forked from mirrors/gecko-dev
		
	Depends on D119696 Differential Revision: https://phabricator.services.mozilla.com/D119697
		
			
				
	
	
		
			2298 lines
		
	
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2298 lines
		
	
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | 
						|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | 
						|
/* This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
#ifndef MOZILLA_GFX_MATRIX_H_
 | 
						|
#define MOZILLA_GFX_MATRIX_H_
 | 
						|
 | 
						|
#include "Types.h"
 | 
						|
#include "Triangle.h"
 | 
						|
#include "Rect.h"
 | 
						|
#include "Point.h"
 | 
						|
#include "Quaternion.h"
 | 
						|
#include <iosfwd>
 | 
						|
#include <math.h>
 | 
						|
#include "mozilla/Attributes.h"
 | 
						|
#include "mozilla/DebugOnly.h"
 | 
						|
#include "mozilla/FloatingPoint.h"
 | 
						|
#include "mozilla/Span.h"
 | 
						|
 | 
						|
namespace mozilla {
 | 
						|
namespace gfx {
 | 
						|
 | 
						|
static inline bool FuzzyEqual(Float aV1, Float aV2) {
 | 
						|
  // XXX - Check if fabs does the smart thing and just negates the sign bit.
 | 
						|
  return fabs(aV2 - aV1) < 1e-6;
 | 
						|
}
 | 
						|
 | 
						|
template <typename F>
 | 
						|
Span<Point4DTyped<UnknownUnits, F>> IntersectPolygon(
 | 
						|
    Span<Point4DTyped<UnknownUnits, F>> aPoints,
 | 
						|
    const Point4DTyped<UnknownUnits, F>& aPlaneNormal,
 | 
						|
    Span<Point4DTyped<UnknownUnits, F>> aDestBuffer);
 | 
						|
 | 
						|
template <class T>
 | 
						|
class BaseMatrix {
 | 
						|
  // Alias that maps to either Point or PointDouble depending on whether T is a
 | 
						|
  // float or a double.
 | 
						|
  typedef PointTyped<UnknownUnits, T> MatrixPoint;
 | 
						|
  // Same for size and rect
 | 
						|
  typedef SizeTyped<UnknownUnits, T> MatrixSize;
 | 
						|
  typedef RectTyped<UnknownUnits, T> MatrixRect;
 | 
						|
 | 
						|
 public:
 | 
						|
  BaseMatrix() : _11(1.0f), _12(0), _21(0), _22(1.0f), _31(0), _32(0) {}
 | 
						|
  BaseMatrix(T a11, T a12, T a21, T a22, T a31, T a32)
 | 
						|
      : _11(a11), _12(a12), _21(a21), _22(a22), _31(a31), _32(a32) {}
 | 
						|
  union {
 | 
						|
    struct {
 | 
						|
      T _11, _12;
 | 
						|
      T _21, _22;
 | 
						|
      T _31, _32;
 | 
						|
    };
 | 
						|
    T components[6];
 | 
						|
  };
 | 
						|
 | 
						|
  template <class T2>
 | 
						|
  explicit BaseMatrix(const BaseMatrix<T2>& aOther)
 | 
						|
      : _11(aOther._11),
 | 
						|
        _12(aOther._12),
 | 
						|
        _21(aOther._21),
 | 
						|
        _22(aOther._22),
 | 
						|
        _31(aOther._31),
 | 
						|
        _32(aOther._32) {}
 | 
						|
 | 
						|
  MOZ_ALWAYS_INLINE BaseMatrix Copy() const { return BaseMatrix<T>(*this); }
 | 
						|
 | 
						|
  friend std::ostream& operator<<(std::ostream& aStream,
 | 
						|
                                  const BaseMatrix& aMatrix) {
 | 
						|
    if (aMatrix.IsIdentity()) {
 | 
						|
      return aStream << "[ I ]";
 | 
						|
    }
 | 
						|
    return aStream << "[ " << aMatrix._11 << " " << aMatrix._12 << "; "
 | 
						|
                   << aMatrix._21 << " " << aMatrix._22 << "; " << aMatrix._31
 | 
						|
                   << " " << aMatrix._32 << "; ]";
 | 
						|
  }
 | 
						|
 | 
						|
  MatrixPoint TransformPoint(const MatrixPoint& aPoint) const {
 | 
						|
    MatrixPoint retPoint;
 | 
						|
 | 
						|
    retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31;
 | 
						|
    retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32;
 | 
						|
 | 
						|
    return retPoint;
 | 
						|
  }
 | 
						|
 | 
						|
  MatrixSize TransformSize(const MatrixSize& aSize) const {
 | 
						|
    MatrixSize retSize;
 | 
						|
 | 
						|
    retSize.width = aSize.width * _11 + aSize.height * _21;
 | 
						|
    retSize.height = aSize.width * _12 + aSize.height * _22;
 | 
						|
 | 
						|
    return retSize;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * In most cases you probably want to use TransformBounds. This function
 | 
						|
   * just transforms the top-left and size separately and constructs a rect
 | 
						|
   * from those results.
 | 
						|
   */
 | 
						|
  MatrixRect TransformRect(const MatrixRect& aRect) const {
 | 
						|
    return MatrixRect(TransformPoint(aRect.TopLeft()),
 | 
						|
                      TransformSize(aRect.Size()));
 | 
						|
  }
 | 
						|
 | 
						|
  GFX2D_API MatrixRect TransformBounds(const MatrixRect& aRect) const {
 | 
						|
    int i;
 | 
						|
    MatrixPoint quad[4];
 | 
						|
    T min_x, max_x;
 | 
						|
    T min_y, max_y;
 | 
						|
 | 
						|
    quad[0] = TransformPoint(aRect.TopLeft());
 | 
						|
    quad[1] = TransformPoint(aRect.TopRight());
 | 
						|
    quad[2] = TransformPoint(aRect.BottomLeft());
 | 
						|
    quad[3] = TransformPoint(aRect.BottomRight());
 | 
						|
 | 
						|
    min_x = max_x = quad[0].x;
 | 
						|
    min_y = max_y = quad[0].y;
 | 
						|
 | 
						|
    for (i = 1; i < 4; i++) {
 | 
						|
      if (quad[i].x < min_x) min_x = quad[i].x;
 | 
						|
      if (quad[i].x > max_x) max_x = quad[i].x;
 | 
						|
 | 
						|
      if (quad[i].y < min_y) min_y = quad[i].y;
 | 
						|
      if (quad[i].y > max_y) max_y = quad[i].y;
 | 
						|
    }
 | 
						|
 | 
						|
    return MatrixRect(min_x, min_y, max_x - min_x, max_y - min_y);
 | 
						|
  }
 | 
						|
 | 
						|
  static BaseMatrix<T> Translation(T aX, T aY) {
 | 
						|
    return BaseMatrix<T>(1.0f, 0.0f, 0.0f, 1.0f, aX, aY);
 | 
						|
  }
 | 
						|
 | 
						|
  static BaseMatrix<T> Translation(MatrixPoint aPoint) {
 | 
						|
    return Translation(aPoint.x, aPoint.y);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Apply a translation to this matrix.
 | 
						|
   *
 | 
						|
   * The "Pre" in this method's name means that the translation is applied
 | 
						|
   * -before- this matrix's existing transformation. That is, any vector that
 | 
						|
   * is multiplied by the resulting matrix will first be translated, then be
 | 
						|
   * transformed by the original transform.
 | 
						|
   *
 | 
						|
   * Calling this method will result in this matrix having the same value as
 | 
						|
   * the result of:
 | 
						|
   *
 | 
						|
   *   BaseMatrix<T>::Translation(x, y) * this
 | 
						|
   *
 | 
						|
   * (Note that in performance critical code multiplying by the result of a
 | 
						|
   * Translation()/Scaling() call is not recommended since that results in a
 | 
						|
   * full matrix multiply involving 12 floating-point multiplications. Calling
 | 
						|
   * this method would be preferred since it only involves four floating-point
 | 
						|
   * multiplications.)
 | 
						|
   */
 | 
						|
  BaseMatrix<T>& PreTranslate(T aX, T aY) {
 | 
						|
    _31 += _11 * aX + _21 * aY;
 | 
						|
    _32 += _12 * aX + _22 * aY;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  BaseMatrix<T>& PreTranslate(const MatrixPoint& aPoint) {
 | 
						|
    return PreTranslate(aPoint.x, aPoint.y);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Similar to PreTranslate, but the translation is applied -after- this
 | 
						|
   * matrix's existing transformation instead of before it.
 | 
						|
   *
 | 
						|
   * This method is generally less used than PreTranslate since typically code
 | 
						|
   * want to adjust an existing user space to device space matrix to create a
 | 
						|
   * transform to device space from a -new- user space (translated from the
 | 
						|
   * previous user space). In that case consumers will need to use the Pre*
 | 
						|
   * variants of the matrix methods rather than using the Post* methods, since
 | 
						|
   * the Post* methods add a transform to the device space end of the
 | 
						|
   * transformation.
 | 
						|
   */
 | 
						|
  BaseMatrix<T>& PostTranslate(T aX, T aY) {
 | 
						|
    _31 += aX;
 | 
						|
    _32 += aY;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  BaseMatrix<T>& PostTranslate(const MatrixPoint& aPoint) {
 | 
						|
    return PostTranslate(aPoint.x, aPoint.y);
 | 
						|
  }
 | 
						|
 | 
						|
  static BaseMatrix<T> Scaling(T aScaleX, T aScaleY) {
 | 
						|
    return BaseMatrix<T>(aScaleX, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Similar to PreTranslate, but applies a scale instead of a translation.
