forked from mirrors/gecko-dev
		
	 d7e8a09c21
			
		
	
	
		d7e8a09c21
		
	
	
	
	
		
			
			Updated with clang-format version 15.0.5 (taskcluster-MKK8dHUpQkGfPLA793lizg) # ignore-this-changeset Differential Revision: https://phabricator.services.mozilla.com/D168658
		
			
				
	
	
		
			873 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			873 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| /*
 | |
|  * A class used for intermediate representations of the -moz-transform property.
 | |
|  */
 | |
| 
 | |
| #include "nsStyleTransformMatrix.h"
 | |
| #include "nsLayoutUtils.h"
 | |
| #include "nsPresContext.h"
 | |
| #include "mozilla/MotionPathUtils.h"
 | |
| #include "mozilla/ServoBindings.h"
 | |
| #include "mozilla/StyleAnimationValue.h"
 | |
| #include "mozilla/SVGUtils.h"
 | |
| #include "gfxMatrix.h"
 | |
| #include "gfxQuaternion.h"
 | |
| 
 | |
| using namespace mozilla;
 | |
| using namespace mozilla::gfx;
 | |
| 
 | |
| namespace nsStyleTransformMatrix {
 | |
| 
 | |
| /* Note on floating point precision: The transform matrix is an array
 | |
|  * of single precision 'float's, and so are most of the input values
 | |
|  * we get from the style system, but intermediate calculations
 | |
|  * involving angles need to be done in 'double'.
 | |
|  */
 | |
| 
 | |
| // Define UNIFIED_CONTINUATIONS here and in nsDisplayList.cpp
 | |
| // to have the transform property try
 | |
| // to transform content with continuations as one unified block instead of
 | |
| // several smaller ones.  This is currently disabled because it doesn't work
 | |
| // correctly, since when the frames are initially being reflowed, their
 | |
| // continuations all compute their bounding rects independently of each other
 | |
| // and consequently get the wrong value.
 | |
| // #define UNIFIED_CONTINUATIONS
 | |
| 
 | |
| void TransformReferenceBox::EnsureDimensionsAreCached() {
 | |
|   if (mIsCached) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(mFrame);
 | |
| 
 | |
|   mIsCached = true;
 | |
| 
 | |
|   if (mFrame->HasAnyStateBits(NS_FRAME_SVG_LAYOUT)) {
 | |
|     if (mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::FillBox) {
 | |
|       // Percentages in transforms resolve against the SVG bbox, and the
 | |
|       // transform is relative to the top-left of the SVG bbox.
 | |
|       nsRect bboxInAppUnits = nsLayoutUtils::ComputeGeometryBox(
 | |
|           const_cast<nsIFrame*>(mFrame), StyleGeometryBox::FillBox);
 | |
|       // The mRect of an SVG nsIFrame is its user space bounds *including*
 | |
|       // stroke and markers, whereas bboxInAppUnits is its user space bounds
 | |
|       // including fill only.  We need to note the offset of the reference box
 | |
|       // from the frame's mRect in mX/mY.
 | |
|       mX = bboxInAppUnits.x - mFrame->GetPosition().x;
 | |
|       mY = bboxInAppUnits.y - mFrame->GetPosition().y;
 | |
|       mWidth = bboxInAppUnits.width;
 | |
|       mHeight = bboxInAppUnits.height;
 | |
|     } else {
 | |
|       // The value 'border-box' is treated as 'view-box' for SVG content.
 | |
|       MOZ_ASSERT(
 | |
|           mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::ViewBox ||
 | |
|               mFrame->StyleDisplay()->mTransformBox ==
 | |
|                   StyleGeometryBox::BorderBox,
 | |
|           "Unexpected value for 'transform-box'");
 | |
|       // Percentages in transforms resolve against the width/height of the
 | |
|       // nearest viewport (or its viewBox if one is applied), and the
 | |
|       // transform is relative to {0,0} in current user space.
 | |
|       mX = -mFrame->GetPosition().x;
 | |
|       mY = -mFrame->GetPosition().y;
 | |
|       Size contextSize = SVGUtils::GetContextSize(mFrame);
 | |
|       mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width);
 | |
|       mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If UNIFIED_CONTINUATIONS is not defined, this is simply the frame's
 | |
|   // bounding rectangle, translated to the origin.  Otherwise, it is the
 | |
|   // smallest rectangle containing a frame and all of its continuations.  For
 | |
|   // example, if there is a <span> element with several continuations split
 | |
|   // over several lines, this function will return the rectangle containing all
 | |
|   // of those continuations.
