forked from mirrors/gecko-dev
		
	The definitions can't be entirely removed yet because NSS still needs them. Differential Revision: https://phabricator.services.mozilla.com/D23454 --HG-- extra : moz-landing-system : lando
		
			
				
	
	
		
			109 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | 
						|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | 
						|
/* This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
#ifndef nsMathUtils_h__
 | 
						|
#define nsMathUtils_h__
 | 
						|
 | 
						|
#include "nscore.h"
 | 
						|
#include <cmath>
 | 
						|
#include <float.h>
 | 
						|
 | 
						|
#if defined(XP_SOLARIS)
 | 
						|
#  include <ieeefp.h>
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * round
 | 
						|
 */
 | 
						|
inline double NS_round(double aNum) {
 | 
						|
  return aNum >= 0.0 ? floor(aNum + 0.5) : ceil(aNum - 0.5);
 | 
						|
}
 | 
						|
inline float NS_roundf(float aNum) {
 | 
						|
  return aNum >= 0.0f ? floorf(aNum + 0.5f) : ceilf(aNum - 0.5f);
 | 
						|
}
 | 
						|
inline int32_t NS_lround(double aNum) {
 | 
						|
  return aNum >= 0.0 ? int32_t(aNum + 0.5) : int32_t(aNum - 0.5);
 | 
						|
}
 | 
						|
 | 
						|
/* NS_roundup30 rounds towards infinity for positive and       */
 | 
						|
/* negative numbers.                                           */
 | 
						|
 | 
						|
#if defined(XP_WIN) && defined(_M_IX86) && !defined(__GNUC__) && \
 | 
						|
    !defined(__clang__)
 | 
						|
inline int32_t NS_lroundup30(float x) {
 | 
						|
  /* Code derived from Laurent de Soras' paper at             */
 | 
						|
  /* http://ldesoras.free.fr/doc/articles/rounding_en.pdf     */
 | 
						|
 | 
						|
  /* Rounding up on Windows is expensive using the float to   */
 | 
						|
  /* int conversion and the floor function. A faster          */
 | 
						|
  /* approach is to use f87 rounding while assuming the       */
 | 
						|
  /* default rounding mode of rounding to the nearest         */
 | 
						|
  /* integer. This rounding mode, however, actually rounds    */
 | 
						|
  /* to the nearest integer so we add the floating point      */
 | 
						|
  /* number to itself and add our rounding factor before      */
 | 
						|
  /* doing the conversion to an integer. We then do a right   */
 | 
						|
  /* shift of one bit on the integer to divide by two.        */
 | 
						|
 | 
						|
  /* This routine doesn't handle numbers larger in magnitude  */
 | 
						|
  /* than 2^30 but this is fine for NSToCoordRound because    */
 | 
						|
  /* Coords are limited to 2^30 in magnitude.                 */
 | 
						|
 | 
						|
  static const double round_to_nearest = 0.5f;
 | 
						|
  int i;
 | 
						|
 | 
						|
  __asm {
 | 
						|
    fld     x                   ; load fp argument
 | 
						|
    fadd    st, st(0)           ; double it
 | 
						|
    fadd    round_to_nearest    ; add the rounding factor
 | 
						|
    fistp   dword ptr i         ; convert the result to int
 | 
						|
  }
 | 
						|
  return i >> 1; /* divide by 2 */
 | 
						|
}
 | 
						|
#endif /* XP_WIN && _M_IX86 && !__GNUC__ */
 | 
						|
 | 
						|
inline int32_t NS_lroundf(float aNum) {
 | 
						|
  return aNum >= 0.0f ? int32_t(aNum + 0.5f) : int32_t(aNum - 0.5f);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * hypot.  We don't need a super accurate version of this, if a platform
 | 
						|
 * turns up with none of the possibilities below it would be okay to fall
 | 
						|
 * back to sqrt(x*x + y*y).
 | 
						|
 */
 | 
						|
inline double NS_hypot(double aNum1, double aNum2) {
 | 
						|
#ifdef __GNUC__
 | 
						|
  return __builtin_hypot(aNum1, aNum2);
 | 
						|
#elif defined _WIN32
 | 
						|
  return _hypot(aNum1, aNum2);
 | 
						|
#else
 | 
						|
  return hypot(aNum1, aNum2);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Check whether a floating point number is finite (not +/-infinity and not a
 | 
						|
 * NaN value).
 | 
						|
 */
 | 
						|
inline bool NS_finite(double aNum) {
 | 
						|
#ifdef WIN32
 | 
						|
  // NOTE: '!!' casts an int to bool without spamming MSVC warning C4800.
 | 
						|
  return !!_finite(aNum);
 | 
						|
#else
 | 
						|
  return std::isfinite(aNum);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Returns the result of the modulo of x by y using a floored division.
 | 
						|
 * fmod(x, y) is using a truncated division.
 | 
						|
 * The main difference is that the result of this method will have the sign of
 | 
						|
 * y while the result of fmod(x, y) will have the sign of x.
 | 
						|
 */
 | 
						|
inline double NS_floorModulo(double aNum1, double aNum2) {
 | 
						|
  return (aNum1 - aNum2 * floor(aNum1 / aNum2));
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |