; they may be stored in static objects
MOZ_RELEASE_ASSERT(sInstance->mCounters.append(aCounter));
}
static void RemoveCounter(PSLockRef, BaseProfilerCount* aCounter) {
// we may be called to remove a counter after the profiler is stopped or
// late in shutdown.
if (sInstance) {
auto* counter = std::find(sInstance->mCounters.begin(),
sInstance->mCounters.end(), aCounter);
MOZ_RELEASE_ASSERT(counter != sInstance->mCounters.end());
sInstance->mCounters.erase(counter);
}
}
#ifdef USE_LUL_STACKWALK
static lul::LUL* Lul(PSLockRef) {
MOZ_ASSERT(sInstance);
return sInstance->mLul.get();
}
static void SetLul(PSLockRef, UniquePtr<lul::LUL> aLul) {
MOZ_ASSERT(sInstance);
sInstance->mLul = std::move(aLul);
}
#endif
PS_GET_AND_SET(const nsACString&, ProcessName)
private:
// The singleton instance
static CorePS* sInstance;
// The time that the process started.
const TimeStamp mProcessStartTime;
// The thread-safe blocks-oriented ring buffer into which all profiling data
// is recorded.
// ActivePS controls the lifetime of the underlying contents buffer: When
// ActivePS does not exist, mCoreBlocksRingBuffer is empty and rejects all
// reads&writes; see ActivePS for further details.
// Note: This needs to live here outside of ActivePS, because some producers
// are indirectly controlled (e.g., by atomic flags) and therefore may still
// attempt to write some data shortly after ActivePS has shutdown and deleted
// the underlying buffer in memory.
BlocksRingBuffer mCoreBlocksRingBuffer;
// Info on all the registered threads.
// ThreadIds in mRegisteredThreads are unique.
Vector<UniquePtr<RegisteredThread>> mRegisteredThreads;
// Info on all the registered pages.
// InnerWindowIDs in mRegisteredPages are unique.
Vector<RefPtr<PageInformation>> mRegisteredPages;
// Non-owning pointers to all active counters
Vector<BaseProfilerCount*> mCounters;
#ifdef USE_LUL_STACKWALK
// LUL's state. Null prior to the first activation, non-null thereafter.
UniquePtr<lul::LUL> mLul;
#endif
// Process name, provided by child process initialization code.
nsAutoCString mProcessName;
// This memory buffer is used by the MergeStacks mechanism. Previously it was
// stack allocated, but this led to a stack overflow, as it was too much
// memory. Here the buffer can be pre-allocated, and shared with the
// MergeStacks feature as needed. MergeStacks is only run while holding the
// lock, so it is safe to have only one instance allocated for all of the
// threads.
JsFrameBuffer mJsFrames;
};
CorePS* CorePS::sInstance = nullptr;
class SamplerThread;
static SamplerThread* NewSamplerThread(PSLockRef aLock, uint32_t aGeneration,
double aInterval);
struct LiveProfiledThreadData {
RegisteredThread* mRegisteredThread;
UniquePtr<ProfiledThreadData> mProfiledThreadData;
};
// This class contains the profiler's global state that is valid only when the
// profiler is active. When not instantiated, the profiler is inactive.
//
// Accesses to ActivePS are guarded by gPSMutex, in much the same fashion as
// CorePS.
//
class ActivePS {
private:
static uint32_t AdjustFeatures(uint32_t aFeatures, uint32_t aFilterCount) {
// Filter out any features unavailable in this platform/configuration.
aFeatures &= AvailableFeatures();
// Always enable ProfilerFeature::Threads if we have a filter, because
// users sometimes ask to filter by a list of threads but forget to
// explicitly specify ProfilerFeature::Threads.
if (aFilterCount > 0) {
aFeatures |= ProfilerFeature::Threads;
}
return aFeatures;
}
ActivePS(PSLockRef aLock, PowerOfTwo32 aCapacity, double aInterval,
uint32_t aFeatures, const char** aFilters, uint32_t aFilterCount,
uint64_t aActiveBrowsingContextID, const Maybe<double>& aDuration)
: mGeneration(sNextGeneration++),
mCapacity(aCapacity),
mDuration(aDuration),
mInterval(aInterval),
mFeatures(AdjustFeatures(aFeatures, aFilterCount)),
mActiveBrowsingContextID(aActiveBrowsingContextID),
// 8 bytes per entry.
mProfileBuffer(CorePS::CoreBlocksRingBuffer(),
PowerOfTwo32(aCapacity.Value() * 8)),
// The new sampler thread doesn't start sampling immediately because the
// main loop within Run() is blocked until this function's caller
// unlocks gPSMutex.
mSamplerThread(NewSamplerThread(aLock, mGeneration, aInterval)),
mInterposeObserver(ProfilerFeature::HasMainThreadIO(aFeatures)
? new ProfilerIOInterposeObserver()
: nullptr),
mIsPaused(false)
#if defined(GP_OS_linux)
,
mWasPaused(false)
#endif
{
// Deep copy aFilters.
MOZ_ALWAYS_TRUE(mFilters.resize(aFilterCount));
for (uint32_t i = 0; i < aFilterCount; ++i) {
mFilters[i] = aFilters[i];
}
#if !defined(RELEASE_OR_BETA)
if (mInterposeObserver) {
// We need to register the observer on the main thread, because we want
// to observe IO that happens on the main thread.
// IOInterposer needs to be initialized before calling
// IOInterposer::Register or our observer will be silently dropped.
if (NS_IsMainThread()) {
IOInterposer::Init();
IOInterposer::Register(IOInterposeObserver::OpAll, mInterposeObserver);
} else {
RefPtr<ProfilerIOInterposeObserver> observer = mInterposeObserver;
NS_DispatchToMainThread(
NS_NewRunnableFunction("ActivePS::ActivePS", [=]() {
IOInterposer::Init();
IOInterposer::Register(IOInterposeObserver::OpAll, observer);
}));
}
}
#endif
}
~ActivePS() {
#if !defined(RELEASE_OR_BETA)
if (mInterposeObserver) {
// We need to unregister the observer on the main thread, because that's
// where we've registered it.
if (NS_IsMainThread()) {
IOInterposer::Unregister(IOInterposeObserver::OpAll,
mInterposeObserver);
} else {
RefPtr<ProfilerIOInterposeObserver> observer = mInterposeObserver;
NS_DispatchToMainThread(
NS_NewRunnableFunction("ActivePS::~ActivePS", [=]() {
IOInterposer::Unregister(IOInterposeObserver::OpAll, observer);
}));
}
}
#endif
}
bool ThreadSelected(const char* aThreadName) {
if (mFilters.empty()) {
return true;
}
std::string name = aThreadName;
std::transform(name.begin(), name.end(), name.begin(), ::tolower);
for (uint32_t i = 0; i < mFilters.length(); ++i) {
std::string filter = mFilters[i];
if (filter == "*") {
return true;
}
std::transform(filter.begin(), filter.end(), filter.begin(), ::tolower);
// Crude, non UTF-8 compatible, case insensitive substring search
if (name.find(filter) != std::string::npos) {
return true;
}
// If the filter starts with pid:, check for a pid match
if (filter.find("pid:") == 0) {
std::string mypid = std::to_string(profiler_current_process_id());
if (filter.compare(4, std::string::npos, mypid) == 0) {
return true;
}
}
}
return false;
}
public:
static void Create(PSLockRef aLock, PowerOfTwo32 aCapacity, double aInterval,
uint32_t aFeatures, const char** aFilters,
uint32_t aFilterCount, uint64_t aActiveBrowsingContextID,
const Maybe<double>& aDuration) {
MOZ_ASSERT(!sInstance);
sInstance = new ActivePS(aLock, aCapacity, aInterval, aFeatures, aFilters,
aFilterCount, aActiveBrowsingContextID, aDuration);
}
static MOZ_MUST_USE SamplerThread* Destroy(PSLockRef aLock) {
MOZ_ASSERT(sInstance);
auto samplerThread = sInstance->mSamplerThread;
delete sInstance;
sInstance = nullptr;
return samplerThread;
}
static bool Exists(PSLockRef) { return !!sInstance; }
static bool Equals(PSLockRef, PowerOfTwo32 aCapacity,
const Maybe<double>& aDuration, double aInterval,
uint32_t aFeatures, const char** aFilters,
uint32_t aFilterCount, uint64_t aActiveBrowsingContextID) {
MOZ_ASSERT(sInstance);
if (sInstance->mCapacity != aCapacity ||
sInstance->mDuration != aDuration ||
sInstance->mInterval != aInterval ||
sInstance->mFeatures != aFeatures ||
sInstance->mFilters.length() != aFilterCount ||
sInstance->mActiveBrowsingContextID != aActiveBrowsingContextID) {
return false;
}
for (uint32_t i = 0; i < sInstance->mFilters.length(); ++i) {
if (strcmp(sInstance->mFilters[i].c_str(), aFilters[i]) != 0) {
return false;
}
}
return true;
}
static size_t SizeOf(PSLockRef, MallocSizeOf aMallocSizeOf) {
MOZ_ASSERT(sInstance);
size_t n = aMallocSizeOf(sInstance);
n += sInstance->mProfileBuffer.SizeOfExcludingThis(aMallocSizeOf);
// Measurement of the following members may be added later if DMD finds it
// is worthwhile:
// - mLiveProfiledThreads (both the array itself, and the contents)
// - mDeadProfiledThreads (both the array itself, and the contents)
//
return n;
}
static bool ShouldProfileThread(PSLockRef aLock, ThreadInfo* aInfo) {
MOZ_ASSERT(sInstance);
return ((aInfo->IsMainThread() || FeatureThreads(aLock)) &&
sInstance->ThreadSelected(aInfo->Name()));
}
static MOZ_MUST_USE bool AppendPostSamplingCallback(
PSLockRef, PostSamplingCallback&& aCallback);
// Writes out the current active configuration of the profile.
static void WriteActiveConfiguration(PSLockRef aLock, JSONWriter& aWriter,
const char* aPropertyName = nullptr) {
if (!sInstance) {
if (aPropertyName) {
aWriter.NullProperty(aPropertyName);
} else {
aWriter.NullElement();
}
return;
};
if (aPropertyName) {
aWriter.StartObjectProperty(aPropertyName);
} else {
aWriter.StartObjectElement();
}
{
aWriter.StartArrayProperty("features", aWriter.SingleLineStyle);
#define WRITE_ACTIVE_FEATURES(n_, str_, Name_, desc_) \
if (profiler_feature_active(ProfilerFeature::Name_)) { \
aWriter.StringElement(str_); \
}
PROFILER_FOR_EACH_FEATURE(WRITE_ACTIVE_FEATURES)
#undef WRITE_ACTIVE_FEATURES
aWriter.EndArray();
}
{
aWriter.StartArrayProperty("threads", aWriter.SingleLineStyle);
for (const auto& filter : sInstance->mFilters) {
aWriter.StringElement(filter.c_str());
}
aWriter.EndArray();
}
{
// Now write all the simple values.
// The interval is also available on profile.meta.interval
aWriter.DoubleProperty("interval", sInstance->mInterval);
aWriter.IntProperty("capacity", sInstance->mCapacity.Value());
if (sInstance->mDuration) {
aWriter.DoubleProperty("duration", sInstance->mDuration.value());
}
// Here, we are converting uint64_t to double. Browsing Context IDs are
// being created using `nsContentUtils::GenerateProcessSpecificId`, which
// is specifically designed to only use 53 of the 64 bits to be lossless
// when passed into and out of JS as a double.
aWriter.DoubleProperty("activeBrowsingContextID",
sInstance->mActiveBrowsingContextID);
}
aWriter.EndObject();
}
PS_GET(uint32_t, Generation)
PS_GET(PowerOfTwo32, Capacity)
PS_GET(Maybe<double>, Duration)
PS_GET(double, Interval)
PS_GET(uint32_t, Features)
PS_GET(uint64_t, ActiveBrowsingContextID)
#define PS_GET_FEATURE(n_, str_, Name_, desc_) \
static bool Feature##Name_(PSLockRef) { \
MOZ_ASSERT(sInstance); \
return ProfilerFeature::Has##Name_(sInstance->mFeatures); \
}
PROFILER_FOR_EACH_FEATURE(PS_GET_FEATURE)
#undef PS_GET_FEATURE
static uint32_t JSFlags(PSLockRef aLock) {
uint32_t Flags = 0;
Flags |=
FeatureJS(aLock) ? uint32_t(JSInstrumentationFlags::StackSampling) : 0;
Flags |= FeatureTrackOptimizations(aLock)
? uint32_t(JSInstrumentationFlags::TrackOptimizations)
: 0;
Flags |= FeatureJSTracer(aLock)
? uint32_t(JSInstrumentationFlags::TraceLogging)
: 0;
Flags |= FeatureJSAllocations(aLock)
? uint32_t(JSInstrumentationFlags::Allocations)
: 0;
return Flags;
}
PS_GET(const Vector<std::string>&, Filters)
static ProfileBuffer& Buffer(PSLockRef) {
MOZ_ASSERT(sInstance);
return sInstance->mProfileBuffer;
}
static const Vector<LiveProfiledThreadData>& LiveProfiledThreads(PSLockRef) {
MOZ_ASSERT(sInstance);
return sInstance->mLiveProfiledThreads;
}
// Returns an array containing (RegisteredThread*, ProfiledThreadData*) pairs
// for all threads that should be included in a profile, both for threads
// that are still registered, and for threads that have been unregistered but
// still have data in the buffer.
// For threads that have already been unregistered, the RegisteredThread
// pointer will be null.
// The returned array is sorted by thread register time.
// Do not hold on to the return value across thread registration or profiler
// restarts.
static Vector<std::pair<RegisteredThread*, ProfiledThreadData*>>
ProfiledThreads(PSLockRef) {
MOZ_ASSERT(sInstance);
Vector<std::pair<RegisteredThread*, ProfiledThreadData*>> array;
MOZ_RELEASE_ASSERT(
array.initCapacity(sInstance->mLiveProfiledThreads.length() +
sInstance->mDeadProfiledThreads.length()));
for (auto& t : sInstance->mLiveProfiledThreads) {
MOZ_RELEASE_ASSERT(array.append(
std::make_pair(t.mRegisteredThread, t.mProfiledThreadData.get())));
}
for (auto& t : sInstance->mDeadProfiledThreads) {
MOZ_RELEASE_ASSERT(
array.append(std::make_pair((RegisteredThread*)nullptr, t.get())));
}
std::sort(array.begin(), array.end(),
[](const std::pair<RegisteredThread*, ProfiledThreadData*>& a,
const std::pair<RegisteredThread*, ProfiledThreadData*>& b) {
return a.second->Info()->RegisterTime() <
b.second->Info()->RegisterTime();
});
return array;
}
static Vector<RefPtr<PageInformation>> ProfiledPages(PSLockRef aLock) {
MOZ_ASSERT(sInstance);
Vector<RefPtr<PageInformation>> array;
for (auto& d : CorePS::RegisteredPages(aLock)) {
MOZ_RELEASE_ASSERT(array.append(d));
}
for (auto& d : sInstance->mDeadProfiledPages) {
MOZ_RELEASE_ASSERT(array.append(d));
}
// We don't need to sort the pages like threads since we won't show them
// as a list.
return array;
}
// Do a linear search through mLiveProfiledThreads to find the
// ProfiledThreadData object for a RegisteredThread.
static ProfiledThreadData* GetProfiledThreadData(
PSLockRef, RegisteredThread* aRegisteredThread) {
MOZ_ASSERT(sInstance);
for (const LiveProfiledThreadData& thread :
sInstance->mLiveProfiledThreads) {
if (thread.mRegisteredThread == aRegisteredThread) {
return thread.mProfiledThreadData.get();
}
}
return nullptr;
}
static ProfiledThreadData* AddLiveProfiledThread(
PSLockRef, RegisteredThread* aRegisteredThread,
UniquePtr<ProfiledThreadData>&& aProfiledThreadData) {
MOZ_ASSERT(sInstance);
MOZ_RELEASE_ASSERT(
sInstance->mLiveProfiledThreads.append(LiveProfiledThreadData{
aRegisteredThread, std::move(aProfiledThreadData)}));
// Return a weak pointer to the ProfiledThreadData object.
return sInstance->mLiveProfiledThreads.back().mProfiledThreadData.get();
}
static void UnregisterThread(PSLockRef aLockRef,
RegisteredThread* aRegisteredThread) {
MOZ_ASSERT(sInstance);
DiscardExpiredDeadProfiledThreads(aLockRef);
// Find the right entry in the mLiveProfiledThreads array and remove the
// element, moving the ProfiledThreadData object for the thread into the
// mDeadProfiledThreads array.
// The thread's RegisteredThread object gets destroyed here.
for (size_t i = 0; i < sInstance->mLiveProfiledThreads.length(); i++) {
LiveProfiledThreadData& thread = sInstance->mLiveProfiledThreads[i];
if (thread.mRegisteredThread == aRegisteredThread) {
thread.mProfiledThreadData->NotifyUnregistered(
sInstance->mProfileBuffer.BufferRangeEnd());
MOZ_RELEASE_ASSERT(sInstance->mDeadProfiledThreads.append(
std::move(thread.mProfiledThreadData)));
sInstance->mLiveProfiledThreads.erase(
&sInstance->mLiveProfiledThreads[i]);
return;
}
}
}
PS_GET_AND_SET(bool, IsPaused)
#if defined(GP_OS_linux)
PS_GET_AND_SET(bool, WasPaused)
#endif
static void DiscardExpiredDeadProfiledThreads(PSLockRef) {
MOZ_ASSERT(sInstance);
uint64_t bufferRangeStart = sInstance->mProfileBuffer.BufferRangeStart();
// Discard any dead threads that were unregistered before bufferRangeStart.
sInstance->mDeadProfiledThreads.eraseIf(
[bufferRangeStart](
const UniquePtr<ProfiledThreadData>& aProfiledThreadData) {
Maybe<uint64_t> bufferPosition =
aProfiledThreadData->BufferPositionWhenUnregistered();
MOZ_RELEASE_ASSERT(bufferPosition,
"should have unregistered this thread");
return *bufferPosition < bufferRangeStart;
});
}
static void UnregisterPage(PSLockRef aLock,
uint64_t aRegisteredInnerWindowID) {
MOZ_ASSERT(sInstance);
auto& registeredPages = CorePS::RegisteredPages(aLock);
for (size_t i = 0; i < registeredPages.length(); i++) {
RefPtr<PageInformation>& page = registeredPages[i];
if (page->InnerWindowID() == aRegisteredInnerWindowID) {
page->NotifyUnregistered(sInstance->mProfileBuffer.BufferRangeEnd());
MOZ_RELEASE_ASSERT(
sInstance->mDeadProfiledPages.append(std::move(page)));
registeredPages.erase(&registeredPages[i--]);
}
}
}
static void DiscardExpiredPages(PSLockRef) {
MOZ_ASSERT(sInstance);
uint64_t bufferRangeStart = sInstance->mProfileBuffer.BufferRangeStart();
// Discard any dead pages that were unregistered before
// bufferRangeStart.
sInstance->mDeadProfiledPages.eraseIf(
[bufferRangeStart](const RefPtr<PageInformation>& aProfiledPage) {
Maybe<uint64_t> bufferPosition =
aProfiledPage->BufferPositionWhenUnregistered();
MOZ_RELEASE_ASSERT(bufferPosition,
"should have unregistered this page");
return *bufferPosition < bufferRangeStart;
});
}
static void ClearUnregisteredPages(PSLockRef) {
MOZ_ASSERT(sInstance);
sInstance->mDeadProfiledPages.clear();
}
static void ClearExpiredExitProfiles(PSLockRef) {
MOZ_ASSERT(sInstance);
uint64_t bufferRangeStart = sInstance->mProfileBuffer.BufferRangeStart();
// Discard exit profiles that were gathered before our buffer RangeStart.
#ifdef MOZ_BASE_PROFILER
// If we have started to overwrite our data from when the Base profile was
// added, we should get rid of that Base profile because it's now older than
// our oldest Gecko profile data.
//
// When adding: (In practice the starting buffer should be empty)
// v Start == End
// | <-- Buffer range, initially empty.
// ^ mGeckoIndexWhenBaseProfileAdded < Start FALSE -> keep it
//
// Later, still in range:
// v Start v End
// |=========| <-- Buffer range growing.
// ^ mGeckoIndexWhenBaseProfileAdded < Start FALSE -> keep it
//
// Even later, now out of range:
// v Start v End
// |============| <-- Buffer range full and sliding.