 | 
						|
   */
 | 
						|
  BaseMatrix<T>& PreScale(T aX, T aY) {
 | 
						|
    _11 *= aX;
 | 
						|
    _12 *= aX;
 | 
						|
    _21 *= aY;
 | 
						|
    _22 *= aY;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Similar to PostTranslate, but applies a scale instead of a translation.
 | 
						|
   */
 | 
						|
  BaseMatrix<T>& PostScale(T aScaleX, T aScaleY) {
 | 
						|
    _11 *= aScaleX;
 | 
						|
    _12 *= aScaleY;
 | 
						|
    _21 *= aScaleX;
 | 
						|
    _22 *= aScaleY;
 | 
						|
    _31 *= aScaleX;
 | 
						|
    _32 *= aScaleY;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  GFX2D_API static BaseMatrix<T> Rotation(T aAngle);
 | 
						|
 | 
						|
  /**
 | 
						|
   * Similar to PreTranslate, but applies a rotation instead of a translation.
 | 
						|
   */
 | 
						|
  BaseMatrix<T>& PreRotate(T aAngle) {
 | 
						|
    return *this = BaseMatrix<T>::Rotation(aAngle) * *this;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Invert() {
 | 
						|
    // Compute co-factors.
 | 
						|
    T A = _22;
 | 
						|
    T B = -_21;
 | 
						|
    T C = _21 * _32 - _22 * _31;
 | 
						|
    T D = -_12;
 | 
						|
    T E = _11;
 | 
						|
    T F = _31 * _12 - _11 * _32;
 | 
						|
 | 
						|
    T det = Determinant();
 | 
						|
 | 
						|
    if (!det) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    T inv_det = 1 / det;
 | 
						|
 | 
						|
    _11 = inv_det * A;
 | 
						|
    _12 = inv_det * D;
 | 
						|
    _21 = inv_det * B;
 | 
						|
    _22 = inv_det * E;
 | 
						|
    _31 = inv_det * C;
 | 
						|
    _32 = inv_det * F;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  BaseMatrix<T> Inverse() const {
 | 
						|
    BaseMatrix<T> clone = *this;
 | 
						|
    DebugOnly<bool> inverted = clone.Invert();
 | 
						|
    MOZ_ASSERT(inverted,
 | 
						|
               "Attempted to get the inverse of a non-invertible matrix");
 | 
						|
    return clone;
 | 
						|
  }
 | 
						|
 | 
						|
  T Determinant() const { return _11 * _22 - _12 * _21; }
 | 
						|
 | 
						|
  BaseMatrix<T> operator*(const BaseMatrix<T>& aMatrix) const {
 | 
						|
    BaseMatrix<T> resultMatrix;
 | 
						|
 | 
						|
    resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
 | 
						|
    resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
 | 
						|
    resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
 | 
						|
    resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
 | 
						|
    resultMatrix._31 =
 | 
						|
        this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31;
 | 
						|
    resultMatrix._32 =
 | 
						|
        this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32;
 | 
						|
 | 
						|
    return resultMatrix;
 | 
						|
  }
 | 
						|
 | 
						|
  BaseMatrix<T>& operator*=(const BaseMatrix<T>& aMatrix) {
 | 
						|
    *this = *this * aMatrix;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Multiplies *this with aMatrix and returns the result.
 | 
						|
   */
 | 
						|
  Matrix4x4 operator*(const Matrix4x4& aMatrix) const;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Multiplies in the opposite order to operator=*.
 | 
						|
   */
 | 
						|
  BaseMatrix<T>& PreMultiply(const BaseMatrix<T>& aMatrix) {
 | 
						|
    *this = aMatrix * *this;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Please explicitly use either FuzzyEquals or ExactlyEquals.
 | 
						|
   */
 | 
						|
  bool operator==(const BaseMatrix<T>& other) const = delete;
 | 
						|
  bool operator!=(const BaseMatrix<T>& other) const = delete;
 | 
						|
 | 
						|
  /* Returns true if the other matrix is fuzzy-equal to this matrix.
 | 
						|
   * Note that this isn't a cheap comparison!
 | 
						|
   */
 | 
						|
  bool FuzzyEquals(const BaseMatrix<T>& o) const {
 | 
						|
    return FuzzyEqual(_11, o._11) && FuzzyEqual(_12, o._12) &&
 | 
						|
           FuzzyEqual(_21, o._21) && FuzzyEqual(_22, o._22) &&
 | 
						|
           FuzzyEqual(_31, o._31) && FuzzyEqual(_32, o._32);
 | 
						|
  }
 | 
						|
 | 
						|
  bool ExactlyEquals(const BaseMatrix<T>& o) const {
 | 
						|
    return _11 == o._11 && _12 == o._12 && _21 == o._21 && _22 == o._22 &&
 | 
						|
           _31 == o._31 && _32 == o._32;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Verifies that the matrix contains no Infs or NaNs. */
 | 
						|
  bool IsFinite() const {
 | 
						|
    return mozilla::IsFinite(_11) && mozilla::IsFinite(_12) &&
 | 
						|
           mozilla::IsFinite(_21) && mozilla::IsFinite(_22) &&
 | 
						|
           mozilla::IsFinite(_31) && mozilla::IsFinite(_32);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns true if the matrix is a rectilinear transformation (i.e.
 | 
						|
   * grid-aligned rectangles are transformed to grid-aligned rectangles)
 | 
						|
   */
 | 
						|
  bool IsRectilinear() const {
 | 
						|
    if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) {
 | 
						|
      return true;
 | 
						|
    } else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the matrix is anything other than a straight
 | 
						|
   * translation by integers.
 | 
						|
   */
 | 
						|
  bool HasNonIntegerTranslation() const {
 | 
						|
    return HasNonTranslation() || !FuzzyEqual(_31, floor(_31 + 0.5f)) ||
 | 
						|
           !FuzzyEqual(_32, floor(_32 + 0.5f));
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the matrix only has an integer translation.
 | 
						|
   */
 | 
						|
  bool HasOnlyIntegerTranslation() const { return !HasNonIntegerTranslation(); }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the matrix has any transform other
 | 
						|
   * than a straight translation.
 | 
						|
   */
 | 
						|
  bool HasNonTranslation() const {
 | 
						|
    return !FuzzyEqual(_11, 1.0) || !FuzzyEqual(_22, 1.0) ||
 | 
						|
           !FuzzyEqual(_12, 0.0) || !FuzzyEqual(_21, 0.0);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the matrix has any transform other
 | 
						|
   * than a translation or a -1 y scale (y axis flip)
 | 
						|
   */
 | 
						|
  bool HasNonTranslationOrFlip() const {
 | 
						|
    return !FuzzyEqual(_11, 1.0) ||
 | 
						|
           (!FuzzyEqual(_22, 1.0) && !FuzzyEqual(_22, -1.0)) ||
 | 
						|
           !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns true if the matrix is an identity matrix.
 | 
						|
   */
 | 
						|
  bool IsIdentity() const {
 | 
						|
    return _11 == 1.0f && _12 == 0.0f && _21 == 0.0f && _22 == 1.0f &&
 | 
						|
           _31 == 0.0f && _32 == 0.0f;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns true if the matrix is singular.
 | 
						|
   */
 | 
						|
  bool IsSingular() const {
 | 
						|
    T det = Determinant();
 | 
						|
    return !mozilla::IsFinite(det) || det == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  GFX2D_API BaseMatrix<T>& NudgeToIntegers() {
 | 
						|
    NudgeToInteger(&_11);
 | 
						|
    NudgeToInteger(&_12);
 | 
						|
    NudgeToInteger(&_21);
 | 
						|
    NudgeToInteger(&_22);
 | 
						|
    NudgeToInteger(&_31);
 | 
						|
    NudgeToInteger(&_32);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsTranslation() const {
 | 
						|
    return FuzzyEqual(_11, 1.0f) && FuzzyEqual(_12, 0.0f) &&
 | 
						|
           FuzzyEqual(_21, 0.0f) && FuzzyEqual(_22, 1.0f);
 | 
						|
  }
 | 
						|
 | 
						|
  static bool FuzzyIsInteger(T aValue) {
 | 
						|
    return FuzzyEqual(aValue, floorf(aValue + 0.5f));
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsIntegerTranslation() const {
 | 
						|
    return IsTranslation() && FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsAllIntegers() const {
 | 
						|
    return FuzzyIsInteger(_11) && FuzzyIsInteger(_12) && FuzzyIsInteger(_21) &&
 | 
						|
           FuzzyIsInteger(_22) && FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
 | 
						|
  }
 | 
						|
 | 
						|
  MatrixPoint GetTranslation() const { return MatrixPoint(_31, _32); }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if matrix is multiple of 90 degrees rotation with flipping,
 | 
						|
   * scaling and translation.
 | 
						|
   */
 | 
						|
  bool PreservesAxisAlignedRectangles() const {
 | 
						|
    return ((FuzzyEqual(_11, 0.0) && FuzzyEqual(_22, 0.0)) ||
 | 
						|
            (FuzzyEqual(_12, 0.0) && FuzzyEqual(_21, 0.0)));
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the matrix has any transform other
 | 
						|
   * than a translation or scale; this is, if there is
 | 
						|
   * rotation.
 | 
						|
   */
 | 
						|
  bool HasNonAxisAlignedTransform() const {
 | 
						|
    return !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the matrix has negative scaling (i.e. flip).
 | 
						|
   */
 | 
						|
  bool HasNegativeScaling() const { return (_11 < 0.0) || (_22 < 0.0); }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Computes the scale factors of this matrix; that is,
 | 
						|
   * the amounts each basis vector is scaled by.
