forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			625 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			625 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | 
						|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | 
						|
/* This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
#include "nsCOMArray.h"
 | 
						|
#include "ThreadDelay.h"
 | 
						|
#include "nsThreadPool.h"
 | 
						|
#include "nsThreadManager.h"
 | 
						|
#include "nsThread.h"
 | 
						|
#include "nsMemory.h"
 | 
						|
#include "prinrval.h"
 | 
						|
#include "mozilla/Logging.h"
 | 
						|
#include "mozilla/SchedulerGroup.h"
 | 
						|
#include "nsThreadSyncDispatch.h"
 | 
						|
 | 
						|
#include <mutex>
 | 
						|
 | 
						|
using namespace mozilla;
 | 
						|
 | 
						|
static LazyLogModule sThreadPoolLog("nsThreadPool");
 | 
						|
#ifdef LOG
 | 
						|
#  undef LOG
 | 
						|
#endif
 | 
						|
#define LOG(args) MOZ_LOG(sThreadPoolLog, mozilla::LogLevel::Debug, args)
 | 
						|
 | 
						|
static MOZ_THREAD_LOCAL(nsThreadPool*) gCurrentThreadPool;
 | 
						|
 | 
						|
// DESIGN:
 | 
						|
//  o  Allocate anonymous threads.
 | 
						|
//  o  Use nsThreadPool::Run as the main routine for each thread.
 | 
						|
//  o  Each thread waits on the event queue's monitor, checking for
 | 
						|
//     pending events and rescheduling itself as an idle thread.
 | 
						|
 | 
						|
#define DEFAULT_THREAD_LIMIT 4
 | 
						|
#define DEFAULT_IDLE_THREAD_LIMIT 1
 | 
						|
#define DEFAULT_IDLE_THREAD_TIMEOUT PR_SecondsToInterval(60)
 | 
						|
 | 
						|
NS_IMPL_ISUPPORTS_INHERITED(nsThreadPool, Runnable, nsIThreadPool,
 | 
						|
                            nsIEventTarget)
 | 
						|
 | 
						|
nsThreadPool::nsThreadPool()
 | 
						|
    : Runnable("nsThreadPool"),
 | 
						|
      mMutex("[nsThreadPool.mMutex]"),
 | 
						|
      mEventsAvailable(mMutex, "[nsThreadPool.mEventsAvailable]"),
 | 
						|
      mThreadLimit(DEFAULT_THREAD_LIMIT),
 | 
						|
      mIdleThreadLimit(DEFAULT_IDLE_THREAD_LIMIT),
 | 
						|
      mIdleThreadTimeout(DEFAULT_IDLE_THREAD_TIMEOUT),
 | 
						|
      mIdleCount(0),
 | 
						|
      mStackSize(nsIThreadManager::DEFAULT_STACK_SIZE),
 | 
						|
      mShutdown(false),
 | 
						|
      mRegressiveMaxIdleTime(false),
 | 
						|
      mIsAPoolThreadFree(true) {
 | 
						|
  static std::once_flag flag;
 | 
						|
  std::call_once(flag, [] { gCurrentThreadPool.infallibleInit(); });
 | 
						|
 | 
						|
  LOG(("THRD-P(%p) constructor!!!\n", this));
 | 
						|
}
 | 
						|
 | 
						|
nsThreadPool::~nsThreadPool() {
 | 
						|
  // Threads keep a reference to the nsThreadPool until they return from Run()
 | 
						|
  // after removing themselves from mThreads.
 | 
						|
  MOZ_ASSERT(mThreads.IsEmpty());
 | 
						|
}
 | 
						|
 | 
						|
nsresult nsThreadPool::PutEvent(nsIRunnable* aEvent) {
 | 
						|
  nsCOMPtr<nsIRunnable> event(aEvent);
 | 
						|
  return PutEvent(event.forget(), 0);
 | 
						|
}
 | 
						|
 | 
						|
nsresult nsThreadPool::PutEvent(already_AddRefed<nsIRunnable> aEvent,
 | 
						|
                                uint32_t aFlags) {
 | 
						|
  // Avoid spawning a new thread while holding the event queue lock...