// ^ mGeckoIndexWhenBaseProfileAdded < Start TRUE! -> Discard it
if (sInstance->mBaseProfileThreads &&
sInstance->mGeckoIndexWhenBaseProfileAdded <
CorePS::CoreBlocksRingBuffer().GetState().mRangeStart) {
DEBUG_LOG("ClearExpiredExitProfiles() - Discarding base profile %p",
sInstance->mBaseProfileThreads.get());
sInstance->mBaseProfileThreads.reset();
}
#endif
sInstance->mExitProfiles.eraseIf(
[bufferRangeStart](const ExitProfile& aExitProfile) {
return aExitProfile.mBufferPositionAtGatherTime < bufferRangeStart;
});
}
#ifdef MOZ_BASE_PROFILER
static void AddBaseProfileThreads(PSLockRef aLock,
UniquePtr<char[]> aBaseProfileThreads) {
MOZ_ASSERT(sInstance);
DEBUG_LOG("AddBaseProfileThreads(%p)", aBaseProfileThreads.get());
sInstance->mBaseProfileThreads = std::move(aBaseProfileThreads);
sInstance->mGeckoIndexWhenBaseProfileAdded =
CorePS::CoreBlocksRingBuffer().GetState().mRangeEnd;
}
static UniquePtr<char[]> MoveBaseProfileThreads(PSLockRef aLock) {
MOZ_ASSERT(sInstance);
ClearExpiredExitProfiles(aLock);
DEBUG_LOG("MoveBaseProfileThreads() - Consuming base profile %p",
sInstance->mBaseProfileThreads.get());
return std::move(sInstance->mBaseProfileThreads);
}
#endif
static void AddExitProfile(PSLockRef aLock, const nsCString& aExitProfile) {
MOZ_ASSERT(sInstance);
ClearExpiredExitProfiles(aLock);
MOZ_RELEASE_ASSERT(sInstance->mExitProfiles.append(
ExitProfile{aExitProfile, sInstance->mProfileBuffer.BufferRangeEnd()}));
}
static Vector<nsCString> MoveExitProfiles(PSLockRef aLock) {
MOZ_ASSERT(sInstance);
ClearExpiredExitProfiles(aLock);
Vector<nsCString> profiles;
MOZ_RELEASE_ASSERT(
profiles.initCapacity(sInstance->mExitProfiles.length()));
for (auto& profile : sInstance->mExitProfiles) {
MOZ_RELEASE_ASSERT(profiles.append(std::move(profile.mJSON)));
}
sInstance->mExitProfiles.clear();
return profiles;
}
private:
// The singleton instance.
static ActivePS* sInstance;
// We need to track activity generations. If we didn't we could have the
// following scenario.
//
// - profiler_stop() locks gPSMutex, de-instantiates ActivePS, unlocks
// gPSMutex, deletes the SamplerThread (which does a join).
//
// - profiler_start() runs on a different thread, locks gPSMutex,
// re-instantiates ActivePS, unlocks gPSMutex -- all before the join
// completes.
//
// - SamplerThread::Run() locks gPSMutex, sees that ActivePS is instantiated,
// and continues as if the start/stop pair didn't occur. Also
// profiler_stop() is stuck, unable to finish.
//
// By checking ActivePS *and* the generation, we can avoid this scenario.
// sNextGeneration is used to track the next generation number; it is static
// because it must persist across different ActivePS instantiations.
const uint32_t mGeneration;
static uint32_t sNextGeneration;
// The maximum number of entries in mProfileBuffer.
const PowerOfTwo32 mCapacity;
// The maximum duration of entries in mProfileBuffer, in seconds.
const Maybe<double> mDuration;
// The interval between samples, measured in milliseconds.
const double mInterval;
// The profile features that are enabled.
const uint32_t mFeatures;
// Substrings of names of threads we want to profile.
Vector<std::string> mFilters;
// Browsing Context ID of the active active browser screen's active tab.
// It's being used to determine the profiled tab. It's "0" if we failed to
// get the ID.
const uint64_t mActiveBrowsingContextID;
// The buffer into which all samples are recorded.
ProfileBuffer mProfileBuffer;
// ProfiledThreadData objects for any threads that were profiled at any point
// during this run of the profiler:
// - mLiveProfiledThreads contains all threads that are still registered, and
// - mDeadProfiledThreads contains all threads that have already been
// unregistered but for which there is still data in the profile buffer.
Vector<LiveProfiledThreadData> mLiveProfiledThreads;
Vector<UniquePtr<ProfiledThreadData>> mDeadProfiledThreads;
// Info on all the dead pages.
// Registered pages are being moved to this array after unregistration.
// We are keeping them in case we need them in the profile data.
// We are removing them when we ensure that we won't need them anymore.
Vector<RefPtr<PageInformation>> mDeadProfiledPages;
// The current sampler thread. This class is not responsible for destroying
// the SamplerThread object; the Destroy() method returns it so the caller
// can destroy it.
SamplerThread* const mSamplerThread;
// The interposer that records main thread I/O.
RefPtr<ProfilerIOInterposeObserver> mInterposeObserver;
// Is the profiler paused?
bool mIsPaused;
#if defined(GP_OS_linux)
// Used to record whether the profiler was paused just before forking. False
// at all times except just before/after forking.
bool mWasPaused;
#endif
#ifdef MOZ_BASE_PROFILER
// Optional startup profile thread array from BaseProfiler.
UniquePtr<char[]> mBaseProfileThreads;
ProfileBufferBlockIndex mGeckoIndexWhenBaseProfileAdded;
#endif
struct ExitProfile {
nsCString mJSON;
uint64_t mBufferPositionAtGatherTime;
};
Vector<ExitProfile> mExitProfiles;
};
ActivePS* ActivePS::sInstance = nullptr;
uint32_t ActivePS::sNextGeneration = 0;
#undef PS_GET
#undef PS_GET_LOCKLESS
#undef PS_GET_AND_SET
// The mutex that guards accesses to CorePS and ActivePS.
static PSMutex gPSMutex;
Atomic<uint32_t, MemoryOrdering::Relaxed> RacyFeatures::sActiveAndFeatures(0);
// Each live thread has a RegisteredThread, and we store a reference to it in
// TLS. This class encapsulates that TLS.
class TLSRegisteredThread {
public:
static bool Init(PSLockRef) {
bool ok1 = sRegisteredThread.init();
bool ok2 = AutoProfilerLabel::sProfilingStackOwnerTLS.init();
return ok1 && ok2;
}
// Get the entire RegisteredThread. Accesses are guarded by gPSMutex.
static class RegisteredThread* RegisteredThread(PSLockRef) {
return sRegisteredThread.get();
}
// Get only the RacyRegisteredThread. Accesses are not guarded by gPSMutex.
static class RacyRegisteredThread* RacyRegisteredThread() {
class RegisteredThread* registeredThread = sRegisteredThread.get();
return registeredThread ? &registeredThread->RacyRegisteredThread()
: nullptr;
}
// Get only the ProfilingStack. Accesses are not guarded by gPSMutex.
// RacyRegisteredThread() can also be used to get the ProfilingStack, but that
// is marginally slower because it requires an extra pointer indirection.
static ProfilingStack* Stack() {
ProfilingStackOwner* profilingStackOwner =
AutoProfilerLabel::sProfilingStackOwnerTLS.get();
if (!profilingStackOwner) {
return nullptr;
}
return &profilingStackOwner->ProfilingStack();
}
static void SetRegisteredThreadAndAutoProfilerLabelProfilingStack(
PSLockRef, class RegisteredThread* aRegisteredThread) {
MOZ_RELEASE_ASSERT(
aRegisteredThread,
"Use ResetRegisteredThread() instead of SetRegisteredThread(nullptr)");
sRegisteredThread.set(aRegisteredThread);
ProfilingStackOwner& profilingStackOwner =
aRegisteredThread->RacyRegisteredThread().ProfilingStackOwner();
profilingStackOwner.AddRef();
AutoProfilerLabel::sProfilingStackOwnerTLS.set(&profilingStackOwner);
}
// Only reset the registered thread. The AutoProfilerLabel's ProfilingStack
// is kept, because the thread may not have unregistered itself yet, so it may
// still push/pop labels even after the profiler has shut down.
static void ResetRegisteredThread(PSLockRef) {
sRegisteredThread.set(nullptr);
}
// Reset the AutoProfilerLabels' ProfilingStack, because the thread is
// unregistering itself.
static void ResetAutoProfilerLabelProfilingStack(PSLockRef) {
MOZ_RELEASE_ASSERT(
AutoProfilerLabel::sProfilingStackOwnerTLS.get(),
"ResetAutoProfilerLabelProfilingStack should only be called once");
AutoProfilerLabel::sProfilingStackOwnerTLS.get()->Release();
AutoProfilerLabel::sProfilingStackOwnerTLS.set(nullptr);
}
private:
// This is a non-owning reference to the RegisteredThread;
// CorePS::mRegisteredThreads is the owning reference. On thread
// deregistration, this reference is cleared and the RegisteredThread is
// destroyed.
static MOZ_THREAD_LOCAL(class RegisteredThread*) sRegisteredThread;
};
MOZ_THREAD_LOCAL(RegisteredThread*) TLSRegisteredThread::sRegisteredThread;
// Although you can access a thread's ProfilingStack via
// TLSRegisteredThread::sRegisteredThread, we also have a second TLS pointer
// directly to the ProfilingStack. Here's why.
//
// - We need to be able to push to and pop from the ProfilingStack in
// AutoProfilerLabel.
//
// - The class functions are hot and must be defined in GeckoProfiler.h so they
// can be inlined.
//
// - We don't want to expose TLSRegisteredThread (and RegisteredThread) in
// GeckoProfiler.h.
//
// This second pointer isn't ideal, but does provide a way to satisfy those
// constraints. TLSRegisteredThread is responsible for updating it.
//
// The (Racy)RegisteredThread and AutoProfilerLabel::sProfilingStackOwnerTLS
// co-own the thread's ProfilingStack, so whichever is reset second, is
// responsible for destroying the ProfilingStack; Because MOZ_THREAD_LOCAL
// doesn't support RefPtr, AddRef&Release are done explicitly in
// TLSRegisteredThread.
MOZ_THREAD_LOCAL(ProfilingStackOwner*)
AutoProfilerLabel::sProfilingStackOwnerTLS;
void ProfilingStackOwner::DumpStackAndCrash() const {
fprintf(stderr,
"ProfilingStackOwner::DumpStackAndCrash() thread id: %d, size: %u\n",
profiler_current_thread_id(), unsigned(mProfilingStack.stackSize()));
js::ProfilingStackFrame* allFrames = mProfilingStack.frames;
for (uint32_t i = 0; i < mProfilingStack.stackSize(); i++) {
js::ProfilingStackFrame& frame = allFrames[i];
if (frame.isLabelFrame()) {
fprintf(stderr, "%u: label frame, sp=%p, label='%s' (%s)\n", unsigned(i),
frame.stackAddress(), frame.label(),
frame.dynamicString() ? frame.dynamicString() : "-");
} else {
fprintf(stderr, "%u: non-label frame\n", unsigned(i));
}
}
MOZ_CRASH("Non-empty stack!");
}
// The name of the main thread.
static const char* const kMainThreadName = "GeckoMain";
////////////////////////////////////////////////////////////////////////
// BEGIN sampling/unwinding code
// The registers used for stack unwinding and a few other sampling purposes.
// The ctor does nothing; users are responsible for filling in the fields.
class Registers {
public:
Registers() : mPC{nullptr}, mSP{nullptr}, mFP{nullptr}, mLR{nullptr} {}
#if defined(HAVE_NATIVE_UNWIND)
// Fills in mPC, mSP, mFP, mLR, and mContext for a synchronous sample.
void SyncPopulate();
#endif
void Clear() { memset(this, 0, sizeof(*this)); }
// These fields are filled in by
// Sampler::SuspendAndSampleAndResumeThread() for periodic and backtrace
// samples, and by SyncPopulate() for synchronous samples.
Address mPC; // Instruction pointer.
Address mSP; // Stack pointer.
Address mFP; // Frame pointer.
Address mLR; // ARM link register.
#if defined(GP_OS_linux) || defined(GP_OS_android)
// This contains all the registers, which means it duplicates the four fields
// above. This is ok.
ucontext_t* mContext; // The context from the signal handler.
#endif
};
// Setting MAX_NATIVE_FRAMES too high risks the unwinder wasting a lot of time
// looping on corrupted stacks.
static const size_t MAX_NATIVE_FRAMES = 1024;
struct NativeStack {
void* mPCs[MAX_NATIVE_FRAMES];
void* mSPs[MAX_NATIVE_FRAMES];
size_t mCount; // Number of frames filled.
NativeStack() : mPCs(), mSPs(), mCount(0) {}
};
Atomic<bool> WALKING_JS_STACK(false);
struct AutoWalkJSStack {
bool walkAllowed;
AutoWalkJSStack() : walkAllowed(false) {
walkAllowed = WALKING_JS_STACK.compareExchange(false, true);
}
~AutoWalkJSStack() {
if (walkAllowed) {
WALKING_JS_STACK = false;
}
}
};
// Merges the profiling stack, native stack, and JS stack, outputting the
// details to aCollector.
static void MergeStacks(uint32_t aFeatures, bool aIsSynchronous,
const RegisteredThread& aRegisteredThread,
const Registers& aRegs, const NativeStack& aNativeStack,
ProfilerStackCollector& aCollector,
JsFrameBuffer aJsFrames) {
// WARNING: this function runs within the profiler's "critical section".
// WARNING: this function might be called while the profiler is inactive, and
// cannot rely on ActivePS.
const ProfilingStack& profilingStack =
aRegisteredThread.RacyRegisteredThread().ProfilingStack();
const js::ProfilingStackFrame* profilingStackFrames = profilingStack.frames;
uint32_t profilingStackFrameCount = profilingStack.stackSize();
JSContext* context = aRegisteredThread.GetJSContext();
// Make a copy of the JS stack into a JSFrame array. This is necessary since,
// like the native stack, the JS stack is iterated youngest-to-oldest and we
// need to iterate oldest-to-youngest when adding frames to aInfo.
// Non-periodic sampling passes Nothing() as the buffer write position to
// ProfilingFrameIterator to avoid incorrectly resetting the buffer position
// of sampled JIT frames inside the JS engine.
Maybe<uint64_t> samplePosInBuffer;
if (!aIsSynchronous) {
// aCollector.SamplePositionInBuffer() will return Nothing() when
// profiler_suspend_and_sample_thread is called from the background hang
// reporter.
samplePosInBuffer = aCollector.SamplePositionInBuffer();
}
uint32_t jsCount = 0;
// Only walk jit stack if profiling frame iterator is turned on.
if (context && JS::IsProfilingEnabledForContext(context)) {
AutoWalkJSStack autoWalkJSStack;
if (autoWalkJSStack.walkAllowed) {
JS::ProfilingFrameIterator::RegisterState registerState;
registerState.pc = aRegs.mPC;
registerState.sp = aRegs.mSP;
registerState.lr = aRegs.mLR;
registerState.fp = aRegs.mFP;
JS::ProfilingFrameIterator jsIter(context, registerState,
samplePosInBuffer);
for (; jsCount < MAX_JS_FRAMES && !jsIter.done(); ++jsIter) {
if (aIsSynchronous || jsIter.isWasm()) {
uint32_t extracted =
jsIter.extractStack(aJsFrames, jsCount, MAX_JS_FRAMES);
jsCount += extracted;
if (jsCount == MAX_JS_FRAMES) {
break;
}
} else {
Maybe<JS::ProfilingFrameIterator::Frame> frame =
jsIter.getPhysicalFrameWithoutLabel();
if (frame.isSome()) {
aJsFrames[jsCount++] = frame.value();
}
}
}
}
}
// While the profiling stack array is ordered oldest-to-youngest, the JS and
// native arrays are ordered youngest-to-oldest. We must add frames to aInfo
// oldest-to-youngest. Thus, iterate over the profiling stack forwards and JS
// and native arrays backwards. Note: this means the terminating condition
// jsIndex and nativeIndex is being < 0.
uint32_t profilingStackIndex = 0;
int32_t jsIndex = jsCount - 1;
int32_t nativeIndex = aNativeStack.mCount - 1;
uint8_t* lastLabelFrameStackAddr = nullptr;
uint8_t* jitEndStackAddr = nullptr;
// Iterate as long as there is at least one frame remaining.
while (profilingStackIndex != profilingStackFrameCount || jsIndex >= 0 ||
nativeIndex >= 0) {
// There are 1 to 3 frames available. Find and add the oldest.
uint8_t* profilingStackAddr = nullptr;
uint8_t* jsStackAddr = nullptr;
uint8_t* nativeStackAddr = nullptr;
uint8_t* jsActivationAddr = nullptr;
if (profilingStackIndex != profilingStackFrameCount) {
const js::ProfilingStackFrame& profilingStackFrame =
profilingStackFrames[profilingStackIndex];
if (profilingStackFrame.isLabelFrame() ||
profilingStackFrame.isSpMarkerFrame()) {
lastLabelFrameStackAddr = (uint8_t*)profilingStackFrame.stackAddress();
}
// Skip any JS_OSR frames. Such frames are used when the JS interpreter
// enters a jit frame on a loop edge (via on-stack-replacement, or OSR).
// To avoid both the profiling stack frame and jit frame being recorded
// (and showing up twice), the interpreter marks the interpreter
// profiling stack frame as JS_OSR to ensure that it doesn't get counted.
if (profilingStackFrame.isOSRFrame()) {
profilingStackIndex++;
continue;
}
MOZ_ASSERT(lastLabelFrameStackAddr);
profilingStackAddr = lastLabelFrameStackAddr;
}
if (jsIndex >= 0) {
jsStackAddr = (uint8_t*)aJsFrames[jsIndex].stackAddress;
jsActivationAddr = (uint8_t*)aJsFrames[jsIndex].activation;
}
if (nativeIndex >= 0) {
nativeStackAddr = (uint8_t*)aNativeStack.mSPs[nativeIndex];
}
// If there's a native stack frame which has the same SP as a profiling
// stack frame, pretend we didn't see the native stack frame. Ditto for a
// native stack frame which has the same SP as a JS stack frame. In effect
// this means profiling stack frames or JS frames trump conflicting native
// frames.
if (nativeStackAddr && (profilingStackAddr == nativeStackAddr ||
jsStackAddr == nativeStackAddr)) {
nativeStackAddr = nullptr;
nativeIndex--;
MOZ_ASSERT(profilingStackAddr || jsStackAddr);
}
// Sanity checks.
MOZ_ASSERT_IF(profilingStackAddr,
profilingStackAddr != jsStackAddr &&
profilingStackAddr != nativeStackAddr);
MOZ_ASSERT_IF(jsStackAddr, jsStackAddr != profilingStackAddr &&
jsStackAddr != nativeStackAddr);
MOZ_ASSERT_IF(nativeStackAddr, nativeStackAddr != profilingStackAddr &&
nativeStackAddr != jsStackAddr);
// Check to see if profiling stack frame is top-most.
if (profilingStackAddr > jsStackAddr &&
profilingStackAddr > nativeStackAddr) {
MOZ_ASSERT(profilingStackIndex < profilingStackFrameCount);
const js::ProfilingStackFrame& profilingStackFrame =
profilingStackFrames[profilingStackIndex];
// Sp marker frames are just annotations and should not be recorded in
// the profile.
if (!profilingStackFrame.isSpMarkerFrame()) {
// The JIT only allows the top-most frame to have a nullptr pc.
MOZ_ASSERT_IF(
profilingStackFrame.isJsFrame() && profilingStackFrame.script() &&
!profilingStackFrame.pc(),
&profilingStackFrame ==
&profilingStack.frames[profilingStack.stackSize() - 1]);
aCollector.CollectProfilingStackFrame(profilingStackFrame);
}
profilingStackIndex++;
continue;
}
// Check to see if JS jit stack frame is top-most
if (jsStackAddr > nativeStackAddr) {
MOZ_ASSERT(jsIndex >= 0);
const JS::ProfilingFrameIterator::Frame& jsFrame = aJsFrames[jsIndex];
jitEndStackAddr = (uint8_t*)jsFrame.endStackAddress;
// Stringifying non-wasm JIT frames is delayed until streaming time. To
// re-lookup the entry in the JitcodeGlobalTable, we need to store the
// JIT code address (OptInfoAddr) in the circular buffer.
//
// Note that we cannot do this when we are sychronously sampling the
// current thread; that is, when called from profiler_get_backtrace. The
// captured backtrace is usually externally stored for an indeterminate
// amount of time, such as in nsRefreshDriver. Problematically, the
// stored backtrace may be alive across a GC during which the profiler
// itself is disabled. In that case, the JS engine is free to discard its
// JIT code. This means that if we inserted such OptInfoAddr entries into
// the buffer, nsRefreshDriver would now be holding on to a backtrace
// with stale JIT code return addresses.
if (aIsSynchronous ||
jsFrame.kind == JS::ProfilingFrameIterator::Frame_Wasm) {
aCollector.CollectWasmFrame(jsFrame.label);
} else if (jsFrame.kind ==
JS::ProfilingFrameIterator::Frame_BaselineInterpreter) {
// For now treat this as a C++ Interpreter frame by materializing a
// ProfilingStackFrame.
JSScript* script = jsFrame.interpreterScript;
jsbytecode* pc = jsFrame.interpreterPC();
js::ProfilingStackFrame stackFrame;
stackFrame.initJsFrame("", jsFrame.label, script, pc, jsFrame.realmID);
aCollector.CollectProfilingStackFrame(stackFrame);
} else {
MOZ_ASSERT(jsFrame.kind == JS::ProfilingFrameIterator::Frame_Ion ||
jsFrame.kind == JS::ProfilingFrameIterator::Frame_Baseline);
aCollector.CollectJitReturnAddr(jsFrame.returnAddress());
}
jsIndex--;
continue;
}
// If we reach here, there must be a native stack frame and it must be the
// greatest frame.
if (nativeStackAddr &&
// If the latest JS frame was JIT, this could be the native frame that
// corresponds to it. In that case, skip the native frame, because
// there's no need for the same frame to be present twice in the stack.
// The JS frame can be considered the symbolicated version of the native
// frame.
