forked from mirrors/gecko-dev
		
	 e45a136429
			
		
	
	
		e45a136429
		
	
	
	
	
		
			
			Just minor nit I noticed while going through the code. Depends on D172873 Differential Revision: https://phabricator.services.mozilla.com/D172874
		
			
				
	
	
		
			3077 lines
		
	
	
	
		
			130 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3077 lines
		
	
	
	
		
			130 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| /* struct containing the input to nsIFrame::Reflow */
 | |
| 
 | |
| #include "mozilla/ReflowInput.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| 
 | |
| #include "CounterStyleManager.h"
 | |
| #include "LayoutLogging.h"
 | |
| #include "mozilla/dom/HTMLInputElement.h"
 | |
| #include "mozilla/StaticPrefs_layout.h"
 | |
| #include "mozilla/SVGUtils.h"
 | |
| #include "mozilla/WritingModes.h"
 | |
| #include "nsBlockFrame.h"
 | |
| #include "nsCSSAnonBoxes.h"
 | |
| #include "nsFlexContainerFrame.h"
 | |
| #include "nsFontInflationData.h"
 | |
| #include "nsFontMetrics.h"
 | |
| #include "nsGkAtoms.h"
 | |
| #include "nsGridContainerFrame.h"
 | |
| #include "nsIContent.h"
 | |
| #include "nsIFrame.h"
 | |
| #include "nsIFrameInlines.h"
 | |
| #include "nsImageFrame.h"
 | |
| #include "nsIPercentBSizeObserver.h"
 | |
| #include "nsLayoutUtils.h"
 | |
| #include "nsLineBox.h"
 | |
| #include "nsPresContext.h"
 | |
| #include "nsStyleConsts.h"
 | |
| #include "nsTableCellFrame.h"
 | |
| #include "nsTableFrame.h"
 | |
| #include "StickyScrollContainer.h"
 | |
| 
 | |
| using namespace mozilla;
 | |
| using namespace mozilla::css;
 | |
| using namespace mozilla::dom;
 | |
| using namespace mozilla::layout;
 | |
| 
 | |
| static bool CheckNextInFlowParenthood(nsIFrame* aFrame, nsIFrame* aParent) {
 | |
|   nsIFrame* frameNext = aFrame->GetNextInFlow();
 | |
|   nsIFrame* parentNext = aParent->GetNextInFlow();
 | |
|   return frameNext && parentNext && frameNext->GetParent() == parentNext;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Adjusts the margin for a list (ol, ul), if necessary, depending on
 | |
|  * font inflation settings. Unfortunately, because bullets from a list are
 | |
|  * placed in the margin area, we only have ~40px in which to place the
 | |
|  * bullets. When they are inflated, however, this causes problems, since
 | |
|  * the text takes up more space than is available in the margin.
 | |
|  *
 | |
|  * This method will return a small amount (in app units) by which the
 | |
|  * margin can be adjusted, so that the space is available for list
 | |
|  * bullets to be rendered with font inflation enabled.
 | |
|  */
 | |
| static nscoord FontSizeInflationListMarginAdjustment(const nsIFrame* aFrame) {
 | |
|   if (!aFrame->IsBlockFrameOrSubclass()) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // We only want to adjust the margins if we're dealing with an ordered list.
 | |
|   const nsBlockFrame* blockFrame = static_cast<const nsBlockFrame*>(aFrame);
 | |
|   if (!blockFrame->HasMarker()) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   float inflation = nsLayoutUtils::FontSizeInflationFor(aFrame);
 | |
|   if (inflation <= 1.0f) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // The HTML spec states that the default padding for ordered lists
 | |
|   // begins at 40px, indicating that we have 40px of space to place a
 | |
|   // bullet. When performing font inflation calculations, we add space
 | |
|   // equivalent to this, but simply inflated at the same amount as the
 | |
|   // text, in app units.
 | |
|   auto margin = nsPresContext::CSSPixelsToAppUnits(40) * (inflation - 1);
 | |
| 
 | |
|   auto* list = aFrame->StyleList();
 | |
|   if (!list->mCounterStyle.IsAtom()) {
 | |
|     return margin;
 | |
|   }
 | |
| 
 | |
|   nsAtom* type = list->mCounterStyle.AsAtom();
 | |
|   if (type != nsGkAtoms::none && type != nsGkAtoms::disc &&
 | |
|       type != nsGkAtoms::circle && type != nsGkAtoms::square &&
 | |
|       type != nsGkAtoms::disclosure_closed &&
 | |
|       type != nsGkAtoms::disclosure_open) {
 | |
|     return margin;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| SizeComputationInput::SizeComputationInput(nsIFrame* aFrame,
 | |
|                                            gfxContext* aRenderingContext)
 | |
|     : mFrame(aFrame),
 | |
|       mRenderingContext(aRenderingContext),
 | |
|       mWritingMode(aFrame->GetWritingMode()),
 | |
|       mIsThemed(aFrame->IsThemed()),
 | |
|       mComputedMargin(mWritingMode),
 | |
|       mComputedBorderPadding(mWritingMode),
 | |
|       mComputedPadding(mWritingMode) {
 | |
|   MOZ_ASSERT(mFrame);
 | |
| }
 | |
| 
 | |
| SizeComputationInput::SizeComputationInput(
 | |
|     nsIFrame* aFrame, gfxContext* aRenderingContext,
 | |
|     WritingMode aContainingBlockWritingMode, nscoord aContainingBlockISize,
 | |
|     const Maybe<LogicalMargin>& aBorder, const Maybe<LogicalMargin>& aPadding)
 | |
|     : SizeComputationInput(aFrame, aRenderingContext) {
 | |
|   MOZ_ASSERT(!mFrame->IsTableColFrame());
 | |
|   InitOffsets(aContainingBlockWritingMode, aContainingBlockISize,
 | |
|               mFrame->Type(), {}, aBorder, aPadding);
 | |
| }
 | |
| 
 | |
| // Initialize a <b>root</b> reflow input with a rendering context to
 | |
| // use for measuring things.
 | |
| ReflowInput::ReflowInput(nsPresContext* aPresContext, nsIFrame* aFrame,
 | |
|                          gfxContext* aRenderingContext,
 | |
|                          const LogicalSize& aAvailableSpace, InitFlags aFlags)
 | |
|     : SizeComputationInput(aFrame, aRenderingContext),
 | |
|       mAvailableSize(aAvailableSpace) {
 | |
|   MOZ_ASSERT(aRenderingContext, "no rendering context");
 | |
|   MOZ_ASSERT(aPresContext, "no pres context");
 | |
|   MOZ_ASSERT(aFrame, "no frame");
 | |
|   MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
 | |
| 
 | |
|   if (aFlags.contains(InitFlag::DummyParentReflowInput)) {
 | |
|     mFlags.mDummyParentReflowInput = true;
 | |
|   }
 | |
|   if (aFlags.contains(InitFlag::StaticPosIsCBOrigin)) {
 | |
|     mFlags.mStaticPosIsCBOrigin = true;
 | |
|   }
 | |
| 
 | |
|   if (!aFlags.contains(InitFlag::CallerWillInit)) {
 | |
|     Init(aPresContext);
 | |
|   }
 | |
|   // If we encounter a PageContent frame, this will be flipped on and the pref
 | |
|   // layout.css.named-pages.enabled will be checked.
 | |
|   mFlags.mCanHaveClassABreakpoints = false;
 | |
| }
 | |
| 
 | |
| // Initialize a reflow input for a child frame's reflow. Some state
 | |
| // is copied from the parent reflow input; the remaining state is
 | |
| // computed.
 | |
| ReflowInput::ReflowInput(nsPresContext* aPresContext,
 | |
|                          const ReflowInput& aParentReflowInput,
 | |
|                          nsIFrame* aFrame, const LogicalSize& aAvailableSpace,
 | |
|                          const Maybe<LogicalSize>& aContainingBlockSize,
 | |
|                          InitFlags aFlags,
 | |
|                          const StyleSizeOverrides& aSizeOverrides,
 | |
|                          ComputeSizeFlags aComputeSizeFlags)
 | |
|     : SizeComputationInput(aFrame, aParentReflowInput.mRenderingContext),
 | |
|       mParentReflowInput(&aParentReflowInput),
 | |
|       mFloatManager(aParentReflowInput.mFloatManager),
 | |
|       mLineLayout(mFrame->IsFrameOfType(nsIFrame::eLineParticipant)
 | |
|                       ? aParentReflowInput.mLineLayout
 | |
|                       : nullptr),
 | |
|       mBreakType(aParentReflowInput.mBreakType),
 | |
|       mPercentBSizeObserver(
 | |
|           (aParentReflowInput.mPercentBSizeObserver &&
 | |
|            aParentReflowInput.mPercentBSizeObserver->NeedsToObserve(*this))
 | |
|               ? aParentReflowInput.mPercentBSizeObserver
 | |
|               : nullptr),
 | |
|       mFlags(aParentReflowInput.mFlags),
 | |
|       mStyleSizeOverrides(aSizeOverrides),
 | |
|       mComputeSizeFlags(aComputeSizeFlags),
 | |
|       mReflowDepth(aParentReflowInput.mReflowDepth + 1),
 | |
|       mAvailableSize(aAvailableSpace) {
 | |
|   MOZ_ASSERT(aPresContext, "no pres context");
 | |
|   MOZ_ASSERT(aFrame, "no frame");
 | |
|   MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
 | |
|   MOZ_ASSERT(!mFlags.mSpecialBSizeReflow || !aFrame->IsSubtreeDirty(),
 | |
|              "frame should be clean when getting special bsize reflow");
 | |
| 
 | |
|   if (mWritingMode.IsOrthogonalTo(aParentReflowInput.GetWritingMode())) {
 | |
|     // If we're setting up for an orthogonal flow, and the parent reflow input
 | |
|     // had a constrained ComputedBSize, we can use that as our AvailableISize
 | |
|     // in preference to leaving it unconstrained.
 | |
|     if (AvailableISize() == NS_UNCONSTRAINEDSIZE &&
 | |
|         aParentReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
 | |
|       SetAvailableISize(aParentReflowInput.ComputedBSize());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Note: mFlags was initialized as a copy of aParentReflowInput.mFlags up in
 | |
|   // this constructor's init list, so the only flags that we need to explicitly
 | |
|   // initialize here are those that may need a value other than our parent's.
 | |
|   mFlags.mNextInFlowUntouched =
 | |
|       aParentReflowInput.mFlags.mNextInFlowUntouched &&
 | |
|       CheckNextInFlowParenthood(aFrame, aParentReflowInput.mFrame);
 | |
|   mFlags.mAssumingHScrollbar = mFlags.mAssumingVScrollbar = false;
 | |
|   mFlags.mIsColumnBalancing = false;
 | |
|   mFlags.mColumnSetWrapperHasNoBSizeLeft = false;
 | |
|   mFlags.mTreatBSizeAsIndefinite = false;
 | |
|   mFlags.mDummyParentReflowInput = false;
 | |
|   mFlags.mStaticPosIsCBOrigin = aFlags.contains(InitFlag::StaticPosIsCBOrigin);
 | |
|   mFlags.mIOffsetsNeedCSSAlign = mFlags.mBOffsetsNeedCSSAlign = false;
 | |
| 
 | |
|   // aPresContext->IsPaginated() and the named pages pref should have been
 | |
|   // checked when constructing the root ReflowInput.
 | |
|   if (aParentReflowInput.mFlags.mCanHaveClassABreakpoints) {
 | |
|     MOZ_ASSERT(aPresContext->IsPaginated(),
 | |
|                "mCanHaveClassABreakpoints set during non-paginated reflow.");
 | |
|     MOZ_ASSERT(StaticPrefs::layout_css_named_pages_enabled(),
 | |
|                "mCanHaveClassABreakpoints should not be set when "
 | |
|                "layout.css.named_pages.enabled is false");
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     using mozilla::LayoutFrameType;
 | |
|     switch (mFrame->Type()) {
 | |
|       case LayoutFrameType::PageContent:
 | |
|         // PageContent requires paginated reflow.
 | |
|         MOZ_ASSERT(aPresContext->IsPaginated(),
 | |
|                    "nsPageContentFrame should not be in non-paginated reflow");
 | |
|         MOZ_ASSERT(!mFlags.mCanHaveClassABreakpoints,
 | |
|                    "mFlags.mCanHaveClassABreakpoints should have been "
 | |
|                    "initalized to false before we found nsPageContentFrame");
 | |
|         mFlags.mCanHaveClassABreakpoints =
 | |
|             StaticPrefs::layout_css_named_pages_enabled();
 | |
|         break;
 | |
|       case LayoutFrameType::Block:          // FALLTHROUGH
 | |
|       case LayoutFrameType::Canvas:         // FALLTHROUGH
 | |
|       case LayoutFrameType::FlexContainer:  // FALLTHROUGH
 | |
|       case LayoutFrameType::GridContainer:
 | |
|         if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
 | |
|           // Never allow breakpoints inside of out-of-flow frames.
 | |
|           mFlags.mCanHaveClassABreakpoints = false;
 | |
|           break;
 | |
|         }
 | |
|         // This frame type can have class A breakpoints, inherit this flag
 | |
|         // from the parent (this is done for all flags during construction).
 | |
|         // This also includes Canvas frames, as each PageContent frame always
 | |
|         // has exactly one child which is a Canvas frame.
 | |
|         // Do NOT include the subclasses of BlockFrame here, as the ones for
 | |
|         // which this could be applicable (ColumnSetWrapper and the MathML
 | |
|         // frames) cannot have class A breakpoints.
 | |
|         MOZ_ASSERT(mFlags.mCanHaveClassABreakpoints ==
 | |
|                    aParentReflowInput.mFlags.mCanHaveClassABreakpoints);
 | |
|         break;
 | |
|       default:
 | |
|         mFlags.mCanHaveClassABreakpoints = false;
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (aFlags.contains(InitFlag::DummyParentReflowInput) ||
 | |
|       (mParentReflowInput->mFlags.mDummyParentReflowInput &&
 | |
|        mFrame->IsTableFrame())) {
 | |
|     mFlags.mDummyParentReflowInput = true;
 | |
|   }
 | |
| 
 | |
|   if (!aFlags.contains(InitFlag::CallerWillInit)) {
 | |
|     Init(aPresContext, aContainingBlockSize);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename SizeOrMaxSize>
 | |
| inline nscoord SizeComputationInput::ComputeISizeValue(
 | |
|     const WritingMode aWM, const LogicalSize& aContainingBlockSize,
 | |
|     const LogicalSize& aContentEdgeToBoxSizing, nscoord aBoxSizingToMarginEdge,
 | |
|     const SizeOrMaxSize& aSize) const {
 | |
|   return mFrame
 | |
|       ->ComputeISizeValue(mRenderingContext, aWM, aContainingBlockSize,
 | |
|                           aContentEdgeToBoxSizing, aBoxSizingToMarginEdge,
 | |
|                           aSize)
 | |
|       .mISize;
 | |
| }
 | |
| 
 | |
| template <typename SizeOrMaxSize>
 | |
| nscoord SizeComputationInput::ComputeISizeValue(
 | |
|     const LogicalSize& aContainingBlockSize, StyleBoxSizing aBoxSizing,
 | |
|     const SizeOrMaxSize& aSize) const {
 | |
|   WritingMode wm = GetWritingMode();
 | |
|   const auto borderPadding = ComputedLogicalBorderPadding(wm);
 | |
|   LogicalSize inside = aBoxSizing == StyleBoxSizing::Border
 | |
|                            ? borderPadding.Size(wm)
 | |
|                            : LogicalSize(wm);
 | |
|   nscoord outside =
 | |
|       borderPadding.IStartEnd(wm) + ComputedLogicalMargin(wm).IStartEnd(wm);
 | |
|   outside -= inside.ISize(wm);
 | |
| 
 | |
|   return ComputeISizeValue(wm, aContainingBlockSize, inside, outside, aSize);
 | |
| }
 | |
| 
 | |
| nscoord SizeComputationInput::ComputeBSizeValue(
 | |
|     nscoord aContainingBlockBSize, StyleBoxSizing aBoxSizing,
 | |
|     const LengthPercentage& aSize) const {
 | |
|   WritingMode wm = GetWritingMode();
 | |
|   nscoord inside = 0;
 | |
|   if (aBoxSizing == StyleBoxSizing::Border) {
 | |
|     inside = ComputedLogicalBorderPadding(wm).BStartEnd(wm);
 | |
|   }
 | |
|   return nsLayoutUtils::ComputeBSizeValue(aContainingBlockBSize, inside, aSize);
 | |
| }
 | |
| 
 | |
| bool ReflowInput::ShouldReflowAllKids() const {
 | |
|   // Note that we could make a stronger optimization for IsBResize if
 | |
|   // we use it in a ShouldReflowChild test that replaces the current
 | |
|   // checks of NS_FRAME_IS_DIRTY | NS_FRAME_HAS_DIRTY_CHILDREN, if it
 | |
|   // were tested there along with NS_FRAME_CONTAINS_RELATIVE_BSIZE.
 | |
|   // This would need to be combined with a slight change in which
 | |
|   // frames NS_FRAME_CONTAINS_RELATIVE_BSIZE is marked on.
 | |
|   return mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) || IsIResize() ||
 | |
|          (IsBResize() &&
 | |
|           mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE));
 | |
| }
 | |
| 
 | |
| void ReflowInput::SetComputedISize(nscoord aComputedISize,
 | |
|                                    ResetResizeFlags aFlags) {
 | |
|   // It'd be nice to assert that |frame| is not in reflow, but this fails for
 | |
|   // two reasons:
 | |
|   //
 | |
|   // 1) Viewport frames reset the computed isize on a copy of their reflow
 | |
|   //    input when reflowing fixed-pos kids.  In that case we actually don't
 | |
|   //    want to mess with the resize flags, because comparing the frame's rect
 | |
|   //    to the munged computed width is pointless.
 | |
|   // 2) nsIFrame::BoxReflow creates a reflow input for its parent.  This reflow
 | |
|   //    input is not used to reflow the parent, but just as a parent for the
 | |
|   //    frame's own reflow input.  So given a nsBoxFrame inside some non-XUL
 | |
|   //    (like a text control, for example), we'll end up creating a reflow
 | |
|   //    input for the parent while the parent is reflowing.
 | |
| 
 | |
|   NS_WARNING_ASSERTION(aComputedISize >= 0, "Invalid computed inline-size!");
 | |
|   if (ComputedISize() != aComputedISize) {
 | |
|     mComputedSize.ISize(mWritingMode) = std::max(0, aComputedISize);
 | |
|     if (aFlags == ResetResizeFlags::Yes) {
 | |
|       InitResizeFlags(mFrame->PresContext(), mFrame->Type());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ReflowInput::SetComputedBSize(nscoord aComputedBSize,
 | |
|                                    ResetResizeFlags aFlags) {
 | |
|   // It'd be nice to assert that |frame| is not in reflow, but this fails
 | |
|   // for two reasons:
 | |
|   //
 | |
|   // 1) Viewport frames reset the computed block size on a copy of their reflow
 | |
|   //    input when reflowing fixed-pos kids. In that case we actually don't want
 | |
|   //    to mess with the resize flags, because comparing the frame's rect to the
 | |
|   //    munged computed bsize is pointless.
 | |
|   // 2) nsIFrame::BoxReflow creates a reflow input for its parent.  This reflow
 | |
|   //    input is not used to reflow the parent, but just as a parent for the
 | |
|   //    frame's own reflow input.  So given a nsBoxFrame inside some non-XUL
 | |
|   //    (like a text control, for example), we'll end up creating a reflow
 | |
|   //    input for the parent while the parent is reflowing.
 | |
| 
 | |
|   NS_WARNING_ASSERTION(aComputedBSize >= 0, "Invalid computed block-size!");
 | |
|   if (ComputedBSize() != aComputedBSize) {
 | |
|     mComputedSize.BSize(mWritingMode) = std::max(0, aComputedBSize);
 | |
|     InitResizeFlags(mFrame->PresContext(), mFrame->Type());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ReflowInput::Init(nsPresContext* aPresContext,
 | |
|                        const Maybe<LogicalSize>& aContainingBlockSize,
 | |
|                        const Maybe<LogicalMargin>& aBorder,
 | |
|                        const Maybe<LogicalMargin>& aPadding) {
 | |
|   if (AvailableISize() == NS_UNCONSTRAINEDSIZE) {
 | |
|     // Look up the parent chain for an orthogonal inline limit,
 | |
|     // and reset AvailableISize() if found.
 | |
|     for (const ReflowInput* parent = mParentReflowInput; parent != nullptr;
 | |
|          parent = parent->mParentReflowInput) {
 | |
|       if (parent->GetWritingMode().IsOrthogonalTo(mWritingMode) &&
 | |
|           parent->mOrthogonalLimit != NS_UNCONSTRAINEDSIZE) {
 | |
|         SetAvailableISize(parent->mOrthogonalLimit);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LAYOUT_WARN_IF_FALSE(AvailableISize() != NS_UNCONSTRAINEDSIZE,
 | |
|                        "have unconstrained inline-size; this should only "
 | |
|                        "result from very large sizes, not attempts at "
 | |
|                        "intrinsic inline-size calculation");
 | |
| 
 | |
|   mStylePosition = mFrame->StylePosition();
 | |