 | 
						|
   * The xMajor parameter indicates if the larger scale is
 | 
						|
   * to be assumed to be in the X direction or not.
 | 
						|
   */
 | 
						|
  MatrixSize ScaleFactors() const {
 | 
						|
    T det = Determinant();
 | 
						|
 | 
						|
    if (det == 0.0) {
 | 
						|
      return MatrixSize(0.0, 0.0);
 | 
						|
    }
 | 
						|
 | 
						|
    MatrixSize sz = MatrixSize(1.0, 0.0);
 | 
						|
    sz = TransformSize(sz);
 | 
						|
 | 
						|
    T major = sqrt(sz.width * sz.width + sz.height * sz.height);
 | 
						|
    T minor = 0.0;
 | 
						|
 | 
						|
    // ignore mirroring
 | 
						|
    if (det < 0.0) {
 | 
						|
      det = -det;
 | 
						|
    }
 | 
						|
 | 
						|
    if (major) {
 | 
						|
      minor = det / major;
 | 
						|
    }
 | 
						|
 | 
						|
    return MatrixSize(major, minor);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
typedef BaseMatrix<Float> Matrix;
 | 
						|
typedef BaseMatrix<Double> MatrixDouble;
 | 
						|
 | 
						|
// Helper functions used by Matrix4x4Typed defined in Matrix.cpp
 | 
						|
double SafeTangent(double aTheta);
 | 
						|
double FlushToZero(double aVal);
 | 
						|
 | 
						|
template <class Units, class F>
 | 
						|
Point4DTyped<Units, F> ComputePerspectivePlaneIntercept(
 | 
						|
    const Point4DTyped<Units, F>& aFirst,
 | 
						|
    const Point4DTyped<Units, F>& aSecond) {
 | 
						|
  // This function will always return a point with a w value of 0.
 | 
						|
  // The X, Y, and Z components will point towards an infinite vanishing
 | 
						|
  // point.
 | 
						|
 | 
						|
  // We want to interpolate aFirst and aSecond to find the point intersecting
 | 
						|
  // with the w=0 plane.
 | 
						|
 | 
						|
  // Since we know what we want the w component to be, we can rearrange the
 | 
						|
  // interpolation equation and solve for t.
 | 
						|
  float t = -aFirst.w / (aSecond.w - aFirst.w);
 | 
						|
 | 
						|
  // Use t to find the remainder of the components
 | 
						|
  return aFirst + (aSecond - aFirst) * t;
 | 
						|
}
 | 
						|
 | 
						|
template <class SourceUnits, class TargetUnits, class T>
 | 
						|
class Matrix4x4Typed {
 | 
						|
 public:
 | 
						|
  typedef PointTyped<SourceUnits, T> SourcePoint;
 | 
						|
  typedef PointTyped<TargetUnits, T> TargetPoint;
 | 
						|
  typedef Point3DTyped<SourceUnits, T> SourcePoint3D;
 | 
						|
  typedef Point3DTyped<TargetUnits, T> TargetPoint3D;
 | 
						|
  typedef Point4DTyped<SourceUnits, T> SourcePoint4D;
 | 
						|
  typedef Point4DTyped<TargetUnits, T> TargetPoint4D;
 | 
						|
  typedef RectTyped<SourceUnits, T> SourceRect;
 | 
						|
  typedef RectTyped<TargetUnits, T> TargetRect;
 | 
						|
 | 
						|
  Matrix4x4Typed()
 | 
						|
      : _11(1.0f),
 | 
						|
        _12(0.0f),
 | 
						|
        _13(0.0f),
 | 
						|
        _14(0.0f),
 | 
						|
        _21(0.0f),
 | 
						|
        _22(1.0f),
 | 
						|
        _23(0.0f),
 | 
						|
        _24(0.0f),
 | 
						|
        _31(0.0f),
 | 
						|
        _32(0.0f),
 | 
						|
        _33(1.0f),
 | 
						|
        _34(0.0f),
 | 
						|
        _41(0.0f),
 | 
						|
        _42(0.0f),
 | 
						|
        _43(0.0f),
 | 
						|
        _44(1.0f) {}
 | 
						|
 | 
						|
  Matrix4x4Typed(T a11, T a12, T a13, T a14, T a21, T a22, T a23, T a24, T a31,
 | 
						|
                 T a32, T a33, T a34, T a41, T a42, T a43, T a44)
 | 
						|
      : _11(a11),
 | 
						|
        _12(a12),
 | 
						|
        _13(a13),
 | 
						|
        _14(a14),
 | 
						|
        _21(a21),
 | 
						|
        _22(a22),
 | 
						|
        _23(a23),
 | 
						|
        _24(a24),
 | 
						|
        _31(a31),
 | 
						|
        _32(a32),
 | 
						|
        _33(a33),
 | 
						|
        _34(a34),
 | 
						|
        _41(a41),
 | 
						|
        _42(a42),
 | 
						|
        _43(a43),
 | 
						|
        _44(a44) {}
 | 
						|
 | 
						|
  explicit Matrix4x4Typed(const T aArray[16]) {
 | 
						|
    memcpy(components, aArray, sizeof(components));
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed(const Matrix4x4Typed& aOther) {
 | 
						|
    memcpy(components, aOther.components, sizeof(components));
 | 
						|
  }
 | 
						|
 | 
						|
  template <class T2>
 | 
						|
  explicit Matrix4x4Typed(
 | 
						|
      const Matrix4x4Typed<SourceUnits, TargetUnits, T2>& aOther)
 | 
						|
      : _11(aOther._11),
 | 
						|
        _12(aOther._12),
 | 
						|
        _13(aOther._13),
 | 
						|
        _14(aOther._14),
 | 
						|
        _21(aOther._21),
 | 
						|
        _22(aOther._22),
 | 
						|
        _23(aOther._23),
 | 
						|
        _24(aOther._24),
 | 
						|
        _31(aOther._31),
 | 
						|
        _32(aOther._32),
 | 
						|
        _33(aOther._33),
 | 
						|
        _34(aOther._34),
 | 
						|
        _41(aOther._41),
 | 
						|
        _42(aOther._42),
 | 
						|
        _43(aOther._43),
 | 
						|
        _44(aOther._44) {}
 | 
						|
 | 
						|
  union {
 | 
						|
    struct {
 | 
						|
      T _11, _12, _13, _14;
 | 
						|
      T _21, _22, _23, _24;
 | 
						|
      T _31, _32, _33, _34;
 | 
						|
      T _41, _42, _43, _44;
 | 
						|
    };
 | 
						|
    T components[16];
 | 
						|
  };
 | 
						|
 | 
						|
  friend std::ostream& operator<<(std::ostream& aStream,
 | 
						|
                                  const Matrix4x4Typed& aMatrix) {
 | 
						|
    if (aMatrix.Is2D()) {
 | 
						|
      BaseMatrix<T> matrix = aMatrix.As2D();
 | 
						|
      return aStream << matrix;
 | 
						|
    }
 | 
						|
    const T* f = &aMatrix._11;
 | 
						|
    aStream << "[ " << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
 | 
						|
    f += 4;
 | 
						|
    aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
 | 
						|
    f += 4;
 | 
						|
    aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
 | 
						|
    f += 4;
 | 
						|
    aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3]
 | 
						|
            << "; ]";
 | 
						|
    return aStream;
 | 
						|
  }
 | 
						|
 | 
						|
  Point4DTyped<UnknownUnits, T>& operator[](int aIndex) {
 | 
						|
    MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
 | 
						|
    return *reinterpret_cast<Point4DTyped<UnknownUnits, T>*>((&_11) +
 | 
						|
                                                             4 * aIndex);
 | 
						|
  }
 | 
						|
  const Point4DTyped<UnknownUnits, T>& operator[](int aIndex) const {
 | 
						|
    MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
 | 
						|
    return *reinterpret_cast<const Point4DTyped<UnknownUnits, T>*>((&_11) +
 | 
						|
                                                                   4 * aIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the matrix is isomorphic to a 2D affine transformation.
 | 
						|
   */
 | 
						|
  bool Is2D() const {
 | 
						|
    if (_13 != 0.0f || _14 != 0.0f || _23 != 0.0f || _24 != 0.0f ||
 | 
						|
        _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f ||
 | 
						|
        _43 != 0.0f || _44 != 1.0f) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Is2D(BaseMatrix<T>* aMatrix) const {
 | 
						|
    if (!Is2D()) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (aMatrix) {
 | 
						|
      aMatrix->_11 = _11;
 | 
						|
      aMatrix->_12 = _12;
 | 
						|
      aMatrix->_21 = _21;
 | 
						|
      aMatrix->_22 = _22;
 | 
						|
      aMatrix->_31 = _41;
 | 
						|
      aMatrix->_32 = _42;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  BaseMatrix<T> As2D() const {
 | 
						|
    MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform");
 | 
						|
 | 
						|
    return BaseMatrix<T>(_11, _12, _21, _22, _41, _42);
 | 
						|
  }
 | 
						|
 | 
						|
  bool CanDraw2D(BaseMatrix<T>* aMatrix = nullptr) const {
 | 
						|
    if (_14 != 0.0f || _24 != 0.0f || _44 != 1.0f) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (aMatrix) {
 | 
						|
      aMatrix->_11 = _11;
 | 
						|
      aMatrix->_12 = _12;
 | 
						|
      aMatrix->_21 = _21;
 | 
						|
      aMatrix->_22 = _22;
 | 
						|
      aMatrix->_31 = _41;
 | 
						|
      aMatrix->_32 = _42;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed& ProjectTo2D() {
 | 
						|
    _31 = 0.0f;
 | 
						|
    _32 = 0.0f;
 | 
						|
    _13 = 0.0f;
 | 
						|
    _23 = 0.0f;
 | 
						|
    _33 = 1.0f;
 | 
						|
    _43 = 0.0f;
 | 
						|
    _34 = 0.0f;
 | 
						|
    // Some matrices, such as those derived from perspective transforms,
 | 
						|
    // can modify _44 from 1, while leaving the rest of the fourth column
 | 
						|
    // (_14, _24) at 0. In this case, after resetting the third row and
 | 
						|
    // third column above, the value of _44 functions only to scale the
 | 
						|
    // coordinate transform divide by W. The matrix can be converted to
 | 
						|
    // a true 2D matrix by normalizing out the scaling effect of _44 on
 | 
						|
    // the remaining components ahead of time.