 | |
| 
 | |
|   nsRect rect;
 | |
| 
 | |
| #ifndef UNIFIED_CONTINUATIONS
 | |
|   rect = mFrame->GetRect();
 | |
| #else
 | |
|   // Iterate the continuation list, unioning together the bounding rects:
 | |
|   for (const nsIFrame* currFrame = mFrame->FirstContinuation();
 | |
|        currFrame != nullptr; currFrame = currFrame->GetNextContinuation()) {
 | |
|     // Get the frame rect in local coordinates, then translate back to the
 | |
|     // original coordinates:
 | |
|     rect.UnionRect(
 | |
|         result, nsRect(currFrame->GetOffsetTo(mFrame), currFrame->GetSize()));
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   mX = 0;
 | |
|   mY = 0;
 | |
|   mWidth = rect.Width();
 | |
|   mHeight = rect.Height();
 | |
| }
 | |
| 
 | |
| void TransformReferenceBox::Init(const nsRect& aDimensions) {
 | |
|   MOZ_ASSERT(!mFrame && !mIsCached);
 | |
| 
 | |
|   mX = aDimensions.x;
 | |
|   mY = aDimensions.y;
 | |
|   mWidth = aDimensions.width;
 | |
|   mHeight = aDimensions.height;
 | |
|   mIsCached = true;
 | |
| }
 | |
| 
 | |
| float ProcessTranslatePart(
 | |
|     const LengthPercentage& aValue, TransformReferenceBox* aRefBox,
 | |
|     TransformReferenceBox::DimensionGetter aDimensionGetter) {
 | |
|   return aValue.ResolveToCSSPixelsWith([&] {
 | |
|     return aRefBox && !aRefBox->IsEmpty()
 | |
|                ? CSSPixel::FromAppUnits((aRefBox->*aDimensionGetter)())
 | |
|                : CSSCoord(0);
 | |
|   });
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Helper functions to process all the transformation function types.
 | |
|  *
 | |
|  * These take a matrix parameter to accumulate the current matrix.
 | |
|  */
 | |
| 
 | |
| /* Helper function to process a matrix entry. */
 | |
| static void ProcessMatrix(Matrix4x4& aMatrix,
 | |
|                           const StyleTransformOperation& aOp) {
 | |
|   const auto& matrix = aOp.AsMatrix();
 | |
|   gfxMatrix result;
 | |
| 
 | |
|   result._11 = matrix.a;
 | |
|   result._12 = matrix.b;
 | |
|   result._21 = matrix.c;
 | |
|   result._22 = matrix.d;
 | |
|   result._31 = matrix.e;
 | |
|   result._32 = matrix.f;
 | |
| 
 | |
|   aMatrix = result * aMatrix;
 | |
| }
 | |
| 
 | |
| static void ProcessMatrix3D(Matrix4x4& aMatrix,
 | |
|                             const StyleTransformOperation& aOp) {
 | |
|   Matrix4x4 temp;
 | |
| 
 | |
|   const auto& matrix = aOp.AsMatrix3D();
 | |
| 
 | |
|   temp._11 = matrix.m11;
 | |
|   temp._12 = matrix.m12;
 | |
|   temp._13 = matrix.m13;
 | |
|   temp._14 = matrix.m14;
 | |
|   temp._21 = matrix.m21;
 | |
|   temp._22 = matrix.m22;
 | |
|   temp._23 = matrix.m23;
 | |
|   temp._24 = matrix.m24;
 | |
|   temp._31 = matrix.m31;
 | |
|   temp._32 = matrix.m32;
 | |
|   temp._33 = matrix.m33;
 | |
|   temp._34 = matrix.m34;
 | |
| 
 | |
|   temp._41 = matrix.m41;
 | |
|   temp._42 = matrix.m42;
 | |
|   temp._43 = matrix.m43;
 | |
|   temp._44 = matrix.m44;
 | |
| 
 | |
|   aMatrix = temp * aMatrix;
 | |
| }
 | |
| 
 | |
| // For accumulation for transform functions, |aOne| corresponds to |aB| and
 | |
| // |aTwo| corresponds to |aA| for StyleAnimationValue::Accumulate().
 | |
| class Accumulate {
 | |
|  public:
 | |
|   template <typename T>
 | |
|   static T operate(const T& aOne, const T& aTwo, double aCoeff) {
 | |
|     return aOne + aTwo * aCoeff;
 | |
|   }
 | |
| 
 | |
|   static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo,
 | |
|                                        double aCoeff) {
 | |
|     return (aOne - Point4D(0, 0, 0, 1)) +
 | |
|            (aTwo - Point4D(0, 0, 0, 1)) * aCoeff + Point4D(0, 0, 0, 1);
 | |
|   }
 | |
|   static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo,
 | |
|                                  double aCoeff) {
 | |
|     // For scale, the identify element is 1, see AddTransformScale in
 | |
|     // StyleAnimationValue.cpp.