|   mStyleDisplay = mFrame->StyleDisplay();
 | |
|   mStyleBorder = mFrame->StyleBorder();
 | |
|   mStyleMargin = mFrame->StyleMargin();
 | |
| 
 | |
|   InitCBReflowInput();
 | |
| 
 | |
|   LayoutFrameType type = mFrame->Type();
 | |
|   if (type == mozilla::LayoutFrameType::Placeholder) {
 | |
|     // Placeholders have a no-op Reflow method that doesn't need the rest of
 | |
|     // this initialization, so we bail out early.
 | |
|     mComputedSize.SizeTo(mWritingMode, 0, 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mFlags.mIsReplaced = mFrame->IsFrameOfType(nsIFrame::eReplaced) ||
 | |
|                        mFrame->IsFrameOfType(nsIFrame::eReplacedContainsBlock);
 | |
| 
 | |
|   InitConstraints(aPresContext, aContainingBlockSize, aBorder, aPadding, type);
 | |
| 
 | |
|   InitResizeFlags(aPresContext, type);
 | |
|   InitDynamicReflowRoot();
 | |
| 
 | |
|   nsIFrame* parent = mFrame->GetParent();
 | |
|   if (parent && parent->HasAnyStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE) &&
 | |
|       !(parent->IsScrollFrame() &&
 | |
|         parent->StyleDisplay()->mOverflowY != StyleOverflow::Hidden)) {
 | |
|     mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
 | |
|   } else if (type == LayoutFrameType::SVGForeignObject) {
 | |
|     // An SVG foreignObject frame is inherently constrained block-size.
 | |
|     mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
 | |
|   } else {
 | |
|     const auto& bSizeCoord = mStylePosition->BSize(mWritingMode);
 | |
|     const auto& maxBSizeCoord = mStylePosition->MaxBSize(mWritingMode);
 | |
|     if ((!bSizeCoord.BehavesLikeInitialValueOnBlockAxis() ||
 | |
|          !maxBSizeCoord.BehavesLikeInitialValueOnBlockAxis()) &&
 | |
|         // Don't set NS_FRAME_IN_CONSTRAINED_BSIZE on body or html elements.
 | |
|         (mFrame->GetContent() && !(mFrame->GetContent()->IsAnyOfHTMLElements(
 | |
|                                      nsGkAtoms::body, nsGkAtoms::html)))) {
 | |
|       // If our block-size was specified as a percentage, then this could
 | |
|       // actually resolve to 'auto', based on:
 | |
|       // http://www.w3.org/TR/CSS21/visudet.html#the-height-property
 | |
|       nsIFrame* containingBlk = mFrame;
 | |
|       while (containingBlk) {
 | |
|         const nsStylePosition* stylePos = containingBlk->StylePosition();
 | |
|         const auto& bSizeCoord = stylePos->BSize(mWritingMode);
 | |
|         const auto& maxBSizeCoord = stylePos->MaxBSize(mWritingMode);
 | |
|         if ((bSizeCoord.IsLengthPercentage() && !bSizeCoord.HasPercent()) ||
 | |
|             (maxBSizeCoord.IsLengthPercentage() &&
 | |
|              !maxBSizeCoord.HasPercent())) {
 | |
|           mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
 | |
|           break;
 | |
|         } else if (bSizeCoord.HasPercent() || maxBSizeCoord.HasPercent()) {
 | |
|           if (!(containingBlk = containingBlk->GetContainingBlock())) {
 | |
|             // If we've reached the top of the tree, then we don't have
 | |
|             // a constrained block-size.
 | |
|             mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           continue;
 | |
|         } else {
 | |
|           mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (mParentReflowInput &&
 | |
|       mParentReflowInput->GetWritingMode().IsOrthogonalTo(mWritingMode)) {
 | |
|     // Orthogonal frames are always reflowed with an unconstrained
 | |
|     // dimension to avoid incomplete reflow across an orthogonal
 | |
|     // boundary. Normally this is the block-size, but for column sets
 | |
|     // with auto-height it's the inline-size, so that they can add
 | |
|     // columns in the container's block direction
 | |
|     if (type == LayoutFrameType::ColumnSet &&
 | |
|         mStylePosition->ISize(mWritingMode).IsAuto()) {
 | |
|       SetComputedISize(NS_UNCONSTRAINEDSIZE, ResetResizeFlags::No);
 | |
|     } else {
 | |
|       SetAvailableBSize(NS_UNCONSTRAINEDSIZE);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (mFrame->GetContainSizeAxes().mBContained) {
 | |
|     // In the case that a box is size contained in block axis, we want to ensure
 | |
|     // that it is also monolithic. We do this by setting AvailableBSize() to an
 | |
|     // unconstrained size to avoid fragmentation.
 | |
|     SetAvailableBSize(NS_UNCONSTRAINEDSIZE);
 | |
|   }
 | |
| 
 | |
|   LAYOUT_WARN_IF_FALSE((mStyleDisplay->IsInlineOutsideStyle() &&
 | |
|                         !mFrame->IsFrameOfType(nsIFrame::eReplaced)) ||
 | |
|                            type == LayoutFrameType::Text ||
 | |
|                            ComputedISize() != NS_UNCONSTRAINEDSIZE,
 | |
|                        "have unconstrained inline-size; this should only "
 | |
|                        "result from very large sizes, not attempts at "
 | |
|                        "intrinsic inline-size calculation");
 | |
| }
 | |
| 
 | |
| void ReflowInput::InitCBReflowInput() {
 | |
|   if (!mParentReflowInput) {
 | |
|     mCBReflowInput = nullptr;
 | |
|     return;
 | |
|   }
 | |
|   if (mParentReflowInput->mFlags.mDummyParentReflowInput) {
 | |
|     mCBReflowInput = mParentReflowInput;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (mParentReflowInput->mFrame ==
 | |
|       mFrame->GetContainingBlock(0, mStyleDisplay)) {
 | |
|     // Inner table frames need to use the containing block of the outer
 | |
|     // table frame.
 | |
|     if (mFrame->IsTableFrame()) {
 | |
|       mCBReflowInput = mParentReflowInput->mCBReflowInput;
 | |
|     } else {
 | |
|       mCBReflowInput = mParentReflowInput;
 | |
|     }
 | |
|   } else {
 | |
|     mCBReflowInput = mParentReflowInput->mCBReflowInput;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Check whether CalcQuirkContainingBlockHeight would stop on the
 | |
|  * given reflow input, using its block as a height.  (essentially
 | |
|  * returns false for any case in which CalcQuirkContainingBlockHeight
 | |
|  * has a "continue" in its main loop.)
 | |
|  *
 | |
|  * XXX Maybe refactor CalcQuirkContainingBlockHeight so it uses
 | |
|  * this function as well
 | |
|  */
 | |
| static bool IsQuirkContainingBlockHeight(const ReflowInput* rs,
 | |
|                                          LayoutFrameType aFrameType) {
 | |
|   if (LayoutFrameType::Block == aFrameType ||
 | |
|       LayoutFrameType::Scroll == aFrameType) {
 | |
|     // Note: This next condition could change due to a style change,
 | |
|     // but that would cause a style reflow anyway, which means we're ok.
 | |
|     if (NS_UNCONSTRAINEDSIZE == rs->ComputedHeight()) {
 | |
|       if (!rs->mFrame->IsAbsolutelyPositioned(rs->mStyleDisplay)) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void ReflowInput::InitResizeFlags(nsPresContext* aPresContext,
 | |
|                                   LayoutFrameType aFrameType) {
 | |
|   SetBResize(false);
 | |
|   SetIResize(false);
 | |
|   mFlags.mIsBResizeForPercentages = false;
 | |
| 
 | |
|   const WritingMode wm = mWritingMode;  // just a shorthand
 | |
|   // We should report that we have a resize in the inline dimension if
 | |
|   // *either* the border-box size or the content-box size in that
 | |
|   // dimension has changed.  It might not actually be necessary to do
 | |
|   // this if the border-box size has changed and the content-box size
 | |
|   // has not changed, but since we've historically used the flag to mean
 | |
|   // border-box size change, continue to do that. It's possible for
 | |
|   // the content-box size to change without a border-box size change or
 | |
|   // a style change given (1) a fixed width (possibly fixed by max-width
 | |
|   // or min-width), box-sizing:border-box, and percentage padding;
 | |
|   // (2) box-sizing:content-box, M% width, and calc(Npx - M%) padding.
 | |
|   //
 | |
|   // However, we don't actually have the information at this point to tell
 | |
|   // whether the content-box size has changed, since both style data and the
 | |
|   // UsedPaddingProperty() have already been updated in
 | |
|   // SizeComputationInput::InitOffsets(). So, we check the HasPaddingChange()
 | |
|   // bit for the cases where it's possible for the content-box size to have
 | |
|   // changed without either (a) a change in the border-box size or (b) an
 | |
|   // nsChangeHint_NeedDirtyReflow change hint due to change in border or
 | |
|   // padding.
 | |
|   //
 | |
|   // We don't clear the HasPaddingChange() bit here, since sometimes we
 | |
|   // construct reflow input (e.g. in nsBlockFrame::ReflowBlockFrame to compute
 | |
|   // margin collapsing) without reflowing the frame. Instead, we clear it in
 | |
|   // nsIFrame::DidReflow().
 | |
|   bool isIResize =
 | |
|       // is the border-box resizing?
 | |
|       mFrame->ISize(wm) !=
 | |
|           ComputedISize() + ComputedLogicalBorderPadding(wm).IStartEnd(wm) ||
 | |
|       // or is the content-box resizing?  (see comment above)
 | |
|       mFrame->HasPaddingChange();
 | |
| 
 | |
|   if (mFrame->HasAnyStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT) &&
 | |
|       nsLayoutUtils::FontSizeInflationEnabled(aPresContext)) {
 | |
|     // Create our font inflation data if we don't have it already, and
 | |
|     // give it our current width information.
 | |
|     bool dirty = nsFontInflationData::UpdateFontInflationDataISizeFor(*this) &&
 | |
|                  // Avoid running this at the box-to-block interface
 | |
|                  // (where we shouldn't be inflating anyway, and where
 | |
|                  // reflow input construction is probably to construct a
 | |
|                  // dummy parent reflow input anyway).
 | |
|                  !mFlags.mDummyParentReflowInput;
 | |
| 
 | |
|     if (dirty || (!mFrame->GetParent() && isIResize)) {
 | |
|       // When font size inflation is enabled, a change in either:
 | |
|       //  * the effective width of a font inflation flow root
 | |
|       //  * the width of the frame
 | |
|       // needs to cause a dirty reflow since they change the font size
 | |
|       // inflation calculations, which in turn change the size of text,
 | |
|       // line-heights, etc.  This is relatively similar to a classic
 | |
|       // case of style change reflow, except that because inflation
 | |
|       // doesn't affect the intrinsic sizing codepath, there's no need
 | |
|       // to invalidate intrinsic sizes.
 | |
|       //
 | |
|       // Note that this makes horizontal resizing a good bit more
 | |
|       // expensive.  However, font size inflation is targeted at a set of
 | |
|       // devices (zoom-and-pan devices) where the main use case for
 | |
|       // horizontal resizing needing to be efficient (window resizing) is
 | |
|       // not present.  It does still increase the cost of dynamic changes
 | |
|       // caused by script where a style or content change in one place
 | |
|       // causes a resize in another (e.g., rebalancing a table).
 | |
| 
 | |
|       // FIXME: This isn't so great for the cases where
 | |
|       // ReflowInput::SetComputedWidth is called, if the first time
 | |
|       // we go through InitResizeFlags we set IsHResize() to true, and then
 | |
|       // the second time we'd set it to false even without the
 | |
|       // NS_FRAME_IS_DIRTY bit already set.
 | |
|       if (mFrame->IsSVGForeignObjectFrame()) {
 | |
|         // Foreign object frames use dirty bits in a special way.
 | |
|         mFrame->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
 | |
|         nsIFrame* kid = mFrame->PrincipalChildList().FirstChild();
 | |
|         if (kid) {
 | |
|           kid->MarkSubtreeDirty();
 | |
|         }
 | |
|       } else {
 | |
|         mFrame->MarkSubtreeDirty();
 | |
|       }
 | |
| 
 | |
|       // Mark intrinsic widths on all descendants dirty.  We need to do
 | |
|       // this (1) since we're changing the size of text and need to
 | |
|       // clear text runs on text frames and (2) since we actually are
 | |
|       // changing some intrinsic widths, but only those that live inside
 | |
|       // of containers.
 | |
| 
 | |
|       // It makes sense to do this for descendants but not ancestors
 | |
|       // (which is unusual) because we're only changing the unusual
 | |
|       // inflation-dependent intrinsic widths (i.e., ones computed with
 | |
|       // nsPresContext::mInflationDisabledForShrinkWrap set to false),
 | |
|       // which should never affect anything outside of their inflation
 | |
|       // flow root (or, for that matter, even their inflation
 | |
|       // container).
 | |
| 
 | |
|       // This is also different from what PresShell::FrameNeedsReflow
 | |
|       // does because it doesn't go through placeholders.  It doesn't
 | |
|       // need to because we're actually doing something that cares about
 | |
|       // frame tree geometry (the width on an ancestor) rather than
 | |
|       // style.
 | |
| 
 | |
|       AutoTArray<nsIFrame*, 32> stack;
 | |
|       stack.AppendElement(mFrame);
 | |
| 
 | |
|       do {
 | |
|         nsIFrame* f = stack.PopLastElement();
 | |
|         for (const auto& childList : f->ChildLists()) {
 | |
|           for (nsIFrame* kid : childList.mList) {
 | |
|             kid->MarkIntrinsicISizesDirty();
 | |
|             stack.AppendElement(kid);
 | |
|           }
 | |
|         }
 | |
|       } while (stack.Length() != 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SetIResize(!mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) && isIResize);
 | |
| 
 | |
|   // XXX Should we really need to null check mCBReflowInput?  (We do for
 | |
|   // at least nsBoxFrame).
 | |
|   if (mFrame->HasBSizeChange()) {
 | |
|     // When we have an nsChangeHint_UpdateComputedBSize, we'll set a bit
 | |
|     // on the frame to indicate we're resizing.  This might catch cases,
 | |
|     // such as a change between auto and a length, where the box doesn't
 | |
|     // actually resize but children with percentages resize (since those
 | |
|     // percentages become auto if their containing block is auto).
 | |
|     SetBResize(true);
 | |
|     mFlags.mIsBResizeForPercentages = true;
 | |
|     // We don't clear the HasBSizeChange state here, since sometimes we
 | |
|     // construct a ReflowInput (e.g. in nsBlockFrame::ReflowBlockFrame to
 | |
|     // compute margin collapsing) without reflowing the frame. Instead, we
 | |
|     // clear it in nsIFrame::DidReflow.
 | |
|   } else if (mCBReflowInput &&
 | |
|              mCBReflowInput->IsBResizeForPercentagesForWM(wm) &&
 | |
|              (mStylePosition->BSize(wm).HasPercent() ||
 | |
|               mStylePosition->MinBSize(wm).HasPercent() ||
 | |
|               mStylePosition->MaxBSize(wm).HasPercent())) {
 | |
|     // We have a percentage (or calc-with-percentage) block-size, and the
 | |
|     // value it's relative to has changed.
 | |
|     SetBResize(true);
 | |
|     mFlags.mIsBResizeForPercentages = true;
 | |
|   } else if (aFrameType == LayoutFrameType::TableCell &&
 | |
|              (mFlags.mSpecialBSizeReflow ||
 | |
|               mFrame->FirstInFlow()->HasAnyStateBits(
 | |
|                   NS_TABLE_CELL_HAD_SPECIAL_REFLOW)) &&
 | |
|              mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
 | |
|     // Need to set the bit on the cell so that
 | |
|     // mCBReflowInput->IsBResize() is set correctly below when
 | |
|     // reflowing descendant.
 | |
|     SetBResize(true);
 | |
|     mFlags.mIsBResizeForPercentages = true;
 | |
|   } else if (mCBReflowInput && mFrame->IsBlockWrapper()) {
 | |
|     // XXX Is this problematic for relatively positioned inlines acting
 | |
|     // as containing block for absolutely positioned elements?
 | |
|     // Possibly; in that case we should at least be checking
 | |
|     // IsSubtreeDirty(), I'd think.
 | |
|     SetBResize(mCBReflowInput->IsBResizeForWM(wm));
 | |
|     mFlags.mIsBResizeForPercentages =
 | |
|         mCBReflowInput->IsBResizeForPercentagesForWM(wm);
 | |
|   } else if (ComputedBSize() == NS_UNCONSTRAINEDSIZE) {
 | |
|     // We have an 'auto' block-size.
 | |
|     if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
 | |
|         mCBReflowInput) {
 | |
|       // FIXME: This should probably also check IsIResize().
 | |
|       SetBResize(mCBReflowInput->IsBResizeForWM(wm));
 | |
|     } else {
 | |
|       SetBResize(IsIResize());
 | |
|     }
 | |
|     SetBResize(IsBResize() || mFrame->IsSubtreeDirty());
 | |
|   } else {
 | |
|     // We have a non-'auto' block-size, i.e., a length.  Set the BResize
 | |
|     // flag to whether the size is actually different.
 | |
|     SetBResize(mFrame->BSize(wm) !=
 | |
|                ComputedBSize() +
 | |
|                    ComputedLogicalBorderPadding(wm).BStartEnd(wm));
 | |
|   }
 | |
| 
 | |
|   bool dependsOnCBBSize = (mStylePosition->BSizeDependsOnContainer(wm) &&
 | |
|                            // FIXME: condition this on not-abspos?
 | |
|                            !mStylePosition->BSize(wm).IsAuto()) ||
 | |
|                           mStylePosition->MinBSizeDependsOnContainer(wm) ||
 | |
|                           mStylePosition->MaxBSizeDependsOnContainer(wm) ||
 | |
|                           mStylePosition->mOffset.GetBStart(wm).HasPercent() ||
 | |
|                           !mStylePosition->mOffset.GetBEnd(wm).IsAuto() ||
 | |
|                           mFrame->IsXULBoxFrame();
 | |
| 
 | |
|   // If mFrame is a flex item, and mFrame's block axis is the flex container's
 | |
|   // main axis (e.g. in a column-oriented flex container with same
 | |
|   // writing-mode), then its block-size depends on its CB size, if its
 | |
|   // flex-basis has a percentage.
 | |
|   if (mFrame->IsFlexItem() &&
 | |
|       !nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame)) {
 | |
|     const auto& flexBasis = mStylePosition->mFlexBasis;
 | |
|     dependsOnCBBSize |= (flexBasis.IsSize() && flexBasis.AsSize().HasPercent());
 | |
|   }
 | |
| 
 | |
|   if (mFrame->StyleText()->mLineHeight.IsMozBlockHeight()) {
 | |
|     // line-height depends on block bsize
 | |
|     mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
 | |
|     // but only on containing blocks if this frame is not a suitable block
 | |
|     dependsOnCBBSize |= !nsLayoutUtils::IsNonWrapperBlock(mFrame);
 | |
|   }
 | |
| 
 | |
|   // If we're the descendant of a table cell that performs special bsize
 | |
|   // reflows and we could be the child that requires them, always set
 | |
|   // the block-axis resize in case this is the first pass before the
 | |
|   // special bsize reflow.  However, don't do this if it actually is
 | |
|   // the special bsize reflow, since in that case it will already be
 | |
|   // set correctly above if we need it set.
 | |
|   if (!IsBResize() && mCBReflowInput &&
 | |
|       (mCBReflowInput->mFrame->IsTableCellFrame() ||
 | |
|        mCBReflowInput->mFlags.mHeightDependsOnAncestorCell) &&
 | |
|       !mCBReflowInput->mFlags.mSpecialBSizeReflow && dependsOnCBBSize) {
 | |
|     SetBResize(true);
 | |
|     mFlags.mHeightDependsOnAncestorCell = true;
 | |
|   }
 | |