(!jitEndStackAddr || nativeStackAddr < jitEndStackAddr) &&
// This might still be a JIT operation, check to make sure that is not
// in range of the NEXT JavaScript's stacks' activation address.
(!jsActivationAddr || nativeStackAddr > jsActivationAddr)) {
MOZ_ASSERT(nativeIndex >= 0);
void* addr = (void*)aNativeStack.mPCs[nativeIndex];
aCollector.CollectNativeLeafAddr(addr);
}
if (nativeIndex >= 0) {
nativeIndex--;
}
}
// Update the JS context with the current profile sample buffer generation.
//
// Only do this for periodic samples. We don't want to do this for
// synchronous samples, and we also don't want to do it for calls to
// profiler_suspend_and_sample_thread() from the background hang reporter -
// in that case, aCollector.BufferRangeStart() will return Nothing().
if (!aIsSynchronous && context && aCollector.BufferRangeStart()) {
uint64_t bufferRangeStart = *aCollector.BufferRangeStart();
JS::SetJSContextProfilerSampleBufferRangeStart(context, bufferRangeStart);
}
}
#if defined(GP_OS_windows) && defined(USE_MOZ_STACK_WALK)
static HANDLE GetThreadHandle(PlatformData* aData);
#endif
#if defined(USE_FRAME_POINTER_STACK_WALK) || defined(USE_MOZ_STACK_WALK)
static void StackWalkCallback(uint32_t aFrameNumber, void* aPC, void* aSP,
void* aClosure) {
NativeStack* nativeStack = static_cast<NativeStack*>(aClosure);
MOZ_ASSERT(nativeStack->mCount < MAX_NATIVE_FRAMES);
nativeStack->mSPs[nativeStack->mCount] = aSP;
nativeStack->mPCs[nativeStack->mCount] = aPC;
nativeStack->mCount++;
}
#endif
#if defined(USE_FRAME_POINTER_STACK_WALK)
static void DoFramePointerBacktrace(PSLockRef aLock,
const RegisteredThread& aRegisteredThread,
const Registers& aRegs,
NativeStack& aNativeStack) {
// WARNING: this function runs within the profiler's "critical section".
// WARNING: this function might be called while the profiler is inactive, and
// cannot rely on ActivePS.
// Start with the current function. We use 0 as the frame number here because
// the FramePointerStackWalk() call below will use 1..N. This is a bit weird
// but it doesn't matter because StackWalkCallback() doesn't use the frame
// number argument.
StackWalkCallback(/* frameNum */ 0, aRegs.mPC, aRegs.mSP, &aNativeStack);
uint32_t maxFrames = uint32_t(MAX_NATIVE_FRAMES - aNativeStack.mCount);
const void* stackEnd = aRegisteredThread.StackTop();
if (aRegs.mFP >= aRegs.mSP && aRegs.mFP <= stackEnd) {
FramePointerStackWalk(StackWalkCallback, /* skipFrames */ 0, maxFrames,
&aNativeStack, reinterpret_cast<void**>(aRegs.mFP),
const_cast<void*>(stackEnd));
}
}
#endif
#if defined(USE_MOZ_STACK_WALK)
static void DoMozStackWalkBacktrace(PSLockRef aLock,
const RegisteredThread& aRegisteredThread,
const Registers& aRegs,
NativeStack& aNativeStack) {
// WARNING: this function runs within the profiler's "critical section".
// WARNING: this function might be called while the profiler is inactive, and
// cannot rely on ActivePS.
// Start with the current function. We use 0 as the frame number here because
// the MozStackWalkThread() call below will use 1..N. This is a bit weird but
// it doesn't matter because StackWalkCallback() doesn't use the frame number
// argument.
StackWalkCallback(/* frameNum */ 0, aRegs.mPC, aRegs.mSP, &aNativeStack);
uint32_t maxFrames = uint32_t(MAX_NATIVE_FRAMES - aNativeStack.mCount);
HANDLE thread = GetThreadHandle(aRegisteredThread.GetPlatformData());
MOZ_ASSERT(thread);
MozStackWalkThread(StackWalkCallback, /* skipFrames */ 0, maxFrames,
&aNativeStack, thread, /* context */ nullptr);
}
#endif
#ifdef USE_EHABI_STACKWALK
static void DoEHABIBacktrace(PSLockRef aLock,
const RegisteredThread& aRegisteredThread,
const Registers& aRegs,
NativeStack& aNativeStack) {
// WARNING: this function runs within the profiler's "critical section".
// WARNING: this function might be called while the profiler is inactive, and
// cannot rely on ActivePS.
const mcontext_t* mcontext = &aRegs.mContext->uc_mcontext;
mcontext_t savedContext;
const ProfilingStack& profilingStack =
aRegisteredThread.RacyRegisteredThread().ProfilingStack();
// The profiling stack contains an "EnterJIT" frame whenever we enter
// JIT code with profiling enabled; the stack pointer value points
// the saved registers. We use this to unwind resume unwinding
// after encounting JIT code.
for (uint32_t i = profilingStack.stackSize(); i > 0; --i) {
// The profiling stack grows towards higher indices, so we iterate
// backwards (from callee to caller).
const js::ProfilingStackFrame& frame = profilingStack.frames[i - 1];
if (!frame.isJsFrame() && strcmp(frame.label(), "EnterJIT") == 0) {
// Found JIT entry frame. Unwind up to that point (i.e., force
// the stack walk to stop before the block of saved registers;
// note that it yields nondecreasing stack pointers), then restore
// the saved state.
uint32_t* vSP = reinterpret_cast<uint32_t*>(frame.stackAddress());
aNativeStack.mCount +=
EHABIStackWalk(*mcontext, /* stackBase = */ vSP,
aNativeStack.mSPs + aNativeStack.mCount,
aNativeStack.mPCs + aNativeStack.mCount,
MAX_NATIVE_FRAMES - aNativeStack.mCount);
memset(&savedContext, 0, sizeof(savedContext));
// See also: struct EnterJITStack in js/src/jit/arm/Trampoline-arm.cpp
savedContext.arm_r4 = *vSP++;
savedContext.arm_r5 = *vSP++;
savedContext.arm_r6 = *vSP++;
savedContext.arm_r7 = *vSP++;
savedContext.arm_r8 = *vSP++;
savedContext.arm_r9 = *vSP++;
savedContext.arm_r10 = *vSP++;
savedContext.arm_fp = *vSP++;
savedContext.arm_lr = *vSP++;
savedContext.arm_sp = reinterpret_cast<uint32_t>(vSP);
savedContext.arm_pc = savedContext.arm_lr;
mcontext = &savedContext;
}
}
// Now unwind whatever's left (starting from either the last EnterJIT frame
// or, if no EnterJIT was found, the original registers).
aNativeStack.mCount +=
EHABIStackWalk(*mcontext, const_cast<void*>(aRegisteredThread.StackTop()),
aNativeStack.mSPs + aNativeStack.mCount,
aNativeStack.mPCs + aNativeStack.mCount,
MAX_NATIVE_FRAMES - aNativeStack.mCount);
}
#endif
#ifdef USE_LUL_STACKWALK
// See the comment at the callsite for why this function is necessary.
# if defined(MOZ_HAVE_ASAN_BLACKLIST)
MOZ_ASAN_BLACKLIST static void ASAN_memcpy(void* aDst, const void* aSrc,
size_t aLen) {
// The obvious thing to do here is call memcpy(). However, although
// ASAN_memcpy() is not instrumented by ASAN, memcpy() still is, and the
// false positive still manifests! So we must implement memcpy() ourselves
// within this function.
char* dst = static_cast<char*>(aDst);
const char* src = static_cast<const char*>(aSrc);
for (size_t i = 0; i < aLen; i++) {
dst[i] = src[i];
}
}
# endif
static void DoLULBacktrace(PSLockRef aLock,
const RegisteredThread& aRegisteredThread,
const Registers& aRegs, NativeStack& aNativeStack) {
// WARNING: this function runs within the profiler's "critical section".
// WARNING: this function might be called while the profiler is inactive, and
// cannot rely on ActivePS.
const mcontext_t* mc = &aRegs.mContext->uc_mcontext;
lul::UnwindRegs startRegs;
memset(&startRegs, 0, sizeof(startRegs));
# if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_amd64_android)
startRegs.xip = lul::TaggedUWord(mc->gregs[REG_RIP]);
startRegs.xsp = lul::TaggedUWord(mc->gregs[REG_RSP]);
startRegs.xbp = lul::TaggedUWord(mc->gregs[REG_RBP]);
# elif defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
startRegs.r15 = lul::TaggedUWord(mc->arm_pc);
startRegs.r14 = lul::TaggedUWord(mc->arm_lr);
startRegs.r13 = lul::TaggedUWord(mc->arm_sp);
startRegs.r12 = lul::TaggedUWord(mc->arm_ip);
startRegs.r11 = lul::TaggedUWord(mc->arm_fp);
startRegs.r7 = lul::TaggedUWord(mc->arm_r7);
# elif defined(GP_PLAT_arm64_linux) || defined(GP_PLAT_arm64_android)
startRegs.pc = lul::TaggedUWord(mc->pc);
startRegs.x29 = lul::TaggedUWord(mc->regs[29]);
startRegs.x30 = lul::TaggedUWord(mc->regs[30]);
startRegs.sp = lul::TaggedUWord(mc->sp);
# elif defined(GP_PLAT_x86_linux) || defined(GP_PLAT_x86_android)
startRegs.xip = lul::TaggedUWord(mc->gregs[REG_EIP]);
startRegs.xsp = lul::TaggedUWord(mc->gregs[REG_ESP]);
startRegs.xbp = lul::TaggedUWord(mc->gregs[REG_EBP]);
# elif defined(GP_PLAT_mips64_linux)
startRegs.pc = lul::TaggedUWord(mc->pc);
startRegs.sp = lul::TaggedUWord(mc->gregs[29]);
startRegs.fp = lul::TaggedUWord(mc->gregs[30]);
# else
# error "Unknown plat"
# endif
// Copy up to N_STACK_BYTES from rsp-REDZONE upwards, but not going past the
// stack's registered top point. Do some basic sanity checks too. This
// assumes that the TaggedUWord holding the stack pointer value is valid, but
// it should be, since it was constructed that way in the code just above.
// We could construct |stackImg| so that LUL reads directly from the stack in
// question, rather than from a copy of it. That would reduce overhead and
// space use a bit. However, it gives a problem with dynamic analysis tools
// (ASan, TSan, Valgrind) which is that such tools will report invalid or
// racing memory accesses, and such accesses will be reported deep inside LUL.
// By taking a copy here, we can either sanitise the copy (for Valgrind) or
// copy it using an unchecked memcpy (for ASan, TSan). That way we don't have
// to try and suppress errors inside LUL.
//
// N_STACK_BYTES is set to 160KB. This is big enough to hold all stacks
// observed in some minutes of testing, whilst keeping the size of this
// function (DoNativeBacktrace)'s frame reasonable. Most stacks observed in
// practice are small, 4KB or less, and so the copy costs are insignificant
// compared to other profiler overhead.
//
// |stackImg| is allocated on this (the sampling thread's) stack. That
// implies that the frame for this function is at least N_STACK_BYTES large.
// In general it would be considered unacceptable to have such a large frame
// on a stack, but it only exists for the unwinder thread, and so is not
// expected to be a problem. Allocating it on the heap is troublesome because
// this function runs whilst the sampled thread is suspended, so any heap
// allocation risks deadlock. Allocating it as a global variable is not
// thread safe, which would be a problem if we ever allow multiple sampler
// threads. Hence allocating it on the stack seems to be the least-worst
// option.
lul::StackImage stackImg;
{
# if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_amd64_android)
uintptr_t rEDZONE_SIZE = 128;
uintptr_t start = startRegs.xsp.Value() - rEDZONE_SIZE;
# elif defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
uintptr_t rEDZONE_SIZE = 0;
uintptr_t start = startRegs.r13.Value() - rEDZONE_SIZE;
# elif defined(GP_PLAT_arm64_linux) || defined(GP_PLAT_arm64_android)
uintptr_t rEDZONE_SIZE = 0;
uintptr_t start = startRegs.sp.Value() - rEDZONE_SIZE;
# elif defined(GP_PLAT_x86_linux) || defined(GP_PLAT_x86_android)
uintptr_t rEDZONE_SIZE = 0;
uintptr_t start = startRegs.xsp.Value() - rEDZONE_SIZE;
# elif defined(GP_PLAT_mips64_linux)
uintptr_t rEDZONE_SIZE = 0;
uintptr_t start = startRegs.sp.Value() - rEDZONE_SIZE;
# else
# error "Unknown plat"
# endif
uintptr_t end = reinterpret_cast<uintptr_t>(aRegisteredThread.StackTop());
uintptr_t ws = sizeof(void*);
start &= ~(ws - 1);
end &= ~(ws - 1);
uintptr_t nToCopy = 0;
if (start < end) {
nToCopy = end - start;
if (nToCopy > lul::N_STACK_BYTES) nToCopy = lul::N_STACK_BYTES;
}
MOZ_ASSERT(nToCopy <= lul::N_STACK_BYTES);
stackImg.mLen = nToCopy;
stackImg.mStartAvma = start;
if (nToCopy > 0) {
// If this is a vanilla memcpy(), ASAN makes the following complaint:
//
// ERROR: AddressSanitizer: stack-buffer-underflow ...
// ...
// HINT: this may be a false positive if your program uses some custom
// stack unwind mechanism or swapcontext
//
// This code is very much a custom stack unwind mechanism! So we use an
// alternative memcpy() implementation that is ignored by ASAN.
# if defined(MOZ_HAVE_ASAN_BLACKLIST)
ASAN_memcpy(&stackImg.mContents[0], (void*)start, nToCopy);
# else
memcpy(&stackImg.mContents[0], (void*)start, nToCopy);
# endif
(void)VALGRIND_MAKE_MEM_DEFINED(&stackImg.mContents[0], nToCopy);
}
}
size_t framePointerFramesAcquired = 0;
lul::LUL* lul = CorePS::Lul(aLock);
lul->Unwind(reinterpret_cast<uintptr_t*>(aNativeStack.mPCs),
reinterpret_cast<uintptr_t*>(aNativeStack.mSPs),
&aNativeStack.mCount, &framePointerFramesAcquired,
MAX_NATIVE_FRAMES, &startRegs, &stackImg);
// Update stats in the LUL stats object. Unfortunately this requires
// three global memory operations.
lul->mStats.mContext += 1;
lul->mStats.mCFI += aNativeStack.mCount - 1 - framePointerFramesAcquired;
lul->mStats.mFP += framePointerFramesAcquired;
}
#endif
#ifdef HAVE_NATIVE_UNWIND
static void DoNativeBacktrace(PSLockRef aLock,
const RegisteredThread& aRegisteredThread,
const Registers& aRegs,
NativeStack& aNativeStack) {
// This method determines which stackwalker is used for periodic and
// synchronous samples. (Backtrace samples are treated differently, see
// profiler_suspend_and_sample_thread() for details). The only part of the
// ordering that matters is that LUL must precede FRAME_POINTER, because on
// Linux they can both be present.
# if defined(USE_LUL_STACKWALK)
DoLULBacktrace(aLock, aRegisteredThread, aRegs, aNativeStack);
# elif defined(USE_EHABI_STACKWALK)
DoEHABIBacktrace(aLock, aRegisteredThread, aRegs, aNativeStack);
# elif defined(USE_FRAME_POINTER_STACK_WALK)
DoFramePointerBacktrace(aLock, aRegisteredThread, aRegs, aNativeStack);
# elif defined(USE_MOZ_STACK_WALK)
DoMozStackWalkBacktrace(aLock, aRegisteredThread, aRegs, aNativeStack);
# else
# error "Invalid configuration"
# endif
}
#endif
// Writes some components shared by periodic and synchronous profiles to
// ActivePS's ProfileBuffer. (This should only be called from DoSyncSample()
// and DoPeriodicSample().)
//
// The grammar for entry sequences is in a comment above
// ProfileBuffer::StreamSamplesToJSON.
static inline void DoSharedSample(PSLockRef aLock, bool aIsSynchronous,
RegisteredThread& aRegisteredThread,
const Registers& aRegs, uint64_t aSamplePos,
ProfileBuffer& aBuffer) {
// WARNING: this function runs within the profiler's "critical section".
MOZ_ASSERT(!aBuffer.IsThreadSafe(),
"Mutexes cannot be used inside this critical section");
MOZ_RELEASE_ASSERT(ActivePS::Exists(aLock));
ProfileBufferCollector collector(aBuffer, ActivePS::Features(aLock),
aSamplePos);
NativeStack nativeStack;
#if defined(HAVE_NATIVE_UNWIND)
if (ActivePS::FeatureStackWalk(aLock)) {
DoNativeBacktrace(aLock, aRegisteredThread, aRegs, nativeStack);
MergeStacks(ActivePS::Features(aLock), aIsSynchronous, aRegisteredThread,
aRegs, nativeStack, collector, CorePS::JsFrames(aLock));
} else
#endif
{
MergeStacks(ActivePS::Features(aLock), aIsSynchronous, aRegisteredThread,
aRegs, nativeStack, collector, CorePS::JsFrames(aLock));
// We can't walk the whole native stack, but we can record the top frame.
if (ActivePS::FeatureLeaf(aLock)) {
aBuffer.AddEntry(ProfileBufferEntry::NativeLeafAddr((void*)aRegs.mPC));
}
}
}
// Writes the components of a synchronous sample to the given ProfileBuffer.
static void DoSyncSample(PSLockRef aLock, RegisteredThread& aRegisteredThread,
const TimeStamp& aNow, const Registers& aRegs,
ProfileBuffer& aBuffer) {
// WARNING: this function runs within the profiler's "critical section".
uint64_t samplePos =
aBuffer.AddThreadIdEntry(aRegisteredThread.Info()->ThreadId());
TimeDuration delta = aNow - CorePS::ProcessStartTime();
aBuffer.AddEntry(ProfileBufferEntry::Time(delta.ToMilliseconds()));
DoSharedSample(aLock, /* aIsSynchronous = */ true, aRegisteredThread, aRegs,
samplePos, aBuffer);
}
// Writes the components of a periodic sample to ActivePS's ProfileBuffer.
// The ThreadId entry is already written in the main ProfileBuffer, its location
// is `aSamplePos`, we can write the rest to `aBuffer` (which may be different).
static inline void DoPeriodicSample(PSLockRef aLock,
RegisteredThread& aRegisteredThread,
ProfiledThreadData& aProfiledThreadData,
const TimeStamp& aNow,
const Registers& aRegs, uint64_t aSamplePos,
ProfileBuffer& aBuffer) {
// WARNING: this function runs within the profiler's "critical section".
DoSharedSample(aLock, /* aIsSynchronous = */ false, aRegisteredThread, aRegs,
aSamplePos, aBuffer);
}
// END sampling/unwinding code
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
// BEGIN saving/streaming code
const static uint64_t kJS_MAX_SAFE_UINTEGER = +9007199254740991ULL;
static int64_t SafeJSInteger(uint64_t aValue) {
return aValue <= kJS_MAX_SAFE_UINTEGER ? int64_t(aValue) : -1;
}
static void AddSharedLibraryInfoToStream(JSONWriter& aWriter,
const SharedLibrary& aLib) {
aWriter.StartObjectElement();
aWriter.IntProperty("start", SafeJSInteger(aLib.GetStart()));
aWriter.IntProperty("end", SafeJSInteger(aLib.GetEnd()));
aWriter.IntProperty("offset", SafeJSInteger(aLib.GetOffset()));
aWriter.StringProperty("name",
NS_ConvertUTF16toUTF8(aLib.GetModuleName()).get());
aWriter.StringProperty("path",
NS_ConvertUTF16toUTF8(aLib.GetModulePath()).get());
aWriter.StringProperty("debugName",
NS_ConvertUTF16toUTF8(aLib.GetDebugName()).get());
aWriter.StringProperty("debugPath",
NS_ConvertUTF16toUTF8(aLib.GetDebugPath()).get());
aWriter.StringProperty("breakpadId", aLib.GetBreakpadId().get());
aWriter.StringProperty("arch", aLib.GetArch().c_str());
aWriter.EndObject();
}
void AppendSharedLibraries(JSONWriter& aWriter) {
SharedLibraryInfo info = SharedLibraryInfo::GetInfoForSelf();
info.SortByAddress();
for (size_t i = 0; i < info.GetSize(); i++) {
AddSharedLibraryInfoToStream(aWriter, info.GetEntry(i));
}
}
#ifdef MOZ_TASK_TRACER
static void StreamNameAndThreadId(JSONWriter& aWriter, const char* aName,
int aThreadId) {
aWriter.StartObjectElement();
{
if (XRE_GetProcessType() == GeckoProcessType_Plugin) {
// TODO Add the proper plugin name
aWriter.StringProperty("name", "Plugin");
} else {
aWriter.StringProperty("name", aName);
}
aWriter.IntProperty("tid", aThreadId);
}
aWriter.EndObject();
}
#endif
static void StreamTaskTracer(PSLockRef aLock, SpliceableJSONWriter& aWriter) {
#ifdef MOZ_TASK_TRACER
MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
aWriter.StartArrayProperty("data");
{
UniquePtr<Vector<nsCString>> data =
tasktracer::GetLoggedData(CorePS::ProcessStartTime());
for (const nsCString& dataString : *data) {
aWriter.StringElement(dataString.get());
}
}
aWriter.EndArray();
aWriter.StartArrayProperty("threads");
{
ActivePS::DiscardExpiredDeadProfiledThreads(aLock);
Vector<std::pair<RegisteredThread*, ProfiledThreadData*>> threads =
ActivePS::ProfiledThreads(aLock);
for (auto& thread : threads) {
RefPtr<ThreadInfo> info = thread.second->Info();
StreamNameAndThreadId(aWriter, info->Name(), info->ThreadId());
}
}
aWriter.EndArray();
aWriter.DoubleProperty("start",
static_cast<double>(tasktracer::GetStartTime()));
#endif
}
static void StreamCategories(SpliceableJSONWriter& aWriter) {
// Same order as ProfilingCategory. Format:
// [
// {
// name: "Idle",
// color: "transparent",
// subcategories: ["Other"],
// },
// {
// name: "Other",
// color: "grey",
// subcategories: [
// "JSM loading",
// "Subprocess launching",
// "DLL loading"
// ]
// },
// ...