 | 
						|
 | 
						|
  bool spawnThread = false;
 | 
						|
  uint32_t stackSize = 0;
 | 
						|
  {
 | 
						|
    MutexAutoLock lock(mMutex);
 | 
						|
 | 
						|
    if (NS_WARN_IF(mShutdown)) {
 | 
						|
      return NS_ERROR_NOT_AVAILABLE;
 | 
						|
    }
 | 
						|
    LOG(("THRD-P(%p) put [%d %d %d]\n", this, mIdleCount, mThreads.Count(),
 | 
						|
         mThreadLimit));
 | 
						|
    MOZ_ASSERT(mIdleCount <= (uint32_t)mThreads.Count(), "oops");
 | 
						|
 | 
						|
    // Make sure we have a thread to service this event.
 | 
						|
    if (mThreads.Count() < (int32_t)mThreadLimit &&
 | 
						|
        !(aFlags & NS_DISPATCH_AT_END) &&
 | 
						|
        // Spawn a new thread if we don't have enough idle threads to serve
 | 
						|
        // pending events immediately.
 | 
						|
        mEvents.Count(lock) >= mIdleCount) {
 | 
						|
      spawnThread = true;
 | 
						|
    }
 | 
						|
 | 
						|
    nsCOMPtr<nsIRunnable> event(aEvent);
 | 
						|
    LogRunnable::LogDispatch(event);
 | 
						|
    mEvents.PutEvent(event.forget(), EventQueuePriority::Normal, lock);
 | 
						|
    mEventsAvailable.Notify();
 | 
						|
    stackSize = mStackSize;
 | 
						|
  }
 | 
						|
 | 
						|
  auto delay = MakeScopeExit([&]() {
 | 
						|
    // Delay to encourage the receiving task to run before we do work.
 | 
						|
    DelayForChaosMode(ChaosFeature::TaskDispatching, 1000);
 | 
						|
  });
 | 
						|
 | 
						|
  LOG(("THRD-P(%p) put [spawn=%d]\n", this, spawnThread));
 | 
						|
  if (!spawnThread) {
 | 
						|
    return NS_OK;
 | 
						|
  }
 | 
						|
 | 
						|
  nsCOMPtr<nsIThread> thread;
 | 
						|
  nsresult rv = NS_NewNamedThread(mThreadNaming.GetNextThreadName(mName),
 | 
						|
                                  getter_AddRefs(thread), nullptr, stackSize);
 | 
						|
  if (NS_WARN_IF(NS_FAILED(rv))) {
 | 
						|
    return NS_ERROR_UNEXPECTED;
 | 
						|
  }
 | 
						|
 | 
						|
  bool killThread = false;
 | 
						|
  {
 | 
						|
    MutexAutoLock lock(mMutex);
 | 
						|
    if (mShutdown) {
 | 
						|
      killThread = true;
 | 
						|
    } else if (mThreads.Count() < (int32_t)mThreadLimit) {
 | 
						|
      mThreads.AppendObject(thread);
 | 
						|
      if (mThreads.Count() >= (int32_t)mThreadLimit) {
 | 
						|
        mIsAPoolThreadFree = false;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Someone else may have also been starting a thread
 | 
						|
      killThread = true;  // okay, we don't need this thread anymore
 | 
						|
    }
 | 
						|
  }
 | 
						|
  LOG(("THRD-P(%p) put [%p kill=%d]\n", this, thread.get(), killThread));
 | 
						|
  if (killThread) {
 | 
						|
    // We never dispatched any events to the thread, so we can shut it down
 | 
						|
    // asynchronously without worrying about anything.
 | 
						|
    ShutdownThread(thread);
 | 
						|
  } else {
 | 
						|
    thread->Dispatch(this, NS_DISPATCH_NORMAL);
 | 
						|
  }
 | 
						|
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
void nsThreadPool::ShutdownThread(nsIThread* aThread) {
 | 
						|
  LOG(("THRD-P(%p) shutdown async [%p]\n", this, aThread));
 | 
						|
 | 
						|
  // This is either called by a threadpool thread that is out of work, or
 | 
						|
  // a thread that attempted to create a threadpool thread and raced in
 | 
						|
  // such a way that the newly created thread is no longer necessary.
 | 
						|
  // In the first case, we must go to another thread to shut aThread down
 | 
						|
  // (because it is the current thread).  In the second case, we cannot
 | 
						|
  // synchronously shut down the current thread (because then Dispatch() would
 | 
						|
  // spin the event loop, and that could blow up the world), and asynchronous
 | 
						|
  // shutdown requires this thread have an event loop (and it may not, see bug
 | 
						|
  // 10204784).  The simplest way to cover all cases is to asynchronously
 | 
						|
  // shutdown aThread from the main thread.
 | 
						|
  SchedulerGroup::Dispatch(
 | 
						|
      TaskCategory::Other,
 | 
						|
      NewRunnableMethod("nsIThread::AsyncShutdown", aThread,
 | 
						|
                        &nsIThread::AsyncShutdown));
 | 
						|
}
 | 
						|
 | 
						|
// This event 'runs' for the lifetime of the worker thread.  The actual
 | 
						|
// eventqueue is mEvents, and is shared by all the worker threads.  This
 | 
						|
// means that the set of threads together define the delay seen by a new
 | 
						|
// event sent to the pool.
 | 
						|
//
 | 
						|
// To model the delay experienced by the pool, we can have each thread in
 | 
						|
// the pool report 0 if it's idle OR if the pool is below the threadlimit;
 | 
						|
// or otherwise the current event's queuing delay plus current running
 | 
						|
// time.
 | 
						|
//
 | 
						|
// To reconstruct the delays for the pool, the profiler can look at all the
 | 
						|
// threads that are part of a pool (pools have defined naming patterns that
 | 
						|
// can be user to connect them).  If all threads have delays at time X,
 | 
						|
// that means that all threads saturated at that point and any event
 | 
						|
// dispatched to the pool would get a delay.
 | 
						|
//
 | 
						|
// The delay experienced by an event dispatched when all pool threads are
 | 
						|
// busy is based on the calculations shown in platform.cpp.  Run that
 | 
						|
// algorithm for each thread in the pool, and the delay at time X is the
 | 
						|
// longest value for time X of any of the threads, OR the time from X until
 | 
						|
// any one of the threads reports 0 (i.e. it's not busy), whichever is
 | 
						|
// shorter.
 | 
						|
 | 
						|
// In order to record this when the profiler samples threads in the pool,
 | 
						|
// each thread must (effectively) override GetRunnningEventDelay, by
 | 
						|
// resetting the mLastEventDelay/Start values in the nsThread when we start
 | 
						|
// to run an event (or when we run out of events to run).  Note that handling
 | 
						|
// the shutdown of a thread may be a little tricky.
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::Run() {
 | 
						|
  LOG(("THRD-P(%p) enter %s\n", this, mName.BeginReading()));
 | 
						|
 | 
						|
  nsCOMPtr<nsIThread> current;
 | 
						|
  nsThreadManager::get().GetCurrentThread(getter_AddRefs(current));
 | 
						|
 | 
						|
  bool shutdownThreadOnExit = false;
 | 
						|
  bool exitThread = false;
 | 
						|
  bool wasIdle = false;
 | 
						|
  TimeStamp idleSince;
 | 
						|
 | 
						|
  // This thread is an nsThread created below with NS_NewNamedThread()
 | 
						|
  static_cast<nsThread*>(current.get())
 | 
						|
      ->SetPoolThreadFreePtr(&mIsAPoolThreadFree);
 | 
						|
 | 
						|
  nsCOMPtr<nsIThreadPoolListener> listener;
 | 
						|
  {
 | 
						|
    MutexAutoLock lock(mMutex);
 | 
						|
    listener = mListener;
 | 
						|
  }
 | 
						|
 | 
						|
  if (listener) {
 | 
						|
    listener->OnThreadCreated();
 | 
						|
  }
 | 
						|
 | 
						|
  MOZ_ASSERT(!gCurrentThreadPool.get());
 | 
						|
  gCurrentThreadPool.set(this);
 | 
						|
 | 
						|
  do {
 | 
						|
    nsCOMPtr<nsIRunnable> event;
 | 
						|
    TimeDuration delay;
 | 
						|
    {
 | 
						|
      MutexAutoLock lock(mMutex);
 | 
						|
 | 
						|
      event = mEvents.GetEvent(nullptr, lock, &delay);
 | 
						|
      if (!event) {
 | 
						|
        TimeStamp now = TimeStamp::Now();
 | 
						|
        uint32_t idleTimeoutDivider =
 | 
						|
            (mIdleCount && mRegressiveMaxIdleTime) ? mIdleCount : 1;
 | 
						|
        TimeDuration timeout = TimeDuration::FromMilliseconds(
 | 
						|
            static_cast<double>(mIdleThreadTimeout) / idleTimeoutDivider);
 | 
						|
 | 
						|
        // If we are shutting down, then don't keep any idle threads
 | 
						|
        if (mShutdown) {
 | 
						|
          exitThread = true;
 | 
						|
        } else {
 | 
						|
          if (wasIdle) {
 | 
						|
            // if too many idle threads or idle for too long, then bail.