 | 
						|
    if (_14 == 0.0f && _24 == 0.0f && _44 != 1.0f && _44 != 0.0f) {
 | 
						|
      T scale = 1.0f / _44;
 | 
						|
      _11 *= scale;
 | 
						|
      _12 *= scale;
 | 
						|
      _21 *= scale;
 | 
						|
      _22 *= scale;
 | 
						|
      _41 *= scale;
 | 
						|
      _42 *= scale;
 | 
						|
      _44 = 1.0f;
 | 
						|
    }
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  Point4DTyped<TargetUnits, F> ProjectPoint(
 | 
						|
      const PointTyped<SourceUnits, F>& aPoint) const {
 | 
						|
    // Find a value for z that will transform to 0.
 | 
						|
 | 
						|
    // The transformed value of z is computed as:
 | 
						|
    // z' = aPoint.x * _13 + aPoint.y * _23 + z * _33 + _43;
 | 
						|
 | 
						|
    // Solving for z when z' = 0 gives us:
 | 
						|
    F z = -(aPoint.x * _13 + aPoint.y * _23 + _43) / _33;
 | 
						|
 | 
						|
    // Compute the transformed point
 | 
						|
    return this->TransformPoint(
 | 
						|
        Point4DTyped<SourceUnits, F>(aPoint.x, aPoint.y, z, 1));
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  RectTyped<TargetUnits, F> ProjectRectBounds(
 | 
						|
      const RectTyped<SourceUnits, F>& aRect,
 | 
						|
      const RectTyped<TargetUnits, F>& aClip) const {
 | 
						|
    // This function must never return std::numeric_limits<Float>::max() or any
 | 
						|
    // other arbitrary large value in place of inifinity.  This often occurs
 | 
						|
    // when aRect is an inversed projection matrix or when aRect is transformed
 | 
						|
    // to be partly behind and in front of the camera (w=0 plane in homogenous
 | 
						|
    // coordinates) - See Bug 1035611
 | 
						|
 | 
						|
    // Some call-sites will call RoundGfxRectToAppRect which clips both the
 | 
						|
    // extents and dimensions of the rect to be bounded by nscoord_MAX.
 | 
						|
    // If we return a Rect that, when converted to nscoords, has a width or
 | 
						|
    // height greater than nscoord_MAX, RoundGfxRectToAppRect will clip the
 | 
						|
    // overflow off both the min and max end of the rect after clipping the
 | 
						|
    // extents of the rect, resulting in a translation of the rect towards the
 | 
						|
    // infinite end.
 | 
						|
 | 
						|
    // The bounds returned by ProjectRectBounds are expected to be clipped only
 | 
						|
    // on the edges beyond the bounds of the coordinate system; otherwise, the
 | 
						|
    // clipped bounding box would be smaller than the correct one and result
 | 
						|
    // bugs such as incorrect culling (eg. Bug 1073056)
 | 
						|
 | 
						|
    // To address this without requiring all code to work in homogenous
 | 
						|
    // coordinates or interpret infinite values correctly, a specialized
 | 
						|
    // clipping function is integrated into ProjectRectBounds.
 | 
						|
 | 
						|
    // Callers should pass an aClip value that represents the extents to clip
 | 
						|
    // the result to, in the same coordinate system as aRect.
 | 
						|
    Point4DTyped<TargetUnits, F> points[4];
 | 
						|
 | 
						|
    points[0] = ProjectPoint(aRect.TopLeft());
 | 
						|
    points[1] = ProjectPoint(aRect.TopRight());
 | 
						|
    points[2] = ProjectPoint(aRect.BottomRight());
 | 
						|
    points[3] = ProjectPoint(aRect.BottomLeft());
 | 
						|
 | 
						|
    F min_x = std::numeric_limits<F>::max();
 | 
						|
    F min_y = std::numeric_limits<F>::max();
 | 
						|
    F max_x = -std::numeric_limits<F>::max();
 | 
						|
    F max_y = -std::numeric_limits<F>::max();
 | 
						|
 | 
						|
    for (int i = 0; i < 4; i++) {
 | 
						|
      // Only use points that exist above the w=0 plane
 | 
						|
      if (points[i].HasPositiveWCoord()) {
 | 
						|
        PointTyped<TargetUnits, F> point2d =
 | 
						|
            aClip.ClampPoint(points[i].As2DPoint());
 | 
						|
        min_x = std::min<F>(point2d.x, min_x);
 | 
						|
        max_x = std::max<F>(point2d.x, max_x);
 | 
						|
        min_y = std::min<F>(point2d.y, min_y);
 | 
						|
        max_y = std::max<F>(point2d.y, max_y);
 | 
						|
      }
 | 
						|
 | 
						|
      int next = (i == 3) ? 0 : i + 1;
 | 
						|
      if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) {
 | 
						|
        // If the line between two points crosses the w=0 plane, then
 | 
						|
        // interpolate to find the point of intersection with the w=0 plane and
 | 
						|
        // use that instead.
 | 
						|
        Point4DTyped<TargetUnits, F> intercept =
 | 
						|
            ComputePerspectivePlaneIntercept(points[i], points[next]);
 | 
						|
        // Since intercept.w will always be 0 here, we interpret x,y,z as a
 | 
						|
        // direction towards an infinite vanishing point.
 | 
						|
        if (intercept.x < 0.0f) {
 | 
						|
          min_x = aClip.X();
 | 
						|
        } else if (intercept.x > 0.0f) {
 | 
						|
          max_x = aClip.XMost();
 | 
						|
        }
 | 
						|
        if (intercept.y < 0.0f) {
 | 
						|
          min_y = aClip.Y();
 | 
						|
        } else if (intercept.y > 0.0f) {
 | 
						|
          max_y = aClip.YMost();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (max_x < min_x || max_y < min_y) {
 | 
						|
      return RectTyped<TargetUnits, F>(0, 0, 0, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
 | 
						|
                                     max_y - min_y);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * TransformAndClipBounds transforms aRect as a bounding box, while clipping
 | 
						|
   * the transformed bounds to the extents of aClip.
 | 
						|
   */
 | 
						|
  template <class F>
 | 
						|
  RectTyped<TargetUnits, F> TransformAndClipBounds(
 | 
						|
      const RectTyped<SourceUnits, F>& aRect,
 | 
						|
      const RectTyped<TargetUnits, F>& aClip) const {
 | 
						|
    PointTyped<UnknownUnits, F> verts[kTransformAndClipRectMaxVerts];
 | 
						|
    size_t vertCount = TransformAndClipRect(aRect, aClip, verts);
 | 
						|
 | 
						|
    F min_x = std::numeric_limits<F>::max();
 | 
						|
    F min_y = std::numeric_limits<F>::max();
 | 
						|
    F max_x = -std::numeric_limits<F>::max();
 | 
						|
    F max_y = -std::numeric_limits<F>::max();
 | 
						|
    for (size_t i = 0; i < vertCount; i++) {
 | 
						|
      min_x = std::min(min_x, verts[i].x);
 | 
						|
      max_x = std::max(max_x, verts[i].x);
 | 
						|
      min_y = std::min(min_y, verts[i].y);
 | 
						|
      max_y = std::max(max_y, verts[i].y);
 | 
						|
    }
 | 
						|
 | 
						|
    if (max_x < min_x || max_y < min_y) {
 | 
						|
      return RectTyped<TargetUnits, F>(0, 0, 0, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
 | 
						|
                                     max_y - min_y);
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  RectTyped<TargetUnits, F> TransformAndClipBounds(
 | 
						|
      const TriangleTyped<SourceUnits, F>& aTriangle,
 | 
						|
      const RectTyped<TargetUnits, F>& aClip) const {
 | 
						|
    return TransformAndClipBounds(aTriangle.BoundingBox(), aClip);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * TransformAndClipRect projects a rectangle and clips against view frustum
 | 
						|
   * clipping planes in homogenous space so that its projected vertices are
 | 
						|
   * constrained within the 2d rectangle passed in aClip.
 | 
						|
   * The resulting vertices are populated in aVerts.  aVerts must be
 | 
						|
   * pre-allocated to hold at least kTransformAndClipRectMaxVerts Points.
 | 
						|
   * The vertex count is returned by TransformAndClipRect.  It is possible to
 | 
						|
   * emit fewer than 3 vertices, indicating that aRect will not be visible
 | 
						|
   * within aClip.
 | 
						|
   */
 | 
						|
  template <class F>
 | 
						|
  size_t TransformAndClipRect(const RectTyped<SourceUnits, F>& aRect,
 | 
						|
                              const RectTyped<TargetUnits, F>& aClip,
 | 
						|
                              PointTyped<TargetUnits, F>* aVerts) const {
 | 
						|
    typedef Point4DTyped<UnknownUnits, F> P4D;
 | 
						|
 | 
						|
    // The initial polygon is made up by the corners of aRect in homogenous
 | 
						|
    // space, mapped into the destination space of this transform.
 | 
						|
    P4D rectCorners[] = {
 | 
						|
        TransformPoint(P4D(aRect.X(), aRect.Y(), 0, 1)),
 | 
						|
        TransformPoint(P4D(aRect.XMost(), aRect.Y(), 0, 1)),
 | 
						|
        TransformPoint(P4D(aRect.XMost(), aRect.YMost(), 0, 1)),
 | 
						|
        TransformPoint(P4D(aRect.X(), aRect.YMost(), 0, 1)),
 | 
						|
    };
 | 
						|
 | 
						|
    // Cut off pieces of the polygon that are outside of aClip (the "view
 | 
						|
    // frustrum"), by consecutively intersecting the polygon with the half space
 | 
						|
    // induced by the clipping plane for each side of aClip.
 | 
						|
    // View frustum clipping planes are described as normals originating from
 | 
						|
    // the 0,0,0,0 origin.
 | 
						|
    // Each pass can increase or decrease the number of points that make up the
 | 
						|
    // current clipped polygon. We double buffer the set of points, alternating
 | 
						|
    // between polygonBufA and polygonBufB. Duplicated points in the polygons
 | 
						|
    // are kept around until all clipping is done. The loop at the end filters
 | 
						|
    // out any consecutive duplicates.
 | 
						|
    P4D polygonBufA[kTransformAndClipRectMaxVerts];
 | 
						|
    P4D polygonBufB[kTransformAndClipRectMaxVerts];
 | 
						|
 | 
						|
    Span<P4D> polygon(rectCorners);
 | 
						|
    polygon = IntersectPolygon<F>(polygon, P4D(1.0, 0.0, 0.0, -aClip.X()),
 | 
						|
                                  polygonBufA);
 | 
						|
    polygon = IntersectPolygon<F>(polygon, P4D(-1.0, 0.0, 0.0, aClip.XMost()),
 | 
						|
                                  polygonBufB);
 | 
						|
    polygon = IntersectPolygon<F>(polygon, P4D(0.0, 1.0, 0.0, -aClip.Y()),
 | 
						|
                                  polygonBufA);
 | 
						|
    polygon = IntersectPolygon<F>(polygon, P4D(0.0, -1.0, 0.0, aClip.YMost()),
 | 
						|
                                  polygonBufB);
 | 
						|
 | 
						|
    size_t vertCount = 0;
 | 
						|
    for (const auto& srcPoint : polygon) {
 | 
						|
      PointTyped<TargetUnits, F> p;
 | 
						|
      if (srcPoint.w == 0.0) {
 | 
						|
        // If a point lies on the intersection of the clipping planes at
 | 
						|
        // (0,0,0,0), we must avoid a division by zero w component.
 | 
						|
        p = PointTyped<TargetUnits, F>(0.0, 0.0);
 | 
						|
      } else {
 | 
						|
        p = srcPoint.As2DPoint();
 | 
						|
      }
 | 
						|
      // Emit only unique points
 | 
						|
      if (vertCount == 0 || p != aVerts[vertCount - 1]) {
 | 
						|
        aVerts[vertCount++] = p;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return vertCount;
 | 
						|
  }
 | 
						|
 | 
						|
  static const int kTransformAndClipRectMaxVerts = 32;
 | 
						|
 | 
						|
  static Matrix4x4Typed From2D(const BaseMatrix<T>& aMatrix) {
 | 
						|
    Matrix4x4Typed matrix;
 | 
						|
    matrix._11 = aMatrix._11;
 | 
						|
    matrix._12 = aMatrix._12;
 | 
						|
    matrix._21 = aMatrix._21;
 | 
						|
    matrix._22 = aMatrix._22;
 | 
						|
    matrix._41 = aMatrix._31;
 | 
						|
    matrix._42 = aMatrix._32;
 | 
						|
    return matrix;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Is2DIntegerTranslation() const {
 | 
						|
    return Is2D() && As2D().IsIntegerTranslation();
 | 
						|
  }
 | 
						|
 | 
						|
  TargetPoint4D TransposeTransform4D(const SourcePoint4D& aPoint) const {
 | 
						|
    Float x = aPoint.x * _11 + aPoint.y * _12 + aPoint.z * _13 + aPoint.w * _14;
 | 
						|
    Float y = aPoint.x * _21 + aPoint.y * _22 + aPoint.z * _23 + aPoint.w * _24;
 | 
						|
    Float z = aPoint.x * _31 + aPoint.y * _32 + aPoint.z * _33 + aPoint.w * _34;
 | 
						|
    Float w = aPoint.x * _41 + aPoint.y * _42 + aPoint.z * _43 + aPoint.w * _44;
 | 
						|
 | 
						|
    return TargetPoint4D(x, y, z, w);
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  Point4DTyped<TargetUnits, F> TransformPoint(
 | 
						|
      const Point4DTyped<SourceUnits, F>& aPoint) const {
 | 
						|
    Point4DTyped<TargetUnits, F> retPoint;
 | 
						|
 | 
						|
    retPoint.x =
 | 
						|
        aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + aPoint.w * _41;
 | 
						|
    retPoint.y =
 | 
						|
        aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + aPoint.w * _42;
 | 
						|
    retPoint.z =
 | 
						|
        aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + aPoint.w * _43;
 | 
						|
    retPoint.w =
 | 
						|
        aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + aPoint.w * _44;
 | 
						|
 | 
						|
    return retPoint;
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  Point3DTyped<TargetUnits, F> TransformPoint(
 | 
						|
      const Point3DTyped<SourceUnits, F>& aPoint) const {
 | 
						|
    Point3DTyped<TargetUnits, F> result;
 | 
						|
    result.x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + _41;
 | 
						|
    result.y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + _42;
 | 
						|
    result.z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + _43;
 | 
						|
 | 
						|
    result /= (aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + _44);
 | 
						|
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  PointTyped<TargetUnits, F> TransformPoint(
 | 
						|
      const PointTyped<SourceUnits, F>& aPoint) const {
 | 
						|
    Point4DTyped<SourceUnits, F> temp(aPoint.x, aPoint.y, 0, 1);
 | 
						|
    return TransformPoint(temp).As2DPoint();
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  GFX2D_API RectTyped<TargetUnits, F> TransformBounds(
 | 
						|
      const RectTyped<SourceUnits, F>& aRect) const {
 | 
						|
    PointTyped<TargetUnits, F> quad[4];
 | 
						|
    F min_x, max_x;
 | 
						|
    F min_y, max_y;
 | 
						|
 | 
						|
    quad[0] = TransformPoint(aRect.TopLeft());
 | 
						|
    quad[1] = TransformPoint(aRect.TopRight());
 | 
						|
    quad[2] = TransformPoint(aRect.BottomLeft());
 | 
						|
    quad[3] = TransformPoint(aRect.BottomRight());
 | 
						|
 | 
						|
    min_x = max_x = quad[0].x;
 | 
						|
    min_y = max_y = quad[0].y;
 | 
						|
 | 
						|
    for (int i = 1; i < 4; i++) {
 | 
						|
      if (quad[i].x < min_x) {
 | 
						|
        min_x = quad[i].x;
 | 
						|
      }
 | 
						|
      if (quad[i].x > max_x) {
 | 
						|
        max_x = quad[i].x;
 | 
						|
      }
 | 
						|
 | 
						|
      if (quad[i].y < min_y) {
 | 
						|
        min_y = quad[i].y;
 | 
						|
      }
 | 
						|
      if (quad[i].y > max_y) {
 | 
						|
        max_y = quad[i].y;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
 | 
						|
                                     max_y - min_y);
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4Typed Translation(T aX, T aY, T aZ) {
 | 
						|
    return Matrix4x4Typed(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
 | 
						|
                          0.0f, 1.0f, 0.0f, aX, aY, aZ, 1.0f);
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4Typed Translation(const TargetPoint3D& aP) {
 | 
						|
    return Translation(aP.x, aP.y, aP.z);
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4Typed Translation(const TargetPoint& aP) {
 | 
						|
    return Translation(aP.x, aP.y, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Apply a translation to this matrix.
 | 
						|
   *
 | 
						|
   * The "Pre" in this method's name means that the translation is applied
 | 
						|
   * -before- this matrix's existing transformation. That is, any vector that
 | 
						|
   * is multiplied by the resulting matrix will first be translated, then be
 | 
						|
   * transformed by the original transform.
 | 
						|
   *
 | 
						|
   * Calling this method will result in this matrix having the same value as
 | 
						|
   * the result of:
 | 
						|
   *
 | 
						|
   *   Matrix4x4::Translation(x, y) * this
 | 
						|
   *
 | 
						|
   * (Note that in performance critical code multiplying by the result of a
 | 
						|
   * Translation()/Scaling() call is not recommended since that results in a
 | 
						|
   * full matrix multiply involving 64 floating-point multiplications. Calling
 | 
						|
   * this method would be preferred since it only involves 12 floating-point
 | 
						|
   * multiplications.)