// ]
#define CATEGORY_JSON_BEGIN_CATEGORY(name, labelAsString, color) \
aWriter.Start(); \
aWriter.StringProperty("name", labelAsString); \
aWriter.StringProperty("color", color); \
aWriter.StartArrayProperty("subcategories");
#define CATEGORY_JSON_SUBCATEGORY(supercategory, name, labelAsString) \
aWriter.StringElement(labelAsString);
#define CATEGORY_JSON_END_CATEGORY \
aWriter.EndArray(); \
aWriter.EndObject();
PROFILING_CATEGORY_LIST(CATEGORY_JSON_BEGIN_CATEGORY,
CATEGORY_JSON_SUBCATEGORY, CATEGORY_JSON_END_CATEGORY)
#undef CATEGORY_JSON_BEGIN_CATEGORY
#undef CATEGORY_JSON_SUBCATEGORY
#undef CATEGORY_JSON_END_CATEGORY
}
static void StreamMetaJSCustomObject(PSLockRef aLock,
SpliceableJSONWriter& aWriter,
bool aIsShuttingDown) {
MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
aWriter.IntProperty("version", 19);
// The "startTime" field holds the number of milliseconds since midnight
// January 1, 1970 GMT. This grotty code computes (Now - (Now -
// ProcessStartTime)) to convert CorePS::ProcessStartTime() into that form.
TimeDuration delta = TimeStamp::NowUnfuzzed() - CorePS::ProcessStartTime();
aWriter.DoubleProperty(
"startTime",
static_cast<double>(PR_Now() / 1000.0 - delta.ToMilliseconds()));
// Write the shutdownTime field. Unlike startTime, shutdownTime is not an
// absolute time stamp: It's relative to startTime. This is consistent with
// all other (non-"startTime") times anywhere in the profile JSON.
if (aIsShuttingDown) {
aWriter.DoubleProperty("shutdownTime", profiler_time());
} else {
aWriter.NullProperty("shutdownTime");
}
aWriter.StartArrayProperty("categories");
StreamCategories(aWriter);
aWriter.EndArray();
ActivePS::WriteActiveConfiguration(aLock, aWriter, "configuration");
if (!NS_IsMainThread()) {
// Leave the rest of the properties out if we're not on the main thread.
// At the moment, the only case in which this function is called on a
// background thread is if we're in a content process and are going to
// send this profile to the parent process. In that case, the parent
// process profile's "meta" object already has the rest of the properties,
// and the parent process profile is dumped on that process's main thread.
return;
}
aWriter.DoubleProperty("interval", ActivePS::Interval(aLock));
aWriter.IntProperty("stackwalk", ActivePS::FeatureStackWalk(aLock));
#ifdef DEBUG
aWriter.IntProperty("debug", 1);
#else
aWriter.IntProperty("debug", 0);
#endif
aWriter.IntProperty("gcpoison", JS::IsGCPoisoning() ? 1 : 0);
bool asyncStacks = Preferences::GetBool("javascript.options.asyncstack");
aWriter.IntProperty("asyncstack", asyncStacks);
aWriter.IntProperty("processType", XRE_GetProcessType());
aWriter.StringProperty("updateChannel", MOZ_STRINGIFY(MOZ_UPDATE_CHANNEL));
nsresult res;
nsCOMPtr<nsIHttpProtocolHandler> http =
do_GetService(NS_NETWORK_PROTOCOL_CONTRACTID_PREFIX "http", &res);
if (!NS_FAILED(res)) {
nsAutoCString string;
res = http->GetPlatform(string);
if (!NS_FAILED(res)) {
aWriter.StringProperty("platform", string.Data());
}
res = http->GetOscpu(string);
if (!NS_FAILED(res)) {
aWriter.StringProperty("oscpu", string.Data());
}
res = http->GetMisc(string);
if (!NS_FAILED(res)) {
aWriter.StringProperty("misc", string.Data());
}
}
nsCOMPtr<nsIXULRuntime> runtime = do_GetService("@mozilla.org/xre/runtime;1");
if (runtime) {
nsAutoCString string;
res = runtime->GetXPCOMABI(string);
if (!NS_FAILED(res)) aWriter.StringProperty("abi", string.Data());
res = runtime->GetWidgetToolkit(string);
if (!NS_FAILED(res)) aWriter.StringProperty("toolkit", string.Data());
}
nsCOMPtr<nsIXULAppInfo> appInfo =
do_GetService("@mozilla.org/xre/app-info;1");
if (appInfo) {
nsAutoCString string;
res = appInfo->GetName(string);
if (!NS_FAILED(res)) aWriter.StringProperty("product", string.Data());
res = appInfo->GetAppBuildID(string);
if (!NS_FAILED(res)) aWriter.StringProperty("appBuildID", string.Data());
res = appInfo->GetSourceURL(string);
if (!NS_FAILED(res)) aWriter.StringProperty("sourceURL", string.Data());
}
nsCOMPtr<nsIPropertyBag2> systemInfo =
do_GetService("@mozilla.org/system-info;1");
if (systemInfo) {
int32_t cpus;
res = systemInfo->GetPropertyAsInt32(NS_LITERAL_STRING("cpucores"), &cpus);
if (!NS_FAILED(res)) {
aWriter.IntProperty("physicalCPUs", cpus);
}
res = systemInfo->GetPropertyAsInt32(NS_LITERAL_STRING("cpucount"), &cpus);
if (!NS_FAILED(res)) {
aWriter.IntProperty("logicalCPUs", cpus);
}
}
// We should avoid collecting extension metadata for profiler while XPCOM is
// shutting down since it cannot create a new ExtensionPolicyService.
if (!gXPCOMShuttingDown) {
aWriter.StartObjectProperty("extensions");
{
{
JSONSchemaWriter schema(aWriter);
schema.WriteField("id");
schema.WriteField("name");
schema.WriteField("baseURL");
}
aWriter.StartArrayProperty("data");
{
nsTArray<RefPtr<WebExtensionPolicy>> exts;
ExtensionPolicyService::GetSingleton().GetAll(exts);
for (auto& ext : exts) {
aWriter.StartArrayElement(JSONWriter::SingleLineStyle);
nsAutoString id;
ext->GetId(id);
aWriter.StringElement(NS_ConvertUTF16toUTF8(id).get());
aWriter.StringElement(NS_ConvertUTF16toUTF8(ext->Name()).get());
auto url = ext->GetURL(NS_LITERAL_STRING(""));
if (url.isOk()) {
aWriter.StringElement(NS_ConvertUTF16toUTF8(url.unwrap()).get());
}
aWriter.EndArray();
}
}
aWriter.EndArray();
}
aWriter.EndObject();
}
}
static void StreamPages(PSLockRef aLock, SpliceableJSONWriter& aWriter) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
ActivePS::DiscardExpiredPages(aLock);
for (const auto& page : ActivePS::ProfiledPages(aLock)) {
page->StreamJSON(aWriter);
}
}
#if defined(GP_OS_android)
static UniquePtr<ProfileBuffer> CollectJavaThreadProfileData(
BlocksRingBuffer& bufferManager) {
// locked_profiler_start uses sample count is 1000 for Java thread.
// This entry size is enough now, but we might have to estimate it
// if we can customize it
auto buffer = MakeUnique<ProfileBuffer>(bufferManager,
MakePowerOfTwo32<8 * 1024 * 1024>());
int sampleId = 0;
while (true) {
// Gets the data from the java main thread only.
double sampleTime = java::GeckoJavaSampler::GetSampleTime(sampleId);
if (sampleTime == 0.0) {
break;
}
buffer->AddThreadIdEntry(0);
buffer->AddEntry(ProfileBufferEntry::Time(sampleTime));
bool parentFrameWasIdleFrame = false;
int frameId = 0;
while (true) {
jni::String::LocalRef frameName =
java::GeckoJavaSampler::GetFrameName(sampleId, frameId++);
if (!frameName) {
break;
}
nsCString frameNameString = frameName->ToCString();
// Compute a category pair for the frame:
// - IDLE for the wait function android.os.MessageQueue.nativePollOnce()
// - OTHER for any function that's directly called by that wait function
// - no category on everything else
Maybe<JS::ProfilingCategoryPair> categoryPair;
if (frameNameString.EqualsLiteral(
"android.os.MessageQueue.nativePollOnce()")) {
categoryPair = Some(JS::ProfilingCategoryPair::IDLE);
parentFrameWasIdleFrame = true;
} else if (parentFrameWasIdleFrame) {
categoryPair = Some(JS::ProfilingCategoryPair::OTHER);
parentFrameWasIdleFrame = false;
}
buffer->CollectCodeLocation("", frameNameString.get(), 0, 0, Nothing(),
Nothing(), categoryPair);
}
sampleId++;
}
return buffer;
}
#endif
UniquePtr<ProfilerCodeAddressService>
profiler_code_address_service_for_presymbolication() {
static const bool preSymbolicate = []() {
const char* symbolicate = getenv("MOZ_PROFILER_SYMBOLICATE");
return symbolicate && symbolicate[0] != '\0';
}();
return preSymbolicate ? MakeUnique<ProfilerCodeAddressService>() : nullptr;
}
static void locked_profiler_stream_json_for_this_process(
PSLockRef aLock, SpliceableJSONWriter& aWriter, double aSinceTime,
bool aIsShuttingDown, ProfilerCodeAddressService* aService) {
LOG("locked_profiler_stream_json_for_this_process");
MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
AUTO_PROFILER_STATS(locked_profiler_stream_json_for_this_process);
const double collectionStartMs = profiler_time();
ProfileBuffer& buffer = ActivePS::Buffer(aLock);
// If there is a set "Window length", discard older data.
Maybe<double> durationS = ActivePS::Duration(aLock);
if (durationS.isSome()) {
const double durationStartMs = collectionStartMs - *durationS * 1000;
buffer.DiscardSamplesBeforeTime(durationStartMs);
}
// Put shared library info
aWriter.StartArrayProperty("libs");
AppendSharedLibraries(aWriter);
aWriter.EndArray();
// Put meta data
aWriter.StartObjectProperty("meta");
{ StreamMetaJSCustomObject(aLock, aWriter, aIsShuttingDown); }
aWriter.EndObject();
// Put page data
aWriter.StartArrayProperty("pages");
{ StreamPages(aLock, aWriter); }
aWriter.EndArray();
buffer.StreamProfilerOverheadToJSON(aWriter, CorePS::ProcessStartTime(),
aSinceTime);
buffer.StreamCountersToJSON(aWriter, CorePS::ProcessStartTime(), aSinceTime);
// Data of TaskTracer doesn't belong in the circular buffer.
if (ActivePS::FeatureTaskTracer(aLock)) {
aWriter.StartObjectProperty("tasktracer");
StreamTaskTracer(aLock, aWriter);
aWriter.EndObject();
}
// Lists the samples for each thread profile
aWriter.StartArrayProperty("threads");
{
ActivePS::DiscardExpiredDeadProfiledThreads(aLock);
Vector<std::pair<RegisteredThread*, ProfiledThreadData*>> threads =
ActivePS::ProfiledThreads(aLock);
for (auto& thread : threads) {
RegisteredThread* registeredThread = thread.first;
JSContext* cx =
registeredThread ? registeredThread->GetJSContext() : nullptr;
ProfiledThreadData* profiledThreadData = thread.second;
profiledThreadData->StreamJSON(
buffer, cx, aWriter, CorePS::ProcessName(aLock),
CorePS::ProcessStartTime(), aSinceTime,
ActivePS::FeatureJSTracer(aLock), aService);
}
#if defined(GP_OS_android)
if (ActivePS::FeatureJava(aLock)) {
java::GeckoJavaSampler::Pause();
BlocksRingBuffer bufferManager(
BlocksRingBuffer::ThreadSafety::WithoutMutex);
UniquePtr<ProfileBuffer> javaBuffer =
CollectJavaThreadProfileData(bufferManager);
// Thread id of java Main thread is 0, if we support profiling of other
// java thread, we have to get thread id and name via JNI.
RefPtr<ThreadInfo> threadInfo = new ThreadInfo(
"Java Main Thread", 0, false, CorePS::ProcessStartTime());
ProfiledThreadData profiledThreadData(threadInfo, nullptr);
profiledThreadData.StreamJSON(*javaBuffer.get(), nullptr, aWriter,
CorePS::ProcessName(aLock),
CorePS::ProcessStartTime(), aSinceTime,
ActivePS::FeatureJSTracer(aLock), nullptr);
java::GeckoJavaSampler::Unpause();
}
#endif
#ifdef MOZ_BASE_PROFILER
UniquePtr<char[]> baseProfileThreads =
ActivePS::MoveBaseProfileThreads(aLock);
if (baseProfileThreads) {
aWriter.Splice(baseProfileThreads.get());
}
#endif
}
aWriter.EndArray();
if (ActivePS::FeatureJSTracer(aLock)) {
aWriter.StartArrayProperty("jsTracerDictionary");
{
JS::AutoTraceLoggerLockGuard lockGuard;
// Collect Event Dictionary
JS::TraceLoggerDictionaryBuffer collectionBuffer(lockGuard);
while (collectionBuffer.NextChunk()) {
aWriter.StringElement(collectionBuffer.internalBuffer());
}
}
aWriter.EndArray();
}
aWriter.StartArrayProperty("pausedRanges");
{ buffer.StreamPausedRangesToJSON(aWriter, aSinceTime); }
aWriter.EndArray();
const double collectionEndMs = profiler_time();
// Record timestamps for the collection into the buffer, so that consumers
// know why we didn't collect any samples for its duration.
// We put these entries into the buffer after we've collected the profile,
// so they'll be visible for the *next* profile collection (if they haven't
// been overwritten due to buffer wraparound by then).
buffer.AddEntry(ProfileBufferEntry::CollectionStart(collectionStartMs));
buffer.AddEntry(ProfileBufferEntry::CollectionEnd(collectionEndMs));
}
bool profiler_stream_json_for_this_process(
SpliceableJSONWriter& aWriter, double aSinceTime, bool aIsShuttingDown,
ProfilerCodeAddressService* aService) {
LOG("profiler_stream_json_for_this_process");
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
return false;
}
locked_profiler_stream_json_for_this_process(lock, aWriter, aSinceTime,
aIsShuttingDown, aService);
return true;
}
// END saving/streaming code
////////////////////////////////////////////////////////////////////////
static char FeatureCategory(uint32_t aFeature) {
if (aFeature & DefaultFeatures()) {
if (aFeature & AvailableFeatures()) {
return 'D';
}
return 'd';
}
if (aFeature & StartupExtraDefaultFeatures()) {
if (aFeature & AvailableFeatures()) {
return 'S';
}
return 's';
}
if (aFeature & AvailableFeatures()) {
return '-';
}
return 'x';
}
// Doesn't exist if aExitCode is 0
static void PrintUsageThenExit(int aExitCode) {
MOZ_RELEASE_ASSERT(NS_IsMainThread());
printf(
"\n"
"Profiler environment variable usage:\n"
"\n"
" MOZ_PROFILER_HELP\n"
" If set to any value, prints this message.\n"
#ifdef MOZ_BASE_PROFILER
" Use MOZ_BASE_PROFILER_HELP for BaseProfiler help.\n"
#endif
"\n"
" MOZ_LOG\n"
" Enables logging. The levels of logging available are\n"
" 'prof:3' (least verbose), 'prof:4', 'prof:5' (most verbose).\n"
"\n"
" MOZ_PROFILER_STARTUP\n"
" If set to any value other than '' or '0'/'N'/'n', starts the\n"
" profiler immediately on start-up.\n"
" Useful if you want profile code that runs very early.\n"
"\n"
" MOZ_PROFILER_STARTUP_ENTRIES=<1..>\n"
" If MOZ_PROFILER_STARTUP is set, specifies the number of entries per\n"
" process in the profiler's circular buffer when the profiler is first\n"
" started.\n"
" If unset, the platform default is used:\n"
" %u entries per process, or %u when MOZ_PROFILER_STARTUP is set.\n"
" (8 bytes per entry -> %u or %u total bytes per process)\n"
"\n"
" MOZ_PROFILER_STARTUP_DURATION=<1..>\n"
" If MOZ_PROFILER_STARTUP is set, specifies the maximum life time of\n"
" entries in the the profiler's circular buffer when the profiler is\n"
" first started, in seconds.\n"
" If unset, the life time of the entries will only be restricted by\n"
" MOZ_PROFILER_STARTUP_ENTRIES (or its default value), and no\n"
" additional time duration restriction will be applied.\n"
"\n"
" MOZ_PROFILER_STARTUP_INTERVAL=<1..%d>\n"
" If MOZ_PROFILER_STARTUP is set, specifies the sample interval,\n"
" measured in milliseconds, when the profiler is first started.\n"
" If unset, the platform default is used.\n"
"\n"
" MOZ_PROFILER_STARTUP_FEATURES_BITFIELD=<Number>\n"
" If MOZ_PROFILER_STARTUP is set, specifies the profiling features, as\n"
" the integer value of the features bitfield.\n"
" If unset, the value from MOZ_PROFILER_STARTUP_FEATURES is used.\n"
"\n"
" MOZ_PROFILER_STARTUP_FEATURES=<Features>\n"
" If MOZ_PROFILER_STARTUP is set, specifies the profiling features, as\n"
" a comma-separated list of strings.\n"
" Ignored if MOZ_PROFILER_STARTUP_FEATURES_BITFIELD is set.\n"
" If unset, the platform default is used.\n"
"\n"
" Features: (x=unavailable, D/d=default/unavailable,\n"
" S/s=MOZ_PROFILER_STARTUP extra default/unavailable)\n",
unsigned(PROFILER_DEFAULT_ENTRIES.Value()),
unsigned(PROFILER_DEFAULT_STARTUP_ENTRIES.Value()),
unsigned(PROFILER_DEFAULT_ENTRIES.Value() * 8),
unsigned(PROFILER_DEFAULT_STARTUP_ENTRIES.Value() * 8),
PROFILER_MAX_INTERVAL);
#define PRINT_FEATURE(n_, str_, Name_, desc_) \
printf(" %c %6u: \"%s\" (%s)\n", FeatureCategory(ProfilerFeature::Name_), \
ProfilerFeature::Name_, str_, desc_);
PROFILER_FOR_EACH_FEATURE(PRINT_FEATURE)
#undef PRINT_FEATURE
printf(
" - \"default\" (All above D+S defaults)\n"
"\n"
" MOZ_PROFILER_STARTUP_FILTERS=<Filters>\n"
" If MOZ_PROFILER_STARTUP is set, specifies the thread filters, as a\n"
" comma-separated list of strings. A given thread will be sampled if\n"
" any of the filters is a case-insensitive substring of the thread\n"
" name. If unset, a default is used.\n"
"\n"
" MOZ_PROFILER_SHUTDOWN\n"
" If set, the profiler saves a profile to the named file on shutdown.\n"
"\n"
" MOZ_PROFILER_SYMBOLICATE\n"
" If set, the profiler will pre-symbolicate profiles.\n"
" *Note* This will add a significant pause when gathering data, and\n"
" is intended mainly for local development.\n"
"\n"
" MOZ_PROFILER_LUL_TEST\n"
" If set to any value, runs LUL unit tests at startup.\n"
"\n"
" This platform %s native unwinding.\n"
"\n",
#if defined(HAVE_NATIVE_UNWIND)
"supports"
#else
"does not support"
#endif
);
if (aExitCode != 0) {
exit(aExitCode);
}
}
////////////////////////////////////////////////////////////////////////
// BEGIN Sampler
#if defined(GP_OS_linux) || defined(GP_OS_android)
struct SigHandlerCoordinator;
#endif
// Sampler performs setup and teardown of the state required to sample with the
// profiler. Sampler may exist when ActivePS is not present.
//
// SuspendAndSampleAndResumeThread must only be called from a single thread,
// and must not sample the thread it is being called from. A separate Sampler
// instance must be used for each thread which wants to capture samples.
// WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
//
// With the exception of SamplerThread, all Sampler objects must be Disable-d
// before releasing the lock which was used to create them. This avoids races
// on linux with the SIGPROF signal handler.
class Sampler {
public:
// Sets up the profiler such that it can begin sampling.
explicit Sampler(PSLockRef aLock);
// Disable the sampler, restoring it to its previous state. This must be
// called once, and only once, before the Sampler is destroyed.
void Disable(PSLockRef aLock);
// This method suspends and resumes the samplee thread. It calls the passed-in
// function-like object aProcessRegs (passing it a populated |const
// Registers&| arg) while the samplee thread is suspended. Note that
// the aProcessRegs function must be very careful not to do anything that
// requires a lock, since we may have interrupted the thread at any point.