 | 
						|
            if (mIdleCount > mIdleThreadLimit ||
 | 
						|
                (mIdleThreadTimeout != UINT32_MAX &&
 | 
						|
                 (now - idleSince) >= timeout)) {
 | 
						|
              exitThread = true;
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            // if would be too many idle threads...
 | 
						|
            if (mIdleCount == mIdleThreadLimit) {
 | 
						|
              exitThread = true;
 | 
						|
            } else {
 | 
						|
              ++mIdleCount;
 | 
						|
              idleSince = now;
 | 
						|
              wasIdle = true;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (exitThread) {
 | 
						|
          if (wasIdle) {
 | 
						|
            --mIdleCount;
 | 
						|
          }
 | 
						|
          shutdownThreadOnExit = mThreads.RemoveObject(current);
 | 
						|
 | 
						|
          // keep track if there are threads available to start
 | 
						|
          mIsAPoolThreadFree = (mThreads.Count() < (int32_t)mThreadLimit);
 | 
						|
        } else {
 | 
						|
          current->SetRunningEventDelay(TimeDuration(), TimeStamp());
 | 
						|
 | 
						|
          AUTO_PROFILER_LABEL("nsThreadPool::Run::Wait", IDLE);
 | 
						|
 | 
						|
          TimeDuration delta = timeout - (now - idleSince);
 | 
						|
          LOG(("THRD-P(%p) %s waiting [%f]\n", this, mName.BeginReading(),
 | 
						|
               delta.ToMilliseconds()));
 | 
						|
          mEventsAvailable.Wait(delta);
 | 
						|
          LOG(("THRD-P(%p) done waiting\n", this));
 | 
						|
        }
 | 
						|
      } else if (wasIdle) {
 | 
						|
        wasIdle = false;
 | 
						|
        --mIdleCount;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (event) {
 | 
						|
      LOG(("THRD-P(%p) %s running [%p]\n", this, mName.BeginReading(),
 | 
						|
           event.get()));
 | 
						|
 | 
						|
      // Delay event processing to encourage whoever dispatched this event
 | 
						|
      // to run.
 | 
						|
      DelayForChaosMode(ChaosFeature::TaskRunning, 1000);
 | 
						|
 | 
						|
      // We'll handle the case of unstarted threads available
 | 
						|
      // when we sample.