 | 
						|
   */
 | 
						|
  Matrix4x4Typed& PreTranslate(T aX, T aY, T aZ) {
 | 
						|
    _41 += aX * _11 + aY * _21 + aZ * _31;
 | 
						|
    _42 += aX * _12 + aY * _22 + aZ * _32;
 | 
						|
    _43 += aX * _13 + aY * _23 + aZ * _33;
 | 
						|
    _44 += aX * _14 + aY * _24 + aZ * _34;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed& PreTranslate(const Point3DTyped<UnknownUnits, T>& aPoint) {
 | 
						|
    return PreTranslate(aPoint.x, aPoint.y, aPoint.z);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Similar to PreTranslate, but the translation is applied -after- this
 | 
						|
   * matrix's existing transformation instead of before it.
 | 
						|
   *
 | 
						|
   * This method is generally less used than PreTranslate since typically code
 | 
						|
   * wants to adjust an existing user space to device space matrix to create a
 | 
						|
   * transform to device space from a -new- user space (translated from the
 | 
						|
   * previous user space). In that case consumers will need to use the Pre*
 | 
						|
   * variants of the matrix methods rather than using the Post* methods, since
 | 
						|
   * the Post* methods add a transform to the device space end of the
 | 
						|
   * transformation.
 | 
						|
   */
 | 
						|
  Matrix4x4Typed& PostTranslate(T aX, T aY, T aZ) {
 | 
						|
    _11 += _14 * aX;
 | 
						|
    _21 += _24 * aX;
 | 
						|
    _31 += _34 * aX;
 | 
						|
    _41 += _44 * aX;
 | 
						|
    _12 += _14 * aY;
 | 
						|
    _22 += _24 * aY;
 | 
						|
    _32 += _34 * aY;
 | 
						|
    _42 += _44 * aY;
 | 
						|
    _13 += _14 * aZ;
 | 
						|
    _23 += _24 * aZ;
 | 
						|
    _33 += _34 * aZ;
 | 
						|
    _43 += _44 * aZ;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed& PostTranslate(const TargetPoint3D& aPoint) {
 | 
						|
    return PostTranslate(aPoint.x, aPoint.y, aPoint.z);
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed& PostTranslate(const TargetPoint& aPoint) {
 | 
						|
    return PostTranslate(aPoint.x, aPoint.y, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4Typed Scaling(T aScaleX, T aScaleY, T aScaleZ) {
 | 
						|
    return Matrix4x4Typed(aScaleX, 0.0f, 0.0f, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f,
 | 
						|
                          0.0f, 0.0f, aScaleZ, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Similar to PreTranslate, but applies a scale instead of a translation.
 | 
						|
   */
 | 
						|
  Matrix4x4Typed& PreScale(T aX, T aY, T aZ) {
 | 
						|
    _11 *= aX;
 | 
						|
    _12 *= aX;
 | 
						|
    _13 *= aX;
 | 
						|
    _14 *= aX;
 | 
						|
    _21 *= aY;
 | 
						|
    _22 *= aY;
 | 
						|
    _23 *= aY;
 | 
						|
    _24 *= aY;
 | 
						|
    _31 *= aZ;
 | 
						|
    _32 *= aZ;
 | 
						|
    _33 *= aZ;
 | 
						|
    _34 *= aZ;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Similar to PostTranslate, but applies a scale instead of a translation.
 | 
						|
   */
 | 
						|
  Matrix4x4Typed& PostScale(T aScaleX, T aScaleY, T aScaleZ) {
 | 
						|
    _11 *= aScaleX;
 | 
						|
    _21 *= aScaleX;
 | 
						|
    _31 *= aScaleX;
 | 
						|
    _41 *= aScaleX;
 | 
						|
    _12 *= aScaleY;
 | 
						|
    _22 *= aScaleY;
 | 
						|
    _32 *= aScaleY;
 | 
						|
    _42 *= aScaleY;
 | 
						|
    _13 *= aScaleZ;
 | 
						|
    _23 *= aScaleZ;
 | 
						|
    _33 *= aScaleZ;
 | 
						|
    _43 *= aScaleZ;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  void SkewXY(T aSkew) { (*this)[1] += (*this)[0] * aSkew; }
 | 
						|
 | 
						|
  void SkewXZ(T aSkew) { (*this)[2] += (*this)[0] * aSkew; }
 | 
						|
 | 
						|
  void SkewYZ(T aSkew) { (*this)[2] += (*this)[1] * aSkew; }
 | 
						|
 | 
						|
  Matrix4x4Typed& ChangeBasis(const Point3DTyped<UnknownUnits, T>& aOrigin) {
 | 
						|
    return ChangeBasis(aOrigin.x, aOrigin.y, aOrigin.z);
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed& ChangeBasis(T aX, T aY, T aZ) {
 | 
						|
    // Translate to the origin before applying this matrix
 | 
						|
    PreTranslate(-aX, -aY, -aZ);
 | 
						|
 | 
						|
    // Translate back into position after applying this matrix
 | 
						|
    PostTranslate(aX, aY, aZ);
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed& Transpose() {
 | 
						|
    std::swap(_12, _21);
 | 
						|
    std::swap(_13, _31);
 | 
						|
    std::swap(_14, _41);
 | 
						|
 | 
						|
    std::swap(_23, _32);
 | 
						|
    std::swap(_24, _42);
 | 
						|
 | 
						|
    std::swap(_34, _43);
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const Matrix4x4Typed& o) const {
 | 
						|
    // XXX would be nice to memcmp here, but that breaks IEEE 754 semantics
 | 
						|
    return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
 | 
						|
           _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
 | 
						|
           _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
 | 
						|
           _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const Matrix4x4Typed& o) const { return !((*this) == o); }
 | 
						|
 | 
						|
  Matrix4x4Typed& operator=(const Matrix4x4Typed& aOther) = default;
 | 
						|
 | 
						|
  template <typename NewTargetUnits>
 | 
						|
  Matrix4x4Typed<SourceUnits, NewTargetUnits, T> operator*(
 | 
						|
      const Matrix4x4Typed<TargetUnits, NewTargetUnits, T>& aMatrix) const {
 | 
						|
    Matrix4x4Typed<SourceUnits, NewTargetUnits, T> matrix;
 | 
						|
 | 
						|
    matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 +
 | 
						|
                 _14 * aMatrix._41;
 | 
						|
    matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 +
 | 
						|
                 _24 * aMatrix._41;
 | 
						|
    matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 +
 | 
						|
                 _34 * aMatrix._41;
 | 
						|
    matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 +
 | 
						|
                 _44 * aMatrix._41;
 | 
						|
    matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 +
 | 
						|
                 _14 * aMatrix._42;
 | 
						|
    matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 +
 | 
						|
                 _24 * aMatrix._42;
 | 
						|
    matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 +
 | 
						|
                 _34 * aMatrix._42;
 | 
						|
    matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 +
 | 
						|
                 _44 * aMatrix._42;
 | 
						|
    matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 +
 | 
						|
                 _14 * aMatrix._43;
 | 
						|
    matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 +
 | 
						|
                 _24 * aMatrix._43;
 | 
						|
    matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 +
 | 
						|
                 _34 * aMatrix._43;
 | 
						|
    matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 +
 | 
						|
                 _44 * aMatrix._43;
 | 
						|
    matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 +
 | 
						|
                 _14 * aMatrix._44;
 | 
						|
    matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 +
 | 
						|
                 _24 * aMatrix._44;
 | 
						|
    matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 +
 | 
						|
                 _34 * aMatrix._44;
 | 
						|
    matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 +
 | 
						|
                 _44 * aMatrix._44;
 | 
						|
 | 
						|
    return matrix;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed& operator*=(
 | 
						|
      const Matrix4x4Typed<TargetUnits, TargetUnits, T>& aMatrix) {
 | 
						|
    *this = *this * aMatrix;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns true if the matrix is an identity matrix.
 | 
						|
   */
 | 
						|
  bool IsIdentity() const {
 | 
						|
    return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f &&
 | 
						|
           _21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f &&
 | 
						|
           _31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f &&
 | 
						|
           _41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsSingular() const { return Determinant() == 0.0; }
 | 
						|
 | 
						|
  T Determinant() const {
 | 
						|
    return _14 * _23 * _32 * _41 - _13 * _24 * _32 * _41 -
 | 
						|
           _14 * _22 * _33 * _41 + _12 * _24 * _33 * _41 +
 | 
						|
           _13 * _22 * _34 * _41 - _12 * _23 * _34 * _41 -
 | 
						|
           _14 * _23 * _31 * _42 + _13 * _24 * _31 * _42 +
 | 
						|
           _14 * _21 * _33 * _42 - _11 * _24 * _33 * _42 -
 | 
						|
           _13 * _21 * _34 * _42 + _11 * _23 * _34 * _42 +
 | 
						|
           _14 * _22 * _31 * _43 - _12 * _24 * _31 * _43 -
 | 
						|
           _14 * _21 * _32 * _43 + _11 * _24 * _32 * _43 +
 | 
						|
           _12 * _21 * _34 * _43 - _11 * _22 * _34 * _43 -
 | 
						|
           _13 * _22 * _31 * _44 + _12 * _23 * _31 * _44 +
 | 
						|
           _13 * _21 * _32 * _44 - _11 * _23 * _32 * _44 -
 | 
						|
           _12 * _21 * _33 * _44 + _11 * _22 * _33 * _44;
 | 
						|
  }
 | 
						|
 | 
						|
  // Invert() is not unit-correct. Prefer Inverse() where possible.