// As an example, you can't call TimeStamp::Now() since on windows it
// takes a lock on the performance counter.
//
// Func must be a function-like object of type `void()`.
template <typename Func>
void SuspendAndSampleAndResumeThread(
PSLockRef aLock, const RegisteredThread& aRegisteredThread,
const TimeStamp& aNow, const Func& aProcessRegs);
private:
#if defined(GP_OS_linux) || defined(GP_OS_android)
// Used to restore the SIGPROF handler when ours is removed.
struct sigaction mOldSigprofHandler;
// This process' ID. Needed as an argument for tgkill in
// SuspendAndSampleAndResumeThread.
int mMyPid;
// The sampler thread's ID. Used to assert that it is not sampling itself,
// which would lead to deadlock.
int mSamplerTid;
public:
// This is the one-and-only variable used to communicate between the sampler
// thread and the samplee thread's signal handler. It's static because the
// samplee thread's signal handler is static.
static struct SigHandlerCoordinator* sSigHandlerCoordinator;
#endif
};
// END Sampler
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
// BEGIN SamplerThread
// The sampler thread controls sampling and runs whenever the profiler is
// active. It periodically runs through all registered threads, finds those
// that should be sampled, then pauses and samples them.
class SamplerThread {
public:
// Creates a sampler thread, but doesn't start it.
SamplerThread(PSLockRef aLock, uint32_t aActivityGeneration,
double aIntervalMilliseconds);
~SamplerThread();
// This runs on (is!) the sampler thread.
void Run();
// This runs on the main thread.
void Stop(PSLockRef aLock);
void AppendPostSamplingCallback(PSLockRef, PostSamplingCallback&& aCallback) {
// We are under lock, so it's safe to just modify the list pointer.
// Also this means the sampler has not started its run yet, so any callback
// added now will be invoked at the end of the next loop; this guarantees
// that the callback will be invoked after at least one full sampling loop.
mPostSamplingCallbackList = MakeUnique<PostSamplingCallbackListItem>(
std::move(mPostSamplingCallbackList), std::move(aCallback));
}
private:
// Item containing a post-sampling callback, and a tail-list of more items.
// Using a linked list means no need to move items when adding more, and
// "stealing" the whole list is one pointer move.
struct PostSamplingCallbackListItem {
UniquePtr<PostSamplingCallbackListItem> mPrev;
PostSamplingCallback mCallback;
PostSamplingCallbackListItem(UniquePtr<PostSamplingCallbackListItem> aPrev,
PostSamplingCallback&& aCallback)
: mPrev(std::move(aPrev)), mCallback(std::move(aCallback)) {}
};
MOZ_MUST_USE UniquePtr<PostSamplingCallbackListItem>
TakePostSamplingCallbacks(PSLockRef) {
return std::move(mPostSamplingCallbackList);
}
static void InvokePostSamplingCallbacks(
UniquePtr<PostSamplingCallbackListItem> aCallbacks,
SamplingState aSamplingState) {
if (!aCallbacks) {
return;
}
// We want to drill down to the last element in this list, which is the
// oldest one, so that we invoke them in FIFO order.
// We don't expect many callbacks, so it's safe to recurse. Note that we're
// moving-from the UniquePtr, so the tail will implicitly get destroyed.
InvokePostSamplingCallbacks(std::move(aCallbacks->mPrev), aSamplingState);
// We are going to destroy this item, so we can safely move-from the
// callback before calling it (in case it has an rvalue-ref-qualified call
// operator).
std::move(aCallbacks->mCallback)(aSamplingState);
// It may be tempting for a future maintainer to change aCallbacks into an
// rvalue reference; this will remind them not to do that!
static_assert(
std::is_same_v<decltype(aCallbacks),
UniquePtr<PostSamplingCallbackListItem>>,
"We need to capture the list by-value, to implicitly destroy it");
}
// This suspends the calling thread for the given number of microseconds.
// Best effort timing.
void SleepMicro(uint32_t aMicroseconds);
// The sampler used to suspend and sample threads.
Sampler mSampler;
// The activity generation, for detecting when the sampler thread must stop.
const uint32_t mActivityGeneration;
// The interval between samples, measured in microseconds.
const int mIntervalMicroseconds;
// The OS-specific handle for the sampler thread.
#if defined(GP_OS_windows)
HANDLE mThread;
#elif defined(GP_OS_darwin) || defined(GP_OS_linux) || defined(GP_OS_android)
pthread_t mThread;
#endif
// Post-sampling callbacks are kept in a simple linked list, which will be
// stolen by the sampler thread at the end of its next run.
UniquePtr<PostSamplingCallbackListItem> mPostSamplingCallbackList;
SamplerThread(const SamplerThread&) = delete;
void operator=(const SamplerThread&) = delete;
};
// static MOZ_MUST_USE
bool ActivePS::AppendPostSamplingCallback(PSLockRef aLock,
PostSamplingCallback&& aCallback) {
if (!sInstance || !sInstance->mSamplerThread) {
return false;
}
sInstance->mSamplerThread->AppendPostSamplingCallback(aLock,
std::move(aCallback));
return true;
}
// This function is required because we need to create a SamplerThread within
// ActivePS's constructor, but SamplerThread is defined after ActivePS. It
// could probably be removed by moving some code around.
static SamplerThread* NewSamplerThread(PSLockRef aLock, uint32_t aGeneration,
double aInterval) {
return new SamplerThread(aLock, aGeneration, aInterval);
}
// This function is the sampler thread. This implementation is used for all
// targets.
void SamplerThread::Run() {
PR_SetCurrentThreadName("SamplerThread");
// Features won't change during this SamplerThread's lifetime, so we can
// determine now whether stack sampling is required.
const bool noStackSampling = []() {
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
// If there is no active profiler, it doesn't matter what we return,
// because this thread will exit before any stack sampling is attempted.
return false;
}
return ActivePS::FeatureNoStackSampling(lock);
}();
// Use local BlocksRingBuffer&ProfileBuffer to capture the stack.
// (This is to avoid touching the CorePS::BlocksRingBuffer lock while
// a thread is suspended, because that thread could be working with
// the CorePS::BlocksRingBuffer as well.)
BlocksRingBuffer localBlocksRingBuffer(
BlocksRingBuffer::ThreadSafety::WithoutMutex);
ProfileBuffer localProfileBuffer(localBlocksRingBuffer,
MakePowerOfTwo32<65536>());
// Will be kept between collections, to know what each collection does.
auto previousState = localBlocksRingBuffer.GetState();
// This will be positive if we are running behind schedule (sampling less
// frequently than desired) and negative if we are ahead of schedule.
TimeDuration lastSleepOvershoot = 0;
TimeStamp sampleStart = TimeStamp::NowUnfuzzed();
// This will be set inside the loop, from inside the lock scope, to capture
// all callbacks added before that, but none after the lock is released.
UniquePtr<PostSamplingCallbackListItem> postSamplingCallbacks;
// This will be set inside the loop, before invoking callbacks outside.
SamplingState samplingState{};
while (true) {
// This scope is for |lock|. It ends before we sleep below.
{
// There should be no local callbacks left from a previous loop.
MOZ_ASSERT(!postSamplingCallbacks);
PSAutoLock lock(gPSMutex);
TimeStamp lockAcquired = TimeStamp::NowUnfuzzed();
// Move all the post-sampling callbacks locally, so that new ones cannot
// sneak in between the end of the lock scope and the invocation after it.
postSamplingCallbacks = TakePostSamplingCallbacks(lock);
if (!ActivePS::Exists(lock)) {
// Exit the `while` loop, including the lock scope, before invoking
// callbacks and returning.
samplingState = SamplingState::JustStopped;
break;
}
// At this point profiler_stop() might have been called, and
// profiler_start() might have been called on another thread. If this
// happens the generation won't match.
if (ActivePS::Generation(lock) != mActivityGeneration) {
samplingState = SamplingState::JustStopped;
// Exit the `while` loop, including the lock scope, before invoking
// callbacks and returning.
break;
}
ActivePS::ClearExpiredExitProfiles(lock);
TimeStamp expiredMarkersCleaned = TimeStamp::NowUnfuzzed();
if (!ActivePS::IsPaused(lock)) {
TimeDuration delta = sampleStart - CorePS::ProcessStartTime();
ProfileBuffer& buffer = ActivePS::Buffer(lock);
// handle per-process generic counters
const Vector<BaseProfilerCount*>& counters = CorePS::Counters(lock);
for (auto& counter : counters) {
// create Buffer entries for each counter
buffer.AddEntry(ProfileBufferEntry::CounterId(counter));
buffer.AddEntry(ProfileBufferEntry::Time(delta.ToMilliseconds()));
// XXX support keyed maps of counts
// In the future, we'll support keyed counters - for example, counters
// with a key which is a thread ID. For "simple" counters we'll just
// use a key of 0.
int64_t count;
uint64_t number;
counter->Sample(count, number);
buffer.AddEntry(ProfileBufferEntry::CounterKey(0));
buffer.AddEntry(ProfileBufferEntry::Count(count));
if (number) {
buffer.AddEntry(ProfileBufferEntry::Number(number));
}
}
TimeStamp countersSampled = TimeStamp::NowUnfuzzed();
if (!noStackSampling) {
samplingState = SamplingState::SamplingCompleted;
const Vector<LiveProfiledThreadData>& liveThreads =
ActivePS::LiveProfiledThreads(lock);
for (auto& thread : liveThreads) {
RegisteredThread* registeredThread = thread.mRegisteredThread;
ProfiledThreadData* profiledThreadData =
thread.mProfiledThreadData.get();
RefPtr<ThreadInfo> info = registeredThread->Info();
// If the thread is asleep and has been sampled before in the same
// sleep episode, find and copy the previous sample, as that's
// cheaper than taking a new sample.
if (registeredThread->RacyRegisteredThread()
.CanDuplicateLastSampleDueToSleep()) {
bool dup_ok = ActivePS::Buffer(lock).DuplicateLastSample(
info->ThreadId(), CorePS::ProcessStartTime(),
profiledThreadData->LastSample());
if (dup_ok) {
continue;
}
}
AUTO_PROFILER_STATS(gecko_SamplerThread_Run_DoPeriodicSample);
TimeStamp now = TimeStamp::NowUnfuzzed();
// Add the thread ID now, so we know its position in the main
// buffer, which is used by some JS data.
// (DoPeriodicSample only knows about the temporary local buffer.)
uint64_t samplePos =
buffer.AddThreadIdEntry(registeredThread->Info()->ThreadId());
profiledThreadData->LastSample() = Some(samplePos);
// Also add the time, so it's always there after the thread ID, as
// expected by the parser. (Other stack data is optional.)
TimeDuration delta = now - CorePS::ProcessStartTime();
buffer.AddEntry(ProfileBufferEntry::TimeBeforeCompactStack(
delta.ToMilliseconds()));
Maybe<double> unresponsiveDuration_ms;
// Suspend the thread and collect its stack data in the local
// buffer.
mSampler.SuspendAndSampleAndResumeThread(
lock, *registeredThread, now,
[&](const Registers& aRegs, const TimeStamp& aNow) {
DoPeriodicSample(lock, *registeredThread, *profiledThreadData,
now, aRegs, samplePos, localProfileBuffer);
// For "eventDelay", we want the input delay - but if
// there are no events in the input queue (or even if there
// are), we're interested in how long the delay *would* be for
// an input event now, which would be the time to finish the
// current event + the delay caused by any events already in
// the input queue (plus any High priority events). Events at
// lower priorities (in a PrioritizedEventQueue) than Input
// count for input delay only for the duration that they're
// running, since when they finish, any queued input event
// would run.
//
// Unless we record the time state of all events and queue
// states at all times, this is hard to precisely calculate,
// but we can approximate it well in post-processing with
// RunningEventDelay and RunningEventStart.
//
// RunningEventDelay is the time duration the event was queued
// before starting execution. RunningEventStart is the time
// the event started. (Note: since we care about Input event
// delays on MainThread, for PrioritizedEventQueues we return
// 0 for RunningEventDelay if the currently running event has
// a lower priority than Input (since Input events won't queue
// behind them).
//
// To directly measure this we would need to record the time
// at which the newest event currently in each queue at time X
// (the sample time) finishes running. This of course would
// require looking into the future, or recording all this
// state and then post-processing it later. If we were to
// trace every event start and end we could do this, but it
// would have significant overhead to do so (and buffer
// usage). From a recording of RunningEventDelays and
// RunningEventStarts we can infer the actual delay:
//
// clang-format off
// Event queue: <tail> D : C : B : A <head>
// Time inserted (ms): 40 : 20 : 10 : 0
// Run Time (ms): 30 : 100 : 40 : 30
//
// 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
// [A||||||||||||]
// ----------[B|||||||||||||||||]
// -------------------------[C|||||||||||||||||||||||||||||||||||||||||||||||]
// -----------------------------------------------------------------[D|||||||||...]
//
// Calculate the delay of a new event added at time t: (run every sample)
// TimeSinceRunningEventBlockedInputEvents = RunningEventDelay + (now - RunningEventStart);
// effective_submission = now - TimeSinceRunningEventBlockedInputEvents;
// delta = (now - last_sample_time);
// last_sample_time = now;
// for (t=effective_submission to now) {
// delay[t] += delta;
// }
//
// Can be reduced in overhead by:
// TimeSinceRunningEventBlockedInputEvents = RunningEventDelay + (now - RunningEventStart);
// effective_submission = now - TimeSinceRunningEventBlockedInputEvents;
// if (effective_submission != last_submission) {
// delta = (now - last_submision);
// // this loop should be made to match each sample point in the range
// // intead of assuming 1ms sampling as this pseudocode does
// for (t=last_submission to effective_submission-1) {
// delay[t] += delta;
// delta -= 1; // assumes 1ms; adjust as needed to match for()
// }
// last_submission = effective_submission;
// }
//
// Time Head of queue Running Event RunningEventDelay Delay of Effective Started Calc (submission->now add 10ms) Final
// hypothetical Submission Running @ result
// event E
// 0 Empty A 0 30 0 0 @0=10 30
// 10 B A 0 60 0 0 @0=20, @10=10 60
// 20 B A 0 150 0 0 @0=30, @10=20, @20=10 150
// 30 C B 20 140 10 30 @10=20, @20=10, @30=0 140
// 40 C B 20 160 @10=30, @20=20... 160
// 50 C B 20 150 150
// 60 C B 20 140 @10=50, @20=40... 140
// 70 D C 50 130 20 70 @20=50, @30=40... 130
// ...
// 160 D C 50 40 @20=140, @30=130... 40
// 170 <empty> D 140 30 40 @40=140, @50=130... (rounding) 30
// 180 <empty> D 140 20 40 @40=150 20
// 190 <empty> D 140 10 40 @40=160 10
// 200 <empty> <empty> 0 0 NA 0
//
// Function Delay(t) = the time between t and the time at which a hypothetical
// event e would start executing, if e was enqueued at time t.
//
// Delay(-1) = 0 // Before A was enqueued. No wait time, can start running
// // instantly.
// Delay(0) = 30 // The hypothetical event e got enqueued just after A got
// // enqueued. It can start running at 30, when A is done.
// Delay(5) = 25
// Delay(10) = 60 // Can start running at 70, after both A and B are done.
// Delay(19) = 51
// Delay(20) = 150 // Can start running at 170, after A, B & C.
// Delay(25) = 145
// Delay(30) = 170 // Can start running at 200, after A, B, C & D.
// Delay(120) = 80
// Delay(200) = 0 // (assuming nothing was enqueued after D)
//
// For every event that gets enqueued, the Delay time will go up by the
// event's running time at the time at which the event is enqueued.
// The Delay function will be a sawtooth of the following shape:
//
// |\ |...
// | \ |
// |\ | \ |
// | \ | \ |
// |\ | \ | \ |
// |\ | \| \| \ |
// | \| \ |
// _| \____|
//
//
// A more complex example with a PrioritizedEventQueue:
//
// Event queue: <tail> D : C : B : A <head>
// Time inserted (ms): 40 : 20 : 10 : 0
// Run Time (ms): 30 : 100 : 40 : 30
// Priority: Input: Norm: Norm: Norm
//
// 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
// [A||||||||||||]
// ----------[B|||||||||||||||||]
// ----------------------------------------[C|||||||||||||||||||||||||||||||||||||||||||||||]
// ---------------[D||||||||||||]
//
//
// Time Head of queue Running Event RunningEventDelay Delay of Effective Started Calc (submission->now add 10ms) Final
// hypothetical Submission Running @ result
// event
// 0 Empty A 0 30 0 0 @0=10 30
// 10 B A 0 20 0 0 @0=20, @10=10 20
// 20 B A 0 10 0 0 @0=30, @10=20, @20=10 10
// 30 C B 0 40 30 30 @30=10 40
// 40 C B 0 60 30 @40=10, @30=20 60
// 50 C B 0 50 30 @50=10, @40=20, @30=30 50
// 60 C B 0 40 30 @60=10, @50=20, @40=30, @30=40 40
// 70 C D 30 30 40 70 @60=20, @50=30, @40=40 30
// 80 C D 30 20 40 70 ...@50=40, @40=50 20
// 90 C D 30 10 40 70 ...@60=40, @50=50, @40=60 10
// 100 <empty> C 0 100 100 100 @100=10 100
// 110 <empty> C 0 90 100 100 @110=10, @100=20 90
//
// For PrioritizedEventQueue, the definition of the Delay(t) function is adjusted: the hypothetical event e has Input priority.
// Delay(-1) = 0 // Before A was enqueued. No wait time, can start running
// // instantly.
// Delay(0) = 30 // The hypothetical input event e got enqueued just after A got
// // enqueued. It can start running at 30, when A is done.
// Delay(5) = 25
// Delay(10) = 20
// Delay(25) = 5 // B has been queued, but e does not need to wait for B because e has Input priority and B does not.
// // So e can start running at 30, when A is done.
// Delay(30) = 40 // Can start running at 70, after B is done.
// Delay(40) = 60 // Can start at 100, after B and D are done (D is Input Priority)
// Delay(80) = 20
// Delay(100) = 100 // Wait for C to finish
// clang-format on
//
// Alternatively we could insert (recycled instead of
// allocated/freed) input events at every sample period
// (1ms...), and use them to back-calculate the delay. This
// might also be somewhat expensive, and would require
// guessing at the maximum delay, which would likely be in the
// seconds, and so you'd need 1000's of pre-allocated events
// per queue per thread - so there would be a memory impact as
// well.
TimeDuration currentEventDelay;
TimeDuration currentEventRunning;
registeredThread->GetRunningEventDelay(
aNow, currentEventDelay, currentEventRunning);
// Note: eventDelay is a different definition of
// responsiveness than the 16ms event injection.
// Don't suppress 0's for now; that can be a future
// optimization. We probably want one zero to be stored
// before we start suppressing, which would be more
// complex.
unresponsiveDuration_ms =
Some(currentEventDelay.ToMilliseconds() +
currentEventRunning.ToMilliseconds());
});
// If we got eventDelay data, store it before the CompactStack.
// Note: It is not stored inside the CompactStack so that it doesn't
// get incorrectly duplicated when the thread is sleeping.
if (unresponsiveDuration_ms.isSome()) {
CorePS::CoreBlocksRingBuffer().PutObjects(
ProfileBufferEntry::Kind::UnresponsiveDurationMs,
*unresponsiveDuration_ms);
}
// There *must* be a CompactStack after a TimeBeforeCompactStack;
// but note that other entries may have been concurrently inserted
// between the TimeBeforeCompactStack above and now. If the captured
// sample from `DoPeriodicSample` is complete, copy it into the
// global buffer, otherwise add an empty one to satisfy the parser
// that expects one.
auto state = localBlocksRingBuffer.GetState();
if (NS_WARN_IF(state.mClearedBlockCount !=
previousState.mClearedBlockCount)) {
LOG("Stack sample too big for local storage, needed %u bytes",
unsigned(
state.mRangeEnd.ConvertToProfileBufferIndex() -
previousState.mRangeEnd.ConvertToProfileBufferIndex()));
// There *must* be a CompactStack after a TimeBeforeCompactStack,
// even an empty one.
CorePS::CoreBlocksRingBuffer().PutObjects(
ProfileBufferEntry::Kind::CompactStack,
UniquePtr<BlocksRingBuffer>(nullptr));
} else if (state.mRangeEnd.ConvertToProfileBufferIndex() -
previousState.mRangeEnd
.ConvertToProfileBufferIndex() >=
CorePS::CoreBlocksRingBuffer().BufferLength()->Value()) {
LOG("Stack sample too big for profiler storage, needed %u bytes",
unsigned(
state.mRangeEnd.ConvertToProfileBufferIndex() -
previousState.mRangeEnd.ConvertToProfileBufferIndex()));
// There *must* be a CompactStack after a TimeBeforeCompactStack,
// even an empty one.