 | |
|     return (aOne - Point3D(1, 1, 1)) + (aTwo - Point3D(1, 1, 1)) * aCoeff +
 | |
|            Point3D(1, 1, 1);
 | |
|   }
 | |
| 
 | |
|   static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
 | |
|                                     const gfxQuaternion& aTwo, double aCoeff) {
 | |
|     if (aCoeff == 0.0) {
 | |
|       return aOne.ToMatrix();
 | |
|     }
 | |
| 
 | |
|     double theta = acos(mozilla::clamped(aTwo.w, -1.0, 1.0));
 | |
|     double scale = (theta != 0.0) ? 1.0 / sin(theta) : 0.0;
 | |
|     theta *= aCoeff;
 | |
|     scale *= sin(theta);
 | |
| 
 | |
|     gfxQuaternion result = gfxQuaternion(scale * aTwo.x, scale * aTwo.y,
 | |
|                                          scale * aTwo.z, cos(theta)) *
 | |
|                            aOne;
 | |
|     return result.ToMatrix();
 | |
|   }
 | |
| 
 | |
|   static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
 | |
|                                       const Matrix4x4& aMatrix2,
 | |
|                                       double aProgress) {
 | |
|     return aMatrix1;
 | |
|   }
 | |
| 
 | |
|   static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
 | |
|                                   const Matrix4x4& aMatrix2, double aCount) {
 | |
|     Matrix4x4 result;
 | |
|     Servo_MatrixTransform_Operate(MatrixTransformOperator::Accumulate,
 | |
|                                   &aMatrix1.components, &aMatrix2.components,
 | |
|                                   aCount, &result.components);
 | |
|     return result;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class Interpolate {
 | |
|  public:
 | |
|   template <typename T>
 | |
|   static T operate(const T& aOne, const T& aTwo, double aCoeff) {
 | |
|     return aOne + (aTwo - aOne) * aCoeff;
 | |
|   }
 | |
| 
 | |
|   static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo,
 | |
|                                        double aCoeff) {
 | |
|     return aOne + (aTwo - aOne) * aCoeff;
 | |
|   }
 | |
| 
 | |
|   static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo,
 | |
|                                  double aCoeff) {
 | |
|     return aOne + (aTwo - aOne) * aCoeff;
 | |
|   }
 | |
| 
 | |
|   static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
 | |
|                                     const gfxQuaternion& aTwo, double aCoeff) {
 | |
|     return aOne.Slerp(aTwo, aCoeff).ToMatrix();
 | |
|   }
 | |
| 
 | |
|   static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
 | |
|                                       const Matrix4x4& aMatrix2,
 | |
|                                       double aProgress) {
 | |
|     return aProgress < 0.5 ? aMatrix1 : aMatrix2;
 | |
|   }
 | |
| 
 | |
|   static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
 | |
|                                   const Matrix4x4& aMatrix2, double aProgress) {
 | |
|     Matrix4x4 result;
 | |
|     Servo_MatrixTransform_Operate(MatrixTransformOperator::Interpolate,
 | |
|                                   &aMatrix1.components, &aMatrix2.components,
 | |
|                                   aProgress, &result.components);
 | |
|     return result;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Operator>
 | |
| static void ProcessMatrixOperator(Matrix4x4& aMatrix,
 | |
|                                   const StyleTransform& aFrom,
 | |
|                                   const StyleTransform& aTo, float aProgress,
 | |
|                                   TransformReferenceBox& aRefBox) {
 | |
|   float appUnitPerCSSPixel = AppUnitsPerCSSPixel();
 | |
|   Matrix4x4 matrix1 = ReadTransforms(aFrom, aRefBox, appUnitPerCSSPixel);
 | |
|   Matrix4x4 matrix2 = ReadTransforms(aTo, aRefBox, appUnitPerCSSPixel);
 | |
|   aMatrix = Operator::operateByServo(matrix1, matrix2, aProgress) * aMatrix;
 | |
| }
 | |
| 
 | |
| /* Helper function to process two matrices that we need to interpolate between
 | |
|  */
 | |
| void ProcessInterpolateMatrix(Matrix4x4& aMatrix,
 | |
|                               const StyleTransformOperation& aOp,
 | |
|                               TransformReferenceBox& aRefBox) {
 | |
|   const auto& args = aOp.AsInterpolateMatrix();
 | |
|   ProcessMatrixOperator<Interpolate>(aMatrix, args.from_list, args.to_list,
 | |
|                                      args.progress._0, aRefBox);
 | |
| }
 | |
| 
 | |
| void ProcessAccumulateMatrix(Matrix4x4& aMatrix,
 | |
|                              const StyleTransformOperation& aOp,
 | |
|                              TransformReferenceBox& aRefBox) {
 | |
|   const auto& args = aOp.AsAccumulateMatrix();
 | |
|   ProcessMatrixOperator<Accumulate>(aMatrix, args.from_list, args.to_list,
 | |
|                                     args.count, aRefBox);
 | |
| }
 | |
| 
 | |
| /* Helper function to process a translatex function. */
 | |
| static void ProcessTranslateX(Matrix4x4& aMatrix,
 | |
|                               const LengthPercentage& aLength,
 | |
|                               TransformReferenceBox& aRefBox) {
 | |
|   Point3D temp;
 | |
|   temp.x =
 | |
|       ProcessTranslatePart(aLength, &aRefBox, &TransformReferenceBox::Width);
 | |
|   aMatrix.PreTranslate(temp);
 | |
| }
 | |
| 
 | |
| /* Helper function to process a translatey function. */
 | |
| static void ProcessTranslateY(Matrix4x4& aMatrix,
 | |
|                               const LengthPercentage& aLength,
 | |
|                               TransformReferenceBox& aRefBox) {
 | |
|   Point3D temp;
 | |
|   temp.y =
 | |
|       ProcessTranslatePart(aLength, &aRefBox, &TransformReferenceBox::Height);
 | |
|   aMatrix.PreTranslate(temp);
 | |
| }
 | |
| 
 | |
| static void ProcessTranslateZ(Matrix4x4& aMatrix, const Length& aLength) {
 | |
|   Point3D temp;
 | |
|   temp.z = aLength.ToCSSPixels();
 | |
|   aMatrix.PreTranslate(temp);
 | |
| }
 | |
| 
 | |
| /* Helper function to process a translate function. */
 | |
| static void ProcessTranslate(Matrix4x4& aMatrix, const LengthPercentage& aX,
 | |
|                              const LengthPercentage& aY,
 | |
|                              TransformReferenceBox& aRefBox) {
 | |
|   Point3D temp;
 | |
|   temp.x = ProcessTranslatePart(aX, &aRefBox, &TransformReferenceBox::Width);
 | |
|   temp.y = ProcessTranslatePart(aY, &aRefBox, &TransformReferenceBox::Height);
 | |
|   aMatrix.PreTranslate(temp);
 | |
| }
 | |
| 
 | |
| static void ProcessTranslate3D(Matrix4x4& aMatrix, const LengthPercentage& aX,
 | |
|                                const LengthPercentage& aY, const Length& aZ,
 | |
|                                TransformReferenceBox& aRefBox) {
 | |
|   Point3D temp;
 | |
| 
 | |
|   temp.x = ProcessTranslatePart(aX, &aRefBox, &TransformReferenceBox::Width);
 | |
|   temp.y = ProcessTranslatePart(aY, &aRefBox, &TransformReferenceBox::Height);
 | |
|   temp.z = aZ.ToCSSPixels();
 | |
| 
 | |
|   aMatrix.PreTranslate(temp);
 | |
| }
 | |
| 
 | |
| /* Helper function to set up a scale matrix. */
 | |
| static void ProcessScaleHelper(Matrix4x4& aMatrix, float aXScale, float aYScale,
 | |
|                                float aZScale) {
 | |
|   aMatrix.PreScale(aXScale, aYScale, aZScale);
 | |
| }
 | |
| 
 | |
| static void ProcessScale3D(Matrix4x4& aMatrix,
 | |
|                            const StyleTransformOperation& aOp) {
 | |
|   const auto& scale = aOp.AsScale3D();
 | |
|   ProcessScaleHelper(aMatrix, scale._0, scale._1, scale._2);
 | |
| }
 | |
| 
 | |
| /* Helper function that, given a set of angles, constructs the appropriate
 | |
|  * skew matrix.
 | |
|  */
 | |
| static void ProcessSkewHelper(Matrix4x4& aMatrix, const StyleAngle& aXAngle,
 | |
|                               const StyleAngle& aYAngle) {
 | |
|   aMatrix.SkewXY(aXAngle.ToRadians(), aYAngle.ToRadians());
 | |
| }
 | |
| 
 | |
| static void ProcessRotate3D(Matrix4x4& aMatrix, float aX, float aY, float aZ,
 | |
|                             const StyleAngle& aAngle) {
 | |
|   Matrix4x4 temp;
 | |
|   temp.SetRotateAxisAngle(aX, aY, aZ, aAngle.ToRadians());
 | |
|   aMatrix = temp * aMatrix;
 | |
| }
 | |
| 
 | |
| static void ProcessPerspective(
 | |
|     Matrix4x4& aMatrix,
 | |
|     const StyleGenericPerspectiveFunction<Length>& aPerspective) {
 | |
|   if (aPerspective.IsNone()) {
 | |
|     return;
 | |
|   }
 | |
|   float p = aPerspective.AsLength().ToCSSPixels();
 | |
|   if (!std::isinf(p)) {
 | |
|     aMatrix.Perspective(std::max(p, 1.0f));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void MatrixForTransformFunction(Matrix4x4& aMatrix,
 | |
|                                        const StyleTransformOperation& aOp,
 | |
|                                        TransformReferenceBox& aRefBox) {
 | |
|   /* Get the keyword for the transform. */
 | |
|   switch (aOp.tag) {
 | |
|     case StyleTransformOperation::Tag::TranslateX:
 | |
|       ProcessTranslateX(aMatrix, aOp.AsTranslateX(), aRefBox);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::TranslateY:
 | |
|       ProcessTranslateY(aMatrix, aOp.AsTranslateY(), aRefBox);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::TranslateZ:
 | |
|       ProcessTranslateZ(aMatrix, aOp.AsTranslateZ());
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Translate:
 | |
|       ProcessTranslate(aMatrix, aOp.AsTranslate()._0, aOp.AsTranslate()._1,
 | |
|                        aRefBox);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Translate3D:
 | |
|       return ProcessTranslate3D(aMatrix, aOp.AsTranslate3D()._0,
 | |
|                                 aOp.AsTranslate3D()._1, aOp.AsTranslate3D()._2,
 | |
|                                 aRefBox);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::ScaleX:
 | |
|       ProcessScaleHelper(aMatrix, aOp.AsScaleX(), 1.0f, 1.0f);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::ScaleY:
 | |
|       ProcessScaleHelper(aMatrix, 1.0f, aOp.AsScaleY(), 1.0f);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::ScaleZ:
 | |
|       ProcessScaleHelper(aMatrix, 1.0f, 1.0f, aOp.AsScaleZ());
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Scale:
 | |
|       ProcessScaleHelper(aMatrix, aOp.AsScale()._0, aOp.AsScale()._1, 1.0f);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Scale3D:
 | |