 | 
						|
  bool Invert() {
 | 
						|
    T det = Determinant();
 | 
						|
    if (!det) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Matrix4x4Typed<SourceUnits, TargetUnits, T> result;
 | 
						|
    result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 -
 | 
						|
                 _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44;
 | 
						|
    result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 +
 | 
						|
                 _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44;
 | 
						|
    result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 -
 | 
						|
                 _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44;
 | 
						|
    result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 +
 | 
						|
                 _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34;
 | 
						|
    result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 +
 | 
						|
                 _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44;
 | 
						|
    result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 -
 | 
						|
                 _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44;
 | 
						|
    result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 +
 | 
						|
                 _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44;
 | 
						|
    result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 -
 | 
						|
                 _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34;
 | 
						|
    result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 -
 | 
						|
                 _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44;
 | 
						|
    result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 +
 | 
						|
                 _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44;
 | 
						|
    result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 -
 | 
						|
                 _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
 | 
						|
    result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 +
 | 
						|
                 _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34;
 | 
						|
    result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 +
 | 
						|
                 _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43;
 | 
						|
    result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 -
 | 
						|
                 _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43;
 | 
						|
    result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 +
 | 
						|
                 _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43;
 | 
						|
    result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 -
 | 
						|
                 _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33;
 | 
						|
 | 
						|
    result._11 /= det;
 | 
						|
    result._12 /= det;
 | 
						|
    result._13 /= det;
 | 
						|
    result._14 /= det;
 | 
						|
    result._21 /= det;
 | 
						|
    result._22 /= det;
 | 
						|
    result._23 /= det;
 | 
						|
    result._24 /= det;
 | 
						|
    result._31 /= det;
 | 
						|
    result._32 /= det;
 | 
						|
    result._33 /= det;
 | 
						|
    result._34 /= det;
 | 
						|
    result._41 /= det;
 | 
						|
    result._42 /= det;
 | 
						|
    result._43 /= det;
 | 
						|
    result._44 /= det;
 | 
						|
    *this = result;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed<TargetUnits, SourceUnits, T> Inverse() const {
 | 
						|
    typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix;
 | 
						|
    InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix());
 | 
						|
    DebugOnly<bool> inverted = clone.Invert();
 | 
						|
    MOZ_ASSERT(inverted,
 | 
						|
               "Attempted to get the inverse of a non-invertible matrix");
 | 
						|
    return clone;
 | 
						|
  }
 | 
						|
 | 
						|
  Maybe<Matrix4x4Typed<TargetUnits, SourceUnits, T>> MaybeInverse() const {
 | 
						|
    typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix;
 | 
						|
    InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix());
 | 
						|
    if (clone.Invert()) {
 | 
						|
      return Some(clone);
 | 
						|
    }
 | 
						|
    return Nothing();
 | 
						|
  }
 | 
						|
 | 
						|
  void Normalize() {
 | 
						|
    for (int i = 0; i < 4; i++) {
 | 
						|
      for (int j = 0; j < 4; j++) {
 | 
						|
        (*this)[i][j] /= (*this)[3][3];
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool FuzzyEqual(const Matrix4x4Typed& o) const {
 | 
						|
    return gfx::FuzzyEqual(_11, o._11) && gfx::FuzzyEqual(_12, o._12) &&
 | 
						|
           gfx::FuzzyEqual(_13, o._13) && gfx::FuzzyEqual(_14, o._14) &&
 | 
						|
           gfx::FuzzyEqual(_21, o._21) && gfx::FuzzyEqual(_22, o._22) &&
 | 
						|
           gfx::FuzzyEqual(_23, o._23) && gfx::FuzzyEqual(_24, o._24) &&
 | 
						|
           gfx::FuzzyEqual(_31, o._31) && gfx::FuzzyEqual(_32, o._32) &&
 | 
						|
           gfx::FuzzyEqual(_33, o._33) && gfx::FuzzyEqual(_34, o._34) &&
 | 
						|
           gfx::FuzzyEqual(_41, o._41) && gfx::FuzzyEqual(_42, o._42) &&
 | 
						|
           gfx::FuzzyEqual(_43, o._43) && gfx::FuzzyEqual(_44, o._44);
 | 
						|
  }
 | 
						|
 | 
						|
  bool FuzzyEqualsMultiplicative(const Matrix4x4Typed& o) const {
 | 
						|
    return ::mozilla::FuzzyEqualsMultiplicative(_11, o._11) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_12, o._12) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_13, o._13) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_14, o._14) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_21, o._21) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_22, o._22) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_23, o._23) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_24, o._24) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_31, o._31) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_32, o._32) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_33, o._33) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_34, o._34) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_41, o._41) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_42, o._42) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_43, o._43) &&
 | 
						|
           ::mozilla::FuzzyEqualsMultiplicative(_44, o._44);
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsBackfaceVisible() const {
 | 
						|
    // Inverse()._33 < 0;
 | 
						|
    T det = Determinant();
 | 
						|
    T __33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 -
 | 
						|
             _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
 | 
						|
    return (__33 * det) < 0;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4Typed& NudgeToIntegersFixedEpsilon() {
 | 
						|
    NudgeToInteger(&_11);
 | 
						|
    NudgeToInteger(&_12);
 | 
						|
    NudgeToInteger(&_13);
 | 
						|
    NudgeToInteger(&_14);
 | 
						|
    NudgeToInteger(&_21);
 | 
						|
    NudgeToInteger(&_22);
 | 
						|
    NudgeToInteger(&_23);
 | 
						|
    NudgeToInteger(&_24);
 | 
						|
    NudgeToInteger(&_31);
 | 
						|
    NudgeToInteger(&_32);
 | 
						|
    NudgeToInteger(&_33);
 | 
						|
    NudgeToInteger(&_34);
 | 
						|
    static const float error = 1e-5f;
 | 
						|
    NudgeToInteger(&_41, error);
 | 
						|
    NudgeToInteger(&_42, error);
 | 
						|
    NudgeToInteger(&_43, error);
 | 
						|
    NudgeToInteger(&_44, error);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  Point4D TransposedVector(int aIndex) const {
 | 
						|
    MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
 | 
						|
    return Point4DTyped<UnknownUnits, T>(*((&_11) + aIndex), *((&_21) + aIndex),
 | 
						|
                                         *((&_31) + aIndex),
 | 
						|
                                         *((&_41) + aIndex));
 | 
						|
  }
 | 
						|
 | 
						|
  void SetTransposedVector(int aIndex, Point4DTyped<UnknownUnits, T>& aVector) {
 | 
						|
    MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
 | 
						|
    *((&_11) + aIndex) = aVector.x;
 | 
						|
    *((&_21) + aIndex) = aVector.y;
 | 
						|
    *((&_31) + aIndex) = aVector.z;
 | 
						|
    *((&_41) + aIndex) = aVector.w;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Decompose(Point3DTyped<UnknownUnits, T>& translation,
 | 
						|
                 BaseQuaternion<T>& rotation,
 | 
						|
                 Point3DTyped<UnknownUnits, T>& scale) const {
 | 
						|
    // Ensure matrix can be normalized
 | 
						|
    if (gfx::FuzzyEqual(_44, 0.0f)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Matrix4x4Typed mat = *this;
 | 
						|
    mat.Normalize();
 | 
						|
    if (HasPerspectiveComponent()) {
 | 
						|
      // We do not support projection matrices
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Extract translation
 | 
						|
    translation.x = mat._41;
 | 
						|
    translation.y = mat._42;
 | 
						|
    translation.z = mat._43;
 | 
						|
 | 
						|
    // Remove translation
 | 
						|
    mat._41 = 0.0f;
 | 
						|
    mat._42 = 0.0f;
 | 
						|
    mat._43 = 0.0f;
 | 
						|
 | 
						|
    // Extract scale
 | 
						|
    scale.x = sqrtf(_11 * _11 + _21 * _21 + _31 * _31);
 | 
						|
    scale.y = sqrtf(_12 * _12 + _22 * _22 + _32 * _32);
 | 
						|
    scale.z = sqrtf(_13 * _13 + _23 * _23 + _33 * _33);
 | 
						|
 | 
						|
    // Remove scale
 | 
						|
    if (gfx::FuzzyEqual(scale.x, 0.0f) || gfx::FuzzyEqual(scale.y, 0.0f) ||
 | 
						|
        gfx::FuzzyEqual(scale.z, 0.0f)) {
 | 
						|
      // We do not support matrices with a zero scale component
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Extract rotation
 | 
						|
    rotation.SetFromRotationMatrix(this->ToUnknownMatrix());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Sets this matrix to a rotation matrix given by aQuat.
 | 
						|
  // This quaternion *MUST* be normalized!