| 
 | |
|   // Set NS_FRAME_CONTAINS_RELATIVE_BSIZE if it's needed.
 | |
| 
 | |
|   // It would be nice to check that |ComputedBSize != NS_UNCONSTRAINEDSIZE|
 | |
|   // &&ed with the percentage bsize check.  However, this doesn't get
 | |
|   // along with table special bsize reflows, since a special bsize
 | |
|   // reflow (a quirk that makes such percentage height work on children
 | |
|   // of table cells) can cause not just a single percentage height to
 | |
|   // become fixed, but an entire descendant chain of percentage height
 | |
|   // to become fixed.
 | |
|   if (dependsOnCBBSize && mCBReflowInput) {
 | |
|     const ReflowInput* rs = this;
 | |
|     bool hitCBReflowInput = false;
 | |
|     do {
 | |
|       rs = rs->mParentReflowInput;
 | |
|       if (!rs) {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (rs->mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
 | |
|         break;  // no need to go further
 | |
|       }
 | |
|       rs->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
 | |
| 
 | |
|       // Keep track of whether we've hit the containing block, because
 | |
|       // we need to go at least that far.
 | |
|       if (rs == mCBReflowInput) {
 | |
|         hitCBReflowInput = true;
 | |
|       }
 | |
| 
 | |
|       // XXX What about orthogonal flows? It doesn't make sense to
 | |
|       // keep propagating this bit across an orthogonal boundary,
 | |
|       // where the meaning of BSize changes. Bug 1175517.
 | |
|     } while (!hitCBReflowInput ||
 | |
|              (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
 | |
|               !IsQuirkContainingBlockHeight(rs, rs->mFrame->Type())));
 | |
|     // Note: We actually don't need to set the
 | |
|     // NS_FRAME_CONTAINS_RELATIVE_BSIZE bit for the cases
 | |
|     // where we hit the early break statements in
 | |
|     // CalcQuirkContainingBlockHeight. But it doesn't hurt
 | |
|     // us to set the bit in these cases.
 | |
|   }
 | |
|   if (mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY)) {
 | |
|     // If we're reflowing everything, then we'll find out if we need
 | |
|     // to re-set this.
 | |
|     mFrame->RemoveStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ReflowInput::InitDynamicReflowRoot() {
 | |
|   if (mFrame->CanBeDynamicReflowRoot()) {
 | |
|     mFrame->AddStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
 | |
|   } else {
 | |
|     mFrame->RemoveStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ReflowInput::ShouldApplyAutomaticMinimumOnBlockAxis() const {
 | |
|   MOZ_ASSERT(!mFrame->IsFrameOfType(nsIFrame::eReplacedSizing));
 | |
|   return mFlags.mIsBSizeSetByAspectRatio &&
 | |
|          !mStyleDisplay->IsScrollableOverflow() &&
 | |
|          mStylePosition->MinBSize(GetWritingMode()).IsAuto();
 | |
| }
 | |
| 
 | |
| bool ReflowInput::IsInFragmentedContext() const {
 | |
|   // We consider mFrame with a prev-in-flow being in a fragmented context
 | |
|   // because nsColumnSetFrame can reflow its last column with an unconstrained
 | |
|   // available block-size.
 | |
|   return AvailableBSize() != NS_UNCONSTRAINEDSIZE || mFrame->GetPrevInFlow();
 | |
| }
 | |
| 
 | |
| /* static */
 | |
| LogicalMargin ReflowInput::ComputeRelativeOffsets(WritingMode aWM,
 | |
|                                                   nsIFrame* aFrame,
 | |
|                                                   const LogicalSize& aCBSize) {
 | |
|   LogicalMargin offsets(aWM);
 | |
|   const nsStylePosition* position = aFrame->StylePosition();
 | |
| 
 | |
|   // Compute the 'inlineStart' and 'inlineEnd' values. 'inlineStart'
 | |
|   // moves the boxes to the end of the line, and 'inlineEnd' moves the
 | |
|   // boxes to the start of the line. The computed values are always:
 | |
|   // inlineStart=-inlineEnd
 | |
|   const auto& inlineStart = position->mOffset.GetIStart(aWM);
 | |
|   const auto& inlineEnd = position->mOffset.GetIEnd(aWM);
 | |
|   bool inlineStartIsAuto = inlineStart.IsAuto();
 | |
|   bool inlineEndIsAuto = inlineEnd.IsAuto();
 | |
| 
 | |
|   // If neither 'inlineStart' nor 'inlineEnd' is auto, then we're
 | |
|   // over-constrained and we ignore one of them
 | |
|   if (!inlineStartIsAuto && !inlineEndIsAuto) {
 | |
|     inlineEndIsAuto = true;
 | |
|   }
 | |
| 
 | |
|   if (inlineStartIsAuto) {
 | |
|     if (inlineEndIsAuto) {
 | |
|       // If both are 'auto' (their initial values), the computed values are 0
 | |
|       offsets.IStart(aWM) = offsets.IEnd(aWM) = 0;
 | |
|     } else {
 | |
|       // 'inlineEnd' isn't 'auto' so compute its value
 | |
|       offsets.IEnd(aWM) =
 | |
|           nsLayoutUtils::ComputeCBDependentValue(aCBSize.ISize(aWM), inlineEnd);
 | |
| 
 | |
|       // Computed value for 'inlineStart' is minus the value of 'inlineEnd'
 | |
|       offsets.IStart(aWM) = -offsets.IEnd(aWM);
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     NS_ASSERTION(inlineEndIsAuto, "unexpected specified constraint");
 | |
| 
 | |
|     // 'InlineStart' isn't 'auto' so compute its value
 | |
|     offsets.IStart(aWM) =
 | |
|         nsLayoutUtils::ComputeCBDependentValue(aCBSize.ISize(aWM), inlineStart);
 | |
| 
 | |
|     // Computed value for 'inlineEnd' is minus the value of 'inlineStart'
 | |
|     offsets.IEnd(aWM) = -offsets.IStart(aWM);
 | |
|   }
 | |
| 
 | |
|   // Compute the 'blockStart' and 'blockEnd' values. The 'blockStart'
 | |
|   // and 'blockEnd' properties move relatively positioned elements in
 | |
|   // the block progression direction. They also must be each other's
 | |
|   // negative
 | |
|   const auto& blockStart = position->mOffset.GetBStart(aWM);
 | |
|   const auto& blockEnd = position->mOffset.GetBEnd(aWM);
 | |
|   bool blockStartIsAuto = blockStart.IsAuto();
 | |
|   bool blockEndIsAuto = blockEnd.IsAuto();
 | |
| 
 | |
|   // Check for percentage based values and a containing block block-size
 | |
|   // that depends on the content block-size. Treat them like 'auto'
 | |
|   if (NS_UNCONSTRAINEDSIZE == aCBSize.BSize(aWM)) {
 | |
|     if (blockStart.HasPercent()) {
 | |
|       blockStartIsAuto = true;
 | |
|     }
 | |
|     if (blockEnd.HasPercent()) {
 | |
|       blockEndIsAuto = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If neither is 'auto', 'block-end' is ignored
 | |
|   if (!blockStartIsAuto && !blockEndIsAuto) {
 | |
|     blockEndIsAuto = true;
 | |
|   }
 | |
| 
 | |
|   if (blockStartIsAuto) {
 | |
|     if (blockEndIsAuto) {
 | |
|       // If both are 'auto' (their initial values), the computed values are 0
 | |
|       offsets.BStart(aWM) = offsets.BEnd(aWM) = 0;
 | |
|     } else {
 | |
|       // 'blockEnd' isn't 'auto' so compute its value
 | |
|       offsets.BEnd(aWM) = nsLayoutUtils::ComputeBSizeDependentValue(
 | |
|           aCBSize.BSize(aWM), blockEnd);
 | |
| 
 | |
|       // Computed value for 'blockStart' is minus the value of 'blockEnd'
 | |
|       offsets.BStart(aWM) = -offsets.BEnd(aWM);
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     NS_ASSERTION(blockEndIsAuto, "unexpected specified constraint");
 | |
| 
 | |
|     // 'blockStart' isn't 'auto' so compute its value
 | |
|     offsets.BStart(aWM) = nsLayoutUtils::ComputeBSizeDependentValue(
 | |
|         aCBSize.BSize(aWM), blockStart);
 | |
| 
 | |
|     // Computed value for 'blockEnd' is minus the value of 'blockStart'
 | |
|     offsets.BEnd(aWM) = -offsets.BStart(aWM);
 | |
|   }
 | |
| 
 | |
|   // Convert the offsets to physical coordinates and store them on the frame
 | |
|   const nsMargin physicalOffsets = offsets.GetPhysicalMargin(aWM);
 | |
|   if (nsMargin* prop =
 | |
|           aFrame->GetProperty(nsIFrame::ComputedOffsetProperty())) {
 | |
|     *prop = physicalOffsets;
 | |
|   } else {
 | |
|     aFrame->AddProperty(nsIFrame::ComputedOffsetProperty(),
 | |
|                         new nsMargin(physicalOffsets));
 | |
|   }
 | |
| 
 | |
|   NS_ASSERTION(offsets.IStart(aWM) == -offsets.IEnd(aWM) &&
 | |
|                    offsets.BStart(aWM) == -offsets.BEnd(aWM),
 | |
|                "ComputeRelativeOffsets should return valid results!");
 | |
| 
 | |
|   return offsets;
 | |
| }
 | |
| 
 | |
| /* static */
 | |
| void ReflowInput::ApplyRelativePositioning(nsIFrame* aFrame,
 | |
|                                            const nsMargin& aComputedOffsets,
 | |
|                                            nsPoint* aPosition) {
 | |
|   if (!aFrame->IsRelativelyOrStickyPositioned()) {
 | |
|     NS_ASSERTION(!aFrame->HasProperty(nsIFrame::NormalPositionProperty()),
 | |
|                  "We assume that changing the 'position' property causes "
 | |
|                  "frame reconstruction.  If that ever changes, this code "
 | |
|                  "should call "
 | |
|                  "aFrame->RemoveProperty(nsIFrame::NormalPositionProperty())");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Store the normal position
 | |
|   aFrame->SetProperty(nsIFrame::NormalPositionProperty(), *aPosition);
 | |
| 
 | |
|   const nsStyleDisplay* display = aFrame->StyleDisplay();
 | |
|   if (StylePositionProperty::Relative == display->mPosition) {
 | |
|     *aPosition += nsPoint(aComputedOffsets.left, aComputedOffsets.top);
 | |
|   } else if (StylePositionProperty::Sticky == display->mPosition &&
 | |
|              !aFrame->GetNextContinuation() && !aFrame->GetPrevContinuation() &&
 | |
|              !aFrame->HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT)) {
 | |
|     // Sticky positioning for elements with multiple frames needs to be
 | |
|     // computed all at once. We can't safely do that here because we might be
 | |
|     // partway through (re)positioning the frames, so leave it until the scroll
 | |
|     // container reflows and calls StickyScrollContainer::UpdatePositions.
 | |
|     // For single-frame sticky positioned elements, though, go ahead and apply
 | |
|     // it now to avoid unnecessary overflow updates later.
 | |
|     StickyScrollContainer* ssc =
 | |
|         StickyScrollContainer::GetStickyScrollContainerForFrame(aFrame);
 | |
|     if (ssc) {
 | |
|       *aPosition = ssc->ComputePosition(aFrame);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // static
 | |
| void ReflowInput::ComputeAbsPosInlineAutoMargin(nscoord aAvailMarginSpace,
 | |
|                                                 WritingMode aContainingBlockWM,
 | |
|                                                 bool aIsMarginIStartAuto,
 | |
|                                                 bool aIsMarginIEndAuto,
 | |
|                                                 LogicalMargin& aMargin,
 | |
|                                                 LogicalMargin& aOffsets) {
 | |
|   if (aIsMarginIStartAuto) {
 | |
|     if (aIsMarginIEndAuto) {
 | |
|       if (aAvailMarginSpace < 0) {
 | |
|         // Note that this case is different from the neither-'auto'
 | |
|         // case below, where the spec says to ignore 'left'/'right'.
 | |
|         // Ignore the specified value for 'margin-right'.
 | |
|         aMargin.IEnd(aContainingBlockWM) = aAvailMarginSpace;
 | |
|       } else {
 | |
|         // Both 'margin-left' and 'margin-right' are 'auto', so they get
 | |
|         // equal values
 | |
|         aMargin.IStart(aContainingBlockWM) = aAvailMarginSpace / 2;
 | |
|         aMargin.IEnd(aContainingBlockWM) =
 | |
|             aAvailMarginSpace - aMargin.IStart(aContainingBlockWM);
 | |
|       }
 | |
|     } else {
 | |
|       // Just 'margin-left' is 'auto'
 | |
|       aMargin.IStart(aContainingBlockWM) = aAvailMarginSpace;
 | |
|     }
 | |
|   } else {
 | |
|     if (aIsMarginIEndAuto) {
 | |
|       // Just 'margin-right' is 'auto'
 | |
|       aMargin.IEnd(aContainingBlockWM) = aAvailMarginSpace;
 | |
|     } else {
 | |
|       // We're over-constrained so use the direction of the containing
 | |
|       // block to dictate which value to ignore.  (And note that the
 | |
|       // spec says to ignore 'left' or 'right' rather than
 | |
|       // 'margin-left' or 'margin-right'.)
 | |
|       // Note that this case is different from the both-'auto' case
 | |
|       // above, where the spec says to ignore
 | |
|       // 'margin-left'/'margin-right'.
 | |
|       // Ignore the specified value for 'right'.
 | |
|       aOffsets.IEnd(aContainingBlockWM) += aAvailMarginSpace;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // static
 | |
| void ReflowInput::ComputeAbsPosBlockAutoMargin(nscoord aAvailMarginSpace,
 | |
|                                                WritingMode aContainingBlockWM,
 | |
|                                                bool aIsMarginBStartAuto,
 | |
|                                                bool aIsMarginBEndAuto,
 | |
|                                                LogicalMargin& aMargin,
 | |
|                                                LogicalMargin& aOffsets) {
 | |
|   if (aIsMarginBStartAuto) {
 | |
|     if (aIsMarginBEndAuto) {
 | |
|       // Both 'margin-top' and 'margin-bottom' are 'auto', so they get
 | |
|       // equal values
 | |
|       aMargin.BStart(aContainingBlockWM) = aAvailMarginSpace / 2;
 | |
|       aMargin.BEnd(aContainingBlockWM) =
 | |
|           aAvailMarginSpace - aMargin.BStart(aContainingBlockWM);
 | |
|     } else {
 | |
|       // Just margin-block-start is 'auto'
 | |
|       aMargin.BStart(aContainingBlockWM) = aAvailMarginSpace;
 | |
|     }
 | |
|   } else {
 | |
|     if (aIsMarginBEndAuto) {
 | |
|       // Just margin-block-end is 'auto'
 | |
|       aMargin.BEnd(aContainingBlockWM) = aAvailMarginSpace;
 | |
|     } else {
 | |
|       // We're over-constrained so ignore the specified value for
 | |
|       // block-end.  (And note that the spec says to ignore 'bottom'
 | |
|       // rather than 'margin-bottom'.)
 | |
|       aOffsets.BEnd(aContainingBlockWM) += aAvailMarginSpace;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ReflowInput::ApplyRelativePositioning(
 | |
|     nsIFrame* aFrame, mozilla::WritingMode aWritingMode,
 | |
|     const mozilla::LogicalMargin& aComputedOffsets,
 | |
|     mozilla::LogicalPoint* aPosition, const nsSize& aContainerSize) {
 | |
|   // Subtract the size of the frame from the container size that we
 | |
|   // use for converting between the logical and physical origins of
 | |
|   // the frame. This accounts for the fact that logical origins in RTL
 | |
|   // coordinate systems are at the top right of the frame instead of
 | |
|   // the top left.
 | |
|   nsSize frameSize = aFrame->GetSize();
 | |
|   nsPoint pos =
 | |
|       aPosition->GetPhysicalPoint(aWritingMode, aContainerSize - frameSize);
 | |
|   ApplyRelativePositioning(
 | |
|       aFrame, aComputedOffsets.GetPhysicalMargin(aWritingMode), &pos);
 | |
|   *aPosition =
 | |
|       mozilla::LogicalPoint(aWritingMode, pos, aContainerSize - frameSize);
 | |
| }
 | |
| 
 | |
| // Returns true if aFrame is non-null, a XUL frame, and "XUL-collapsed" (which
 | |
| // only becomes a valid question to ask if we know it's a XUL frame).
 | |
| static bool IsXULCollapsedXULFrame(nsIFrame* aFrame) {
 | |
|   return aFrame && aFrame->IsXULBoxFrame() && aFrame->IsXULCollapsed();
 | |
| }
 | |
| 
 | |
| nsIFrame* ReflowInput::GetHypotheticalBoxContainer(nsIFrame* aFrame,
 | |
|                                                    nscoord& aCBIStartEdge,
 | |
|                                                    LogicalSize& aCBSize) const {
 | |
|   aFrame = aFrame->GetContainingBlock();
 | |
|   NS_ASSERTION(aFrame != mFrame, "How did that happen?");
 | |
| 
 | |
|   /* Now aFrame is the containing block we want */
 | |
| 
 | |
|   /* Check whether the containing block is currently being reflowed.
 | |
|      If so, use the info from the reflow input. */
 | |
|   const ReflowInput* reflowInput;
 | |
|   if (aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW)) {
 | |
|     for (reflowInput = mParentReflowInput;
 | |
|          reflowInput && reflowInput->mFrame != aFrame;
 | |
|          reflowInput = reflowInput->mParentReflowInput) {
 | |
|       /* do nothing */
 | |
|     }
 | |
|   } else {
 | |
|     reflowInput = nullptr;
 | |
|   }
 | |
| 
 | |
|   if (reflowInput) {
 | |
|     WritingMode wm = reflowInput->GetWritingMode();
 | |
|     NS_ASSERTION(wm == aFrame->GetWritingMode(), "unexpected writing mode");
 | |
|     aCBIStartEdge = reflowInput->ComputedLogicalBorderPadding(wm).IStart(wm);
 | |
|     aCBSize = reflowInput->ComputedSize(wm);
 | |
|   } else {
 | |
|     /* Didn't find a reflow reflowInput for aFrame.  Just compute the
 | |
|        information we want, on the assumption that aFrame already knows its
 | |
|        size.  This really ought to be true by now. */
 | |
|     NS_ASSERTION(!aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW),
 | |
|                  "aFrame shouldn't be in reflow; we'll lie if it is");
 | |
|     WritingMode wm = aFrame->GetWritingMode();
 | |
|     // Compute CB's offset & content-box size by subtracting borderpadding from
 | |
|     // frame size.  Exception: if the CB is 0-sized, it *might* be a child of a
 | |
|     // XUL-collapsed frame and might have nonzero borderpadding that was simply
 | |
|     // discarded during its layout. (See the child-zero-sizing in
 | |
|     // nsSprocketLayout::XULLayout()).  In that case, we ignore the
 | |
|     // borderpadding here (just like we did when laying it out), or else we'd
 | |
|     // produce a bogus negative content-box size.
 | |
|     aCBIStartEdge = 0;
 | |
|     aCBSize = aFrame->GetLogicalSize(wm);
 | |
|     if (!aCBSize.IsAllZero() || !IsXULCollapsedXULFrame(aFrame->GetParent())) {
 | |
|       // aFrame is not XUL-collapsed (nor is it a child of a XUL-collapsed
 | |
|       // frame), so we can go ahead and subtract out border padding.
 | |
|       LogicalMargin borderPadding = aFrame->GetLogicalUsedBorderAndPadding(wm);
 | |
|       aCBIStartEdge += borderPadding.IStart(wm);
 | |
|       aCBSize -= borderPadding.Size(wm);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return aFrame;
 | |
| }
 | |
| 
 | |
| struct nsHypotheticalPosition {
 | |
|   // offset from inline-start edge of containing block (which is a padding edge)
 | |
|   nscoord mIStart;
 | |
|   // offset from block-start edge of containing block (which is a padding edge)
 | |
|   nscoord mBStart;
 | |
|   WritingMode mWritingMode;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * aInsideBoxSizing returns the part of the padding, border, and margin
 | |
|  * in the aAxis dimension that goes inside the edge given by box-sizing;
 | |
|  * aOutsideBoxSizing returns the rest.
 | |
|  */
 | |
| void ReflowInput::CalculateBorderPaddingMargin(
 | |
|     LogicalAxis aAxis, nscoord aContainingBlockSize, nscoord* aInsideBoxSizing,
 | |
|     nscoord* aOutsideBoxSizing) const {
 | |
|   WritingMode wm = GetWritingMode();
 | |
|   mozilla::Side startSide =
 | |
|       wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeStart));
 | |
|   mozilla::Side endSide =
 | |
|       wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeEnd));
 | |
| 
 | |
|   nsMargin styleBorder = mStyleBorder->GetComputedBorder();
 | |
|   nscoord borderStartEnd =