|       ProcessScale3D(aMatrix, aOp);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::SkewX:
 | |
|       ProcessSkewHelper(aMatrix, aOp.AsSkewX(), StyleAngle::Zero());
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::SkewY:
 | |
|       ProcessSkewHelper(aMatrix, StyleAngle::Zero(), aOp.AsSkewY());
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Skew:
 | |
|       ProcessSkewHelper(aMatrix, aOp.AsSkew()._0, aOp.AsSkew()._1);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::RotateX:
 | |
|       aMatrix.RotateX(aOp.AsRotateX().ToRadians());
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::RotateY:
 | |
|       aMatrix.RotateY(aOp.AsRotateY().ToRadians());
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::RotateZ:
 | |
|       aMatrix.RotateZ(aOp.AsRotateZ().ToRadians());
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Rotate:
 | |
|       aMatrix.RotateZ(aOp.AsRotate().ToRadians());
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Rotate3D:
 | |
|       ProcessRotate3D(aMatrix, aOp.AsRotate3D()._0, aOp.AsRotate3D()._1,
 | |
|                       aOp.AsRotate3D()._2, aOp.AsRotate3D()._3);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Matrix:
 | |
|       ProcessMatrix(aMatrix, aOp);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Matrix3D:
 | |
|       ProcessMatrix3D(aMatrix, aOp);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::InterpolateMatrix:
 | |
|       ProcessInterpolateMatrix(aMatrix, aOp, aRefBox);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::AccumulateMatrix:
 | |
|       ProcessAccumulateMatrix(aMatrix, aOp, aRefBox);
 | |
|       break;
 | |
|     case StyleTransformOperation::Tag::Perspective:
 | |
|       ProcessPerspective(aMatrix, aOp.AsPerspective());
 | |
|       break;
 | |
|     default:
 | |
|       MOZ_ASSERT_UNREACHABLE("Unknown transform function!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Matrix4x4 ReadTransforms(const StyleTransform& aTransform,
 | |
|                          TransformReferenceBox& aRefBox,
 | |
|                          float aAppUnitsPerMatrixUnit) {
 | |
|   Matrix4x4 result;
 | |
| 
 | |
|   for (const StyleTransformOperation& op : aTransform.Operations()) {
 | |
|     MatrixForTransformFunction(result, op, aRefBox);
 | |
|   }
 | |
| 
 | |
|   float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit;
 | |
|   result.PreScale(1 / scale, 1 / scale, 1 / scale);
 | |
|   result.PostScale(scale, scale, scale);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| static void ProcessTranslate(Matrix4x4& aMatrix,
 | |
|                              const StyleTranslate& aTranslate,
 | |
|                              TransformReferenceBox& aRefBox) {
 | |
|   switch (aTranslate.tag) {
 | |
|     case StyleTranslate::Tag::None:
 | |
|       return;
 | |
|     case StyleTranslate::Tag::Translate:
 | |
|       return ProcessTranslate3D(aMatrix, aTranslate.AsTranslate()._0,
 | |
|                                 aTranslate.AsTranslate()._1,
 | |
|                                 aTranslate.AsTranslate()._2, aRefBox);
 | |
|     default:
 | |
|       MOZ_ASSERT_UNREACHABLE("Huh?");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void ProcessRotate(Matrix4x4& aMatrix, const StyleRotate& aRotate) {
 | |
|   switch (aRotate.tag) {
 | |
|     case StyleRotate::Tag::None:
 | |
|       return;
 | |
|     case StyleRotate::Tag::Rotate:
 | |
|       aMatrix.RotateZ(aRotate.AsRotate().ToRadians());
 | |
|       return;
 | |
|     case StyleRotate::Tag::Rotate3D:
 | |
|       return ProcessRotate3D(aMatrix, aRotate.AsRotate3D()._0,
 | |
|                              aRotate.AsRotate3D()._1, aRotate.AsRotate3D()._2,
 | |
|                              aRotate.AsRotate3D()._3);
 | |
|     default:
 | |
|       MOZ_ASSERT_UNREACHABLE("Huh?");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void ProcessScale(Matrix4x4& aMatrix, const StyleScale& aScale) {
 | |
|   switch (aScale.tag) {
 | |
|     case StyleScale::Tag::None:
 | |
|       return;
 | |
|     case StyleScale::Tag::Scale:
 | |
|       return ProcessScaleHelper(aMatrix, aScale.AsScale()._0,
 | |
|                                 aScale.AsScale()._1, aScale.AsScale()._2);
 | |
|     default:
 | |
|       MOZ_ASSERT_UNREACHABLE("Huh?");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Matrix4x4 ReadTransforms(const StyleTranslate& aTranslate,
 | |
|                          const StyleRotate& aRotate, const StyleScale& aScale,
 | |
|                          const Maybe<ResolvedMotionPathData>& aMotion,
 | |
|                          const StyleTransform& aTransform,
 | |
|                          TransformReferenceBox& aRefBox,
 | |
|                          float aAppUnitsPerMatrixUnit) {
 | |
|   Matrix4x4 result;
 | |
| 
 | |
|   ProcessTranslate(result, aTranslate, aRefBox);
 | |
|   ProcessRotate(result, aRotate);
 | |
|   ProcessScale(result, aScale);
 | |
| 
 | |
|   if (aMotion.isSome()) {
 | |
|     // Create the equivalent translate and rotate function, according to the
 | |
|     // order in spec. We combine the translate and then the rotate.