 | 
						|
      current->SetRunningEventDelay(delay, TimeStamp::Now());
 | 
						|
 | 
						|
      LogRunnable::Run log(event);
 | 
						|
      event->Run();
 | 
						|
      // To cover the event's destructor code in the LogRunnable span
 | 
						|
      event = nullptr;
 | 
						|
    }
 | 
						|
  } while (!exitThread);
 | 
						|
 | 
						|
  if (listener) {
 | 
						|
    listener->OnThreadShuttingDown();
 | 
						|
  }
 | 
						|
 | 
						|
  MOZ_ASSERT(gCurrentThreadPool.get() == this);
 | 
						|
  gCurrentThreadPool.set(nullptr);
 | 
						|
 | 
						|
  if (shutdownThreadOnExit) {
 | 
						|
    ShutdownThread(current);
 | 
						|
  }
 | 
						|
 | 
						|
  LOG(("THRD-P(%p) leave\n", this));
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
 | 
						|
  nsCOMPtr<nsIRunnable> event(aEvent);
 | 
						|
  return Dispatch(event.forget(), aFlags);
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) {
 | 
						|
  LOG(("THRD-P(%p) dispatch [%p %x]\n", this, /* XXX aEvent*/ nullptr, aFlags));
 | 
						|
 | 
						|
  if (NS_WARN_IF(mShutdown)) {
 | 
						|
    return NS_ERROR_NOT_AVAILABLE;
 | 
						|
  }
 | 
						|
 | 
						|
  if (aFlags & DISPATCH_SYNC) {
 | 
						|
    nsCOMPtr<nsIThread> thread;
 | 
						|
    nsThreadManager::get().GetCurrentThread(getter_AddRefs(thread));
 | 
						|
    if (NS_WARN_IF(!thread)) {
 | 
						|
      return NS_ERROR_NOT_AVAILABLE;
 | 
						|
    }
 | 
						|
 | 
						|
    RefPtr<nsThreadSyncDispatch> wrapper =
 | 
						|
        new nsThreadSyncDispatch(thread.forget(), std::move(aEvent));
 | 
						|
    PutEvent(wrapper);
 | 
						|
 | 
						|
    SpinEventLoopUntil(
 | 
						|
        [&, wrapper]() -> bool { return !wrapper->IsPending(); });
 | 
						|
  } else {
 | 
						|
    NS_ASSERTION(aFlags == NS_DISPATCH_NORMAL || aFlags == NS_DISPATCH_AT_END,
 | 
						|
                 "unexpected dispatch flags");
 | 
						|
    PutEvent(std::move(aEvent), aFlags);
 | 
						|
  }
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t) {
 | 
						|
  return NS_ERROR_NOT_IMPLEMENTED;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP_(bool)
 | 
						|
nsThreadPool::IsOnCurrentThreadInfallible() {
 | 
						|
  return gCurrentThreadPool.get() == this;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::IsOnCurrentThread(bool* aResult) {
 | 
						|
  MutexAutoLock lock(mMutex);
 | 
						|
  if (NS_WARN_IF(mShutdown)) {
 | 
						|
    return NS_ERROR_NOT_AVAILABLE;
 | 
						|
  }
 | 
						|
 | 
						|
  *aResult = IsOnCurrentThreadInfallible();
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::Shutdown() {
 | 
						|
  nsCOMArray<nsIThread> threads;
 | 
						|
  nsCOMPtr<nsIThreadPoolListener> listener;
 | 
						|
  {
 | 
						|
    MutexAutoLock lock(mMutex);
 | 
						|
    mShutdown = true;
 | 
						|
    mEventsAvailable.NotifyAll();
 | 
						|
 | 
						|
    threads.AppendObjects(mThreads);
 | 
						|
    mThreads.Clear();
 | 
						|
 | 
						|
    // Swap in a null listener so that we release the listener at the end of
 | 
						|
    // this method. The listener will be kept alive as long as the other threads
 | 
						|
    // that were created when it was set.
 | 
						|
    mListener.swap(listener);
 | 
						|
  }
 | 
						|
 | 
						|
  // It's important that we shutdown the threads while outside the event queue
 | 
						|
  // monitor.  Otherwise, we could end up dead-locking.
 | 
						|
 | 
						|
  for (int32_t i = 0; i < threads.Count(); ++i) {
 | 
						|
    threads[i]->Shutdown();
 | 
						|
  }
 | 
						|
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Pred>
 | 
						|
static void SpinMTEventLoopUntil(Pred&& aPredicate, nsIThread* aThread,
 | 
						|
                                 TimeDuration aTimeout) {
 | 
						|
  MOZ_ASSERT(NS_IsMainThread(), "Must be run on the main thread");
 | 
						|
 | 
						|
  // From a latency perspective, spinning the event loop is like leaving script
 | 
						|
  // and returning to the event loop. Tell the watchdog we stopped running
 | 
						|
  // script (until we return).