 | |
|       styleBorder.Side(startSide) + styleBorder.Side(endSide);
 | |
| 
 | |
|   nscoord paddingStartEnd, marginStartEnd;
 | |
| 
 | |
|   // See if the style system can provide us the padding directly
 | |
|   const auto* stylePadding = mFrame->StylePadding();
 | |
|   if (nsMargin padding; stylePadding->GetPadding(padding)) {
 | |
|     paddingStartEnd = padding.Side(startSide) + padding.Side(endSide);
 | |
|   } else {
 | |
|     // We have to compute the start and end values
 | |
|     nscoord start, end;
 | |
|     start = nsLayoutUtils::ComputeCBDependentValue(
 | |
|         aContainingBlockSize, stylePadding->mPadding.Get(startSide));
 | |
|     end = nsLayoutUtils::ComputeCBDependentValue(
 | |
|         aContainingBlockSize, stylePadding->mPadding.Get(endSide));
 | |
|     paddingStartEnd = start + end;
 | |
|   }
 | |
| 
 | |
|   // See if the style system can provide us the margin directly
 | |
|   if (nsMargin margin; mStyleMargin->GetMargin(margin)) {
 | |
|     marginStartEnd = margin.Side(startSide) + margin.Side(endSide);
 | |
|   } else {
 | |
|     nscoord start, end;
 | |
|     // We have to compute the start and end values
 | |
|     if (mStyleMargin->mMargin.Get(startSide).IsAuto()) {
 | |
|       // We set this to 0 for now, and fix it up later in
 | |
|       // InitAbsoluteConstraints (which is caller of this function, via
 | |
|       // CalculateHypotheticalPosition).
 | |
|       start = 0;
 | |
|     } else {
 | |
|       start = nsLayoutUtils::ComputeCBDependentValue(
 | |
|           aContainingBlockSize, mStyleMargin->mMargin.Get(startSide));
 | |
|     }
 | |
|     if (mStyleMargin->mMargin.Get(endSide).IsAuto()) {
 | |
|       // We set this to 0 for now, and fix it up later in
 | |
|       // InitAbsoluteConstraints (which is caller of this function, via
 | |
|       // CalculateHypotheticalPosition).
 | |
|       end = 0;
 | |
|     } else {
 | |
|       end = nsLayoutUtils::ComputeCBDependentValue(
 | |
|           aContainingBlockSize, mStyleMargin->mMargin.Get(endSide));
 | |
|     }
 | |
|     marginStartEnd = start + end;
 | |
|   }
 | |
| 
 | |
|   nscoord outside = paddingStartEnd + borderStartEnd + marginStartEnd;
 | |
|   nscoord inside = 0;
 | |
|   if (mStylePosition->mBoxSizing == StyleBoxSizing::Border) {
 | |
|     inside = borderStartEnd + paddingStartEnd;
 | |
|   }
 | |
|   outside -= inside;
 | |
|   *aInsideBoxSizing = inside;
 | |
|   *aOutsideBoxSizing = outside;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns true iff a pre-order traversal of the normal child
 | |
|  * frames rooted at aFrame finds no non-empty frame before aDescendant.
 | |
|  */
 | |
| static bool AreAllEarlierInFlowFramesEmpty(nsIFrame* aFrame,
 | |
|                                            nsIFrame* aDescendant,
 | |
|                                            bool* aFound) {
 | |
|   if (aFrame == aDescendant) {
 | |
|     *aFound = true;
 | |
|     return true;
 | |
|   }
 | |
|   if (aFrame->IsPlaceholderFrame()) {
 | |
|     auto ph = static_cast<nsPlaceholderFrame*>(aFrame);
 | |
|     MOZ_ASSERT(ph->IsSelfEmpty() && ph->PrincipalChildList().IsEmpty());
 | |
|     ph->SetLineIsEmptySoFar(true);
 | |
|   } else {
 | |
|     if (!aFrame->IsSelfEmpty()) {
 | |
|       *aFound = false;
 | |
|       return false;
 | |
|     }
 | |
|     for (nsIFrame* f : aFrame->PrincipalChildList()) {
 | |
|       bool allEmpty = AreAllEarlierInFlowFramesEmpty(f, aDescendant, aFound);
 | |
|       if (*aFound || !allEmpty) {
 | |
|         return allEmpty;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   *aFound = false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool AxisPolarityFlipped(LogicalAxis aThisAxis, WritingMode aThisWm,
 | |
|                                 WritingMode aOtherWm) {
 | |
|   if (MOZ_LIKELY(aThisWm == aOtherWm)) {
 | |
|     // Dedicated short circuit for the common case.
 | |
|     return false;
 | |
|   }
 | |
|   LogicalAxis otherAxis = aThisWm.IsOrthogonalTo(aOtherWm)
 | |
|                               ? GetOrthogonalAxis(aThisAxis)
 | |
|                               : aThisAxis;
 | |
|   NS_ASSERTION(
 | |
|       aThisWm.PhysicalAxis(aThisAxis) == aOtherWm.PhysicalAxis(otherAxis),
 | |
|       "Physical axes must match!");
 | |
|   Side thisStartSide =
 | |
|       aThisWm.PhysicalSide(MakeLogicalSide(aThisAxis, eLogicalEdgeStart));
 | |
|   Side otherStartSide =
 | |
|       aOtherWm.PhysicalSide(MakeLogicalSide(otherAxis, eLogicalEdgeStart));
 | |
|   return thisStartSide != otherStartSide;
 | |
| }
 | |
| 
 | |
| static bool InlinePolarityFlipped(WritingMode aThisWm, WritingMode aOtherWm) {
 | |
|   return AxisPolarityFlipped(eLogicalAxisInline, aThisWm, aOtherWm);
 | |
| }
 | |
| 
 | |
| static bool BlockPolarityFlipped(WritingMode aThisWm, WritingMode aOtherWm) {
 | |
|   return AxisPolarityFlipped(eLogicalAxisBlock, aThisWm, aOtherWm);
 | |
| }
 | |
| 
 | |
| // Calculate the position of the hypothetical box that the element would have
 | |
| // if it were in the flow.
 | |
| // The values returned are relative to the padding edge of the absolute
 | |
| // containing block. The writing-mode of the hypothetical box position will
 | |
| // have the same block direction as the absolute containing block, but may
 | |
| // differ in inline-bidi direction.
 | |
| // In the code below, |aCBReflowInput->frame| is the absolute containing block,
 | |
| // while |containingBlock| is the nearest block container of the placeholder
 | |
| // frame, which may be different from the absolute containing block.
 | |
| void ReflowInput::CalculateHypotheticalPosition(
 | |
|     nsPresContext* aPresContext, nsPlaceholderFrame* aPlaceholderFrame,
 | |
|     const ReflowInput* aCBReflowInput, nsHypotheticalPosition& aHypotheticalPos,
 | |
|     LayoutFrameType aFrameType) const {
 | |
|   NS_ASSERTION(mStyleDisplay->mOriginalDisplay != StyleDisplay::None,
 | |
|                "mOriginalDisplay has not been properly initialized");
 | |
| 
 | |
|   // Find the nearest containing block frame to the placeholder frame,
 | |
|   // and its inline-start edge and width.
 | |
|   nscoord blockIStartContentEdge;
 | |
|   // Dummy writing mode for blockContentSize, will be changed as needed by
 | |
|   // GetHypotheticalBoxContainer.
 | |
|   WritingMode cbwm = aCBReflowInput->GetWritingMode();
 | |
|   LogicalSize blockContentSize(cbwm);
 | |
|   nsIFrame* containingBlock = GetHypotheticalBoxContainer(
 | |
|       aPlaceholderFrame, blockIStartContentEdge, blockContentSize);
 | |
|   // Now blockContentSize is in containingBlock's writing mode.
 | |
| 
 | |
|   // If it's a replaced element and it has a 'auto' value for
 | |
|   //'inline size', see if we can get the intrinsic size. This will allow
 | |
|   // us to exactly determine both the inline edges
 | |
|   WritingMode wm = containingBlock->GetWritingMode();
 | |
| 
 | |
|   const auto& styleISize = mStylePosition->ISize(wm);
 | |
|   bool isAutoISize = styleISize.IsAuto();
 | |
|   Maybe<nsSize> intrinsicSize;
 | |
|   if (mFlags.mIsReplaced && isAutoISize) {
 | |
|     // See if we can get the intrinsic size of the element
 | |
|     intrinsicSize = mFrame->GetIntrinsicSize().ToSize();
 | |
|   }
 | |
| 
 | |
|   // See if we can calculate what the box inline size would have been if
 | |
|   // the element had been in the flow
 | |
|   Maybe<nscoord> boxISize;
 | |
|   if (mStyleDisplay->IsOriginalDisplayInlineOutside() && !mFlags.mIsReplaced) {
 | |
|     // For non-replaced inline-level elements the 'inline size' property
 | |
|     // doesn't apply, so we don't know what the inline size would have
 | |
|     // been without reflowing it
 | |
| 
 | |
|   } else {
 | |
|     // It's either a replaced inline-level element or a block-level element
 | |
| 
 | |
|     // Determine the total amount of inline direction
 | |
|     // border/padding/margin that the element would have had if it had
 | |
|     // been in the flow. Note that we ignore any 'auto' and 'inherit'
 | |
|     // values
 | |
|     nscoord insideBoxISizing, outsideBoxISizing;
 | |
|     CalculateBorderPaddingMargin(eLogicalAxisInline, blockContentSize.ISize(wm),
 | |
|                                  &insideBoxISizing, &outsideBoxISizing);
 | |
| 
 | |
|     if (mFlags.mIsReplaced && isAutoISize) {
 | |
|       // It's a replaced element with an 'auto' inline size so the box
 | |
|       // inline size is its intrinsic size plus any border/padding/margin
 | |
|       if (intrinsicSize) {
 | |
|         boxISize.emplace(LogicalSize(wm, *intrinsicSize).ISize(wm) +
 | |
|                          outsideBoxISizing + insideBoxISizing);
 | |
|       }
 | |
| 
 | |
|     } else if (isAutoISize) {
 | |
|       // The box inline size is the containing block inline size
 | |
|       boxISize.emplace(blockContentSize.ISize(wm));
 | |
|     } else {
 | |
|       // We need to compute it. It's important we do this, because if it's
 | |
|       // percentage based this computed value may be different from the computed
 | |
|       // value calculated using the absolute containing block width
 | |
|       nscoord insideBoxBSizing, dummy;
 | |
|       CalculateBorderPaddingMargin(eLogicalAxisBlock,
 | |
|                                    blockContentSize.BSize(wm),
 | |
|                                    &insideBoxBSizing, &dummy);
 | |
|       boxISize.emplace(
 | |
|           ComputeISizeValue(wm, blockContentSize,
 | |
|                             LogicalSize(wm, insideBoxISizing, insideBoxBSizing),
 | |
|                             outsideBoxISizing, styleISize) +
 | |
|           insideBoxISizing + outsideBoxISizing);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get the placeholder x-offset and y-offset in the coordinate
 | |
|   // space of its containing block
 | |
|   // XXXbz the placeholder is not fully reflowed yet if our containing block is
 | |
|   // relatively positioned...
 | |
|   nsSize containerSize =
 | |
|       containingBlock->HasAnyStateBits(NS_FRAME_IN_REFLOW)
 | |
|           ? aCBReflowInput->ComputedSizeAsContainerIfConstrained()
 | |
|           : containingBlock->GetSize();
 | |
|   LogicalPoint placeholderOffset(
 | |
|       wm, aPlaceholderFrame->GetOffsetToIgnoringScrolling(containingBlock),
 | |
|       containerSize);
 | |
| 
 | |
|   // First, determine the hypothetical box's mBStart.  We want to check the
 | |
|   // content insertion frame of containingBlock for block-ness, but make
 | |
|   // sure to compute all coordinates in the coordinate system of
 | |
|   // containingBlock.
 | |
|   nsBlockFrame* blockFrame =
 | |
|       do_QueryFrame(containingBlock->GetContentInsertionFrame());
 | |
|   if (blockFrame) {
 | |
|     // Use a null containerSize to convert a LogicalPoint functioning as a
 | |
|     // vector into a physical nsPoint vector.
 | |
|     const nsSize nullContainerSize;
 | |
|     LogicalPoint blockOffset(
 | |
|         wm, blockFrame->GetOffsetToIgnoringScrolling(containingBlock),
 | |
|         nullContainerSize);
 | |
|     bool isValid;
 | |
|     nsBlockInFlowLineIterator iter(blockFrame, aPlaceholderFrame, &isValid);
 | |
|     if (!isValid) {
 | |
|       // Give up.  We're probably dealing with somebody using
 | |
|       // position:absolute inside native-anonymous content anyway.
 | |
|       aHypotheticalPos.mBStart = placeholderOffset.B(wm);
 | |
|     } else {
 | |
|       NS_ASSERTION(iter.GetContainer() == blockFrame,
 | |
|                    "Found placeholder in wrong block!");
 | |
|       nsBlockFrame::LineIterator lineBox = iter.GetLine();
 | |
| 
 | |
|       // How we determine the hypothetical box depends on whether the element
 | |
|       // would have been inline-level or block-level
 | |
|       LogicalRect lineBounds = lineBox->GetBounds().ConvertTo(
 | |
|           wm, lineBox->mWritingMode, lineBox->mContainerSize);
 | |
|       if (mStyleDisplay->IsOriginalDisplayInlineOutside()) {
 | |
|         // Use the block-start of the inline box which the placeholder lives in
 | |
|         // as the hypothetical box's block-start.
 | |
|         aHypotheticalPos.mBStart = lineBounds.BStart(wm) + blockOffset.B(wm);
 | |
|       } else {
 | |
|         // The element would have been block-level which means it would
 | |
|         // be below the line containing the placeholder frame, unless
 | |
|         // all the frames before it are empty.  In that case, it would
 | |
|         // have been just before this line.
 | |
|         // XXXbz the line box is not fully reflowed yet if our
 | |
|         // containing block is relatively positioned...
 | |
|         if (lineBox != iter.End()) {
 | |
|           nsIFrame* firstFrame = lineBox->mFirstChild;
 | |
|           bool allEmpty = false;
 | |
|           if (firstFrame == aPlaceholderFrame) {
 | |
|             aPlaceholderFrame->SetLineIsEmptySoFar(true);
 | |
|             allEmpty = true;
 | |
|           } else {
 | |
|             auto prev = aPlaceholderFrame->GetPrevSibling();
 | |
|             if (prev && prev->IsPlaceholderFrame()) {
 | |
|               auto ph = static_cast<nsPlaceholderFrame*>(prev);
 | |
|               if (ph->GetLineIsEmptySoFar(&allEmpty)) {
 | |
|                 aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           if (!allEmpty) {
 | |
|             bool found = false;
 | |
|             while (firstFrame) {  // See bug 223064
 | |
|               allEmpty = AreAllEarlierInFlowFramesEmpty(
 | |
|                   firstFrame, aPlaceholderFrame, &found);
 | |
|               if (found || !allEmpty) {
 | |
|                 break;
 | |
|               }
 | |
|               firstFrame = firstFrame->GetNextSibling();
 | |
|             }
 | |
|             aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
 | |
|           }
 | |
|           NS_ASSERTION(firstFrame, "Couldn't find placeholder!");
 | |
| 
 | |
|           if (allEmpty) {
 | |
|             // The top of the hypothetical box is the top of the line
 | |
|             // containing the placeholder, since there is nothing in the
 | |
|             // line before our placeholder except empty frames.
 | |
|             aHypotheticalPos.mBStart =
 | |
|                 lineBounds.BStart(wm) + blockOffset.B(wm);
 | |
|           } else {
 | |
|             // The top of the hypothetical box is just below the line
 | |
|             // containing the placeholder.
 | |
|             aHypotheticalPos.mBStart = lineBounds.BEnd(wm) + blockOffset.B(wm);
 | |
|           }
 | |
|         } else {
 | |
|           // Just use the placeholder's block-offset wrt the containing block
 | |
|           aHypotheticalPos.mBStart = placeholderOffset.B(wm);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // The containing block is not a block, so it's probably something
 | |
|     // like a XUL box, etc.
 | |
|     // Just use the placeholder's block-offset
 | |
|     aHypotheticalPos.mBStart = placeholderOffset.B(wm);
 | |
|   }
 | |
| 
 | |
|   // Second, determine the hypothetical box's mIStart.
 | |
|   // How we determine the hypothetical box depends on whether the element
 | |
|   // would have been inline-level or block-level
 | |
|   if (mStyleDisplay->IsOriginalDisplayInlineOutside() ||
 | |
|       mFlags.mIOffsetsNeedCSSAlign) {
 | |
|     // The placeholder represents the IStart edge of the hypothetical box.
 | |
|     // (Or if mFlags.mIOffsetsNeedCSSAlign is set, it represents the IStart
 | |
|     // edge of the Alignment Container.)
 | |
|     aHypotheticalPos.mIStart = placeholderOffset.I(wm);
 | |
|   } else {
 | |
|     aHypotheticalPos.mIStart = blockIStartContentEdge;
 | |
|   }
 | |
| 
 | |
|   // The current coordinate space is that of the nearest block to the
 | |
|   // placeholder. Convert to the coordinate space of the absolute containing
 | |
|   // block.
 | |
|   nsPoint cbOffset =
 | |
|       containingBlock->GetOffsetToIgnoringScrolling(aCBReflowInput->mFrame);
 | |
| 
 | |
|   nsSize reflowSize = aCBReflowInput->ComputedSizeAsContainerIfConstrained();
 | |
|   LogicalPoint logCBOffs(wm, cbOffset, reflowSize - containerSize);
 | |
|   aHypotheticalPos.mIStart += logCBOffs.I(wm);
 | |
|   aHypotheticalPos.mBStart += logCBOffs.B(wm);
 | |
| 
 | |
|   // If block direction doesn't match (whether orthogonal or antiparallel),
 | |
|   // we'll have to convert aHypotheticalPos to be in terms of cbwm.
 | |
|   // This upcoming conversion must be taken into account for border offsets.
 | |
|   const bool hypotheticalPosWillUseCbwm =
 | |
|       cbwm.GetBlockDir() != wm.GetBlockDir();
 | |
|   // The specified offsets are relative to the absolute containing block's
 | |
|   // padding edge and our current values are relative to the border edge, so
 | |
|   // translate.
 | |
|   const LogicalMargin border = aCBReflowInput->ComputedLogicalBorder(wm);
 | |
|   if (hypotheticalPosWillUseCbwm && InlinePolarityFlipped(wm, cbwm)) {
 | |
|     aHypotheticalPos.mIStart += border.IEnd(wm);
 | |
|   } else {
 | |
|     aHypotheticalPos.mIStart -= border.IStart(wm);
 | |
|   }
 | |
| 
 | |
|   if (hypotheticalPosWillUseCbwm && BlockPolarityFlipped(wm, cbwm)) {
 | |
|     aHypotheticalPos.mBStart += border.BEnd(wm);
 | |
|   } else {
 | |
|     aHypotheticalPos.mBStart -= border.BStart(wm);
 | |
|   }
 | |
|   // At this point, we have computed aHypotheticalPos using the writing mode
 | |
|   // of the placeholder's containing block.
 | |
| 
 | |
|   if (hypotheticalPosWillUseCbwm) {
 | |
|     // If the block direction we used in calculating aHypotheticalPos does not
 | |
|     // match the absolute containing block's, we need to convert here so that
 | |
|     // aHypotheticalPos is usable in relation to the absolute containing block.
 | |
|     // This requires computing or measuring the abspos frame's block-size,
 | |
|     // which is not otherwise required/used here (as aHypotheticalPos
 | |
|     // records only the block-start coordinate).
 | |
| 
 | |
|     // This is similar to the inline-size calculation for a replaced
 | |
|     // inline-level element or a block-level element (above), except that
 | |
|     // 'auto' sizing is handled differently in the block direction for non-
 | |
|     // replaced elements and replaced elements lacking an intrinsic size.
 | |
| 
 | |
|     // Determine the total amount of block direction
 | |
|     // border/padding/margin that the element would have had if it had
 | |
|     // been in the flow. Note that we ignore any 'auto' and 'inherit'
 | |
|     // values.
 | |
|     nscoord insideBoxSizing, outsideBoxSizing;
 | |
|     CalculateBorderPaddingMargin(eLogicalAxisBlock, blockContentSize.BSize(wm),
 | |
|                                  &insideBoxSizing, &outsideBoxSizing);
 | |
| 
 | |
|     nscoord boxBSize;
 | |
|     const auto& styleBSize = mStylePosition->BSize(wm);
 | |
|     if (styleBSize.BehavesLikeInitialValueOnBlockAxis()) {
 | |
|       if (mFlags.mIsReplaced && intrinsicSize) {
 | |
|         // It's a replaced element with an 'auto' block size so the box
 | |
|         // block size is its intrinsic size plus any border/padding/margin
 | |
|         boxBSize = LogicalSize(wm, *intrinsicSize).BSize(wm) +
 | |
|                    outsideBoxSizing + insideBoxSizing;
 | |
|       } else {
 | |
|         // XXX Bug 1191801
 | |
|         // Figure out how to get the correct boxBSize here (need to reflow the
 | |
|         // positioned frame?)
 | |
|         boxBSize = 0;
 | |
|       }
 | |
|     } else {
 | |
|       // We need to compute it. It's important we do this, because if it's
 | |
|       // percentage-based this computed value may be different from the
 | |
|       // computed value calculated using the absolute containing block height.
 | |
|       boxBSize = nsLayoutUtils::ComputeBSizeValue(
 | |
|                      blockContentSize.BSize(wm), insideBoxSizing,
 | |
|                      styleBSize.AsLengthPercentage()) +
 | |
|                  insideBoxSizing + outsideBoxSizing;
 | |
|     }
 | |
| 
 | |
|     LogicalSize boxSize(wm, boxISize.valueOr(0), boxBSize);
 | |
| 
 | |
|     LogicalPoint origin(wm, aHypotheticalPos.mIStart, aHypotheticalPos.mBStart);
 | |
|     origin =
 | |
|         origin.ConvertTo(cbwm, wm, reflowSize - boxSize.GetPhysicalSize(wm));
 | |
| 
 | |
|     aHypotheticalPos.mIStart = origin.I(cbwm);
 | |
|     aHypotheticalPos.mBStart = origin.B(cbwm);
 | |
|     aHypotheticalPos.mWritingMode = cbwm;
 | |
|   } else {
 | |
|     aHypotheticalPos.mWritingMode = wm;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ReflowInput::IsInlineSizeComputableByBlockSizeAndAspectRatio(
 | |
|     nscoord aBlockSize) const {
 | |
|   WritingMode wm = GetWritingMode();
 | |
|   MOZ_ASSERT(!mStylePosition->mOffset.GetBStart(wm).IsAuto() &&
 | |
|                  !mStylePosition->mOffset.GetBEnd(wm).IsAuto(),
 | |
|              "If any of the block-start and block-end are auto, aBlockSize "
 | |
|              "doesn't make sense");
 | |
|   NS_WARNING_ASSERTION(
 | |
|       aBlockSize >= 0 && aBlockSize != NS_UNCONSTRAINEDSIZE,
 | |
|       "The caller shouldn't give us an unresolved or invalid block size");
 | |
| 
 | |
|   if (!mStylePosition->mAspectRatio.HasFiniteRatio()) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We don't have to compute the inline size by aspect-ratio and the resolved
 | |
|   // block size (from insets) for replaced elements.
 | |
|   if (mFrame->IsFrameOfType(nsIFrame::eReplaced)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If inline size is specified, we should have it by mFrame->ComputeSize()
 | |
|   // already.
 | |
|   if (mStylePosition->ISize(wm).IsLengthPercentage()) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If both inline insets are non-auto, mFrame->ComputeSize() should get a
 | |
|   // possible inline size by those insets, so we don't rely on aspect-ratio.
 | |
|   if (!mStylePosition->mOffset.GetIStart(wm).IsAuto() &&
 | |
|       !mStylePosition->mOffset.GetIEnd(wm).IsAuto()) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Just an error handling. If |aBlockSize| is NS_UNCONSTRAINEDSIZE, there must
 | |
|   // be something wrong, and we don't want to continue the calculation for
 | |
|   // aspect-ratio. So we return false if this happens.
 | |
|   return aBlockSize != NS_UNCONSTRAINEDSIZE;
 | |
| }
 | |
| 
 | |
| // FIXME: Move this into nsIFrame::ComputeSize() if possible, so most of the
 | |
| // if-checks can be simplier.
 | |
| LogicalSize ReflowInput::CalculateAbsoluteSizeWithResolvedAutoBlockSize(
 | |
|     nscoord aAutoBSize, const LogicalSize& aTentativeComputedSize) {
 | |
|   LogicalSize resultSize = aTentativeComputedSize;
 | |
|   WritingMode wm = GetWritingMode();
 | |
| 
 | |
|   // Two cases we don't want to early return:
 | |
|   // 1. If the block size behaves as initial value and we haven't resolved it in
 | |
|   //    ComputeSize() yet, we need to apply |aAutoBSize|.
 | |
|   //    Also, we check both computed style and |resultSize.BSize(wm)| to avoid
 | |
|   //    applying |aAutoBSize| when the resolved block size is saturated at
 | |
|   //    nscoord_MAX, and wrongly treated as NS_UNCONSTRAINEDSIZE because of a
 | |
|   //    giant specified block-size.
 | |
|   // 2. If the block size needs to be computed via aspect-ratio and
 | |
|   //    |aAutoBSize|, we need to apply |aAutoBSize|. In this case,
 | |
|   //    |resultSize.BSize(wm)| may not be NS_UNCONSTRAINEDSIZE because we apply
 | |
|   //    aspect-ratio in ComputeSize() for block axis by default, so we have to
 | |
|   //    check its computed style.
 | |
|   const bool bSizeBehavesAsInitial =
 | |
|       mStylePosition->BSize(wm).BehavesLikeInitialValueOnBlockAxis();
 | |
|   const bool bSizeIsStillUnconstrained =
 | |
|       bSizeBehavesAsInitial && resultSize.BSize(wm) == NS_UNCONSTRAINEDSIZE;
 | |
|   const bool needsComputeInlineSizeByAspectRatio =
 | |
|       bSizeBehavesAsInitial &&
 | |
|       IsInlineSizeComputableByBlockSizeAndAspectRatio(aAutoBSize);
 | |
|   if (!bSizeIsStillUnconstrained && !needsComputeInlineSizeByAspectRatio) {
 | |
|     return resultSize;
 | |
|   }
 | |
| 
 | |
|   // For non-replaced elements with block-size auto, the block-size
 | |
|   // fills the remaining space, and we clamp it by min/max size constraints.
 | |
|   resultSize.BSize(wm) = ApplyMinMaxBSize(aAutoBSize);
 | |
| 
 | |
|   if (!needsComputeInlineSizeByAspectRatio) {
 | |
|     return resultSize;
 | |
|   }
 | |
| 
 | |
|   // Calculate transferred inline size through aspect-ratio.
 | |
|   // For non-replaced elements, we always take box-sizing into account.
 | |
|   const auto boxSizingAdjust =
 | |
|       mStylePosition->mBoxSizing == StyleBoxSizing::Border
 | |
|           ? ComputedLogicalBorderPadding(wm).Size(wm)
 | |
|           : LogicalSize(wm);
 | |
|   auto transferredISize =
 | |
|       mStylePosition->mAspectRatio.ToLayoutRatio().ComputeRatioDependentSize(
 | |
|           LogicalAxis::eLogicalAxisInline, wm, aAutoBSize, boxSizingAdjust);
 | |
|   resultSize.ISize(wm) = ApplyMinMaxISize(transferredISize);
 | |
| 
 | |
|   MOZ_ASSERT(mFlags.mIsBSizeSetByAspectRatio,
 | |
|              "This flag should have been set because nsIFrame::ComputeSize() "
 | |
|              "returns AspectRatioUsage::ToComputeBSize unconditionally for "
 | |
|              "auto block-size");
 | |
|   mFlags.mIsBSizeSetByAspectRatio = false;
 | |
| 
 | |
|   return resultSize;
 | |
| }
 | |
| 
 | |
| void ReflowInput::InitAbsoluteConstraints(nsPresContext* aPresContext,
 | |
|                                           const ReflowInput* aCBReflowInput,
 | |
|                                           const LogicalSize& aCBSize,
 | |
|                                           LayoutFrameType aFrameType) {
 | |
|   WritingMode wm = GetWritingMode();
 | |
|   WritingMode cbwm = aCBReflowInput->GetWritingMode();
 | |
|   NS_WARNING_ASSERTION(aCBSize.BSize(cbwm) != NS_UNCONSTRAINEDSIZE,
 | |
|                        "containing block bsize must be constrained");
 | |
| 
 | |
|   NS_ASSERTION(aFrameType != LayoutFrameType::Table,
 | |
|                "InitAbsoluteConstraints should not be called on table frames");
 | |
|   NS_ASSERTION(mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
 | |
|                "Why are we here?");
 | |
| 
 | |
|   const auto& styleOffset = mStylePosition->mOffset;
 | |
|   bool iStartIsAuto = styleOffset.GetIStart(cbwm).IsAuto();
 | |
|   bool iEndIsAuto = styleOffset.GetIEnd(cbwm).IsAuto();
 | |
|   bool bStartIsAuto = styleOffset.GetBStart(cbwm).IsAuto();
 | |
|   bool bEndIsAuto = styleOffset.GetBEnd(cbwm).IsAuto();
 | |
| 
 | |
|   // If both 'left' and 'right' are 'auto' or both 'top' and 'bottom' are
 | |
|   // 'auto', then compute the hypothetical box position where the element would
 | |
|   // have been if it had been in the flow
 | |
|   nsHypotheticalPosition hypotheticalPos;
 | |
|   if ((iStartIsAuto && iEndIsAuto) || (bStartIsAuto && bEndIsAuto)) {
 | |
|     nsPlaceholderFrame* placeholderFrame = mFrame->GetPlaceholderFrame();
 | |
|     MOZ_ASSERT(placeholderFrame, "no placeholder frame");
 | |
|     nsIFrame* placeholderParent = placeholderFrame->GetParent();
 | |
|     MOZ_ASSERT(placeholderParent, "shouldn't have unparented placeholders");
 | |
| 
 | |
|     if (placeholderFrame->HasAnyStateBits(
 | |
|             PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN)) {
 | |
|       MOZ_ASSERT(placeholderParent->IsFlexOrGridContainer(),
 | |
|                  "This flag should only be set on grid/flex children");
 | |
|       // If the (as-yet unknown) static position will determine the inline
 | |
|       // and/or block offsets, set flags to note those offsets aren't valid
 | |
|       // until we can do CSS Box Alignment on the OOF frame.
 | |
|       mFlags.mIOffsetsNeedCSSAlign = (iStartIsAuto && iEndIsAuto);
 | |
|       mFlags.mBOffsetsNeedCSSAlign = (bStartIsAuto && bEndIsAuto);
 | |
|     }
 | |
| 
 | |
|     if (mFlags.mStaticPosIsCBOrigin) {
 | |
|       hypotheticalPos.mWritingMode = cbwm;
 | |
|       hypotheticalPos.mIStart = nscoord(0);
 | |
|       hypotheticalPos.mBStart = nscoord(0);
 | |
|       if (placeholderParent->IsGridContainerFrame() &&
 | |
|           placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY |
 | |
|                                              NS_STATE_GRID_IS_ROW_MASONRY)) {
 | |
|         // Disable CSS alignment in Masonry layout since we don't have real grid
 | |
|         // areas in that axis.  We'll use the placeholder position instead as it
 | |
|         // was calculated by nsGridContainerFrame::MasonryLayout.
 | |
|         auto cbsz = aCBSize.GetPhysicalSize(cbwm);
 | |
|         LogicalPoint pos = placeholderFrame->GetLogicalPosition(cbwm, cbsz);
 | |
|         if (placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY)) {
 | |
|           mFlags.mIOffsetsNeedCSSAlign = false;
 | |
|           hypotheticalPos.mIStart = pos.I(cbwm);
 | |
|         } else {
 | |
|           mFlags.mBOffsetsNeedCSSAlign = false;
 | |
|           hypotheticalPos.mBStart = pos.B(cbwm);
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // XXXmats all this is broken for orthogonal writing-modes: bug 1521988.
 | |
|       CalculateHypotheticalPosition(aPresContext, placeholderFrame,
 | |
|                                     aCBReflowInput, hypotheticalPos,
 | |
|                                     aFrameType);
 | |
|       if (aCBReflowInput->mFrame->IsGridContainerFrame()) {
 | |
|         // 'hypotheticalPos' is relative to the padding rect of the CB *frame*.
 | |
|         // In grid layout the CB is the grid area rectangle, so we translate
 | |
|         // 'hypotheticalPos' to be relative that rectangle here.
 | |
|         nsRect cb = nsGridContainerFrame::GridItemCB(mFrame);
 | |
|         nscoord left(0);
 | |
|         nscoord right(0);
 | |
|         if (cbwm.IsBidiLTR()) {
 | |
|           left = cb.X();
 | |
|         } else {
 | |
|           right = aCBReflowInput->ComputedWidth() +
 | |
|                   aCBReflowInput->ComputedPhysicalPadding().LeftRight() -
 | |
|                   cb.XMost();
 | |
|         }
 | |
|         LogicalMargin offsets(cbwm, nsMargin(cb.Y(), right, nscoord(0), left));
 | |
|         hypotheticalPos.mIStart -= offsets.IStart(cbwm);
 | |
|         hypotheticalPos.mBStart -= offsets.BStart(cbwm);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Initialize the 'left' and 'right' computed offsets
 | |
|   // XXX Handle new 'static-position' value...
 | |
| 
 | |
|   // Size of the containing block in its writing mode
 | |
|   LogicalSize cbSize = aCBSize;
 | |
|   LogicalMargin offsets = ComputedLogicalOffsets(cbwm);
 | |
| 
 | |
|   if (iStartIsAuto) {
 | |
|     offsets.IStart(cbwm) = 0;
 | |
|   } else {
 | |
|     offsets.IStart(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
 | |
|         cbSize.ISize(cbwm), styleOffset.GetIStart(cbwm));
 | |
|   }
 | |
|   if (iEndIsAuto) {
 | |
|     offsets.IEnd(cbwm) = 0;
 | |
|   } else {
 | |
|     offsets.IEnd(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
 | |
|         cbSize.ISize(cbwm), styleOffset.GetIEnd(cbwm));
 | |
|   }
 | |
| 
 | |
|   if (iStartIsAuto && iEndIsAuto) {
 | |
|     if (cbwm.IsBidiLTR() != hypotheticalPos.mWritingMode.IsBidiLTR()) {
 | |
|       offsets.IEnd(cbwm) = hypotheticalPos.mIStart;
 | |
|       iEndIsAuto = false;
 | |
|     } else {
 | |
|       offsets.IStart(cbwm) = hypotheticalPos.mIStart;
 | |
|       iStartIsAuto = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (bStartIsAuto) {
 | |
|     offsets.BStart(cbwm) = 0;
 | |
|   } else {
 | |
|     offsets.BStart(cbwm) = nsLayoutUtils::ComputeBSizeDependentValue(
 | |
|         cbSize.BSize(cbwm), styleOffset.GetBStart(cbwm));
 | |
|   }
 | |
|   if (bEndIsAuto) {
 | |
|     offsets.BEnd(cbwm) = 0;
 | |
|   } else {
 | |
|     offsets.BEnd(cbwm) = nsLayoutUtils::ComputeBSizeDependentValue(
 | |
|         cbSize.BSize(cbwm), styleOffset.GetBEnd(cbwm));
 | |
|   }
 | |
| 
 | |
|   if (bStartIsAuto && bEndIsAuto) {
 | |
|     // Treat 'top' like 'static-position'
 | |
|     offsets.BStart(cbwm) = hypotheticalPos.mBStart;
 | |
|     bStartIsAuto = false;
 | |
|   }
 | |
| 
 | |
|   SetComputedLogicalOffsets(cbwm, offsets);
 | |
| 
 | |
|   if (wm.IsOrthogonalTo(cbwm)) {
 | |
|     if (bStartIsAuto || bEndIsAuto) {
 | |
|       mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
 | |
|     }
 | |
|   } else {
 | |
|     if (iStartIsAuto || iEndIsAuto) {
 | |
|       mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   nsIFrame::SizeComputationResult sizeResult = {
 | |
|       LogicalSize(wm), nsIFrame::AspectRatioUsage::None};
 | |
|   {
 | |
|     AutoMaybeDisableFontInflation an(mFrame);
 | |
| 
 | |
|     sizeResult = mFrame->ComputeSize(
 | |
|         mRenderingContext, wm, cbSize.ConvertTo(wm, cbwm),
 | |
|         cbSize.ConvertTo(wm, cbwm).ISize(wm),  // XXX or AvailableISize()?
 | |
|         ComputedLogicalMargin(wm).Size(wm) +
 | |
|             ComputedLogicalOffsets(wm).Size(wm),
 | |
|         ComputedLogicalBorderPadding(wm).Size(wm), {}, mComputeSizeFlags);
 | |
|     mComputedSize = sizeResult.mLogicalSize;
 | |
|     NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
 | |
|     NS_ASSERTION(
 | |
|         ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
 | |
|         "Bogus block-size");
 | |
|   }
 | |
| 
 | |
|   LogicalSize& computedSize = sizeResult.mLogicalSize;
 | |
|   computedSize = computedSize.ConvertTo(cbwm, wm);
 | |
| 
 | |
|   mFlags.mIsBSizeSetByAspectRatio = sizeResult.mAspectRatioUsage ==
 | |
|                                     nsIFrame::AspectRatioUsage::ToComputeBSize;
 | |
| 
 | |
|   // XXX Now that we have ComputeSize, can we condense many of the
 | |
|   // branches off of widthIsAuto?
 | |
| 
 | |
|   LogicalMargin margin = ComputedLogicalMargin(cbwm);
 | |
|   const LogicalMargin borderPadding = ComputedLogicalBorderPadding(cbwm);
 | |
| 
 | |
|   bool iSizeIsAuto = mStylePosition->ISize(cbwm).IsAuto();
 | |
|   bool marginIStartIsAuto = false;
 | |
|   bool marginIEndIsAuto = false;
 | |
|   bool marginBStartIsAuto = false;
 | |
|   bool marginBEndIsAuto = false;
 | |
|   if (iStartIsAuto) {
 | |
|     // We know 'right' is not 'auto' anymore thanks to the hypothetical
 | |
|     // box code above.
 | |
|     // Solve for 'left'.
 | |
|     if (iSizeIsAuto) {
 | |
|       // XXXldb This, and the corresponding code in
 | |
|       // nsAbsoluteContainingBlock.cpp, could probably go away now that
 | |
|       // we always compute widths.
 | |
|       offsets.IStart(cbwm) = NS_AUTOOFFSET;
 | |
|     } else {
 | |
|       offsets.IStart(cbwm) = cbSize.ISize(cbwm) - offsets.IEnd(cbwm) -
 | |
|                              computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
 | |
|                              borderPadding.IStartEnd(cbwm);
 | |
|     }
 | |
|   } else if (iEndIsAuto) {
 | |
|     // We know 'left' is not 'auto' anymore thanks to the hypothetical
 | |
|     // box code above.
 | |
|     // Solve for 'right'.
 | |
|     if (iSizeIsAuto) {
 | |
|       // XXXldb This, and the corresponding code in
 | |
|       // nsAbsoluteContainingBlock.cpp, could probably go away now that
 | |
|       // we always compute widths.
 | |
|       offsets.IEnd(cbwm) = NS_AUTOOFFSET;
 | |
|     } else {
 | |
|       offsets.IEnd(cbwm) = cbSize.ISize(cbwm) - offsets.IStart(cbwm) -
 | |
|                            computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
 | |
|                            borderPadding.IStartEnd(cbwm);
 | |
|     }
 | |
|   } else if (!mFrame->HasIntrinsicKeywordForBSize() ||
 | |
|              !wm.IsOrthogonalTo(cbwm)) {
 | |
|     // Neither 'inline-start' nor 'inline-end' is 'auto'.
 | |
|     if (wm.IsOrthogonalTo(cbwm)) {
 | |
|       // For orthogonal blocks, we need to handle the case where the block had
 | |
|       // unconstrained block-size, which mapped to unconstrained inline-size
 | |
|       // in the containing block's writing mode.
 | |
|       nscoord autoISize = cbSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
 | |
|                           borderPadding.IStartEnd(cbwm) -
 | |
|                           offsets.IStartEnd(cbwm);
 | |
|       autoISize = std::max(autoISize, 0);
 | |
|       // FIXME: Bug 1602669: if |autoISize| happens to be numerically equal to
 | |
|       // NS_UNCONSTRAINEDSIZE, we may get some unexpected behavior. We need a
 | |
|       // better way to distinguish between unconstrained size and resolved
 | |
|       // size.
 | |
|       NS_WARNING_ASSERTION(autoISize != NS_UNCONSTRAINEDSIZE,
 | |
|                            "Unexpected size from inline-start and inline-end");
 | |
| 
 | |
|       nscoord autoBSizeInWM = autoISize;
 | |
|       LogicalSize computedSizeInWM =
 | |
|           CalculateAbsoluteSizeWithResolvedAutoBlockSize(
 | |
|               autoBSizeInWM, computedSize.ConvertTo(wm, cbwm));
 | |
|       computedSize = computedSizeInWM.ConvertTo(cbwm, wm);
 | |
|     }
 | |
| 
 | |
|     // However, the inline-size might
 | |
|     // still not fill all the available space (even though we didn't
 | |
|     // shrink-wrap) in case:
 | |
|     //  * inline-size was specified
 | |
|     //  * we're dealing with a replaced element
 | |
|     //  * width was constrained by min- or max-inline-size.
 | |
| 
 | |
|     nscoord availMarginSpace =
 | |
|         aCBSize.ISize(cbwm) - offsets.IStartEnd(cbwm) - margin.IStartEnd(cbwm) -
 | |
|         borderPadding.IStartEnd(cbwm) - computedSize.ISize(cbwm);
 | |
|     marginIStartIsAuto = mStyleMargin->mMargin.GetIStart(cbwm).IsAuto();
 | |
|     marginIEndIsAuto = mStyleMargin->mMargin.GetIEnd(cbwm).IsAuto();
 | |
|     ComputeAbsPosInlineAutoMargin(availMarginSpace, cbwm, marginIStartIsAuto,
 | |
|                                   marginIEndIsAuto, margin, offsets);
 | |
|   }
 | |
| 
 | |
|   bool bSizeIsAuto =
 | |
|       mStylePosition->BSize(cbwm).BehavesLikeInitialValueOnBlockAxis();
 | |
|   if (bStartIsAuto) {
 | |
|     // solve for block-start
 | |
|     if (bSizeIsAuto) {
 | |
|       offsets.BStart(cbwm) = NS_AUTOOFFSET;
 | |
|     } else {
 | |
|       offsets.BStart(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
 | |
|                              borderPadding.BStartEnd(cbwm) -
 | |
|                              computedSize.BSize(cbwm) - offsets.BEnd(cbwm);
 | |
|     }
 | |
|   } else if (bEndIsAuto) {
 | |
|     // solve for block-end
 | |
|     if (bSizeIsAuto) {
 | |
|       offsets.BEnd(cbwm) = NS_AUTOOFFSET;
 | |
|     } else {
 | |
|       offsets.BEnd(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
 | |
|                            borderPadding.BStartEnd(cbwm) -
 | |
|                            computedSize.BSize(cbwm) - offsets.BStart(cbwm);
 | |
|     }
 | |
|   } else if (!mFrame->HasIntrinsicKeywordForBSize() ||
 | |
|              wm.IsOrthogonalTo(cbwm)) {
 | |
|     // Neither block-start nor -end is 'auto'.
 | |
|     nscoord autoBSize = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
 | |
|                         borderPadding.BStartEnd(cbwm) - offsets.BStartEnd(cbwm);
 | |
|     autoBSize = std::max(autoBSize, 0);
 | |
|     // FIXME: Bug 1602669: if |autoBSize| happens to be numerically equal to
 | |
|     // NS_UNCONSTRAINEDSIZE, we may get some unexpected behavior. We need a
 | |
|     // better way to distinguish between unconstrained size and resolved size.
 | |
|     NS_WARNING_ASSERTION(autoBSize != NS_UNCONSTRAINEDSIZE,
 | |
|                          "Unexpected size from block-start and block-end");
 | |
| 
 | |
|     // For orthogonal case, the inline size in |wm| should have been handled by
 | |
|     // ComputeSize(). In other words, we only have to apply |autoBSize| to
 | |
|     // the computed size if this value can represent the block size in |wm|.
 | |
|     if (!wm.IsOrthogonalTo(cbwm)) {
 | |
|       // We handle the unconstrained block-size in current block's writing
 | |
|       // mode 'wm'.
 | |
|       LogicalSize computedSizeInWM =
 | |
|           CalculateAbsoluteSizeWithResolvedAutoBlockSize(
 | |
|               autoBSize, computedSize.ConvertTo(wm, cbwm));
 | |
|       computedSize = computedSizeInWM.ConvertTo(cbwm, wm);
 | |
|     }
 | |
| 
 | |
|     // The block-size might still not fill all the available space in case:
 | |
|     //  * bsize was specified
 | |
|     //  * we're dealing with a replaced element
 | |
|     //  * bsize was constrained by min- or max-bsize.
 | |
|     nscoord availMarginSpace = autoBSize - computedSize.BSize(cbwm);
 | |
|     marginBStartIsAuto = mStyleMargin->mMargin.GetBStart(cbwm).IsAuto();
 | |
|     marginBEndIsAuto = mStyleMargin->mMargin.GetBEnd(cbwm).IsAuto();
 | |
| 
 | |
|     ComputeAbsPosBlockAutoMargin(availMarginSpace, cbwm, marginBStartIsAuto,
 | |
|                                  marginBEndIsAuto, margin, offsets);
 | |
|   }
 | |
|   mComputedSize = computedSize.ConvertTo(wm, cbwm);
 | |
| 
 | |
|   SetComputedLogicalOffsets(cbwm, offsets);
 | |
|   SetComputedLogicalMargin(cbwm, margin);
 | |
| 
 | |
|   // If we have auto margins, update our UsedMarginProperty. The property
 | |
|   // will have already been created by InitOffsets if it is needed.
 | |
|   if (marginIStartIsAuto || marginIEndIsAuto || marginBStartIsAuto ||
 | |
|       marginBEndIsAuto) {
 | |
|     nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
 | |
|     MOZ_ASSERT(propValue,
 | |
|                "UsedMarginProperty should have been created "
 | |
|                "by InitOffsets.");
 | |
|     *propValue = margin.GetPhysicalMargin(cbwm);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This will not be converted to abstract coordinates because it's only
 | |
| // used in CalcQuirkContainingBlockHeight
 | |
| static nscoord GetBlockMarginBorderPadding(const ReflowInput* aReflowInput) {
 | |
|   nscoord result = 0;
 | |
|   if (!aReflowInput) return result;
 | |
| 
 | |
|   // zero auto margins
 | |
|   nsMargin margin = aReflowInput->ComputedPhysicalMargin();
 | |
|   if (NS_AUTOMARGIN == margin.top) margin.top = 0;
 | |
|   if (NS_AUTOMARGIN == margin.bottom) margin.bottom = 0;
 | |
| 
 | |
|   result += margin.top + margin.bottom;
 | |
|   result += aReflowInput->ComputedPhysicalBorderPadding().top +
 | |
|             aReflowInput->ComputedPhysicalBorderPadding().bottom;
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /* Get the height based on the viewport of the containing block specified
 | |
|  * in aReflowInput when the containing block has mComputedHeight ==
 | |
|  * NS_UNCONSTRAINEDSIZE This will walk up the chain of containing blocks looking
 | |
|  * for a computed height until it finds the canvas frame, or it encounters a
 | |
|  * frame that is not a block, area, or scroll frame. This handles compatibility
 | |
|  * with IE (see bug 85016 and bug 219693)
 | |
|  *
 | |
|  * When we encounter scrolledContent block frames, we skip over them,
 | |
|  * since they are guaranteed to not be useful for computing the containing
 | |
|  * block.
 | |
|  *
 | |
|  * See also IsQuirkContainingBlockHeight.
 | |
|  */
 | |
| static nscoord CalcQuirkContainingBlockHeight(
 | |
|     const ReflowInput* aCBReflowInput) {
 | |
|   const ReflowInput* firstAncestorRI = nullptr;   // a candidate for html frame
 | |
|   const ReflowInput* secondAncestorRI = nullptr;  // a candidate for body frame
 | |
| 
 | |
|   // initialize the default to NS_UNCONSTRAINEDSIZE as this is the containings
 | |
|   // block computed height when this function is called. It is possible that we
 | |
|   // don't alter this height especially if we are restricted to one level
 | |
|   nscoord result = NS_UNCONSTRAINEDSIZE;
 | |
| 
 | |
|   const ReflowInput* ri = aCBReflowInput;
 | |
|   for (; ri; ri = ri->mParentReflowInput) {
 | |
|     LayoutFrameType frameType = ri->mFrame->Type();
 | |
|     // if the ancestor is auto height then skip it and continue up if it
 | |
|     // is the first block frame and possibly the body/html
 | |
|     if (LayoutFrameType::Block == frameType ||
 | |
|         LayoutFrameType::Scroll == frameType) {
 | |
|       secondAncestorRI = firstAncestorRI;
 | |
|       firstAncestorRI = ri;
 | |
| 
 | |
|       // If the current frame we're looking at is positioned, we don't want to
 | |
|       // go any further (see bug 221784).  The behavior we want here is: 1) If
 | |
|       // not auto-height, use this as the percentage base.  2) If auto-height,
 | |
|       // keep looking, unless the frame is positioned.
 | |
|       if (NS_UNCONSTRAINEDSIZE == ri->ComputedHeight()) {
 | |
|         if (ri->mFrame->IsAbsolutelyPositioned(ri->mStyleDisplay)) {
 | |
|           break;
 | |
|         } else {
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     } else if (LayoutFrameType::Canvas == frameType) {
 | |
|       // Always continue on to the height calculation
 | |
|     } else if (LayoutFrameType::PageContent == frameType) {
 | |
|       nsIFrame* prevInFlow = ri->mFrame->GetPrevInFlow();
 | |
|       // only use the page content frame for a height basis if it is the first
 | |
|       // in flow
 | |
|       if (prevInFlow) break;
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // if the ancestor is the page content frame then the percent base is
 | |
|     // the avail height, otherwise it is the computed height
 | |
|     result = (LayoutFrameType::PageContent == frameType) ? ri->AvailableHeight()
 | |
|                                                          : ri->ComputedHeight();
 | |
|     // if unconstrained - don't sutract borders - would result in huge height
 | |
|     if (NS_UNCONSTRAINEDSIZE == result) return result;
 | |
| 
 | |
|     // if we got to the canvas or page content frame, then subtract out
 | |
|     // margin/border/padding for the BODY and HTML elements
 | |
|     if ((LayoutFrameType::Canvas == frameType) ||
 | |
|         (LayoutFrameType::PageContent == frameType)) {
 | |
|       result -= GetBlockMarginBorderPadding(firstAncestorRI);
 | |
|       result -= GetBlockMarginBorderPadding(secondAncestorRI);
 | |
| 
 | |
| #ifdef DEBUG
 | |
|       // make sure the first ancestor is the HTML and the second is the BODY
 | |
|       if (firstAncestorRI) {
 | |
|         nsIContent* frameContent = firstAncestorRI->mFrame->GetContent();
 | |
|         if (frameContent) {
 | |
|           NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::html),
 | |
|                        "First ancestor is not HTML");
 | |
|         }
 | |
|       }
 | |
|       if (secondAncestorRI) {
 | |
|         nsIContent* frameContent = secondAncestorRI->mFrame->GetContent();
 | |
|         if (frameContent) {
 | |
|           NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::body),
 | |
|                        "Second ancestor is not BODY");
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|     }
 | |
|     // if we got to the html frame (a block child of the canvas) ...
 | |
|     else if (LayoutFrameType::Block == frameType && ri->mParentReflowInput &&
 | |
|              ri->mParentReflowInput->mFrame->IsCanvasFrame()) {
 | |
|       // ... then subtract out margin/border/padding for the BODY element
 | |
|       result -= GetBlockMarginBorderPadding(secondAncestorRI);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Make sure not to return a negative height here!
 | |
|   return std::max(result, 0);
 | |
| }
 | |
| 
 | |
| // Called by InitConstraints() to compute the containing block rectangle for
 | |
| // the element. Handles the special logic for absolutely positioned elements
 | |
| LogicalSize ReflowInput::ComputeContainingBlockRectangle(
 | |
|     nsPresContext* aPresContext, const ReflowInput* aContainingBlockRI) const {
 | |
|   // Unless the element is absolutely positioned, the containing block is
 | |
|   // formed by the content edge of the nearest block-level ancestor
 | |
|   LogicalSize cbSize = aContainingBlockRI->ComputedSize();
 | |
| 
 | |
|   WritingMode wm = aContainingBlockRI->GetWritingMode();
 | |
| 
 | |
|   if (aContainingBlockRI->mFlags.mTreatBSizeAsIndefinite) {
 | |
|     cbSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
 | |
|   }
 | |
| 
 | |
|   if (((mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
 | |
|         // XXXfr hack for making frames behave properly when in overflow
 | |
|         // container lists, see bug 154892; need to revisit later
 | |
|         !mFrame->GetPrevInFlow()) ||
 | |
|        (mFrame->IsTableFrame() &&
 | |
|         mFrame->GetParent()->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW))) &&
 | |
|       mStyleDisplay->IsAbsolutelyPositioned(mFrame)) {
 | |
|     // See if the ancestor is block-level or inline-level
 | |
|     const auto computedPadding = aContainingBlockRI->ComputedLogicalPadding(wm);
 | |
|     if (aContainingBlockRI->mStyleDisplay->IsInlineOutsideStyle()) {
 | |
|       // Base our size on the actual size of the frame.  In cases when this is
 | |
|       // completely bogus (eg initial reflow), this code shouldn't even be
 | |
|       // called, since the code in nsInlineFrame::Reflow will pass in
 | |
|       // the containing block dimensions to our constructor.
 | |
|       // XXXbz we should be taking the in-flows into account too, but
 | |
|       // that's very hard.
 | |
| 
 | |
|       LogicalMargin computedBorder =
 | |
|           aContainingBlockRI->ComputedLogicalBorderPadding(wm) -
 | |
|           computedPadding;
 | |
|       cbSize.ISize(wm) =
 | |
|           aContainingBlockRI->mFrame->ISize(wm) - computedBorder.IStartEnd(wm);
 | |
|       NS_ASSERTION(cbSize.ISize(wm) >= 0, "Negative containing block isize!");
 | |
|       cbSize.BSize(wm) =
 | |
|           aContainingBlockRI->mFrame->BSize(wm) - computedBorder.BStartEnd(wm);
 | |
|       NS_ASSERTION(cbSize.BSize(wm) >= 0, "Negative containing block bsize!");
 | |
|     } else {
 | |
|       // If the ancestor is block-level, the containing block is formed by the
 | |
|       // padding edge of the ancestor
 | |
|       cbSize += computedPadding.Size(wm);
 | |
|     }
 | |
|   } else {
 | |
|     auto IsQuirky = [](const StyleSize& aSize) -> bool {
 | |
|       return aSize.ConvertsToPercentage();
 | |
|     };
 | |
|     // an element in quirks mode gets a containing block based on looking for a
 | |
|     // parent with a non-auto height if the element has a percent height.
 | |
|     // Note: We don't emulate this quirk for percents in calc(), or in vertical
 | |
|     // writing modes, or if the containing block is a flex or grid item.
 | |
|     if (!wm.IsVertical() && NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
 | |
|       if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
 | |
|           !aContainingBlockRI->mFrame->IsFlexOrGridItem() &&
 | |
|           (IsQuirky(mStylePosition->mHeight) ||
 | |
|            (mFrame->IsTableWrapperFrame() &&
 | |
|             IsQuirky(mFrame->PrincipalChildList()
 | |
|                          .FirstChild()
 | |
|                          ->StylePosition()
 | |
|                          ->mHeight)))) {
 | |
|         cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(aContainingBlockRI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return cbSize.ConvertTo(GetWritingMode(), wm);
 | |
| }
 | |
| 
 | |
| // XXX refactor this code to have methods for each set of properties
 | |
| // we are computing: width,height,line-height; margin; offsets
 | |
| 
 | |
| void ReflowInput::InitConstraints(
 | |
|     nsPresContext* aPresContext, const Maybe<LogicalSize>& aContainingBlockSize,
 | |
|     const Maybe<LogicalMargin>& aBorder, const Maybe<LogicalMargin>& aPadding,
 | |
|     LayoutFrameType aFrameType) {
 | |
|   MOZ_ASSERT(!mStyleDisplay->IsFloating(mFrame) ||
 | |
|                  (mStyleDisplay->mDisplay != StyleDisplay::MozBox &&
 | |
|                   mStyleDisplay->mDisplay != StyleDisplay::MozInlineBox),
 | |
|              "Please don't try to float a -moz-box or a -moz-inline-box");
 | |
| 
 | |
|   WritingMode wm = GetWritingMode();
 | |
|   LogicalSize cbSize = aContainingBlockSize.valueOr(
 | |
|       LogicalSize(mWritingMode, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE));
 | |
|   DISPLAY_INIT_CONSTRAINTS(mFrame, this, cbSize.ISize(wm), cbSize.BSize(wm),
 | |
|                            aBorder, aPadding);
 | |
| 
 | |
|   // If this is a reflow root, then set the computed width and
 | |
|   // height equal to the available space
 | |
|   if (nullptr == mParentReflowInput || mFlags.mDummyParentReflowInput) {
 | |
|     // XXXldb This doesn't mean what it used to!
 | |
|     InitOffsets(wm, cbSize.ISize(wm), aFrameType, mComputeSizeFlags, aBorder,
 | |
|                 aPadding, mStyleDisplay);
 | |
|     // Override mComputedMargin since reflow roots start from the
 | |
|     // frame's boundary, which is inside the margin.
 | |
|     SetComputedLogicalMargin(wm, LogicalMargin(wm));
 | |
|     SetComputedLogicalOffsets(wm, LogicalMargin(wm));
 | |
| 
 | |
|     const auto borderPadding = ComputedLogicalBorderPadding(wm);
 | |
|     SetComputedISize(
 | |
|         std::max(0, AvailableISize() - borderPadding.IStartEnd(wm)),
 | |
|         ResetResizeFlags::No);
 | |
|     SetComputedBSize(
 | |
|         AvailableBSize() != NS_UNCONSTRAINEDSIZE
 | |
|             ? std::max(0, AvailableBSize() - borderPadding.BStartEnd(wm))
 | |
|             : NS_UNCONSTRAINEDSIZE,
 | |
|         ResetResizeFlags::No);
 | |
| 
 | |
|     mComputedMinSize.SizeTo(mWritingMode, 0, 0);
 | |
|     mComputedMaxSize.SizeTo(mWritingMode, NS_UNCONSTRAINEDSIZE,
 | |
|                             NS_UNCONSTRAINEDSIZE);
 | |
|   } else {
 | |
|     // Get the containing block's reflow input
 | |
|     const ReflowInput* cbri = mCBReflowInput;
 | |
|     MOZ_ASSERT(cbri, "no containing block");
 | |
|     MOZ_ASSERT(mFrame->GetParent());
 | |
| 
 | |
|     // If we weren't given a containing block size, then compute one.
 | |
|     if (aContainingBlockSize.isNothing()) {
 | |
|       cbSize = ComputeContainingBlockRectangle(aPresContext, cbri);
 | |
|     }
 | |
| 
 | |
|     // See if the containing block height is based on the size of its
 | |
|     // content
 | |
|     if (NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
 | |
|       // See if the containing block is a cell frame which needs
 | |
|       // to use the mComputedHeight of the cell instead of what the cell block
 | |
|       // passed in.
 | |
|       // XXX It seems like this could lead to bugs with min-height and friends
 | |
|       if (cbri->mParentReflowInput && cbri->mFrame->IsTableCellFrame()) {
 | |
|         cbSize.BSize(wm) = cbri->ComputedSize(wm).BSize(wm);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // XXX Might need to also pass the CB height (not width) for page boxes,
 | |
|     // too, if we implement them.
 | |
| 
 | |
|     // For calculating positioning offsets, margins, borders and
 | |
|     // padding, we use the writing mode of the containing block
 | |
|     WritingMode cbwm = cbri->GetWritingMode();
 | |
|     InitOffsets(cbwm, cbSize.ConvertTo(cbwm, wm).ISize(cbwm), aFrameType,
 | |
|                 mComputeSizeFlags, aBorder, aPadding, mStyleDisplay);
 | |
| 
 | |
|     // For calculating the size of this box, we use its own writing mode
 | |
|     const auto& blockSize = mStylePosition->BSize(wm);
 | |
|     bool isAutoBSize = blockSize.BehavesLikeInitialValueOnBlockAxis();
 | |
| 
 | |
|     // Check for a percentage based block size and a containing block
 | |
|     // block size that depends on the content block size
 | |
|     if (blockSize.HasPercent()) {
 | |
|       if (NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
 | |
|         // this if clause enables %-blockSize on replaced inline frames,
 | |
|         // such as images.  See bug 54119.  The else clause "blockSizeUnit =
 | |
|         // eStyleUnit_Auto;" used to be called exclusively.
 | |
|         if (mFlags.mIsReplaced && mStyleDisplay->IsInlineOutsideStyle()) {
 | |
|           // Get the containing block's reflow input
 | |
|           NS_ASSERTION(nullptr != cbri, "no containing block");
 | |
|           // in quirks mode, get the cb height using the special quirk method
 | |
|           if (!wm.IsVertical() &&
 | |
|               eCompatibility_NavQuirks == aPresContext->CompatibilityMode()) {
 | |
|             if (!cbri->mFrame->IsTableCellFrame() &&
 | |
|                 !cbri->mFrame->IsFlexOrGridItem()) {
 | |
|               cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(cbri);
 | |
|               if (cbSize.BSize(wm) == NS_UNCONSTRAINEDSIZE) {
 | |
|                 isAutoBSize = true;
 | |
|               }
 | |
|             } else {
 | |
|               isAutoBSize = true;
 | |
|             }
 | |
|           }
 | |
|           // in standard mode, use the cb block size.  if it's "auto",
 | |
|           // as will be the case by default in BODY, use auto block size
 | |
|           // as per CSS2 spec.
 | |
|           else {
 | |
|             nscoord computedBSize = cbri->ComputedSize(wm).BSize(wm);
 | |
|             if (NS_UNCONSTRAINEDSIZE != computedBSize) {
 | |
|               cbSize.BSize(wm) = computedBSize;
 | |
|             } else {
 | |
|               isAutoBSize = true;
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           // default to interpreting the blockSize like 'auto'