CorePS::CoreBlocksRingBuffer().PutObjects(
ProfileBufferEntry::Kind::CompactStack,
UniquePtr<BlocksRingBuffer>(nullptr));
} else {
CorePS::CoreBlocksRingBuffer().PutObjects(
ProfileBufferEntry::Kind::CompactStack,
localBlocksRingBuffer);
}
// Clean up for the next run.
localBlocksRingBuffer.Clear();
previousState = localBlocksRingBuffer.GetState();
}
} else {
samplingState = SamplingState::NoStackSamplingCompleted;
}
#if defined(USE_LUL_STACKWALK)
// The LUL unwind object accumulates frame statistics. Periodically we
// should poke it to give it a chance to print those statistics. This
// involves doing I/O (fprintf, __android_log_print, etc.) and so
// can't safely be done from the critical section inside
// SuspendAndSampleAndResumeThread, which is why it is done here.
CorePS::Lul(lock)->MaybeShowStats();
#endif
TimeStamp threadsSampled = TimeStamp::NowUnfuzzed();
buffer.CollectOverheadStats(delta, lockAcquired - sampleStart,
expiredMarkersCleaned - lockAcquired,
countersSampled - expiredMarkersCleaned,
threadsSampled - countersSampled);
} else {
samplingState = SamplingState::SamplingPaused;
}
}
// gPSMutex is not held after this point.
// Invoke end-of-sampling callbacks outside of the locked scope.
InvokePostSamplingCallbacks(std::move(postSamplingCallbacks),
samplingState);
// Calculate how long a sleep to request. After the sleep, measure how
// long we actually slept and take the difference into account when
// calculating the sleep interval for the next iteration. This is an
// attempt to keep "to schedule" in the presence of inaccuracy of the
// actual sleep intervals.
TimeStamp targetSleepEndTime =
sampleStart + TimeDuration::FromMicroseconds(mIntervalMicroseconds);
TimeStamp beforeSleep = TimeStamp::NowUnfuzzed();
TimeDuration targetSleepDuration = targetSleepEndTime - beforeSleep;
double sleepTime = std::max(
0.0, (targetSleepDuration - lastSleepOvershoot).ToMicroseconds());
SleepMicro(static_cast<uint32_t>(sleepTime));
sampleStart = TimeStamp::NowUnfuzzed();
lastSleepOvershoot =
sampleStart - (beforeSleep + TimeDuration::FromMicroseconds(sleepTime));
}
// End of `while` loop. We can only be here from a `break` inside the loop.
InvokePostSamplingCallbacks(std::move(postSamplingCallbacks), samplingState);
}
// We #include these files directly because it means those files can use
// declarations from this file trivially. These provide target-specific
// implementations of all SamplerThread methods except Run().
#if defined(GP_OS_windows)
# include "platform-win32.cpp"
#elif defined(GP_OS_darwin)
# include "platform-macos.cpp"
#elif defined(GP_OS_linux) || defined(GP_OS_android)
# include "platform-linux-android.cpp"
#else
# error "bad platform"
#endif
UniquePlatformData AllocPlatformData(int aThreadId) {
return UniquePlatformData(new PlatformData(aThreadId));
}
void PlatformDataDestructor::operator()(PlatformData* aData) { delete aData; }
// END SamplerThread
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
// BEGIN externally visible functions
MOZ_DEFINE_MALLOC_SIZE_OF(GeckoProfilerMallocSizeOf)
NS_IMETHODIMP
GeckoProfilerReporter::CollectReports(nsIHandleReportCallback* aHandleReport,
nsISupports* aData, bool aAnonymize) {
MOZ_RELEASE_ASSERT(NS_IsMainThread());
size_t profSize = 0;
size_t lulSize = 0;
{
PSAutoLock lock(gPSMutex);
if (CorePS::Exists()) {
CorePS::AddSizeOf(lock, GeckoProfilerMallocSizeOf, profSize, lulSize);
}
if (ActivePS::Exists(lock)) {
profSize += ActivePS::SizeOf(lock, GeckoProfilerMallocSizeOf);
}
}
MOZ_COLLECT_REPORT(
"explicit/profiler/profiler-state", KIND_HEAP, UNITS_BYTES, profSize,
"Memory used by the Gecko Profiler's global state (excluding memory used "
"by LUL).");
#if defined(USE_LUL_STACKWALK)
MOZ_COLLECT_REPORT(
"explicit/profiler/lul", KIND_HEAP, UNITS_BYTES, lulSize,
"Memory used by LUL, a stack unwinder used by the Gecko Profiler.");
#endif
return NS_OK;
}
NS_IMPL_ISUPPORTS(GeckoProfilerReporter, nsIMemoryReporter)
static uint32_t ParseFeature(const char* aFeature, bool aIsStartup) {
if (strcmp(aFeature, "default") == 0) {
return (aIsStartup ? (DefaultFeatures() | StartupExtraDefaultFeatures())
: DefaultFeatures()) &
AvailableFeatures();
}
#define PARSE_FEATURE_BIT(n_, str_, Name_, desc_) \
if (strcmp(aFeature, str_) == 0) { \
return ProfilerFeature::Name_; \
}
PROFILER_FOR_EACH_FEATURE(PARSE_FEATURE_BIT)
#undef PARSE_FEATURE_BIT
printf("\nUnrecognized feature \"%s\".\n\n", aFeature);
// Since we may have an old feature we don't implement anymore, don't exit
PrintUsageThenExit(0);
return 0;
}
uint32_t ParseFeaturesFromStringArray(const char** aFeatures,
uint32_t aFeatureCount,
bool aIsStartup /* = false */) {
uint32_t features = 0;
for (size_t i = 0; i < aFeatureCount; i++) {
features |= ParseFeature(aFeatures[i], aIsStartup);
}
return features;
}
// Find the RegisteredThread for the current thread. This should only be called
// in places where TLSRegisteredThread can't be used.
static RegisteredThread* FindCurrentThreadRegisteredThread(PSLockRef aLock) {
int id = profiler_current_thread_id();
const Vector<UniquePtr<RegisteredThread>>& registeredThreads =
CorePS::RegisteredThreads(aLock);
for (auto& registeredThread : registeredThreads) {
if (registeredThread->Info()->ThreadId() == id) {
return registeredThread.get();
}
}
return nullptr;
}
static ProfilingStack* locked_register_thread(PSLockRef aLock,
const char* aName,
void* aStackTop) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
MOZ_RELEASE_ASSERT(!FindCurrentThreadRegisteredThread(aLock));
VTUNE_REGISTER_THREAD(aName);
if (!TLSRegisteredThread::Init(aLock)) {
return nullptr;
}
RefPtr<ThreadInfo> info =
new ThreadInfo(aName, profiler_current_thread_id(), NS_IsMainThread());
UniquePtr<RegisteredThread> registeredThread = MakeUnique<RegisteredThread>(
info, NS_GetCurrentThreadNoCreate(), aStackTop);
TLSRegisteredThread::SetRegisteredThreadAndAutoProfilerLabelProfilingStack(
aLock, registeredThread.get());
if (ActivePS::Exists(aLock) && ActivePS::ShouldProfileThread(aLock, info)) {
registeredThread->RacyRegisteredThread().SetIsBeingProfiled(true);
nsCOMPtr<nsIEventTarget> eventTarget = registeredThread->GetEventTarget();
ProfiledThreadData* profiledThreadData = ActivePS::AddLiveProfiledThread(
aLock, registeredThread.get(),
MakeUnique<ProfiledThreadData>(info, eventTarget));
if (ActivePS::FeatureJS(aLock)) {
// This StartJSSampling() call is on-thread, so we can poll manually to
// start JS sampling immediately.
registeredThread->StartJSSampling(ActivePS::JSFlags(aLock));
registeredThread->PollJSSampling();
if (registeredThread->GetJSContext()) {
profiledThreadData->NotifyReceivedJSContext(
ActivePS::Buffer(aLock).BufferRangeEnd());
}
}
}
ProfilingStack* profilingStack =
&registeredThread->RacyRegisteredThread().ProfilingStack();
CorePS::AppendRegisteredThread(aLock, std::move(registeredThread));
return profilingStack;
}
static void NotifyObservers(const char* aTopic,
nsISupports* aSubject = nullptr) {
if (!NS_IsMainThread()) {
// Dispatch a task to the main thread that notifies observers.
// If NotifyObservers is called both on and off the main thread within a
// short time, the order of the notifications can be different from the
// order of the calls to NotifyObservers.
// Getting the order 100% right isn't that important at the moment, because
// these notifications are only observed in the parent process, where the
// profiler_* functions are currently only called on the main thread.
nsCOMPtr<nsISupports> subject = aSubject;
NS_DispatchToMainThread(NS_NewRunnableFunction(
"NotifyObservers", [=] { NotifyObservers(aTopic, subject); }));
return;
}
if (nsCOMPtr<nsIObserverService> os = services::GetObserverService()) {
os->NotifyObservers(aSubject, aTopic, nullptr);
}
}
static void NotifyProfilerStarted(const PowerOfTwo32& aCapacity,
const Maybe<double>& aDuration,
double aInterval, uint32_t aFeatures,
const char** aFilters, uint32_t aFilterCount,
uint64_t aActiveBrowsingContextID) {
nsTArray<nsCString> filtersArray;
for (size_t i = 0; i < aFilterCount; ++i) {
filtersArray.AppendElement(aFilters[i]);
}
nsCOMPtr<nsIProfilerStartParams> params = new nsProfilerStartParams(
aCapacity.Value(), aDuration, aInterval, aFeatures,
std::move(filtersArray), aActiveBrowsingContextID);
ProfilerParent::ProfilerStarted(params);
NotifyObservers("profiler-started", params);
}
static void locked_profiler_start(PSLockRef aLock, PowerOfTwo32 aCapacity,
double aInterval, uint32_t aFeatures,
const char** aFilters, uint32_t aFilterCount,
uint64_t aActiveBrowsingContextID,
const Maybe<double>& aDuration);
// This basically duplicates AutoProfilerLabel's constructor.
static void* MozGlueLabelEnter(const char* aLabel, const char* aDynamicString,
void* aSp) {
ProfilingStackOwner* profilingStackOwner =
AutoProfilerLabel::sProfilingStackOwnerTLS.get();
if (profilingStackOwner) {
profilingStackOwner->ProfilingStack().pushLabelFrame(
aLabel, aDynamicString, aSp, JS::ProfilingCategoryPair::OTHER);
}
return profilingStackOwner;
}
// This basically duplicates AutoProfilerLabel's destructor.
static void MozGlueLabelExit(void* aProfilingStackOwner) {
if (aProfilingStackOwner) {
reinterpret_cast<ProfilingStackOwner*>(aProfilingStackOwner)
->ProfilingStack()
.pop();
}
}
static Vector<const char*> SplitAtCommas(const char* aString,
UniquePtr<char[]>& aStorage) {
size_t len = strlen(aString);
aStorage = MakeUnique<char[]>(len + 1);
PodCopy(aStorage.get(), aString, len + 1);
// Iterate over all characters in aStorage and split at commas, by
// overwriting commas with the null char.
Vector<const char*> array;
size_t currentElementStart = 0;
for (size_t i = 0; i <= len; i++) {
if (aStorage[i] == ',') {
aStorage[i] = '\0';
}
if (aStorage[i] == '\0') {
MOZ_RELEASE_ASSERT(array.append(&aStorage[currentElementStart]));
currentElementStart = i + 1;
}
}
return array;
}
void profiler_init_threadmanager() {
LOG("profiler_init_threadmanager");
PSAutoLock lock(gPSMutex);
RegisteredThread* registeredThread =
TLSRegisteredThread::RegisteredThread(lock);
if (!registeredThread->GetEventTarget()) {
registeredThread->ResetMainThread(NS_GetCurrentThreadNoCreate());
}
}
void profiler_init(void* aStackTop) {
LOG("profiler_init");
VTUNE_INIT();
MOZ_RELEASE_ASSERT(!CorePS::Exists());
if (getenv("MOZ_PROFILER_HELP")) {
PrintUsageThenExit(1); // terminates execution
}
SharedLibraryInfo::Initialize();
uint32_t features = DefaultFeatures() & AvailableFeatures();
UniquePtr<char[]> filterStorage;
Vector<const char*> filters;
MOZ_RELEASE_ASSERT(filters.append("GeckoMain"));
MOZ_RELEASE_ASSERT(filters.append("Compositor"));
MOZ_RELEASE_ASSERT(filters.append("DOM Worker"));
PowerOfTwo32 capacity = PROFILER_DEFAULT_ENTRIES;
Maybe<double> duration = Nothing();
double interval = PROFILER_DEFAULT_INTERVAL;
{
PSAutoLock lock(gPSMutex);
// We've passed the possible failure point. Instantiate CorePS, which
// indicates that the profiler has initialized successfully.
CorePS::Create(lock);
// profiler_init implicitly registers this thread as main thread.
locked_register_thread(lock, kMainThreadName, aStackTop);
// Platform-specific initialization.
PlatformInit(lock);
#ifdef MOZ_TASK_TRACER
tasktracer::InitTaskTracer();
#endif
#if defined(GP_OS_android)
if (jni::IsAvailable()) {
GeckoJavaSampler::Init();
}
#endif
// (Linux-only) We could create CorePS::mLul and read unwind info into it
// at this point. That would match the lifetime implied by destruction of
// it in profiler_shutdown() just below. However, that gives a big delay on
// startup, even if no profiling is actually to be done. So, instead, it is
// created on demand at the first call to PlatformStart().
const char* startupEnv = getenv("MOZ_PROFILER_STARTUP");
if (!startupEnv || startupEnv[0] == '\0' ||
((startupEnv[0] == '0' || startupEnv[0] == 'N' ||
startupEnv[0] == 'n') &&
startupEnv[1] == '\0')) {
return;
}
LOG("- MOZ_PROFILER_STARTUP is set");
// Startup default capacity may be different.
capacity = PROFILER_DEFAULT_STARTUP_ENTRIES;
const char* startupCapacity = getenv("MOZ_PROFILER_STARTUP_ENTRIES");
if (startupCapacity && startupCapacity[0] != '\0') {
errno = 0;
long capacityLong = strtol(startupCapacity, nullptr, 10);
// `long` could be 32 or 64 bits, so we force a 64-bit comparison with
// the maximum 32-bit signed number (as more than that is clamped down to
// 2^31 anyway).
if (errno == 0 && capacityLong > 0 &&
static_cast<uint64_t>(capacityLong) <=
static_cast<uint64_t>(INT32_MAX)) {
capacity = PowerOfTwo32(static_cast<uint32_t>(capacityLong));
LOG("- MOZ_PROFILER_STARTUP_ENTRIES = %u", unsigned(capacity.Value()));
} else {
LOG("- MOZ_PROFILER_STARTUP_ENTRIES not a valid integer: %s",
startupCapacity);
PrintUsageThenExit(1);
}
}
const char* startupDuration = getenv("MOZ_PROFILER_STARTUP_DURATION");
if (startupDuration && startupDuration[0] != '\0') {
errno = 0;
double durationVal = PR_strtod(startupDuration, nullptr);
if (errno == 0 && durationVal >= 0.0) {
if (durationVal > 0.0) {
duration = Some(durationVal);
}
LOG("- MOZ_PROFILER_STARTUP_DURATION = %f", durationVal);
} else {
LOG("- MOZ_PROFILER_STARTUP_DURATION not a valid float: %s",
startupDuration);
PrintUsageThenExit(1);
}
}
const char* startupInterval = getenv("MOZ_PROFILER_STARTUP_INTERVAL");
if (startupInterval && startupInterval[0] != '\0') {
errno = 0;
interval = PR_strtod(startupInterval, nullptr);
if (errno == 0 && interval > 0.0 && interval <= PROFILER_MAX_INTERVAL) {
LOG("- MOZ_PROFILER_STARTUP_INTERVAL = %f", interval);
} else {
LOG("- MOZ_PROFILER_STARTUP_INTERVAL not a valid float: %s",
startupInterval);
PrintUsageThenExit(1);
}
}
features |= StartupExtraDefaultFeatures() & AvailableFeatures();
const char* startupFeaturesBitfield =
getenv("MOZ_PROFILER_STARTUP_FEATURES_BITFIELD");
if (startupFeaturesBitfield && startupFeaturesBitfield[0] != '\0') {
errno = 0;
features = strtol(startupFeaturesBitfield, nullptr, 10);
if (errno == 0 && features != 0) {
LOG("- MOZ_PROFILER_STARTUP_FEATURES_BITFIELD = %d", features);
} else {
LOG("- MOZ_PROFILER_STARTUP_FEATURES_BITFIELD not a valid integer: %s",
startupFeaturesBitfield);
PrintUsageThenExit(1);
}
} else {
const char* startupFeatures = getenv("MOZ_PROFILER_STARTUP_FEATURES");
if (startupFeatures && startupFeatures[0] != '\0') {
// Interpret startupFeatures as a list of feature strings, separated by
// commas.
UniquePtr<char[]> featureStringStorage;
Vector<const char*> featureStringArray =
SplitAtCommas(startupFeatures, featureStringStorage);
features = ParseFeaturesFromStringArray(featureStringArray.begin(),
featureStringArray.length(),
/* aIsStartup */ true);
LOG("- MOZ_PROFILER_STARTUP_FEATURES = %d", features);
}
}
const char* startupFilters = getenv("MOZ_PROFILER_STARTUP_FILTERS");
if (startupFilters && startupFilters[0] != '\0') {
filters = SplitAtCommas(startupFilters, filterStorage);
LOG("- MOZ_PROFILER_STARTUP_FILTERS = %s", startupFilters);
}
locked_profiler_start(lock, capacity, interval, features, filters.begin(),
filters.length(), 0, duration);
}
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
// Start counting memory allocations (outside of lock because this may call
// profiler_add_sampled_counter which would attempt to take the lock.)
mozilla::profiler::install_memory_hooks();
#endif
// We do this with gPSMutex unlocked. The comment in profiler_stop() explains
// why.
NotifyProfilerStarted(capacity, duration, interval, features, filters.begin(),
filters.length(), 0);
}
static void locked_profiler_save_profile_to_file(PSLockRef aLock,
const char* aFilename,
bool aIsShuttingDown);
static SamplerThread* locked_profiler_stop(PSLockRef aLock);
void profiler_shutdown(IsFastShutdown aIsFastShutdown) {
LOG("profiler_shutdown");
VTUNE_SHUTDOWN();
MOZ_RELEASE_ASSERT(NS_IsMainThread());
MOZ_RELEASE_ASSERT(CorePS::Exists());
// If the profiler is active we must get a handle to the SamplerThread before
// ActivePS is destroyed, in order to delete it.
SamplerThread* samplerThread = nullptr;
{
PSAutoLock lock(gPSMutex);
// Save the profile on shutdown if requested.
if (ActivePS::Exists(lock)) {
const char* filename = getenv("MOZ_PROFILER_SHUTDOWN");
if (filename) {
locked_profiler_save_profile_to_file(lock, filename,
/* aIsShuttingDown */ true);
}
if (aIsFastShutdown == IsFastShutdown::Yes) {
return;
}
samplerThread = locked_profiler_stop(lock);
} else if (aIsFastShutdown == IsFastShutdown::Yes) {
return;
}
CorePS::Destroy(lock);
// We just destroyed CorePS and the ThreadInfos it contains, so we can
// clear this thread's TLSRegisteredThread.
TLSRegisteredThread::ResetRegisteredThread(lock);
// We can also clear the AutoProfilerLabel's ProfilingStack because the
// main thread should not use labels after profiler_shutdown.