 | 
						|
  mozilla::Maybe<xpc::AutoScriptActivity> asa;
 | 
						|
  asa.emplace(false);
 | 
						|
 | 
						|
  TimeStamp deadline = TimeStamp::Now() + aTimeout;
 | 
						|
  while (!aPredicate() && TimeStamp::Now() < deadline) {
 | 
						|
    if (!NS_ProcessNextEvent(aThread, false)) {
 | 
						|
      PR_Sleep(PR_MillisecondsToInterval(1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::ShutdownWithTimeout(int32_t aTimeoutMs) {
 | 
						|
  if (!NS_IsMainThread()) {
 | 
						|
    return NS_ERROR_NOT_AVAILABLE;
 | 
						|
  }
 | 
						|
 | 
						|
  nsCOMArray<nsIThread> threads;
 | 
						|
  nsCOMPtr<nsIThreadPoolListener> listener;
 | 
						|
  {
 | 
						|
    MutexAutoLock lock(mMutex);
 | 
						|
    mShutdown = true;
 | 
						|
    mEventsAvailable.NotifyAll();
 | 
						|
 | 
						|
    threads.AppendObjects(mThreads);
 | 
						|
    mThreads.Clear();
 | 
						|
 | 
						|
    // Swap in a null listener so that we release the listener at the end of
 | 
						|
    // this method. The listener will be kept alive as long as the other threads
 | 
						|
    // that were created when it was set.
 | 
						|
    mListener.swap(listener);
 | 
						|
  }
 | 
						|
 | 
						|
  // IMPORTANT! Never dereference these pointers, as the objects may go away at
 | 
						|
  // any time. We just use the pointers values for comparison, to check if the
 | 
						|
  // thread has been shut down or not.
 | 
						|
  nsTArray<nsThreadShutdownContext*> contexts;
 | 
						|
 | 
						|
  // It's important that we shutdown the threads while outside the event queue
 | 
						|
  // monitor.  Otherwise, we could end up dead-locking.
 | 
						|
  for (int32_t i = 0; i < threads.Count(); ++i) {
 | 
						|
    // Shutdown async
 | 
						|
    nsThreadShutdownContext* maybeContext =
 | 
						|
        static_cast<nsThread*>(threads[i])->ShutdownInternal(false);
 | 
						|
    contexts.AppendElement(maybeContext);
 | 
						|
  }
 | 
						|
 | 
						|
  NotNull<nsThread*> currentThread =
 | 
						|
      WrapNotNull(nsThreadManager::get().GetCurrentThread());
 | 
						|
 | 
						|
  // We spin the event loop until all of the threads in the thread pool
 | 
						|
  // have shut down, or the timeout expires.
 | 
						|
  SpinMTEventLoopUntil(
 | 
						|
      [&]() {
 | 
						|
        for (nsIThread* thread : threads) {
 | 
						|
          if (static_cast<nsThread*>(thread)->mThread) {
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
      },
 | 
						|
      currentThread, TimeDuration::FromMilliseconds(aTimeoutMs));
 | 
						|
 | 
						|
  // For any threads that have not shutdown yet, we need to remove them from
 | 
						|
  // mRequestedShutdownContexts so the thread manager does not wait for them
 | 
						|
  // at shutdown.
 | 
						|
  static const nsThread::ShutdownContextsComp comparator{};
 | 
						|
  for (int32_t i = 0; i < threads.Count(); ++i) {
 | 
						|
    nsThread* thread = static_cast<nsThread*>(threads[i]);
 | 
						|
    // If mThread is not null on the thread it means that it hasn't shutdown
 | 
						|
    // context[i] corresponds to thread[i]
 | 
						|
    if (thread->mThread && contexts[i]) {
 | 
						|
      auto index = currentThread->mRequestedShutdownContexts.IndexOf(
 | 
						|
          contexts[i], 0, comparator);
 | 
						|
      if (index != nsThread::ShutdownContexts::NoIndex) {
 | 
						|
        // We must leak the shutdown context just in case the leaked thread
 | 
						|
        // does get unstuck and completes before the main thread is done.
