fune/toolkit/components/uniffi-bindgen-gecko-js/fixtures/generated/RustGeometry.sys.mjs
Lina Butler 1466383668 Bug 1851845 - Update vendored Application Services dependencies. r=markh,adw
This commit vendors the latest changes to the Suggest and Remote
Settings Rust components.

1. From the `application-services` source tree, I ran
   `./tools/update-moz-central-vendoring.py ../m-c` to update the
   revisions in the m-c source tree.
2. I added the Remote Settings component UDL file to
   `toolkit/components/uniffi-bindgen-gecko-js/mach_commands.py`, and
   updated `toolkit/components/uniffi-bindgen-gecko-js/config.toml` to
   call the `RemoteSettings` constructor on the main thread. The
   Suggest component uses the `RemoteSettingsConfig` type in its
   public API, so we must generate bindings for the Remote Settings
   component.
3. From the m-c source tree, I ran `./mach uniffi generate` to update
   the generated UniFFI bindings.

Differential Revision: https://phabricator.services.mozilla.com/D187559
2023-09-07 05:40:28 +00:00

514 lines
14 KiB
JavaScript

// This file was autogenerated by the `uniffi-bindgen-gecko-js` crate.
// Trust me, you don't want to mess with it!
import { UniFFITypeError } from "resource://gre/modules/UniFFI.sys.mjs";
// Objects intended to be used in the unit tests
export var UnitTestObjs = {};
// Write/Read data to/from an ArrayBuffer
class ArrayBufferDataStream {
constructor(arrayBuffer) {
this.dataView = new DataView(arrayBuffer);
this.pos = 0;
}
readUint8() {
let rv = this.dataView.getUint8(this.pos);
this.pos += 1;
return rv;
}
writeUint8(value) {
this.dataView.setUint8(this.pos, value);
this.pos += 1;
}
readUint16() {
let rv = this.dataView.getUint16(this.pos);
this.pos += 2;
return rv;
}
writeUint16(value) {
this.dataView.setUint16(this.pos, value);
this.pos += 2;
}
readUint32() {
let rv = this.dataView.getUint32(this.pos);
this.pos += 4;
return rv;
}
writeUint32(value) {
this.dataView.setUint32(this.pos, value);
this.pos += 4;
}
readUint64() {
let rv = this.dataView.getBigUint64(this.pos);
this.pos += 8;
return Number(rv);
}
writeUint64(value) {
this.dataView.setBigUint64(this.pos, BigInt(value));
this.pos += 8;
}
readInt8() {
let rv = this.dataView.getInt8(this.pos);
this.pos += 1;
return rv;
}
writeInt8(value) {
this.dataView.setInt8(this.pos, value);
this.pos += 1;
}
readInt16() {
let rv = this.dataView.getInt16(this.pos);
this.pos += 2;
return rv;
}
writeInt16(value) {
this.dataView.setInt16(this.pos, value);
this.pos += 2;
}
readInt32() {
let rv = this.dataView.getInt32(this.pos);
this.pos += 4;
return rv;
}
writeInt32(value) {
this.dataView.setInt32(this.pos, value);
this.pos += 4;
}
readInt64() {
let rv = this.dataView.getBigInt64(this.pos);
this.pos += 8;
return Number(rv);
}
writeInt64(value) {
this.dataView.setBigInt64(this.pos, BigInt(value));
this.pos += 8;
}
readFloat32() {
let rv = this.dataView.getFloat32(this.pos);
this.pos += 4;
return rv;
}
writeFloat32(value) {
this.dataView.setFloat32(this.pos, value);
this.pos += 4;
}
readFloat64() {
let rv = this.dataView.getFloat64(this.pos);
this.pos += 8;
return rv;
}
writeFloat64(value) {
this.dataView.setFloat64(this.pos, value);
this.pos += 8;
}
writeString(value) {
const encoder = new TextEncoder();
// Note: in order to efficiently write this data, we first write the
// string data, reserving 4 bytes for the size.
const dest = new Uint8Array(this.dataView.buffer, this.pos + 4);
const encodeResult = encoder.encodeInto(value, dest);
if (encodeResult.read != value.length) {
throw new UniFFIError(
"writeString: out of space when writing to ArrayBuffer. Did the computeSize() method returned the wrong result?"
);
}
const size = encodeResult.written;
// Next, go back and write the size before the string data
this.dataView.setUint32(this.pos, size);
// Finally, advance our position past both the size and string data
this.pos += size + 4;
}
readString() {
const decoder = new TextDecoder();
const size = this.readUint32();
const source = new Uint8Array(this.dataView.buffer, this.pos, size)
const value = decoder.decode(source);
this.pos += size;
return value;
}
}
function handleRustResult(result, liftCallback, liftErrCallback) {
switch (result.code) {
case "success":
return liftCallback(result.data);
case "error":
throw liftErrCallback(result.data);
case "internal-error":
let message = result.internalErrorMessage;
if (message) {
throw new UniFFIInternalError(message);
} else {
throw new UniFFIInternalError("Unknown error");
}
default:
throw new UniFFIError(`Unexpected status code: ${result.code}`);
}
}
class UniFFIError {
constructor(message) {
this.message = message;
}
toString() {
return `UniFFIError: ${this.message}`
}
}
class UniFFIInternalError extends UniFFIError {}
// Base class for FFI converters
class FfiConverter {
// throw `UniFFITypeError` if a value to be converted has an invalid type
static checkType(value) {
if (value === undefined ) {
throw new UniFFITypeError(`undefined`);
}
if (value === null ) {
throw new UniFFITypeError(`null`);
}
}
}
// Base class for FFI converters that lift/lower by reading/writing to an ArrayBuffer
class FfiConverterArrayBuffer extends FfiConverter {
static lift(buf) {
return this.read(new ArrayBufferDataStream(buf));
}
static lower(value) {
const buf = new ArrayBuffer(this.computeSize(value));
const dataStream = new ArrayBufferDataStream(buf);
this.write(dataStream, value);
return buf;
}
}
// Symbols that are used to ensure that Object constructors