 | |
|     // https://drafts.fxtf.org/motion-1/#calculating-path-transform
 | |
|     //
 | |
|     // Besides, we have to shift the object by the delta between anchor-point
 | |
|     // and transform-origin, to make sure we rotate the object according to
 | |
|     // anchor-point.
 | |
|     result.PreTranslate(aMotion->mTranslate.x + aMotion->mShift.x,
 | |
|                         aMotion->mTranslate.y + aMotion->mShift.y, 0.0);
 | |
|     if (aMotion->mRotate != 0.0) {
 | |
|       result.RotateZ(aMotion->mRotate);
 | |
|     }
 | |
|     // Shift the origin back to transform-origin.
 | |
|     result.PreTranslate(-aMotion->mShift.x, -aMotion->mShift.y, 0.0);
 | |
|   }
 | |
| 
 | |
|   for (const StyleTransformOperation& op : aTransform.Operations()) {
 | |
|     MatrixForTransformFunction(result, op, aRefBox);
 | |
|   }
 | |
| 
 | |
|   float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit;
 | |
|   result.PreScale(1 / scale, 1 / scale, 1 / scale);
 | |
|   result.PostScale(scale, scale, scale);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| mozilla::CSSPoint Convert2DPosition(const mozilla::LengthPercentage& aX,
 | |
|                                     const mozilla::LengthPercentage& aY,
 | |
|                                     const CSSSize& aSize) {
 | |
|   return {
 | |
|       aX.ResolveToCSSPixels(aSize.width),
 | |
|       aY.ResolveToCSSPixels(aSize.height),
 | |
|   };
 | |
| }
 | |
| 
 | |
| CSSPoint Convert2DPosition(const LengthPercentage& aX,
 | |
|                            const LengthPercentage& aY,
 | |
|                            TransformReferenceBox& aRefBox) {
 | |
|   return {
 | |
|       aX.ResolveToCSSPixelsWith(
 | |
|           [&] { return CSSPixel::FromAppUnits(aRefBox.Width()); }),
 | |
|       aY.ResolveToCSSPixelsWith(
 | |
|           [&] { return CSSPixel::FromAppUnits(aRefBox.Height()); }),
 | |
|   };
 | |
| }
 | |
| 
 | |
| Point Convert2DPosition(const LengthPercentage& aX, const LengthPercentage& aY,
 | |
|                         TransformReferenceBox& aRefBox,
 | |
|                         int32_t aAppUnitsPerPixel) {
 | |
|   float scale = mozilla::AppUnitsPerCSSPixel() / float(aAppUnitsPerPixel);
 | |
|   CSSPoint p = Convert2DPosition(aX, aY, aRefBox);
 | |
|   return {p.x * scale, p.y * scale};
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The relevant section of the transitions specification:
 | |
|  * http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types-
 | |
|  * defers all of the details to the 2-D and 3-D transforms specifications.
 | |
|  * For the 2-D transforms specification (all that's relevant for us, right
 | |
|  * now), the relevant section is:
 | |
|  * http://dev.w3.org/csswg/css3-2d-transforms/#animation
 | |
|  * This, in turn, refers to the unmatrix program in Graphics Gems,
 | |
|  * available from http://tog.acm.org/resources/GraphicsGems/ , and in
 | |
|  * particular as the file GraphicsGems/gemsii/unmatrix.c
 | |
|  * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
 | |
|  *
 | |
|  * The unmatrix reference is for general 3-D transform matrices (any of the
 | |
|  * 16 components can have any value).
 | |
|  *
 | |
|  * For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant:
 | |
|  *
 | |
|  * [ A C E ]
 | |
|  * [ B D F ]
 | |
|  * [ 0 0 1 ]
 | |
|  *
 | |
|  * For that case, I believe the algorithm in unmatrix reduces to:
 | |
|  *
 | |
|  *  (1) If A * D - B * C == 0, the matrix is singular.  Fail.
 | |
|  *
 | |
|  *  (2) Set translation components (Tx and Ty) to the translation parts of
 | |
|  *      the matrix (E and F) and then ignore them for the rest of the time.
 | |
|  *      (For us, E and F each actually consist of three constants:  a
 | |
|  *      length, a multiplier for the width, and a multiplier for the
 | |
|  *      height.  This actually requires its own decomposition, but I'll
 | |
|  *      keep that separate.)
 | |
|  *
 | |
|  *  (3) Let the X scale (Sx) be sqrt(A^2 + B^2).  Then divide both A and B
 | |
|  *      by it.
 | |
|  *
 | |
|  *  (4) Let the XY shear (K) be A * C + B * D.  From C, subtract A times
 | |
|  *      the XY shear.  From D, subtract B times the XY shear.
 | |
|  *
 | |
|  *  (5) Let the Y scale (Sy) be sqrt(C^2 + D^2).  Divide C, D, and the XY
 | |
|  *      shear (K) by it.
 | |
|  *
 | |
|  *  (6) At this point, A * D - B * C is either 1 or -1.  If it is -1,
 | |
|  *      negate the XY shear (K), the X scale (Sx), and A, B, C, and D.