 | |
|           isAutoBSize = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Compute our offsets if the element is relatively positioned.  We
 | |
|     // need the correct containing block inline-size and block-size
 | |
|     // here, which is why we need to do it after all the quirks-n-such
 | |
|     // above. (If the element is sticky positioned, we need to wait
 | |
|     // until the scroll container knows its size, so we compute offsets
 | |
|     // from StickyScrollContainer::UpdatePositions.)
 | |
|     if (mStyleDisplay->IsRelativelyPositioned(mFrame)) {
 | |
|       const LogicalMargin offsets =
 | |
|           ComputeRelativeOffsets(cbwm, mFrame, cbSize.ConvertTo(cbwm, wm));
 | |
|       SetComputedLogicalOffsets(cbwm, offsets);
 | |
|     } else {
 | |
|       // Initialize offsets to 0
 | |
|       SetComputedLogicalOffsets(wm, LogicalMargin(wm));
 | |
|     }
 | |
| 
 | |
|     // Calculate the computed values for min and max properties.  Note that
 | |
|     // this MUST come after we've computed our border and padding.
 | |
|     ComputeMinMaxValues(cbSize);
 | |
| 
 | |
|     // Calculate the computed inlineSize and blockSize.
 | |
|     // This varies by frame type.
 | |
| 
 | |
|     if (IsInternalTableFrame()) {
 | |
|       // Internal table elements. The rules vary depending on the type.
 | |
|       // Calculate the computed isize
 | |
|       bool rowOrRowGroup = false;
 | |
|       const auto& inlineSize = mStylePosition->ISize(wm);
 | |
|       bool isAutoISize = inlineSize.IsAuto();
 | |
|       if ((StyleDisplay::TableRow == mStyleDisplay->mDisplay) ||
 | |
|           (StyleDisplay::TableRowGroup == mStyleDisplay->mDisplay)) {
 | |
|         // 'inlineSize' property doesn't apply to table rows and row groups
 | |
|         isAutoISize = true;
 | |
|         rowOrRowGroup = true;
 | |
|       }
 | |
| 
 | |
|       // calc() with both percentages and lengths act like auto on internal
 | |
|       // table elements
 | |
|       if (isAutoISize || inlineSize.HasLengthAndPercentage()) {
 | |
|         if (AvailableISize() != NS_UNCONSTRAINEDSIZE && !rowOrRowGroup) {
 | |
|           // Internal table elements don't have margins. Only tables and
 | |
|           // cells have border and padding
 | |
|           SetComputedISize(
 | |
|               std::max(0, AvailableISize() -
 | |
|                               ComputedLogicalBorderPadding(wm).IStartEnd(wm)),
 | |
|               ResetResizeFlags::No);
 | |
|         } else {
 | |
|           SetComputedISize(AvailableISize(), ResetResizeFlags::No);
 | |
|         }
 | |
|         NS_ASSERTION(ComputedISize() >= 0, "Bogus computed isize");
 | |
| 
 | |
|       } else {
 | |
|         SetComputedISize(
 | |
|             ComputeISizeValue(cbSize, mStylePosition->mBoxSizing, inlineSize),
 | |
|             ResetResizeFlags::No);
 | |
|       }
 | |
| 
 | |
|       // Calculate the computed block size
 | |
|       if (StyleDisplay::TableColumn == mStyleDisplay->mDisplay ||
 | |
|           StyleDisplay::TableColumnGroup == mStyleDisplay->mDisplay) {
 | |
|         // 'blockSize' property doesn't apply to table columns and column groups
 | |
|         isAutoBSize = true;
 | |
|       }
 | |
|       // calc() with both percentages and lengths acts like 'auto' on internal
 | |
|       // table elements
 | |
|       if (isAutoBSize || blockSize.HasLengthAndPercentage()) {
 | |
|         SetComputedBSize(NS_UNCONSTRAINEDSIZE, ResetResizeFlags::No);
 | |
|       } else {
 | |
|         SetComputedBSize(
 | |
|             ComputeBSizeValue(cbSize.BSize(wm), mStylePosition->mBoxSizing,
 | |
|                               blockSize.AsLengthPercentage()),
 | |
|             ResetResizeFlags::No);
 | |
|       }
 | |
| 
 | |
|       // Doesn't apply to internal table elements
 | |
|       mComputedMinSize.SizeTo(mWritingMode, 0, 0);
 | |
|       mComputedMaxSize.SizeTo(mWritingMode, NS_UNCONSTRAINEDSIZE,
 | |
|                               NS_UNCONSTRAINEDSIZE);
 | |
|     } else if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
 | |
|                mStyleDisplay->IsAbsolutelyPositionedStyle() &&
 | |
|                // XXXfr hack for making frames behave properly when in overflow
 | |
|                // container lists, see bug 154892; need to revisit later
 | |
|                !mFrame->GetPrevInFlow()) {
 | |
|       InitAbsoluteConstraints(aPresContext, cbri,
 | |
|                               cbSize.ConvertTo(cbri->GetWritingMode(), wm),
 | |
|                               aFrameType);
 | |
|     } else {
 | |
|       AutoMaybeDisableFontInflation an(mFrame);
 | |
| 
 | |
|       const bool isBlockLevel =
 | |
|           ((!mStyleDisplay->IsInlineOutsideStyle() &&
 | |
|             // internal table values on replaced elements behaves as inline
 | |
|             // https://drafts.csswg.org/css-tables-3/#table-structure
 | |
|             // "... it is handled instead as though the author had declared
 | |
|             //  either 'block' (for 'table' display) or 'inline' (for all
 | |
|             //  other values)"
 | |
|             !(mFlags.mIsReplaced && (mStyleDisplay->IsInnerTableStyle() ||
 | |
|                                      mStyleDisplay->DisplayOutside() ==
 | |
|                                          StyleDisplayOutside::TableCaption))) ||
 | |
|            // The inner table frame always fills its outer wrapper table frame,
 | |
|            // even for 'inline-table'.
 | |
|            mFrame->IsTableFrame()) &&
 | |
|           // XXX abs.pos. continuations treated like blocks, see comment in
 | |
|           // the else-if condition above.
 | |
|           (!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) ||
 | |
|            mStyleDisplay->IsAbsolutelyPositionedStyle());
 | |
| 
 | |
|       if (!isBlockLevel) {
 | |
|         mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
 | |
|       }
 | |
| 
 | |
|       nsIFrame* alignCB = mFrame->GetParent();
 | |
|       if (alignCB->IsTableWrapperFrame() && alignCB->GetParent()) {
 | |
|         // XXX grid-specific for now; maybe remove this check after we address
 | |
|         // bug 799725
 | |
|         if (alignCB->GetParent()->IsGridContainerFrame()) {
 | |
|           alignCB = alignCB->GetParent();
 | |
|         }
 | |
|       }
 | |
|       if (alignCB->IsGridContainerFrame()) {
 | |
|         // Shrink-wrap grid items that will be aligned (rather than stretched)
 | |
|         // in its inline axis.
 | |
|         auto inlineAxisAlignment =
 | |
|             wm.IsOrthogonalTo(cbwm)
 | |
|                 ? mStylePosition->UsedAlignSelf(alignCB->Style())._0
 | |
|                 : mStylePosition->UsedJustifySelf(alignCB->Style())._0;
 | |
|         if ((inlineAxisAlignment != StyleAlignFlags::STRETCH &&
 | |
|              inlineAxisAlignment != StyleAlignFlags::NORMAL) ||
 | |
|             mStyleMargin->mMargin.GetIStart(wm).IsAuto() ||
 | |
|             mStyleMargin->mMargin.GetIEnd(wm).IsAuto()) {
 | |
|           mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
 | |
|         }
 | |
|       } else {
 | |
|         // Shrink-wrap blocks that are orthogonal to their container.
 | |
|         if (isBlockLevel && mCBReflowInput &&
 | |
|             mCBReflowInput->GetWritingMode().IsOrthogonalTo(mWritingMode)) {
 | |
|           mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
 | |
|         }
 | |
| 
 | |
|         if (alignCB->IsFlexContainerFrame()) {
 | |
|           mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (cbSize.ISize(wm) == NS_UNCONSTRAINEDSIZE) {
 | |
|         // For orthogonal flows, where we found a parent orthogonal-limit
 | |
|         // for AvailableISize() in Init(), we'll use the same here as well.
 | |
|         cbSize.ISize(wm) = AvailableISize();
 | |
|       }
 | |
| 
 | |
|       auto size =
 | |
|           mFrame->ComputeSize(mRenderingContext, wm, cbSize, AvailableISize(),
 | |
|                               ComputedLogicalMargin(wm).Size(wm),
 | |
|                               ComputedLogicalBorderPadding(wm).Size(wm),
 | |
|                               mStyleSizeOverrides, mComputeSizeFlags);
 | |
| 
 | |
|       mComputedSize = size.mLogicalSize;
 | |
|       NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
 | |
|       NS_ASSERTION(
 | |
|           ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
 | |
|           "Bogus block-size");
 | |
| 
 | |
|       mFlags.mIsBSizeSetByAspectRatio =
 | |
|           size.mAspectRatioUsage == nsIFrame::AspectRatioUsage::ToComputeBSize;
 | |
| 
 | |
|       const bool shouldCalculateBlockSideMargins = [&]() {
 | |
|         if (!isBlockLevel) {
 | |
|           return false;
 | |
|         }
 | |
|         if (mStyleDisplay->mDisplay == StyleDisplay::InlineTable) {
 | |
|           return false;
 | |
|         }
 | |
|         if (mFrame->IsTableFrame()) {
 | |
|           return false;
 | |
|         }
 | |
|         if (alignCB->IsFlexOrGridContainer()) {
 | |
|           // Exclude flex and grid items.
 | |
|           return false;
 | |
|         }
 | |
|         const auto pseudoType = mFrame->Style()->GetPseudoType();
 | |
|         if (pseudoType == PseudoStyleType::marker &&
 | |
|             mFrame->GetParent()->StyleList()->mListStylePosition ==
 | |
|                 StyleListStylePosition::Outside) {
 | |
|           // Exclude outside ::markers.
 | |
|           return false;
 | |
|         }
 | |
|         if (pseudoType == PseudoStyleType::columnContent) {
 | |
|           // Exclude -moz-column-content since it cannot have any margin.
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       }();
 | |
| 
 | |
|       if (shouldCalculateBlockSideMargins) {
 | |
|         CalculateBlockSideMargins();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Save our containing block dimensions
 | |
|   mContainingBlockSize = cbSize;
 | |
| }
 | |
| 
 | |
| static void UpdateProp(nsIFrame* aFrame,
 | |
|                        const FramePropertyDescriptor<nsMargin>* aProperty,
 | |
|                        bool aNeeded, const nsMargin& aNewValue) {
 | |
|   if (aNeeded) {
 | |
|     nsMargin* propValue = aFrame->GetProperty(aProperty);
 | |
|     if (propValue) {
 | |
|       *propValue = aNewValue;
 | |
|     } else {
 | |
|       aFrame->AddProperty(aProperty, new nsMargin(aNewValue));
 | |
|     }
 | |
|   } else {
 | |
|     aFrame->RemoveProperty(aProperty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SizeComputationInput::InitOffsets(WritingMode aCBWM, nscoord aPercentBasis,
 | |
|                                        LayoutFrameType aFrameType,
 | |
|                                        ComputeSizeFlags aFlags,
 | |
|                                        const Maybe<LogicalMargin>& aBorder,
 | |
|                                        const Maybe<LogicalMargin>& aPadding,
 | |
|                                        const nsStyleDisplay* aDisplay) {
 | |
|   DISPLAY_INIT_OFFSETS(mFrame, this, aPercentBasis, aCBWM, aBorder, aPadding);
 | |
| 
 | |
|   // Since we are in reflow, we don't need to store these properties anymore
 | |
|   // unless they are dependent on width, in which case we store the new value.
 | |
|   nsPresContext* presContext = mFrame->PresContext();
 | |
|   mFrame->RemoveProperty(nsIFrame::UsedBorderProperty());
 | |
| 
 | |
|   // Compute margins from the specified margin style information. These
 | |
|   // become the default computed values, and may be adjusted below
 | |
|   // XXX fix to provide 0,0 for the top&bottom margins for
 | |
|   // inline-non-replaced elements
 | |
|   bool needMarginProp = ComputeMargin(aCBWM, aPercentBasis, aFrameType);
 | |
|   // Note that ComputeMargin() simplistically resolves 'auto' margins to 0.
 | |
|   // In formatting contexts where this isn't correct, some later code will
 | |
|   // need to update the UsedMargin() property with the actual resolved value.
 | |
|   // One example of this is ::CalculateBlockSideMargins().
 | |
|   ::UpdateProp(mFrame, nsIFrame::UsedMarginProperty(), needMarginProp,
 | |
|                ComputedPhysicalMargin());
 | |
| 
 | |
|   const WritingMode wm = GetWritingMode();
 | |
|   const nsStyleDisplay* disp = mFrame->StyleDisplayWithOptionalParam(aDisplay);
 | |
|   bool needPaddingProp;
 | |
|   LayoutDeviceIntMargin widgetPadding;
 | |
|   if (mIsThemed && presContext->Theme()->GetWidgetPadding(
 | |
|                        presContext->DeviceContext(), mFrame,
 | |
|                        disp->EffectiveAppearance(), &widgetPadding)) {
 | |
|     const nsMargin padding = LayoutDevicePixel::ToAppUnits(
 | |
|         widgetPadding, presContext->AppUnitsPerDevPixel());
 | |
|     SetComputedLogicalPadding(wm, LogicalMargin(wm, padding));
 | |
|     needPaddingProp = false;
 | |
|   } else if (SVGUtils::IsInSVGTextSubtree(mFrame)) {
 | |
|     SetComputedLogicalPadding(wm, LogicalMargin(wm));
 | |
|     needPaddingProp = false;
 | |
|   } else if (aPadding) {  // padding is an input arg
 | |
|     SetComputedLogicalPadding(wm, *aPadding);
 | |
|     nsMargin stylePadding;
 | |
|     // If the caller passes a padding that doesn't match our style (like
 | |
|     // nsTextControlFrame might due due to theming), then we also need a
 | |
|     // padding prop.
 | |
|     needPaddingProp = !mFrame->StylePadding()->GetPadding(stylePadding) ||
 | |
|                       aPadding->GetPhysicalMargin(wm) != stylePadding;
 | |
|   } else {
 | |
|     needPaddingProp = ComputePadding(aCBWM, aPercentBasis, aFrameType);
 | |
|   }
 | |
| 
 | |
|   // Add [align|justify]-content:baseline padding contribution.
 | |
|   typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
 | |
|   auto ApplyBaselinePadding = [this, wm, &needPaddingProp](LogicalAxis aAxis,
 | |
|                                                            Prop aProp) {
 | |
|     bool found;
 | |
|     nscoord val = mFrame->GetProperty(aProp, &found);
 | |
|     if (found) {
 | |
|       NS_ASSERTION(val != nscoord(0), "zero in this property is useless");
 | |
|       LogicalSide side;
 | |
|       if (val > 0) {
 | |
|         side = MakeLogicalSide(aAxis, eLogicalEdgeStart);
 | |
|       } else {
 | |
|         side = MakeLogicalSide(aAxis, eLogicalEdgeEnd);
 | |
|         val = -val;
 | |
|       }
 | |
|       mComputedPadding.Side(side, wm) += val;
 | |
|       needPaddingProp = true;
 | |
|       if (aAxis == eLogicalAxisBlock && val > 0) {
 | |
|         // We have a baseline-adjusted block-axis start padding, so
 | |
|         // we need this to mark lines dirty when mIsBResize is true:
 | |
|         this->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
|   if (!aFlags.contains(ComputeSizeFlag::IsGridMeasuringReflow)) {
 | |
|     ApplyBaselinePadding(eLogicalAxisBlock, nsIFrame::BBaselinePadProperty());
 | |
|   }
 | |
|   if (!aFlags.contains(ComputeSizeFlag::ShrinkWrap)) {
 | |
|     ApplyBaselinePadding(eLogicalAxisInline, nsIFrame::IBaselinePadProperty());
 | |
|   }
 | |
| 
 | |
|   LogicalMargin border(wm);
 | |
|   if (mIsThemed) {
 | |
|     const LayoutDeviceIntMargin widgetBorder =
 | |
|         presContext->Theme()->GetWidgetBorder(
 | |
|             presContext->DeviceContext(), mFrame, disp->EffectiveAppearance());
 | |
|     border = LogicalMargin(
 | |
|         wm, LayoutDevicePixel::ToAppUnits(widgetBorder,
 | |
|                                           presContext->AppUnitsPerDevPixel()));
 | |
|   } else if (SVGUtils::IsInSVGTextSubtree(mFrame)) {
 | |
|     // Do nothing since the border local variable is initialized all zero.
 | |
|   } else if (aBorder) {  // border is an input arg
 | |
|     border = *aBorder;
 | |
|   } else {
 | |
|     border = LogicalMargin(wm, mFrame->StyleBorder()->GetComputedBorder());
 | |
|   }
 | |
|   SetComputedLogicalBorderPadding(wm, border + ComputedLogicalPadding(wm));
 | |
| 
 | |
|   if (aFrameType == LayoutFrameType::Scrollbar) {
 | |
|     // scrollbars may have had their width or height smashed to zero
 | |
|     // by the associated scrollframe, in which case we must not report
 | |
|     // any padding or border.
 | |
|     nsSize size(mFrame->GetSize());
 | |
|     if (size.width == 0 || size.height == 0) {
 | |
|       SetComputedLogicalPadding(wm, LogicalMargin(wm));
 | |
|       SetComputedLogicalBorderPadding(wm, LogicalMargin(wm));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool hasPaddingChange;
 | |
|   if (nsMargin* oldPadding =
 | |
|           mFrame->GetProperty(nsIFrame::UsedPaddingProperty())) {
 | |
|     // Note: If a padding change is already detectable without resolving the
 | |
|     // percentage, e.g. a padding is changing from 50px to 50%,
 | |
|     // nsIFrame::DidSetComputedStyle() will cache the old padding in
 | |
|     // UsedPaddingProperty().
 | |
|     hasPaddingChange = *oldPadding != ComputedPhysicalPadding();
 | |
|   } else {
 | |
|     // Our padding may have changed, but we can't tell at this point.
 | |
|     hasPaddingChange = needPaddingProp;
 | |
|   }
 | |
|   // Keep mHasPaddingChange bit set until we've done reflow. We'll clear it in
 | |
|   // nsIFrame::DidReflow()
 | |
|   mFrame->SetHasPaddingChange(mFrame->HasPaddingChange() || hasPaddingChange);
 | |
| 
 | |
|   ::UpdateProp(mFrame, nsIFrame::UsedPaddingProperty(), needPaddingProp,
 | |
|                ComputedPhysicalPadding());
 | |
| }
 | |
| 
 | |
| // This code enforces section 10.3.3 of the CSS2 spec for this formula:
 | |
| //
 | |
| // 'margin-left' + 'border-left-width' + 'padding-left' + 'width' +
 | |
| //   'padding-right' + 'border-right-width' + 'margin-right'
 | |
| //   = width of containing block
 | |
| //
 | |
| // Note: the width unit is not auto when this is called
 | |
| void ReflowInput::CalculateBlockSideMargins() {
 | |
|   MOZ_ASSERT(!mFrame->IsTableFrame(),
 | |
|              "Inner table frame cannot have computed margins!");
 | |
| 
 | |
|   // Calculations here are done in the containing block's writing mode,
 | |
|   // which is where margins will eventually be applied: we're calculating
 | |
|   // margins that will be used by the container in its inline direction,
 | |
|   // which in the case of an orthogonal contained block will correspond to
 | |
|   // the block direction of this reflow input. So in the orthogonal-flow
 | |
|   // case, "CalculateBlock*Side*Margins" will actually end up adjusting
 | |
|   // the BStart/BEnd margins; those are the "sides" of the block from its
 | |
|   // container's point of view.
 | |
|   WritingMode cbWM =
 | |
|       mCBReflowInput ? mCBReflowInput->GetWritingMode() : GetWritingMode();
 | |
| 
 | |
|   nscoord availISizeCBWM = AvailableSize(cbWM).ISize(cbWM);
 | |
|   nscoord computedISizeCBWM = ComputedSize(cbWM).ISize(cbWM);
 | |
|   if (computedISizeCBWM == NS_UNCONSTRAINEDSIZE) {
 | |
|     // For orthogonal flows, where we found a parent orthogonal-limit
 | |
|     // for AvailableISize() in Init(), we don't have meaningful sizes to
 | |
|     // adjust.  Act like the sum is already correct (below).
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   LAYOUT_WARN_IF_FALSE(NS_UNCONSTRAINEDSIZE != computedISizeCBWM &&