 | 
						|
        Unused << currentThread->mRequestedShutdownContexts[index].release();
 | 
						|
        currentThread->mRequestedShutdownContexts.RemoveElementAt(index);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::GetThreadLimit(uint32_t* aValue) {
 | 
						|
  *aValue = mThreadLimit;
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::SetThreadLimit(uint32_t aValue) {
 | 
						|
  MutexAutoLock lock(mMutex);
 | 
						|
  LOG(("THRD-P(%p) thread limit [%u]\n", this, aValue));
 | 
						|
  mThreadLimit = aValue;
 | 
						|
  if (mIdleThreadLimit > mThreadLimit) {
 | 
						|
    mIdleThreadLimit = mThreadLimit;
 | 
						|
  }
 | 
						|
 | 
						|
  if (static_cast<uint32_t>(mThreads.Count()) > mThreadLimit) {
 | 
						|
    mEventsAvailable
 | 
						|
        .NotifyAll();  // wake up threads so they observe this change
 | 
						|
  }
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::GetIdleThreadLimit(uint32_t* aValue) {
 | 
						|
  *aValue = mIdleThreadLimit;
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::SetIdleThreadLimit(uint32_t aValue) {
 | 
						|
  MutexAutoLock lock(mMutex);
 | 
						|
  LOG(("THRD-P(%p) idle thread limit [%u]\n", this, aValue));
 | 
						|
  mIdleThreadLimit = aValue;
 | 
						|
  if (mIdleThreadLimit > mThreadLimit) {
 | 
						|
    mIdleThreadLimit = mThreadLimit;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do we need to kill some idle threads?
 | 
						|
  if (mIdleCount > mIdleThreadLimit) {
 | 
						|
    mEventsAvailable
 | 
						|
        .NotifyAll();  // wake up threads so they observe this change
 | 
						|
  }
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::GetIdleThreadTimeout(uint32_t* aValue) {
 | 
						|
  *aValue = mIdleThreadTimeout;
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::SetIdleThreadTimeout(uint32_t aValue) {
 | 
						|
  MutexAutoLock lock(mMutex);
 | 
						|
  uint32_t oldTimeout = mIdleThreadTimeout;
 | 
						|
  mIdleThreadTimeout = aValue;
 | 
						|
 | 
						|
  // Do we need to notify any idle threads that their sleep time has shortened?
 | 
						|
  if (mIdleThreadTimeout < oldTimeout && mIdleCount > 0) {
 | 
						|
    mEventsAvailable
 | 
						|
        .NotifyAll();  // wake up threads so they observe this change
 | 
						|
  }
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::GetIdleThreadTimeoutRegressive(bool* aValue) {
 | 
						|
  *aValue = mRegressiveMaxIdleTime;
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::SetIdleThreadTimeoutRegressive(bool aValue) {
 | 
						|
  MutexAutoLock lock(mMutex);
 | 
						|
  bool oldRegressive = mRegressiveMaxIdleTime;
 | 
						|
  mRegressiveMaxIdleTime = aValue;
 | 
						|
 | 
						|
  // Would setting regressive timeout effect idle threads?
 | 
						|
  if (mRegressiveMaxIdleTime > oldRegressive && mIdleCount > 1) {
 | 
						|
    mEventsAvailable
 | 
						|
        .NotifyAll();  // wake up threads so they observe this change
 | 
						|
  }
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::GetThreadStackSize(uint32_t* aValue) {
 | 
						|
  MutexAutoLock lock(mMutex);
 | 
						|
  *aValue = mStackSize;
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::SetThreadStackSize(uint32_t aValue) {
 | 
						|
  MutexAutoLock lock(mMutex);
 | 
						|
  mStackSize = aValue;
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::GetListener(nsIThreadPoolListener** aListener) {
 | 
						|
  MutexAutoLock lock(mMutex);
 | 
						|
  NS_IF_ADDREF(*aListener = mListener);
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::SetListener(nsIThreadPoolListener* aListener) {
 | 
						|
  nsCOMPtr<nsIThreadPoolListener> swappedListener(aListener);
 | 
						|
  {
 | 
						|
    MutexAutoLock lock(mMutex);
 | 
						|
    mListener.swap(swappedListener);
 | 
						|
  }
 | 
						|
  return NS_OK;
 | 
						|
}
 | 
						|
 | 
						|
NS_IMETHODIMP
 | 
						|
nsThreadPool::SetName(const nsACString& aName) {
 | 
						|
  {
 | 
						|
    MutexAutoLock lock(mMutex);
 | 
						|
    if (mThreads.Count()) {
 | 
						|
      return NS_ERROR_NOT_AVAILABLE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  mName = aName;
 | 
						|
  return NS_OK;
 | 
						|
}
 |