// can only be used with a proper UniFFI pointer
const uniffiObjectPtr = Symbol("uniffiObjectPtr");
const constructUniffiObject = Symbol("constructUniffiObject");
UnitTestObjs.uniffiObjectPtr = uniffiObjectPtr;
// Export the FFIConverter object to make external types work.
export class FfiConverterF64 extends FfiConverter {
static computeSize() {
return 8;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeFloat64(value)
}
static read(dataStream) {
return dataStream.readFloat64()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterString extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (typeof value !== "string") {
throw new UniFFITypeError(`${value} is not a string`);
}
}
static lift(buf) {
const decoder = new TextDecoder();
const utf8Arr = new Uint8Array(buf);
return decoder.decode(utf8Arr);
}
static lower(value) {
const encoder = new TextEncoder();
return encoder.encode(value).buffer;
}
static write(dataStream, value) {
dataStream.writeString(value);
}
static read(dataStream) {
return dataStream.readString();
}
static computeSize(value) {
const encoder = new TextEncoder();
return 4 + encoder.encode(value).length
}
}
export class Line {
constructor(start,end) {
try {
FfiConverterTypePoint.checkType(start)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("start");
}
throw e;
}
try {
FfiConverterTypePoint.checkType(end)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("end");
}
throw e;
}
this.start = start;
this.end = end;
}
equals(other) {
return (
this.start.equals(other.start) &&
this.end.equals(other.end)
)
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterTypeLine extends FfiConverterArrayBuffer {
static read(dataStream) {
return new Line(
FfiConverterTypePoint.read(dataStream),
FfiConverterTypePoint.read(dataStream)
);
}
static write(dataStream, value) {
FfiConverterTypePoint.write(dataStream, value.start);
FfiConverterTypePoint.write(dataStream, value.end);
}
static computeSize(value) {
let totalSize = 0;
totalSize += FfiConverterTypePoint.computeSize(value.start);
totalSize += FfiConverterTypePoint.computeSize(value.end);
return totalSize
}
static checkType(value) {
super.checkType(value);
try {
FfiConverterTypePoint.checkType(value.start);
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart(".start");
}
throw e;
}
try {
FfiConverterTypePoint.checkType(value.end);
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart(".end");
}
throw e;
}
}
}
export class Point {
constructor(coordX,coordY) {
try {
FfiConverterF64.checkType(coordX)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("coordX");
}
throw e;
}
try {
FfiConverterF64.checkType(coordY)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("coordY");
}
throw e;
}
this.coordX = coordX;
this.coordY = coordY;
}
equals(other) {
return (
this.coordX == other.coordX &&
this.coordY == other.coordY
)
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterTypePoint extends FfiConverterArrayBuffer {
static read(dataStream) {
return new Point(
FfiConverterF64.read(dataStream),
FfiConverterF64.read(dataStream)
);
}
static write(dataStream, value) {
FfiConverterF64.write(dataStream, value.coordX);
FfiConverterF64.write(dataStream, value.coordY);
}
static computeSize(value) {
let totalSize = 0;
totalSize += FfiConverterF64.computeSize(value.coordX);
totalSize += FfiConverterF64.computeSize(value.coordY);
return totalSize
}
static checkType(value) {
super.checkType(value);
try {
FfiConverterF64.checkType(value.coordX);
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart(".coordX");
}
throw e;
}
try {
FfiConverterF64.checkType(value.coordY);
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart(".coordY");
}
throw e;
}
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterOptionalTypePoint extends FfiConverterArrayBuffer {
static checkType(value) {
if (value !== undefined && value !== null) {
FfiConverterTypePoint.checkType(value)
}
}
static read(dataStream) {
const code = dataStream.readUint8(0);
switch (code) {
case 0:
return null
case 1:
return FfiConverterTypePoint.read(dataStream)
default:
throw UniFFIError(`Unexpected code: ${code}`);
}
}
static write(dataStream, value) {
if (value === null || value === undefined) {
dataStream.writeUint8(0);
return;
}
dataStream.writeUint8(1);
FfiConverterTypePoint.write(dataStream, value)
}
static computeSize(value) {
if (value === null || value === undefined) {
return 1;
}
return 1 + FfiConverterTypePoint.computeSize(value)
}
}
export function gradient(ln) {
const liftResult = (result) => FfiConverterF64.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterTypeLine.checkType(ln)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("ln");
}
throw e;
}
return UniFFIScaffolding.callAsync(
27, // geometry:uniffi_geometry_fn_func_gradient
FfiConverterTypeLine.lower(ln),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
export function intersection(ln1,ln2) {
const liftResult = (result) => FfiConverterOptionalTypePoint.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterTypeLine.checkType(ln1)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("ln1");
}
throw e;
}
try {
FfiConverterTypeLine.checkType(ln2)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("ln2");
}
throw e;
}
return UniFFIScaffolding.callAsync(
28, // geometry:uniffi_geometry_fn_func_intersection
FfiConverterTypeLine.lower(ln1),
FfiConverterTypeLine.lower(ln2),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}