 | |
|                            NS_UNCONSTRAINEDSIZE != availISizeCBWM,
 | |
|                        "have unconstrained inline-size; this should only "
 | |
|                        "result from very large sizes, not attempts at "
 | |
|                        "intrinsic inline-size calculation");
 | |
| 
 | |
|   LogicalMargin margin = ComputedLogicalMargin(cbWM);
 | |
|   LogicalMargin borderPadding = ComputedLogicalBorderPadding(cbWM);
 | |
|   nscoord sum = margin.IStartEnd(cbWM) + borderPadding.IStartEnd(cbWM) +
 | |
|                 computedISizeCBWM;
 | |
|   if (sum == availISizeCBWM) {
 | |
|     // The sum is already correct
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Determine the start and end margin values. The isize value
 | |
|   // remains constant while we do this.
 | |
| 
 | |
|   // Calculate how much space is available for margins
 | |
|   nscoord availMarginSpace = availISizeCBWM - sum;
 | |
| 
 | |
|   // If the available margin space is negative, then don't follow the
 | |
|   // usual overconstraint rules.
 | |
|   if (availMarginSpace < 0) {
 | |
|     margin.IEnd(cbWM) += availMarginSpace;
 | |
|     SetComputedLogicalMargin(cbWM, margin);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The css2 spec clearly defines how block elements should behave
 | |
|   // in section 10.3.3.
 | |
|   const auto& styleSides = mStyleMargin->mMargin;
 | |
|   bool isAutoStartMargin = styleSides.GetIStart(cbWM).IsAuto();
 | |
|   bool isAutoEndMargin = styleSides.GetIEnd(cbWM).IsAuto();
 | |
|   if (!isAutoStartMargin && !isAutoEndMargin) {
 | |
|     // Neither margin is 'auto' so we're over constrained. Use the
 | |
|     // 'direction' property of the parent to tell which margin to
 | |
|     // ignore
 | |
|     // First check if there is an HTML alignment that we should honor
 | |
|     const StyleTextAlign* textAlign =
 | |
|         mParentReflowInput
 | |
|             ? &mParentReflowInput->mFrame->StyleText()->mTextAlign
 | |
|             : nullptr;
 | |
|     if (textAlign && (*textAlign == StyleTextAlign::MozLeft ||
 | |
|                       *textAlign == StyleTextAlign::MozCenter ||
 | |
|                       *textAlign == StyleTextAlign::MozRight)) {
 | |
|       if (mParentReflowInput->mWritingMode.IsBidiLTR()) {
 | |
|         isAutoStartMargin = *textAlign != StyleTextAlign::MozLeft;
 | |
|         isAutoEndMargin = *textAlign != StyleTextAlign::MozRight;
 | |
|       } else {
 | |
|         isAutoStartMargin = *textAlign != StyleTextAlign::MozRight;
 | |
|         isAutoEndMargin = *textAlign != StyleTextAlign::MozLeft;
 | |
|       }
 | |
|     }
 | |
|     // Otherwise apply the CSS rules, and ignore one margin by forcing
 | |
|     // it to 'auto', depending on 'direction'.
 | |
|     else {
 | |
|       isAutoEndMargin = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Logic which is common to blocks and tables
 | |
|   // The computed margins need not be zero because the 'auto' could come from
 | |
|   // overconstraint or from HTML alignment so values need to be accumulated
 | |
| 
 | |
|   if (isAutoStartMargin) {
 | |
|     if (isAutoEndMargin) {
 | |
|       // Both margins are 'auto' so the computed addition should be equal
 | |
|       nscoord forStart = availMarginSpace / 2;
 | |
|       margin.IStart(cbWM) += forStart;
 | |
|       margin.IEnd(cbWM) += availMarginSpace - forStart;
 | |
|     } else {
 | |
|       margin.IStart(cbWM) += availMarginSpace;
 | |
|     }
 | |
|   } else if (isAutoEndMargin) {
 | |
|     margin.IEnd(cbWM) += availMarginSpace;
 | |
|   }
 | |
|   SetComputedLogicalMargin(cbWM, margin);
 | |
| 
 | |
|   if (isAutoStartMargin || isAutoEndMargin) {
 | |
|     // Update the UsedMargin property if we were tracking it already.
 | |
|     nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
 | |
|     if (propValue) {
 | |
|       *propValue = margin.GetPhysicalMargin(cbWM);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // For "normal" we use the font's normal line height (em height + leading).
 | |
| // If both internal leading and  external leading specified by font itself are
 | |
| // zeros, we should compensate this by creating extra (external) leading.
 | |
| // This is necessary because without this compensation, normal line height might
 | |
| // look too tight.
 | |
| constexpr float kNormalLineHeightFactor = 1.2f;
 | |
| static nscoord GetNormalLineHeight(nsFontMetrics* aFontMetrics) {
 | |
|   MOZ_ASSERT(aFontMetrics, "no font metrics");
 | |
|   nscoord externalLeading = aFontMetrics->ExternalLeading();
 | |
|   nscoord internalLeading = aFontMetrics->InternalLeading();
 | |
|   nscoord emHeight = aFontMetrics->EmHeight();
 | |
|   if (!internalLeading && !externalLeading) {
 | |
|     return NSToCoordRound(emHeight * kNormalLineHeightFactor);
 | |
|   }
 | |
|   return emHeight + internalLeading + externalLeading;
 | |
| }
 | |
| 
 | |
| static inline nscoord ComputeLineHeight(const StyleLineHeight& aLh,
 | |
|                                         const nsStyleFont& aRelativeToFont,
 | |
|                                         nsPresContext* aPresContext,
 | |
|                                         bool aIsVertical, nscoord aBlockBSize,
 | |
|                                         float aFontSizeInflation) {
 | |
|   if (aLh.IsLength()) {
 | |
|     nscoord result = aLh.AsLength().ToAppUnits();
 | |
|     if (aFontSizeInflation != 1.0f) {
 | |
|       result = NSToCoordRound(result * aFontSizeInflation);
 | |
|     }
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   if (aLh.IsNumber()) {
 | |
|     // For factor units the computed value of the line-height property
 | |
|     // is found by multiplying the factor by the font's computed size
 | |
|     // (adjusted for min-size prefs and text zoom).
 | |
|     return aRelativeToFont.mFont.size
 | |
|         .ScaledBy(aLh.AsNumber() * aFontSizeInflation)
 | |
|         .ToAppUnits();
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(aLh.IsNormal() || aLh.IsMozBlockHeight());
 | |
|   if (aLh.IsMozBlockHeight() && aBlockBSize != NS_UNCONSTRAINEDSIZE) {
 | |
|     return aBlockBSize;
 | |
|   }
 | |
| 
 | |
|   auto size = aRelativeToFont.mFont.size;
 | |
|   size.ScaleBy(aFontSizeInflation);
 | |
| 
 | |
|   if (aPresContext) {
 | |
|     RefPtr<nsFontMetrics> fm = nsLayoutUtils::GetMetricsFor(
 | |
|         aPresContext, aIsVertical, &aRelativeToFont, size,
 | |
|         /* aUseUserFontSet = */ true);
 | |
|     return GetNormalLineHeight(fm);
 | |
|   }
 | |
|   // If we don't have a pres context, use a 1.2em fallback.
 | |
|   size.ScaleBy(kNormalLineHeightFactor);
 | |
|   return size.ToAppUnits();
 | |
| }
 | |
| 
 | |
| nscoord ReflowInput::GetLineHeight() const {
 | |
|   if (mLineHeight != NS_UNCONSTRAINEDSIZE) {
 | |
|     return mLineHeight;
 | |
|   }
 | |
| 
 | |
|   nscoord blockBSize = nsLayoutUtils::IsNonWrapperBlock(mFrame)
 | |
|                            ? ComputedBSize()
 | |
|                            : (mCBReflowInput ? mCBReflowInput->ComputedBSize()
 | |
|                                              : NS_UNCONSTRAINEDSIZE);
 | |
|   mLineHeight = CalcLineHeight(*mFrame->Style(), mFrame->PresContext(),
 | |
|                                mFrame->GetContent(), blockBSize,
 | |
|                                nsLayoutUtils::FontSizeInflationFor(mFrame));
 | |
|   return mLineHeight;
 | |
| }
 | |
| 
 | |
| void ReflowInput::SetLineHeight(nscoord aLineHeight) {
 | |
|   MOZ_ASSERT(aLineHeight >= 0, "aLineHeight must be >= 0!");
 | |
| 
 | |
|   if (mLineHeight != aLineHeight) {
 | |
|     mLineHeight = aLineHeight;
 | |
|     // Setting used line height can change a frame's block-size if mFrame's
 | |
|     // block-size behaves as auto.
 | |
|     InitResizeFlags(mFrame->PresContext(), mFrame->Type());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* static */
 | |
| nscoord ReflowInput::CalcLineHeight(const ComputedStyle& aStyle,
 | |
|                                     nsPresContext* aPresContext,
 | |
|                                     const nsIContent* aContent,
 | |
|                                     nscoord aBlockBSize,
 | |
|                                     float aFontSizeInflation) {
 | |
|   const StyleLineHeight& lh = aStyle.StyleText()->mLineHeight;
 | |
|   WritingMode wm(&aStyle);
 | |
|   const bool vertical = wm.IsVertical() && !wm.IsSideways();
 | |
|   return CalcLineHeight(lh, *aStyle.StyleFont(), aPresContext, vertical,
 | |
|                         aContent, aBlockBSize, aFontSizeInflation);
 | |
| }
 | |
| 
 | |
| nscoord ReflowInput::CalcLineHeight(
 | |
|     const StyleLineHeight& aLh, const nsStyleFont& aRelativeToFont,
 | |
|     nsPresContext* aPresContext, bool aIsVertical, const nsIContent* aContent,
 | |
|     nscoord aBlockBSize, float aFontSizeInflation) {
 | |
|   nscoord lineHeight =
 | |
|       ComputeLineHeight(aLh, aRelativeToFont, aPresContext, aIsVertical,
 | |
|                         aBlockBSize, aFontSizeInflation);
 | |
| 
 | |
|   NS_ASSERTION(lineHeight >= 0, "ComputeLineHeight screwed up");
 | |
| 
 | |
|   const auto* input = HTMLInputElement::FromNodeOrNull(aContent);
 | |
|   if (input && input->IsSingleLineTextControl()) {
 | |
|     // For Web-compatibility, single-line text input elements cannot
 | |
|     // have a line-height smaller than 'normal'.
 | |
|     if (!aLh.IsNormal()) {
 | |
|       nscoord normal = ComputeLineHeight(
 | |
|           StyleLineHeight::Normal(), aRelativeToFont, aPresContext, aIsVertical,
 | |
|           aBlockBSize, aFontSizeInflation);
 | |
|       if (lineHeight < normal) {
 | |
|         lineHeight = normal;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return lineHeight;
 | |
| }
 | |
| 
 | |
| bool SizeComputationInput::ComputeMargin(WritingMode aCBWM,
 | |
|                                          nscoord aPercentBasis,
 | |
|                                          LayoutFrameType aFrameType) {
 | |
|   // SVG text frames have no margin.
 | |
|   if (SVGUtils::IsInSVGTextSubtree(mFrame)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (aFrameType == LayoutFrameType::Table) {
 | |
|     // Table frame's margin is inherited to the table wrapper frame via the
 | |
|     // ::-moz-table-wrapper rule in ua.css, so don't set any margins for it.
 | |
|     SetComputedLogicalMargin(mWritingMode, LogicalMargin(mWritingMode));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If style style can provide us the margin directly, then use it.
 | |
|   const nsStyleMargin* styleMargin = mFrame->StyleMargin();
 | |
| 
 | |
|   nsMargin margin;
 | |
|   const bool isCBDependent = !styleMargin->GetMargin(margin);
 | |
|   if (isCBDependent) {
 | |
|     // We have to compute the value. Note that this calculation is
 | |
|     // performed according to the writing mode of the containing block
 | |
|     // (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
 | |
|     if (aPercentBasis == NS_UNCONSTRAINEDSIZE) {
 | |
|       aPercentBasis = 0;
 | |
|     }
 | |
|     LogicalMargin m(aCBWM);
 | |
|     m.IStart(aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
 | |
|         aPercentBasis, styleMargin->mMargin.GetIStart(aCBWM));
 | |
|     m.IEnd(aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
 | |
|         aPercentBasis, styleMargin->mMargin.GetIEnd(aCBWM));
 | |
| 
 | |
|     m.BStart(aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
 | |
|         aPercentBasis, styleMargin->mMargin.GetBStart(aCBWM));
 | |
|     m.BEnd(aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
 | |
|         aPercentBasis, styleMargin->mMargin.GetBEnd(aCBWM));
 | |
| 
 | |
|     SetComputedLogicalMargin(aCBWM, m);
 | |
|   } else {
 | |
|     SetComputedLogicalMargin(mWritingMode, LogicalMargin(mWritingMode, margin));
 | |
|   }
 | |
| 
 | |
|   // ... but font-size-inflation-based margin adjustment uses the
 | |
|   // frame's writing mode
 | |
|   nscoord marginAdjustment = FontSizeInflationListMarginAdjustment(mFrame);
 | |
| 
 | |
|   if (marginAdjustment > 0) {
 | |
|     LogicalMargin m = ComputedLogicalMargin(mWritingMode);
 | |
|     m.IStart(mWritingMode) += marginAdjustment;
 | |
|     SetComputedLogicalMargin(mWritingMode, m);
 | |
|   }
 | |
| 
 | |
|   return isCBDependent;
 | |
| }
 | |
| 
 | |
| bool SizeComputationInput::ComputePadding(WritingMode aCBWM,
 | |
|                                           nscoord aPercentBasis,
 | |
|                                           LayoutFrameType aFrameType) {
 | |
|   // If style can provide us the padding directly, then use it.
 | |
|   const nsStylePadding* stylePadding = mFrame->StylePadding();
 | |
|   nsMargin padding;
 | |
|   bool isCBDependent = !stylePadding->GetPadding(padding);
 | |
|   // a table row/col group, row/col doesn't have padding
 | |
|   // XXXldb Neither do border-collapse tables.
 | |
|   if (LayoutFrameType::TableRowGroup == aFrameType ||
 | |
|       LayoutFrameType::TableColGroup == aFrameType ||
 | |
|       LayoutFrameType::TableRow == aFrameType ||
 | |
|       LayoutFrameType::TableCol == aFrameType) {
 | |
|     SetComputedLogicalPadding(mWritingMode, LogicalMargin(mWritingMode));
 | |
|   } else if (isCBDependent) {
 | |
|     // We have to compute the value. This calculation is performed
 | |
|     // according to the writing mode of the containing block
 | |
|     // (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
 | |
|     // clamp negative calc() results to 0
 | |
|     if (aPercentBasis == NS_UNCONSTRAINEDSIZE) {
 | |
|       aPercentBasis = 0;
 | |
|     }
 | |
|     LogicalMargin p(aCBWM);
 | |
|     p.IStart(aCBWM) = std::max(
 | |
|         0, nsLayoutUtils::ComputeCBDependentValue(
 | |
|                aPercentBasis, stylePadding->mPadding.GetIStart(aCBWM)));
 | |
|     p.IEnd(aCBWM) =
 | |
|         std::max(0, nsLayoutUtils::ComputeCBDependentValue(
 | |
|                         aPercentBasis, stylePadding->mPadding.GetIEnd(aCBWM)));
 | |
| 
 | |
|     p.BStart(aCBWM) = std::max(
 | |
|         0, nsLayoutUtils::ComputeCBDependentValue(
 | |
|                aPercentBasis, stylePadding->mPadding.GetBStart(aCBWM)));
 | |
|     p.BEnd(aCBWM) =
 | |
|         std::max(0, nsLayoutUtils::ComputeCBDependentValue(
 | |
|                         aPercentBasis, stylePadding->mPadding.GetBEnd(aCBWM)));
 | |
| 
 | |
|     SetComputedLogicalPadding(aCBWM, p);
 | |
|   } else {
 | |
|     SetComputedLogicalPadding(mWritingMode,
 | |
|                               LogicalMargin(mWritingMode, padding));
 | |
|   }
 | |
|   return isCBDependent;
 | |
| }
 | |
| 
 | |
| void ReflowInput::ComputeMinMaxValues(const LogicalSize& aCBSize) {
 | |
|   WritingMode wm = GetWritingMode();
 | |
| 
 | |
|   const auto& minISize = mStylePosition->MinISize(wm);
 | |
|   const auto& maxISize = mStylePosition->MaxISize(wm);
 | |
|   const auto& minBSize = mStylePosition->MinBSize(wm);
 | |
|   const auto& maxBSize = mStylePosition->MaxBSize(wm);
 | |
| 
 | |
|   LogicalSize minWidgetSize(wm);
 | |
|   if (mIsThemed) {
 | |
|     nsPresContext* pc = mFrame->PresContext();
 | |
|     const LayoutDeviceIntSize widget = pc->Theme()->GetMinimumWidgetSize(
 | |
|         pc, mFrame, mStyleDisplay->EffectiveAppearance());
 | |
| 
 | |
|     // Convert themed widget's physical dimensions to logical coords.
 | |
|     minWidgetSize = {
 | |
|         wm, LayoutDeviceIntSize::ToAppUnits(widget, pc->AppUnitsPerDevPixel())};
 | |
| 
 | |
|     // GetMinimumWidgetSize() returns border-box; we need content-box.
 | |
|     minWidgetSize -= ComputedLogicalBorderPadding(wm).Size(wm);
 | |
|   }
 | |
| 
 | |
|   // NOTE: min-width:auto resolves to 0, except on a flex item. (But
 | |
|   // even there, it's supposed to be ignored (i.e. treated as 0) until
 | |
|   // the flex container explicitly resolves & considers it.)
 | |
|   if (minISize.IsAuto()) {
 | |
|     SetComputedMinISize(0);
 | |
|   } else {
 | |
|     SetComputedMinISize(
 | |
|         ComputeISizeValue(aCBSize, mStylePosition->mBoxSizing, minISize));
 | |
|   }
 | |
| 
 | |
|   if (mIsThemed) {
 | |
|     SetComputedMinISize(std::max(ComputedMinISize(), minWidgetSize.ISize(wm)));
 | |
|   }
 | |
| 
 | |
|   if (maxISize.IsNone()) {
 | |
|     // Specified value of 'none'
 | |
|     SetComputedMaxISize(NS_UNCONSTRAINEDSIZE);
 | |
|   } else {
 | |
|     SetComputedMaxISize(
 | |
|         ComputeISizeValue(aCBSize, mStylePosition->mBoxSizing, maxISize));
 | |
|   }
 | |
| 
 | |
|   // If the computed value of 'min-width' is greater than the value of
 | |
|   // 'max-width', 'max-width' is set to the value of 'min-width'
 | |
|   if (ComputedMinISize() > ComputedMaxISize()) {
 | |
|     SetComputedMaxISize(ComputedMinISize());
 | |
|   }
 | |
| 
 | |
|   // Check for percentage based values and a containing block height that
 | |
|   // depends on the content height. Treat them like the initial value.
 | |
|   // Likewise, check for calc() with percentages on internal table elements;
 | |
|   // that's treated as the initial value too.
 | |
|   const bool isInternalTableFrame = IsInternalTableFrame();
 | |
|   const nscoord& bPercentageBasis = aCBSize.BSize(wm);
 | |
|   auto BSizeBehavesAsInitialValue = [&](const auto& aBSize) {
 | |
|     if (nsLayoutUtils::IsAutoBSize(aBSize, bPercentageBasis)) {
 | |
|       return true;
 | |
|     }
 | |
|     if (isInternalTableFrame) {
 | |
|       return aBSize.HasLengthAndPercentage();
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // NOTE: min-height:auto resolves to 0, except on a flex item. (But
 | |
|   // even there, it's supposed to be ignored (i.e. treated as 0) until
 | |
|   // the flex container explicitly resolves & considers it.)
 | |
|   if (BSizeBehavesAsInitialValue(minBSize)) {
 | |
|     SetComputedMinBSize(0);
 | |
|   } else {
 | |
|     SetComputedMinBSize(ComputeBSizeValue(bPercentageBasis,
 | |
|                                           mStylePosition->mBoxSizing,
 | |
|                                           minBSize.AsLengthPercentage()));
 | |
|   }
 | |
| 
 | |
|   if (mIsThemed) {
 | |
|     SetComputedMinBSize(std::max(ComputedMinBSize(), minWidgetSize.BSize(wm)));
 | |
|   }
 | |
| 
 | |
|   if (BSizeBehavesAsInitialValue(maxBSize)) {
 | |
|     // Specified value of 'none'
 | |
|     SetComputedMaxBSize(NS_UNCONSTRAINEDSIZE);
 | |
|   } else {
 | |
|     SetComputedMaxBSize(ComputeBSizeValue(bPercentageBasis,
 | |
|                                           mStylePosition->mBoxSizing,
 | |
|                                           maxBSize.AsLengthPercentage()));
 | |
|   }
 | |
| 
 | |
|   // If the computed value of 'min-height' is greater than the value of
 | |
|   // 'max-height', 'max-height' is set to the value of 'min-height'
 | |
|   if (ComputedMinBSize() > ComputedMaxBSize()) {
 | |
|     SetComputedMaxBSize(ComputedMinBSize());
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ReflowInput::IsInternalTableFrame() const {
 | |
|   return mFrame->IsTableRowGroupFrame() || mFrame->IsTableColGroupFrame() ||
 | |
|          mFrame->IsTableRowFrame() || mFrame->IsTableCellFrame();
 | |
| }
 |