TLSRegisteredThread::ResetAutoProfilerLabelProfilingStack(lock);
#ifdef MOZ_TASK_TRACER
tasktracer::ShutdownTaskTracer();
#endif
}
// We do these operations with gPSMutex unlocked. The comments in
// profiler_stop() explain why.
if (samplerThread) {
ProfilerParent::ProfilerStopped();
NotifyObservers("profiler-stopped");
delete samplerThread;
}
}
static bool WriteProfileToJSONWriter(SpliceableChunkedJSONWriter& aWriter,
double aSinceTime, bool aIsShuttingDown,
ProfilerCodeAddressService* aService) {
LOG("WriteProfileToJSONWriter");
MOZ_RELEASE_ASSERT(CorePS::Exists());
aWriter.Start();
{
if (!profiler_stream_json_for_this_process(aWriter, aSinceTime,
aIsShuttingDown, aService)) {
return false;
}
// Don't include profiles from other processes because this is a
// synchronous function.
aWriter.StartArrayProperty("processes");
aWriter.EndArray();
}
aWriter.End();
return true;
}
void profiler_set_process_name(const nsACString& aProcessName) {
LOG("profiler_set_process_name(\"%s\")", aProcessName.Data());
PSAutoLock lock(gPSMutex);
CorePS::SetProcessName(lock, aProcessName);
}
UniquePtr<char[]> profiler_get_profile(double aSinceTime,
bool aIsShuttingDown) {
LOG("profiler_get_profile");
UniquePtr<ProfilerCodeAddressService> service =
profiler_code_address_service_for_presymbolication();
SpliceableChunkedJSONWriter b;
if (!WriteProfileToJSONWriter(b, aSinceTime, aIsShuttingDown,
service.get())) {
return nullptr;
}
return b.WriteFunc()->CopyData();
}
void profiler_get_profile_json_into_lazily_allocated_buffer(
const std::function<char*(size_t)>& aAllocator, double aSinceTime,
bool aIsShuttingDown) {
LOG("profiler_get_profile_json_into_lazily_allocated_buffer");
UniquePtr<ProfilerCodeAddressService> service =
profiler_code_address_service_for_presymbolication();
SpliceableChunkedJSONWriter b;
if (!WriteProfileToJSONWriter(b, aSinceTime, aIsShuttingDown,
service.get())) {
return;
}
b.WriteFunc()->CopyDataIntoLazilyAllocatedBuffer(aAllocator);
}
void profiler_get_start_params(int* aCapacity, Maybe<double>* aDuration,
double* aInterval, uint32_t* aFeatures,
Vector<const char*>* aFilters,
uint64_t* aActiveBrowsingContextID) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
if (NS_WARN_IF(!aCapacity) || NS_WARN_IF(!aDuration) ||
NS_WARN_IF(!aInterval) || NS_WARN_IF(!aFeatures) ||
NS_WARN_IF(!aFilters)) {
return;
}
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
*aCapacity = 0;
*aDuration = Nothing();
*aInterval = 0;
*aFeatures = 0;
*aActiveBrowsingContextID = 0;
aFilters->clear();
return;
}
*aCapacity = ActivePS::Capacity(lock).Value();
*aDuration = ActivePS::Duration(lock);
*aInterval = ActivePS::Interval(lock);
*aFeatures = ActivePS::Features(lock);
*aActiveBrowsingContextID = ActivePS::ActiveBrowsingContextID(lock);
const Vector<std::string>& filters = ActivePS::Filters(lock);
MOZ_ALWAYS_TRUE(aFilters->resize(filters.length()));
for (uint32_t i = 0; i < filters.length(); ++i) {
(*aFilters)[i] = filters[i].c_str();
}
}
namespace mozilla {
void GetProfilerEnvVarsForChildProcess(
std::function<void(const char* key, const char* value)>&& aSetEnv) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
aSetEnv("MOZ_PROFILER_STARTUP", "");
return;
}
aSetEnv("MOZ_PROFILER_STARTUP", "1");
auto capacityString =
Smprintf("%u", unsigned(ActivePS::Capacity(lock).Value()));
aSetEnv("MOZ_PROFILER_STARTUP_ENTRIES", capacityString.get());
// Use AppendFloat instead of Smprintf with %f because the decimal
// separator used by %f is locale-dependent. But the string we produce needs
// to be parseable by strtod, which only accepts the period character as a
// decimal separator. AppendFloat always uses the period character.
nsCString intervalString;
intervalString.AppendFloat(ActivePS::Interval(lock));
aSetEnv("MOZ_PROFILER_STARTUP_INTERVAL", intervalString.get());
auto featuresString = Smprintf("%d", ActivePS::Features(lock));
aSetEnv("MOZ_PROFILER_STARTUP_FEATURES_BITFIELD", featuresString.get());
std::string filtersString;
const Vector<std::string>& filters = ActivePS::Filters(lock);
for (uint32_t i = 0; i < filters.length(); ++i) {
filtersString += filters[i];
if (i != filters.length() - 1) {
filtersString += ",";
}
}
aSetEnv("MOZ_PROFILER_STARTUP_FILTERS", filtersString.c_str());
#ifdef MOZ_BASE_PROFILER
// Blindly copy MOZ_BASE_PROFILER_STARTUP* env-vars.
auto copyEnv = [&](const char* aName) {
const char* env = getenv(aName);
if (!env) {
return;
}
aSetEnv(aName, env);
};
copyEnv("MOZ_BASE_PROFILER_STARTUP");
copyEnv("MOZ_BASE_PROFILER_STARTUP_ENTRIES");
copyEnv("MOZ_BASE_PROFILER_STARTUP_DURATION");
copyEnv("MOZ_BASE_PROFILER_STARTUP_INTERVAL");
copyEnv("MOZ_BASE_PROFILER_STARTUP_FEATURES_BITFIELD");
copyEnv("MOZ_BASE_PROFILER_STARTUP_FEATURES");
copyEnv("MOZ_BASE_PROFILER_STARTUP_FILTERS");
#endif
}
} // namespace mozilla
void profiler_received_exit_profile(const nsCString& aExitProfile) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
return;
}
ActivePS::AddExitProfile(lock, aExitProfile);
}
Vector<nsCString> profiler_move_exit_profiles() {
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
Vector<nsCString> profiles;
if (ActivePS::Exists(lock)) {
profiles = ActivePS::MoveExitProfiles(lock);
}
return profiles;
}
static void locked_profiler_save_profile_to_file(PSLockRef aLock,
const char* aFilename,
bool aIsShuttingDown = false) {
LOG("locked_profiler_save_profile_to_file(%s)", aFilename);
MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
std::ofstream stream;
stream.open(aFilename);
if (stream.is_open()) {
SpliceableJSONWriter w(MakeUnique<OStreamJSONWriteFunc>(stream));
w.Start();
{
locked_profiler_stream_json_for_this_process(aLock, w, /* sinceTime */ 0,
aIsShuttingDown, nullptr);
w.StartArrayProperty("processes");
Vector<nsCString> exitProfiles = ActivePS::MoveExitProfiles(aLock);
for (auto& exitProfile : exitProfiles) {
if (!exitProfile.IsEmpty()) {
w.Splice(exitProfile.get());
}
}
w.EndArray();
}
w.End();
stream.close();
}
}
void profiler_save_profile_to_file(const char* aFilename) {
LOG("profiler_save_profile_to_file(%s)", aFilename);
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
return;
}
locked_profiler_save_profile_to_file(lock, aFilename);
}
uint32_t profiler_get_available_features() {
MOZ_RELEASE_ASSERT(CorePS::Exists());
return AvailableFeatures();
}
Maybe<ProfilerBufferInfo> profiler_get_buffer_info() {
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
return Nothing();
}
return Some(ActivePS::Buffer(lock).GetProfilerBufferInfo());
}
static void PollJSSamplingForCurrentThread() {
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
RegisteredThread* registeredThread =
TLSRegisteredThread::RegisteredThread(lock);
if (!registeredThread) {
return;
}
registeredThread->PollJSSampling();
}
// When the profiler is started on a background thread, we can't synchronously
// call PollJSSampling on the main thread's ThreadInfo. And the next regular
// call to PollJSSampling on the main thread would only happen once the main
// thread triggers a JS interrupt callback.
// This means that all the JS execution between profiler_start() and the first
// JS interrupt would happen with JS sampling disabled, and we wouldn't get any
// JS function information for that period of time.
// So in order to start JS sampling as soon as possible, we dispatch a runnable
// to the main thread which manually calls PollJSSamplingForCurrentThread().
// In some cases this runnable will lose the race with the next JS interrupt.
// That's fine; PollJSSamplingForCurrentThread() is immune to redundant calls.
static void TriggerPollJSSamplingOnMainThread() {
nsCOMPtr<nsIThread> mainThread;
nsresult rv = NS_GetMainThread(getter_AddRefs(mainThread));
if (NS_SUCCEEDED(rv) && mainThread) {
nsCOMPtr<nsIRunnable> task =
NS_NewRunnableFunction("TriggerPollJSSamplingOnMainThread",
[]() { PollJSSamplingForCurrentThread(); });
SystemGroup::Dispatch(TaskCategory::Other, task.forget());
}
}
#ifdef MOZ_BASE_PROFILER
static bool HasMinimumLength(const char* aString, size_t aMinimumLength) {
if (!aString) {
return false;
}
for (size_t i = 0; i < aMinimumLength; ++i) {
if (aString[i] == '\0') {
return false;
}
}
return true;
}
#endif // MOZ_BASE_PROFILER
static void locked_profiler_start(PSLockRef aLock, PowerOfTwo32 aCapacity,
double aInterval, uint32_t aFeatures,
const char** aFilters, uint32_t aFilterCount,
uint64_t aActiveBrowsingContextID,
const Maybe<double>& aDuration) {
if (LOG_TEST) {
LOG("locked_profiler_start");
LOG("- capacity = %u", unsigned(aCapacity.Value()));
LOG("- duration = %.2f", aDuration ? *aDuration : -1);
LOG("- interval = %.2f", aInterval);
LOG("- browsing context ID = %" PRIu64, aActiveBrowsingContextID);
#define LOG_FEATURE(n_, str_, Name_, desc_) \
if (ProfilerFeature::Has##Name_(aFeatures)) { \
LOG("- feature = %s", str_); \
}
PROFILER_FOR_EACH_FEATURE(LOG_FEATURE)
#undef LOG_FEATURE
for (uint32_t i = 0; i < aFilterCount; i++) {
LOG("- threads = %s", aFilters[i]);
}
}
MOZ_RELEASE_ASSERT(CorePS::Exists() && !ActivePS::Exists(aLock));
#ifdef MOZ_BASE_PROFILER
UniquePtr<char[]> baseprofile;
if (baseprofiler::profiler_is_active()) {
// Note that we still hold the lock, so the sampler cannot run yet and
// interact negatively with the still-active BaseProfiler sampler.
// Assume that Base Profiler is active because of MOZ_BASE_PROFILER_STARTUP.
// Capture the Base Profiler startup profile threads (if any).
baseprofile = baseprofiler::profiler_get_profile(
/* aSinceTime */ 0, /* aIsShuttingDown */ false,
/* aOnlyThreads */ true);
// Now stop Base Profiler (BP), as further recording will be ignored anyway,
// and so that it won't clash with Gecko Profiler (GP) sampling starting
// after the lock is dropped.
// On Linux this is especially important to do before creating the GP
// sampler, because the BP sampler may send a signal (to stop threads to be
// sampled), which the GP would intercept before its own initialization is
// complete and ready to handle such signals.
// Note that even though `profiler_stop()` doesn't immediately destroy and
// join the sampler thread, it safely deactivates it in such a way that the
// thread will soon exit without doing any actual work.
// TODO: Allow non-sampling profiling to continue.
// TODO: Re-start BP after GP shutdown, to capture post-XPCOM shutdown.
baseprofiler::profiler_stop();
}
#endif
#if defined(GP_PLAT_amd64_windows)
InitializeWin64ProfilerHooks();
#endif
// Fall back to the default values if the passed-in values are unreasonable.
// Less than 8192 entries (65536 bytes) may not be enough for the most complex
// stack, so we should be able to store at least one full stack.
// TODO: Review magic numbers.
PowerOfTwo32 capacity =
(aCapacity.Value() >= 8192u) ? aCapacity : PROFILER_DEFAULT_ENTRIES;
Maybe<double> duration = aDuration;
if (aDuration && *aDuration <= 0) {
duration = Nothing();
}
double interval = aInterval > 0 ? aInterval : PROFILER_DEFAULT_INTERVAL;
ActivePS::Create(aLock, capacity, interval, aFeatures, aFilters, aFilterCount,
aActiveBrowsingContextID, duration);
// ActivePS::Create can only succeed or crash.
MOZ_ASSERT(ActivePS::Exists(aLock));
#ifdef MOZ_BASE_PROFILER
// An "empty" profile string may in fact contain 1 character (a newline), so
// we want at least 2 characters to register a profile.
if (HasMinimumLength(baseprofile.get(), 2)) {
// The BaseProfiler startup profile will be stored as a separate "process"
// in the Gecko Profiler profile, and shown as a new track under the
// corresponding Gecko Profiler thread.
ActivePS::AddBaseProfileThreads(aLock, std::move(baseprofile));
}
#endif
// Set up profiling for each registered thread, if appropriate.
Maybe<int> mainThreadId;
int tid = profiler_current_thread_id();
const Vector<UniquePtr<RegisteredThread>>& registeredThreads =
CorePS::RegisteredThreads(aLock);
for (auto& registeredThread : registeredThreads) {
RefPtr<ThreadInfo> info = registeredThread->Info();
if (ActivePS::ShouldProfileThread(aLock, info)) {
registeredThread->RacyRegisteredThread().SetIsBeingProfiled(true);
nsCOMPtr<nsIEventTarget> eventTarget = registeredThread->GetEventTarget();
ProfiledThreadData* profiledThreadData = ActivePS::AddLiveProfiledThread(
aLock, registeredThread.get(),
MakeUnique<ProfiledThreadData>(info, eventTarget));
if (ActivePS::FeatureJS(aLock)) {
registeredThread->StartJSSampling(ActivePS::JSFlags(aLock));
if (info->ThreadId() == tid) {
// We can manually poll the current thread so it starts sampling
// immediately.
registeredThread->PollJSSampling();
} else if (info->IsMainThread()) {
// Dispatch a runnable to the main thread to call PollJSSampling(),
// so that we don't have wait for the next JS interrupt callback in
// order to start profiling JS.
TriggerPollJSSamplingOnMainThread();
}
}
if (info->IsMainThread()) {
mainThreadId = Some(info->ThreadId());
}
registeredThread->RacyRegisteredThread().ReinitializeOnResume();
if (registeredThread->GetJSContext()) {
profiledThreadData->NotifyReceivedJSContext(0);
}
}
}
// Setup support for pushing/popping labels in mozglue.
RegisterProfilerLabelEnterExit(MozGlueLabelEnter, MozGlueLabelExit);
#ifdef MOZ_TASK_TRACER
if (ActivePS::FeatureTaskTracer(aLock)) {
tasktracer::StartLogging();
}
#endif
#if defined(GP_OS_android)
if (ActivePS::FeatureJava(aLock)) {
int javaInterval = interval;
// Java sampling doesn't accurately keep up with 1ms sampling.
if (javaInterval < 10) {
javaInterval = 10;
}
// Send the interval-relative entry count, but we have 100000 hard cap in
// the java code, it can't be more than that.
java::GeckoJavaSampler::Start(
javaInterval, std::round((double)(capacity.Value()) * interval /
(double)(javaInterval)));
}
#endif
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
if (ActivePS::FeatureNativeAllocations(aLock)) {
if (mainThreadId.isSome()) {
mozilla::profiler::enable_native_allocations(mainThreadId.value());
} else {
NS_WARNING(
"The nativeallocations feature is turned on, but the main thread is "
"not being profiled. The allocations are only stored on the main "
"thread.");
}
}
#endif
// At the very end, set up RacyFeatures.
RacyFeatures::SetActive(ActivePS::Features(aLock));
}
void profiler_start(PowerOfTwo32 aCapacity, double aInterval,
uint32_t aFeatures, const char** aFilters,
uint32_t aFilterCount, uint64_t aActiveBrowsingContextID,
const Maybe<double>& aDuration) {
LOG("profiler_start");
SamplerThread* samplerThread = nullptr;
{
PSAutoLock lock(gPSMutex);
// Initialize if necessary.
if (!CorePS::Exists()) {
profiler_init(nullptr);
}
// Reset the current state if the profiler is running.
if (ActivePS::Exists(lock)) {
samplerThread = locked_profiler_stop(lock);
}
locked_profiler_start(lock, aCapacity, aInterval, aFeatures, aFilters,
aFilterCount, aActiveBrowsingContextID, aDuration);
}
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
// Start counting memory allocations (outside of lock because this may call
// profiler_add_sampled_counter which would attempt to take the lock.)
mozilla::profiler::install_memory_hooks();
#endif
// We do these operations with gPSMutex unlocked. The comments in
// profiler_stop() explain why.
if (samplerThread) {
ProfilerParent::ProfilerStopped();
NotifyObservers("profiler-stopped");
delete samplerThread;
}
NotifyProfilerStarted(aCapacity, aDuration, aInterval, aFeatures, aFilters,
aFilterCount, aActiveBrowsingContextID);
}
void profiler_ensure_started(PowerOfTwo32 aCapacity, double aInterval,
uint32_t aFeatures, const char** aFilters,
uint32_t aFilterCount,
uint64_t aActiveBrowsingContextID,
const Maybe<double>& aDuration) {
LOG("profiler_ensure_started");
bool startedProfiler = false;
SamplerThread* samplerThread = nullptr;
{
PSAutoLock lock(gPSMutex);
// Initialize if necessary.
if (!CorePS::Exists()) {
profiler_init(nullptr);
}
if (ActivePS::Exists(lock)) {
// The profiler is active.
if (!ActivePS::Equals(lock, aCapacity, aDuration, aInterval, aFeatures,
aFilters, aFilterCount, aActiveBrowsingContextID)) {
// Stop and restart with different settings.
samplerThread = locked_profiler_stop(lock);
locked_profiler_start(lock, aCapacity, aInterval, aFeatures, aFilters,
aFilterCount, aActiveBrowsingContextID,
aDuration);
startedProfiler = true;
}
} else {
// The profiler is stopped.
locked_profiler_start(lock, aCapacity, aInterval, aFeatures, aFilters,
aFilterCount, aActiveBrowsingContextID, aDuration);
startedProfiler = true;
}
}
// We do these operations with gPSMutex unlocked. The comments in
// profiler_stop() explain why.
if (samplerThread) {
ProfilerParent::ProfilerStopped();
NotifyObservers("profiler-stopped");
delete samplerThread;
}
if (startedProfiler) {
NotifyProfilerStarted(aCapacity, aDuration, aInterval, aFeatures, aFilters,
aFilterCount, aActiveBrowsingContextID);
}
}
static MOZ_MUST_USE SamplerThread* locked_profiler_stop(PSLockRef aLock) {
LOG("locked_profiler_stop");
MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
// At the very start, clear RacyFeatures.
RacyFeatures::SetInactive();
#if defined(GP_OS_android)
if (ActivePS::FeatureJava(aLock)) {
java::GeckoJavaSampler::Stop();
}
#endif
#ifdef MOZ_TASK_TRACER
if (ActivePS::FeatureTaskTracer(aLock)) {
tasktracer::StopLogging();
}
#endif
// Remove support for pushing/popping labels in mozglue.
RegisterProfilerLabelEnterExit(nullptr, nullptr);
// Stop sampling live threads.
int tid = profiler_current_thread_id();
const Vector<LiveProfiledThreadData>& liveProfiledThreads =
ActivePS::LiveProfiledThreads(aLock);
for (auto& thread : liveProfiledThreads) {
RegisteredThread* registeredThread = thread.mRegisteredThread;
registeredThread->RacyRegisteredThread().SetIsBeingProfiled(false);
if (ActivePS::FeatureJS(aLock)) {
registeredThread->StopJSSampling();
RefPtr<ThreadInfo> info = registeredThread->Info();
if (info->ThreadId() == tid) {
// We can manually poll the current thread so it stops profiling
// immediately.
registeredThread->PollJSSampling();
} else if (info->IsMainThread()) {
// Dispatch a runnable to the main thread to call PollJSSampling(),
// so that we don't have wait for the next JS interrupt callback in
// order to start profiling JS.
TriggerPollJSSamplingOnMainThread();
}
}
}
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
if (ActivePS::FeatureNativeAllocations(aLock)) {
mozilla::profiler::disable_native_allocations();
}
#endif
// The Stop() call doesn't actually stop Run(); that happens in this
// function's caller when the sampler thread is destroyed. Stop() just gives
// the SamplerThread a chance to do some cleanup with gPSMutex locked.
SamplerThread* samplerThread = ActivePS::Destroy(aLock);
samplerThread->Stop(aLock);
return samplerThread;
}
void profiler_stop() {
LOG("profiler_stop");
MOZ_RELEASE_ASSERT(CorePS::Exists());
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
// Remove the hooks early, as native allocations (if they are on) can be
// quite expensive.
mozilla::profiler::remove_memory_hooks();
#endif
SamplerThread* samplerThread;
{
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
return;
}
samplerThread = locked_profiler_stop(lock);
}
// We notify observers with gPSMutex unlocked. Otherwise we might get a
// deadlock, if code run by these functions calls a profiler function that
// locks gPSMutex, for example when it wants to insert a marker.
// (This has been seen in practise in bug 1346356, when we were still firing
// these notifications synchronously.)
ProfilerParent::ProfilerStopped();
NotifyObservers("profiler-stopped");
// We delete with gPSMutex unlocked. Otherwise we would get a deadlock: we
// would be waiting here with gPSMutex locked for SamplerThread::Run() to
// return so the join operation within the destructor can complete, but Run()
// needs to lock gPSMutex to return.
//
// Because this call occurs with gPSMutex unlocked, it -- including the final
// iteration of Run()'s loop -- must be able detect deactivation and return
// in a way that's safe with respect to other gPSMutex-locking operations
// that may have occurred in the meantime.
delete samplerThread;
}
bool profiler_is_paused() {
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
return false;
}
return ActivePS::IsPaused(lock);
}
/* MOZ_MUST_USE */ bool profiler_callback_after_sampling(
PostSamplingCallback&& aCallback) {
LOG("profiler_callback_after_sampling");
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
return ActivePS::AppendPostSamplingCallback(lock, std::move(aCallback));
}
void profiler_pause() {
LOG("profiler_pause");
MOZ_RELEASE_ASSERT(CorePS::Exists());
{
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
return;
}
RacyFeatures::SetPaused();
ActivePS::SetIsPaused(lock, true);
ActivePS::Buffer(lock).AddEntry(ProfileBufferEntry::Pause(profiler_time()));
}
// gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
ProfilerParent::ProfilerPaused();
NotifyObservers("profiler-paused");
}
void profiler_resume() {
LOG("profiler_resume");
MOZ_RELEASE_ASSERT(CorePS::Exists());
{
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
return;
}
ActivePS::Buffer(lock).AddEntry(
ProfileBufferEntry::Resume(profiler_time()));
ActivePS::SetIsPaused(lock, false);
RacyFeatures::SetUnpaused();
}
// gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
ProfilerParent::ProfilerResumed();
NotifyObservers("profiler-resumed");
}
bool profiler_feature_active(uint32_t aFeature) {
// This function runs both on and off the main thread.