 | |
|  *      (Alternatively, we could negate the XY shear (K) and the Y scale
 | |
|  *      (Sy).)
 | |
|  *
 | |
|  *  (7) Let the rotation be R = atan2(B, A).
 | |
|  *
 | |
|  * Then the resulting decomposed transformation is:
 | |
|  *
 | |
|  *   translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy)
 | |
|  *
 | |
|  * An interesting result of this is that all of the simple transform
 | |
|  * functions (i.e., all functions other than matrix()), in isolation,
 | |
|  * decompose back to themselves except for:
 | |
|  *   'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes
 | |
|  *   to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the
 | |
|  *   alternate sign possibilities that would get fixed in step 6):
 | |
|  *     In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
 | |
|  * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
 | |
|  * sin(φ). In step 4, the XY shear is sin(φ). Thus, after step 4, C =
 | |
|  * -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ). Thus, in step 5, the Y scale is
 | |
|  * sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ). Thus, after step 5, C = -sin(φ), D
 | |
|  * = cos(φ), and the XY shear is tan(φ). Thus, in step 6, A * D - B * C =
 | |
|  * cos²(φ) + sin²(φ) = 1. In step 7, the rotation is thus φ.
 | |
|  *
 | |
|  *   skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes
 | |
|  *   to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring
 | |
|  *   the alternate sign possibilities that would get fixed in step 6):
 | |
|  *     In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
 | |
|  * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
 | |
|  * sin(φ). In step 4, the XY shear is cos(φ)tan(θ) + sin(φ). Thus, after step 4,
 | |
|  *     C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ)
 | |
|  *     D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ)
 | |
|  *     Thus, in step 5, the Y scale is sqrt(C² + D²) =
 | |
|  *     sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) -
 | |
|  *          2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) +
 | |
|  *          (sin²(φ)cos²(φ) + cos⁴(φ))) =
 | |
|  *     sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) =
 | |
|  *     cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so
 | |
|  *     we avoid flipping in step 6).
 | |
|  *     After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is
 | |
|  *     (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) =
 | |
|  *     (dividing both numerator and denominator by cos(φ))
 | |
|  *     (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ).
 | |
|  *     (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .)
 | |
|  *     Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
 | |
|  *     In step 7, the rotation is thus φ.
 | |
|  *
 | |
|  *     To check this result, we can multiply things back together:
 | |
|  *
 | |
|  *     [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ)    0   ]
 | |
|  *     [ sin(φ)  cos(φ) ] [ 0      1     ] [   0    cos(φ) ]
 | |
|  *
 | |
|  *     [ cos(φ)      cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ)    0   ]
 | |
|  *     [ sin(φ)      sin(φ)tan(θ + φ) + cos(φ) ] [   0    cos(φ) ]
 | |
|  *
 | |
|  *     but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)),
 | |
|  *     cos(φ)tan(θ + φ) - sin(φ)
 | |
|  *      = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ)
 | |
|  *      = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ)
 | |
|  *      = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ)
 | |
|  *      = tan(θ) (cos(φ) + sin(φ)tan(φ))
 | |
|  *      = tan(θ) sec(φ) (cos²(φ) + sin²(φ))
 | |
|  *      = tan(θ) sec(φ)
 | |
|  *     and
 | |
|  *     sin(φ)tan(θ + φ) + cos(φ)
 | |
|  *      = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ)
 | |
|  *      = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ)
 | |
|  *      = sec(φ) (sin²(φ) + cos²(φ))
 | |
|  *      = sec(φ)
 | |
|  *     so the above is:
 | |
|  *     [ cos(φ)  tan(θ) sec(φ) ] [ sec(φ)    0   ]
 | |
|  *     [ sin(φ)     sec(φ)     ] [   0    cos(φ) ]
 | |
|  *
 | |
|  *     [    1   tan(θ) ]
 | |
|  *     [ tan(φ)    1   ]
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Decompose2DMatrix implements the above decomposition algorithm.
 | |
|  */
 | |
| 
 | |
| bool Decompose2DMatrix(const Matrix& aMatrix, Point3D& aScale,
 | |
|                        ShearArray& aShear, gfxQuaternion& aRotate,
 | |
|                        Point3D& aTranslate) {
 | |
|   float A = aMatrix._11, B = aMatrix._12, C = aMatrix._21, D = aMatrix._22;
 | |
|   if (A * D == B * C) {
 | |
|     // singular matrix
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   float scaleX = sqrt(A * A + B * B);
 | |
|   A /= scaleX;
 | |
|   B /= scaleX;
 | |
| 
 | |
|   float XYshear = A * C + B * D;
 | |
|   C -= A * XYshear;
 | |
|   D -= B * XYshear;
 | |
| 
 | |
|   float scaleY = sqrt(C * C + D * D);
 | |
|   C /= scaleY;
 | |
|   D /= scaleY;
 | |
|   XYshear /= scaleY;
 | |
| 
 | |
|   float determinant = A * D - B * C;
 | |
|   // Determinant should now be 1 or -1.