MOZ_RELEASE_ASSERT(CorePS::Exists());
// This function is hot enough that we use RacyFeatures, not ActivePS.
return RacyFeatures::IsActiveWithFeature(aFeature);
}
void profiler_write_active_configuration(JSONWriter& aWriter) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
ActivePS::WriteActiveConfiguration(lock, aWriter);
}
void profiler_add_sampled_counter(BaseProfilerCount* aCounter) {
DEBUG_LOG("profiler_add_sampled_counter(%s)", aCounter->mLabel);
PSAutoLock lock(gPSMutex);
CorePS::AppendCounter(lock, aCounter);
}
void profiler_remove_sampled_counter(BaseProfilerCount* aCounter) {
DEBUG_LOG("profiler_remove_sampled_counter(%s)", aCounter->mLabel);
PSAutoLock lock(gPSMutex);
// Note: we don't enforce a final sample, though we could do so if the
// profiler was active
CorePS::RemoveCounter(lock, aCounter);
}
ProfilingStack* profiler_register_thread(const char* aName,
void* aGuessStackTop) {
DEBUG_LOG("profiler_register_thread(%s)", aName);
MOZ_RELEASE_ASSERT(CorePS::Exists());
// Make sure we have a nsThread wrapper for the current thread, and that NSPR
// knows its name.
(void)NS_GetCurrentThread();
NS_SetCurrentThreadName(aName);
PSAutoLock lock(gPSMutex);
void* stackTop = GetStackTop(aGuessStackTop);
return locked_register_thread(lock, aName, stackTop);
}
void profiler_unregister_thread() {
PSAutoLock lock(gPSMutex);
if (!CorePS::Exists()) {
// This function can be called after the main thread has already shut down.
// We want to reset the AutoProfilerLabel's ProfilingStack pointer (if
// needed), because a thread could stay registered after the profiler has
// shut down.
TLSRegisteredThread::ResetAutoProfilerLabelProfilingStack(lock);
return;
}
// We don't call RegisteredThread::StopJSSampling() here; there's no point
// doing that for a JS thread that is in the process of disappearing.
RegisteredThread* registeredThread = FindCurrentThreadRegisteredThread(lock);
MOZ_RELEASE_ASSERT(registeredThread ==
TLSRegisteredThread::RegisteredThread(lock));
if (registeredThread) {
RefPtr<ThreadInfo> info = registeredThread->Info();
DEBUG_LOG("profiler_unregister_thread: %s", info->Name());
if (ActivePS::Exists(lock)) {
ActivePS::UnregisterThread(lock, registeredThread);
}
// Clear the pointer to the RegisteredThread object that we're about to
// destroy, as well as the AutoProfilerLabel's ProfilingStack because the
// thread is unregistering itself and won't need the ProfilingStack anymore.
TLSRegisteredThread::ResetRegisteredThread(lock);
TLSRegisteredThread::ResetAutoProfilerLabelProfilingStack(lock);
// Remove the thread from the list of registered threads. This deletes the
// registeredThread object.
CorePS::RemoveRegisteredThread(lock, registeredThread);
} else {
// There are two ways FindCurrentThreadRegisteredThread() might have failed.
//
// - TLSRegisteredThread::Init() failed in locked_register_thread().
//
// - We've already called profiler_unregister_thread() for this thread.
// (Whether or not it should, this does happen in practice.)
//
// Either way, TLSRegisteredThread should be empty.
MOZ_RELEASE_ASSERT(!TLSRegisteredThread::RegisteredThread(lock));
}
}
void profiler_register_page(uint64_t aBrowsingContextID,
uint64_t aInnerWindowID, const nsCString& aUrl,
uint64_t aEmbedderInnerWindowID) {
DEBUG_LOG("profiler_register_page(%" PRIu64 ", %" PRIu64 ", %s, %" PRIu64 ")",
aBrowsingContextID, aInnerWindowID, aUrl.get(),
aEmbedderInnerWindowID);
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
// When a Browsing context is first loaded, the first url loaded in it will be
// about:blank. Because of that, this call keeps the first non-about:blank
// registration of window and discards the previous one.
RefPtr<PageInformation> pageInfo = new PageInformation(
aBrowsingContextID, aInnerWindowID, aUrl, aEmbedderInnerWindowID);
CorePS::AppendRegisteredPage(lock, std::move(pageInfo));
// After appending the given page to CorePS, look for the expired
// pages and remove them if there are any.
if (ActivePS::Exists(lock)) {
ActivePS::DiscardExpiredPages(lock);
}
}
void profiler_unregister_page(uint64_t aRegisteredInnerWindowID) {
PSAutoLock lock(gPSMutex);
if (!CorePS::Exists()) {
// This function can be called after the main thread has already shut down.
return;
}
// During unregistration, if the profiler is active, we have to keep the
// page information since there may be some markers associated with the given
// page. But if profiler is not active. we have no reason to keep the
// page information here because there can't be any marker associated with it.
if (ActivePS::Exists(lock)) {
ActivePS::UnregisterPage(lock, aRegisteredInnerWindowID);
} else {
CorePS::RemoveRegisteredPage(lock, aRegisteredInnerWindowID);
}
}
void profiler_clear_all_pages() {
{
PSAutoLock lock(gPSMutex);
if (!CorePS::Exists()) {
// This function can be called after the main thread has already shut
// down.
return;
}
CorePS::ClearRegisteredPages(lock);
if (ActivePS::Exists(lock)) {
ActivePS::ClearUnregisteredPages(lock);
}
}
// gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
ProfilerParent::ClearAllPages();
}
Maybe<uint64_t> profiler_get_inner_window_id_from_docshell(
nsIDocShell* aDocshell) {
Maybe<uint64_t> innerWindowID = Nothing();
if (aDocshell) {
auto outerWindow = aDocshell->GetWindow();
if (outerWindow) {
auto innerWindow = outerWindow->GetCurrentInnerWindow();
if (innerWindow) {
innerWindowID = Some(innerWindow->WindowID());
}
}
}
return innerWindowID;
}
void profiler_thread_sleep() {
// This function runs both on and off the main thread.
MOZ_RELEASE_ASSERT(CorePS::Exists());
RacyRegisteredThread* racyRegisteredThread =
TLSRegisteredThread::RacyRegisteredThread();
if (!racyRegisteredThread) {
return;
}
racyRegisteredThread->SetSleeping();
}
void profiler_thread_wake() {
// This function runs both on and off the main thread.
MOZ_RELEASE_ASSERT(CorePS::Exists());
RacyRegisteredThread* racyRegisteredThread =
TLSRegisteredThread::RacyRegisteredThread();
if (!racyRegisteredThread) {
return;
}
racyRegisteredThread->SetAwake();
}
bool mozilla::profiler::detail::IsThreadBeingProfiled() {
MOZ_RELEASE_ASSERT(CorePS::Exists());
const RacyRegisteredThread* racyRegisteredThread =
TLSRegisteredThread::RacyRegisteredThread();
return racyRegisteredThread && racyRegisteredThread->IsBeingProfiled();
}
bool profiler_thread_is_sleeping() {
MOZ_RELEASE_ASSERT(NS_IsMainThread());
MOZ_RELEASE_ASSERT(CorePS::Exists());
RacyRegisteredThread* racyRegisteredThread =
TLSRegisteredThread::RacyRegisteredThread();
if (!racyRegisteredThread) {
return false;
}
return racyRegisteredThread->IsSleeping();
}
void profiler_js_interrupt_callback() {
// This function runs on JS threads being sampled.
PollJSSamplingForCurrentThread();
}
double profiler_time() {
MOZ_RELEASE_ASSERT(CorePS::Exists());
TimeDuration delta = TimeStamp::NowUnfuzzed() - CorePS::ProcessStartTime();
return delta.ToMilliseconds();
}
UniqueProfilerBacktrace profiler_get_backtrace() {
MOZ_RELEASE_ASSERT(CorePS::Exists());
// Fast racy early return.
if (!profiler_is_active()) {
return nullptr;
}
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock) || ActivePS::FeaturePrivacy(lock)) {
return nullptr;
}
RegisteredThread* registeredThread =
TLSRegisteredThread::RegisteredThread(lock);
if (!registeredThread) {
// If this was called from a non-registered thread, return a nullptr
// and do no more work. This can happen from a memory hook. Before
// the allocation tracking there was a MOZ_ASSERT() here checking
// for the existence of a registeredThread.
return nullptr;
}
int tid = profiler_current_thread_id();
TimeStamp now = TimeStamp::NowUnfuzzed();
Registers regs;
#if defined(HAVE_NATIVE_UNWIND)
regs.SyncPopulate();
#else
regs.Clear();
#endif
// 65536 bytes should be plenty for a single backtrace.
auto bufferManager = MakeUnique<BlocksRingBuffer>(
BlocksRingBuffer::ThreadSafety::WithoutMutex);
auto buffer =
MakeUnique<ProfileBuffer>(*bufferManager, MakePowerOfTwo32<65536>());
DoSyncSample(lock, *registeredThread, now, regs, *buffer.get());
return UniqueProfilerBacktrace(new ProfilerBacktrace(
"SyncProfile", tid, std::move(bufferManager), std::move(buffer)));
}
void ProfilerBacktraceDestructor::operator()(ProfilerBacktrace* aBacktrace) {
delete aBacktrace;
}
static void racy_profiler_add_marker(const char* aMarkerName,
JS::ProfilingCategoryPair aCategoryPair,
const ProfilerMarkerPayload* aPayload) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
// This function is hot enough that we use RacyFeatures, not ActivePS.
if (!profiler_can_accept_markers()) {
return;
}
// Note that it's possible that the above test would change again before we
// actually record the marker. Because of this imprecision it's possible to
// miss a marker or record one we shouldn't. Either way is not a big deal.
RacyRegisteredThread* racyRegisteredThread =
TLSRegisteredThread::RacyRegisteredThread();
if (!racyRegisteredThread || !racyRegisteredThread->IsBeingProfiled()) {
return;
}
TimeStamp origin = (aPayload && !aPayload->GetStartTime().IsNull())
? aPayload->GetStartTime()
: TimeStamp::NowUnfuzzed();
TimeDuration delta = origin - CorePS::ProcessStartTime();
CorePS::CoreBlocksRingBuffer().PutObjects(
ProfileBufferEntry::Kind::MarkerData, racyRegisteredThread->ThreadId(),
WrapProfileBufferUnownedCString(aMarkerName),
static_cast<uint32_t>(aCategoryPair), aPayload, delta.ToMilliseconds());
}
void profiler_add_marker(const char* aMarkerName,
JS::ProfilingCategoryPair aCategoryPair,
const ProfilerMarkerPayload& aPayload) {
racy_profiler_add_marker(aMarkerName, aCategoryPair, &aPayload);
}
void profiler_add_marker(const char* aMarkerName,
JS::ProfilingCategoryPair aCategoryPair) {
racy_profiler_add_marker(aMarkerName, aCategoryPair, nullptr);
}
// This is a simplified version of profiler_add_marker that can be easily passed
// into the JS engine.
void profiler_add_js_marker(const char* aMarkerName) {
AUTO_PROFILER_STATS(add_marker);
profiler_add_marker(aMarkerName, JS::ProfilingCategoryPair::JS);
}
void profiler_add_js_allocation_marker(JS::RecordAllocationInfo&& info) {
if (!profiler_can_accept_markers()) {
return;
}
AUTO_PROFILER_STATS(add_marker_with_JsAllocationMarkerPayload);
profiler_add_marker(
"JS allocation", JS::ProfilingCategoryPair::JS,
JsAllocationMarkerPayload(TimeStamp::Now(), std::move(info),
profiler_get_backtrace()));
}
bool profiler_is_locked_on_current_thread() {
return gPSMutex.IsLockedOnCurrentThread();
}
bool profiler_add_native_allocation_marker(int aMainThreadId, int64_t aSize,
uintptr_t aMemoryAddress) {
if (!profiler_can_accept_markers()) {
return false;
}
AUTO_PROFILER_STATS(add_marker_with_NativeAllocationMarkerPayload);
profiler_add_marker_for_thread(
aMainThreadId, JS::ProfilingCategoryPair::OTHER, "Native allocation",
MakeUnique<NativeAllocationMarkerPayload>(
TimeStamp::Now(), aSize, aMemoryAddress, profiler_current_thread_id(),
profiler_get_backtrace()));
return true;
}
void profiler_add_network_marker(
nsIURI* aURI, int32_t aPriority, uint64_t aChannelId, NetworkLoadType aType,
mozilla::TimeStamp aStart, mozilla::TimeStamp aEnd, int64_t aCount,
mozilla::net::CacheDisposition aCacheDisposition, uint64_t aInnerWindowID,
const mozilla::net::TimingStruct* aTimings, nsIURI* aRedirectURI,
UniqueProfilerBacktrace aSource) {
if (!profiler_can_accept_markers()) {
return;
}
// These do allocations/frees/etc; avoid if not active
nsAutoCString spec;
nsAutoCString redirect_spec;
if (aURI) {
aURI->GetAsciiSpec(spec);
}
if (aRedirectURI) {
aRedirectURI->GetAsciiSpec(redirect_spec);
}
// top 32 bits are process id of the load
uint32_t id = static_cast<uint32_t>(aChannelId & 0xFFFFFFFF);
char name[2048];
SprintfLiteral(name, "Load %d: %s", id, PromiseFlatCString(spec).get());
AUTO_PROFILER_STATS(add_marker_with_NetworkMarkerPayload);
profiler_add_marker(
name, JS::ProfilingCategoryPair::NETWORK,
NetworkMarkerPayload(static_cast<int64_t>(aChannelId),
PromiseFlatCString(spec).get(), aType, aStart, aEnd,
aPriority, aCount, aCacheDisposition, aInnerWindowID,
aTimings, PromiseFlatCString(redirect_spec).get(),
std::move(aSource)));
}
void profiler_add_marker_for_thread(int aThreadId,
JS::ProfilingCategoryPair aCategoryPair,
const char* aMarkerName,
UniquePtr<ProfilerMarkerPayload> aPayload) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
if (!profiler_can_accept_markers()) {
return;
}
#ifdef DEBUG
{
PSAutoLock lock(gPSMutex);
if (!ActivePS::Exists(lock)) {
return;
}
// Assert that our thread ID makes sense
bool realThread = false;
const Vector<UniquePtr<RegisteredThread>>& registeredThreads =
CorePS::RegisteredThreads(lock);
for (auto& thread : registeredThreads) {
RefPtr<ThreadInfo> info = thread->Info();
if (info->ThreadId() == aThreadId) {
realThread = true;
break;
}
}
MOZ_ASSERT(realThread, "Invalid thread id");
}
#endif
TimeStamp origin = (aPayload && !aPayload->GetStartTime().IsNull())
? aPayload->GetStartTime()
: TimeStamp::NowUnfuzzed();
TimeDuration delta = origin - CorePS::ProcessStartTime();
CorePS::CoreBlocksRingBuffer().PutObjects(
ProfileBufferEntry::Kind::MarkerData, aThreadId,
WrapProfileBufferUnownedCString(aMarkerName),
static_cast<uint32_t>(aCategoryPair), aPayload, delta.ToMilliseconds());
}
void profiler_tracing_marker(const char* aCategoryString,
const char* aMarkerName,
JS::ProfilingCategoryPair aCategoryPair,
TracingKind aKind,
const Maybe<uint64_t>& aInnerWindowID) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
VTUNE_TRACING(aMarkerName, aKind);
// This function is hot enough that we use RacyFeatures, notActivePS.
if (!profiler_can_accept_markers()) {
return;
}
AUTO_PROFILER_STATS(add_marker_with_TracingMarkerPayload);
profiler_add_marker(
aMarkerName, aCategoryPair,
TracingMarkerPayload(aCategoryString, aKind, aInnerWindowID));
}
void profiler_tracing_marker(const char* aCategoryString,
const char* aMarkerName,
JS::ProfilingCategoryPair aCategoryPair,
TracingKind aKind, UniqueProfilerBacktrace aCause,
const Maybe<uint64_t>& aInnerWindowID) {
MOZ_RELEASE_ASSERT(CorePS::Exists());
VTUNE_TRACING(aMarkerName, aKind);
// This function is hot enough that we use RacyFeatures, notActivePS.
if (!profiler_can_accept_markers()) {
return;
}
profiler_add_marker(aMarkerName, aCategoryPair,
TracingMarkerPayload(aCategoryString, aKind,
aInnerWindowID, std::move(aCause)));
}
void profiler_add_text_marker(const char* aMarkerName, const nsACString& aText,
JS::ProfilingCategoryPair aCategoryPair,
const mozilla::TimeStamp& aStartTime,
const mozilla::TimeStamp& aEndTime,
const mozilla::Maybe<uint64_t>& aInnerWindowID,
UniqueProfilerBacktrace aCause) {
AUTO_PROFILER_STATS(add_marker_with_TextMarkerPayload);
profiler_add_marker(aMarkerName, aCategoryPair,
TextMarkerPayload(aText, aStartTime, aEndTime,
aInnerWindowID, std::move(aCause)));
}
void profiler_set_js_context(JSContext* aCx) {
MOZ_ASSERT(aCx);
PSAutoLock lock(gPSMutex);
RegisteredThread* registeredThread =
TLSRegisteredThread::RegisteredThread(lock);
if (!registeredThread) {
return;
}
registeredThread->SetJSContext(aCx);
// This call is on-thread, so we can call PollJSSampling() to start JS
// sampling immediately.
registeredThread->PollJSSampling();
if (ActivePS::Exists(lock)) {
ProfiledThreadData* profiledThreadData =
ActivePS::GetProfiledThreadData(lock, registeredThread);
if (profiledThreadData) {
profiledThreadData->NotifyReceivedJSContext(
ActivePS::Buffer(lock).BufferRangeEnd());
}
}
}
void profiler_clear_js_context() {
MOZ_RELEASE_ASSERT(CorePS::Exists());
PSAutoLock lock(gPSMutex);
RegisteredThread* registeredThread =
TLSRegisteredThread::RegisteredThread(lock);
if (!registeredThread) {
return;
}
JSContext* cx = registeredThread->GetJSContext();
if (!cx) {
return;
}
if (ActivePS::Exists(lock) && ActivePS::FeatureJS(lock)) {
ProfiledThreadData* profiledThreadData =
ActivePS::GetProfiledThreadData(lock, registeredThread);
if (profiledThreadData) {
profiledThreadData->NotifyAboutToLoseJSContext(
cx, CorePS::ProcessStartTime(), ActivePS::Buffer(lock));
// Notify the JS context that profiling for this context has stopped.
// Do this by calling StopJSSampling and PollJSSampling before
// nulling out the JSContext.
registeredThread->StopJSSampling();
registeredThread->PollJSSampling();
registeredThread->ClearJSContext();
// Tell the thread that we'd like to have JS sampling on this
// thread again, once it gets a new JSContext (if ever).
registeredThread->StartJSSampling(ActivePS::JSFlags(lock));
return;
}
}
registeredThread->ClearJSContext();
}
// NOTE: aCollector's methods will be called while the target thread is paused.
// Doing things in those methods like allocating -- which may try to claim
// locks -- is a surefire way to deadlock.
void profiler_suspend_and_sample_thread(int aThreadId, uint32_t aFeatures,
ProfilerStackCollector& aCollector,
bool aSampleNative /* = true */) {
// Lock the profiler mutex
PSAutoLock lock(gPSMutex);
const Vector<UniquePtr<RegisteredThread>>& registeredThreads =
CorePS::RegisteredThreads(lock);
for (auto& thread : registeredThreads) {
RefPtr<ThreadInfo> info = thread->Info();
RegisteredThread& registeredThread = *thread.get();
if (info->ThreadId() == aThreadId) {
if (info->IsMainThread()) {
aCollector.SetIsMainThread();
}
// Allocate the space for the native stack
NativeStack nativeStack;
// Suspend, sample, and then resume the target thread.
Sampler sampler(lock);
TimeStamp now = TimeStamp::Now();
sampler.SuspendAndSampleAndResumeThread(
lock, registeredThread, now,
[&](const Registers& aRegs, const TimeStamp& aNow) {
// The target thread is now suspended. Collect a native backtrace,
// and call the callback.
bool isSynchronous = false;
#if defined(HAVE_FASTINIT_NATIVE_UNWIND)
if (aSampleNative) {
// We can only use FramePointerStackWalk or MozStackWalk from
// suspend_and_sample_thread as other stackwalking methods may not be
// initialized.
# if defined(USE_FRAME_POINTER_STACK_WALK)
DoFramePointerBacktrace(lock, registeredThread, aRegs,
nativeStack);
# elif defined(USE_MOZ_STACK_WALK)
DoMozStackWalkBacktrace(lock, registeredThread, aRegs,
nativeStack);
# else
# error "Invalid configuration"
# endif
MergeStacks(aFeatures, isSynchronous, registeredThread, aRegs,
nativeStack, aCollector, CorePS::JsFrames(lock));
} else
#endif
{
MergeStacks(aFeatures, isSynchronous, registeredThread, aRegs,
nativeStack, aCollector, CorePS::JsFrames(lock));
if (ProfilerFeature::HasLeaf(aFeatures)) {
aCollector.CollectNativeLeafAddr((void*)aRegs.mPC);
}
}
});
// NOTE: Make sure to disable the sampler before it is destroyed, in case
// the profiler is running at the same time.
sampler.Disable(lock);
break;
}
}
}
// END externally visible functions
////////////////////////////////////////////////////////////////////////