 | |
|   if (0.99 > Abs(determinant) || Abs(determinant) > 1.01) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (determinant < 0) {
 | |
|     A = -A;
 | |
|     B = -B;
 | |
|     C = -C;
 | |
|     D = -D;
 | |
|     XYshear = -XYshear;
 | |
|     scaleX = -scaleX;
 | |
|   }
 | |
| 
 | |
|   float rotate = atan2f(B, A);
 | |
|   aRotate = gfxQuaternion(0, 0, sin(rotate / 2), cos(rotate / 2));
 | |
|   aShear[ShearType::XY] = XYshear;
 | |
|   aScale.x = scaleX;
 | |
|   aScale.y = scaleY;
 | |
|   aTranslate.x = aMatrix._31;
 | |
|   aTranslate.y = aMatrix._32;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Implementation of the unmatrix algorithm, specified by:
 | |
|  *
 | |
|  * http://dev.w3.org/csswg/css3-2d-transforms/#unmatrix
 | |
|  *
 | |
|  * This, in turn, refers to the unmatrix program in Graphics Gems,
 | |
|  * available from http://tog.acm.org/resources/GraphicsGems/ , and in
 | |
|  * particular as the file GraphicsGems/gemsii/unmatrix.c
 | |
|  * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
 | |
|  */
 | |
| bool Decompose3DMatrix(const Matrix4x4& aMatrix, Point3D& aScale,
 | |
|                        ShearArray& aShear, gfxQuaternion& aRotate,
 | |
|                        Point3D& aTranslate, Point4D& aPerspective) {
 | |
|   Matrix4x4 local = aMatrix;
 | |
| 
 | |
|   if (local[3][3] == 0) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /* Normalize the matrix */
 | |
|   local.Normalize();
 | |
| 
 | |
|   /**
 | |
|    * perspective is used to solve for perspective, but it also provides
 | |
|    * an easy way to test for singularity of the upper 3x3 component.
 | |
|    */
 | |
|   Matrix4x4 perspective = local;
 | |
|   Point4D empty(0, 0, 0, 1);
 | |
|   perspective.SetTransposedVector(3, empty);
 | |
| 
 | |
|   if (perspective.Determinant() == 0.0) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /* First, isolate perspective. */
 | |
|   if (local[0][3] != 0 || local[1][3] != 0 || local[2][3] != 0) {
 | |
|     /* aPerspective is the right hand side of the equation. */
 | |
|     aPerspective = local.TransposedVector(3);
 | |
| 
 | |
|     /**
 | |
|      * Solve the equation by inverting perspective and multiplying
 | |
|      * aPerspective by the inverse.
 | |
|      */
 | |
|     perspective.Invert();
 | |
|     aPerspective = perspective.TransposeTransform4D(aPerspective);
 | |
| 
 | |
|     /* Clear the perspective partition */
 | |
|     local.SetTransposedVector(3, empty);
 | |
|   } else {
 | |
|     aPerspective = Point4D(0, 0, 0, 1);
 | |
|   }
 | |
| 
 | |
|   /* Next take care of translation */
 | |
|   for (int i = 0; i < 3; i++) {
 | |
|     aTranslate[i] = local[3][i];
 | |
|     local[3][i] = 0;
 | |
|   }
 | |
| 
 | |
|   /* Now get scale and shear. */
 | |
| 
 | |
|   /* Compute X scale factor and normalize first row. */
 | |
|   aScale.x = local[0].Length();
 | |
|   local[0] /= aScale.x;
 | |
| 
 | |
|   /* Compute XY shear factor and make 2nd local orthogonal to 1st. */
 | |
|   aShear[ShearType::XY] = local[0].DotProduct(local[1]);
 | |
|   local[1] -= local[0] * aShear[ShearType::XY];
 | |
| 
 | |
|   /* Now, compute Y scale and normalize 2nd local. */
 | |
|   aScale.y = local[1].Length();
 | |
|   local[1] /= aScale.y;
 | |
|   aShear[ShearType::XY] /= aScale.y;
 | |
| 
 | |
|   /* Compute XZ and YZ shears, make 3rd local orthogonal */
 | |
|   aShear[ShearType::XZ] = local[0].DotProduct(local[2]);
 | |
|   local[2] -= local[0] * aShear[ShearType::XZ];
 | |
|   aShear[ShearType::YZ] = local[1].DotProduct(local[2]);
 | |
|   local[2] -= local[1] * aShear[ShearType::YZ];
 | |
| 
 | |
|   /* Next, get Z scale and normalize 3rd local. */
 | |
|   aScale.z = local[2].Length();
 | |
|   local[2] /= aScale.z;
 | |
| 
 | |
|   aShear[ShearType::XZ] /= aScale.z;
 | |
|   aShear[ShearType::YZ] /= aScale.z;
 | |
| 
 | |
|   /**
 | |
|    * At this point, the matrix (in locals) is orthonormal.
 | |
|    * Check for a coordinate system flip.  If the determinant
 | |
|    * is -1, then negate the matrix and the scaling factors.
 | |
|    */
 | |
|   if (local[0].DotProduct(local[1].CrossProduct(local[2])) < 0) {
 | |
|     aScale *= -1;
 | |
|     for (int i = 0; i < 3; i++) {
 | |
|       local[i] *= -1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Now, get the rotations out */
 | |
|   aRotate = gfxQuaternion(local);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace nsStyleTransformMatrix
 |