 | 
						|
  // Implemented in Quaternion.cpp
 | 
						|
  void SetRotationFromQuaternion(const BaseQuaternion<T>& q) {
 | 
						|
    const T x2 = q.x + q.x, y2 = q.y + q.y, z2 = q.z + q.z;
 | 
						|
    const T xx = q.x * x2, xy = q.x * y2, xz = q.x * z2;
 | 
						|
    const T yy = q.y * y2, yz = q.y * z2, zz = q.z * z2;
 | 
						|
    const T wx = q.w * x2, wy = q.w * y2, wz = q.w * z2;
 | 
						|
 | 
						|
    _11 = 1.0f - (yy + zz);
 | 
						|
    _21 = xy - wz;
 | 
						|
    _31 = xz + wy;
 | 
						|
    _41 = 0.0f;
 | 
						|
 | 
						|
    _12 = xy + wz;
 | 
						|
    _22 = 1.0f - (xx + zz);
 | 
						|
    _32 = yz - wx;
 | 
						|
    _42 = 0.0f;
 | 
						|
 | 
						|
    _13 = xz - wy;
 | 
						|
    _23 = yz + wx;
 | 
						|
    _33 = 1.0f - (xx + yy);
 | 
						|
    _43 = 0.0f;
 | 
						|
 | 
						|
    _14 = _42 = _43 = 0.0f;
 | 
						|
    _44 = 1.0f;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set all the members of the matrix to NaN
 | 
						|
  void SetNAN() {
 | 
						|
    _11 = UnspecifiedNaN<T>();
 | 
						|
    _21 = UnspecifiedNaN<T>();
 | 
						|
    _31 = UnspecifiedNaN<T>();
 | 
						|
    _41 = UnspecifiedNaN<T>();
 | 
						|
    _12 = UnspecifiedNaN<T>();
 | 
						|
    _22 = UnspecifiedNaN<T>();
 | 
						|
    _32 = UnspecifiedNaN<T>();
 | 
						|
    _42 = UnspecifiedNaN<T>();
 | 
						|
    _13 = UnspecifiedNaN<T>();
 | 
						|
    _23 = UnspecifiedNaN<T>();
 | 
						|
    _33 = UnspecifiedNaN<T>();
 | 
						|
    _43 = UnspecifiedNaN<T>();
 | 
						|
    _14 = UnspecifiedNaN<T>();
 | 
						|
    _24 = UnspecifiedNaN<T>();
 | 
						|
    _34 = UnspecifiedNaN<T>();
 | 
						|
    _44 = UnspecifiedNaN<T>();
 | 
						|
  }
 | 
						|
 | 
						|
  void SkewXY(double aXSkew, double aYSkew) {
 | 
						|
    // XXX Is double precision really necessary here
 | 
						|
    T tanX = SafeTangent(aXSkew);
 | 
						|
    T tanY = SafeTangent(aYSkew);
 | 
						|
    T temp;
 | 
						|
 | 
						|
    temp = _11;
 | 
						|
    _11 += tanY * _21;
 | 
						|
    _21 += tanX * temp;
 | 
						|
 | 
						|
    temp = _12;
 | 
						|
    _12 += tanY * _22;
 | 
						|
    _22 += tanX * temp;
 | 
						|
 | 
						|
    temp = _13;
 | 
						|
    _13 += tanY * _23;
 | 
						|
    _23 += tanX * temp;
 | 
						|
 | 
						|
    temp = _14;
 | 
						|
    _14 += tanY * _24;
 | 
						|
    _24 += tanX * temp;
 | 
						|
  }
 | 
						|
 | 
						|
  void RotateX(double aTheta) {
 | 
						|
    // XXX Is double precision really necessary here
 | 
						|
    double cosTheta = FlushToZero(cos(aTheta));
 | 
						|
    double sinTheta = FlushToZero(sin(aTheta));
 | 
						|
 | 
						|
    T temp;
 | 
						|
 | 
						|
    temp = _21;
 | 
						|
    _21 = cosTheta * _21 + sinTheta * _31;
 | 
						|
    _31 = -sinTheta * temp + cosTheta * _31;
 | 
						|
 | 
						|
    temp = _22;
 | 
						|
    _22 = cosTheta * _22 + sinTheta * _32;
 | 
						|
    _32 = -sinTheta * temp + cosTheta * _32;
 | 
						|
 | 
						|
    temp = _23;
 | 
						|
    _23 = cosTheta * _23 + sinTheta * _33;
 | 
						|
    _33 = -sinTheta * temp + cosTheta * _33;
 | 
						|
 | 
						|
    temp = _24;
 | 
						|
    _24 = cosTheta * _24 + sinTheta * _34;
 | 
						|
    _34 = -sinTheta * temp + cosTheta * _34;
 | 
						|
  }
 | 
						|
 | 
						|
  void RotateY(double aTheta) {
 | 
						|
    // XXX Is double precision really necessary here
 | 
						|
    double cosTheta = FlushToZero(cos(aTheta));
 | 
						|
    double sinTheta = FlushToZero(sin(aTheta));
 | 
						|
 | 
						|
    T temp;
 | 
						|
 | 
						|
    temp = _11;
 | 
						|
    _11 = cosTheta * _11 + -sinTheta * _31;
 | 
						|
    _31 = sinTheta * temp + cosTheta * _31;
 | 
						|
 | 
						|
    temp = _12;
 | 
						|
    _12 = cosTheta * _12 + -sinTheta * _32;
 | 
						|
    _32 = sinTheta * temp + cosTheta * _32;
 | 
						|
 | 
						|
    temp = _13;
 | 
						|
    _13 = cosTheta * _13 + -sinTheta * _33;
 | 
						|
    _33 = sinTheta * temp + cosTheta * _33;
 | 
						|
 | 
						|
    temp = _14;
 | 
						|
    _14 = cosTheta * _14 + -sinTheta * _34;
 | 
						|
    _34 = sinTheta * temp + cosTheta * _34;
 | 
						|
  }
 | 
						|
 | 
						|
  void RotateZ(double aTheta) {
 | 
						|
    // XXX Is double precision really necessary here
 | 
						|
    double cosTheta = FlushToZero(cos(aTheta));
 | 
						|
    double sinTheta = FlushToZero(sin(aTheta));
 | 
						|
 | 
						|
    T temp;
 | 
						|
 | 
						|
    temp = _11;
 | 
						|
    _11 = cosTheta * _11 + sinTheta * _21;
 | 
						|
    _21 = -sinTheta * temp + cosTheta * _21;
 | 
						|
 | 
						|
    temp = _12;
 | 
						|
    _12 = cosTheta * _12 + sinTheta * _22;
 | 
						|
    _22 = -sinTheta * temp + cosTheta * _22;
 | 
						|
 | 
						|
    temp = _13;
 | 
						|
    _13 = cosTheta * _13 + sinTheta * _23;
 | 
						|
    _23 = -sinTheta * temp + cosTheta * _23;
 | 
						|
 | 
						|
    temp = _14;
 | 
						|
    _14 = cosTheta * _14 + sinTheta * _24;
 | 
						|
    _24 = -sinTheta * temp + cosTheta * _24;
 | 
						|
  }
 | 
						|
 | 
						|
  // Sets this matrix to a rotation matrix about a
 | 
						|
  // vector [x,y,z] by angle theta. The vector is normalized
 | 
						|
  // to a unit vector.
 | 
						|
  // https://drafts.csswg.org/css-transforms-2/#Rotate3dDefined
 | 
						|
  void SetRotateAxisAngle(double aX, double aY, double aZ, double aTheta) {
 | 
						|
    Point3DTyped<UnknownUnits, T> vector(aX, aY, aZ);
 | 
						|
    if (!vector.Length()) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    vector.RobustNormalize();
 | 
						|
 | 
						|
    double x = vector.x;
 | 
						|
    double y = vector.y;
 | 
						|
    double z = vector.z;
 | 
						|
 | 
						|
    double cosTheta = FlushToZero(cos(aTheta));
 | 
						|
    double sinTheta = FlushToZero(sin(aTheta));
 | 
						|
 | 
						|
    // sin(aTheta / 2) * cos(aTheta / 2)
 | 
						|
    double sc = sinTheta / 2;
 | 
						|
    // pow(sin(aTheta / 2), 2)
 | 
						|
    double sq = (1 - cosTheta) / 2;
 | 
						|
 | 
						|
    _11 = 1 - 2 * (y * y + z * z) * sq;
 | 
						|
    _12 = 2 * (x * y * sq + z * sc);
 | 
						|
    _13 = 2 * (x * z * sq - y * sc);
 | 
						|
    _14 = 0.0f;
 | 
						|
    _21 = 2 * (x * y * sq - z * sc);
 | 
						|
    _22 = 1 - 2 * (x * x + z * z) * sq;
 | 
						|
    _23 = 2 * (y * z * sq + x * sc);
 | 
						|
    _24 = 0.0f;
 | 
						|
    _31 = 2 * (x * z * sq + y * sc);
 | 
						|
    _32 = 2 * (y * z * sq - x * sc);
 | 
						|
    _33 = 1 - 2 * (x * x + y * y) * sq;
 | 
						|
    _34 = 0.0f;
 | 
						|
    _41 = 0.0f;
 | 
						|
    _42 = 0.0f;
 | 
						|
    _43 = 0.0f;
 | 
						|
    _44 = 1.0f;
 | 
						|
  }
 | 
						|
 | 
						|
  void Perspective(T aDepth) {
 | 
						|
    MOZ_ASSERT(aDepth > 0.0f, "Perspective must be positive!");
 | 
						|
    _31 += -1.0 / aDepth * _41;
 | 
						|
    _32 += -1.0 / aDepth * _42;
 | 
						|
    _33 += -1.0 / aDepth * _43;
 | 
						|
    _34 += -1.0 / aDepth * _44;
 | 
						|
  }
 | 
						|
 | 
						|
  Point3D GetNormalVector() const {
 | 
						|
    // Define a plane in transformed space as the transformations
 | 
						|
    // of 3 points on the z=0 screen plane.
 | 
						|
    Point3DTyped<UnknownUnits, T> a =
 | 
						|
        TransformPoint(Point3DTyped<UnknownUnits, T>(0, 0, 0));
 | 
						|
    Point3DTyped<UnknownUnits, T> b =
 | 
						|
        TransformPoint(Point3DTyped<UnknownUnits, T>(0, 1, 0));
 | 
						|
    Point3DTyped<UnknownUnits, T> c =
 | 
						|
        TransformPoint(Point3DTyped<UnknownUnits, T>(1, 0, 0));
 | 
						|
 | 
						|
    // Convert to two vectors on the surface of the plane.
 | 
						|
    Point3DTyped<UnknownUnits, T> ab = b - a;
 | 
						|
    Point3DTyped<UnknownUnits, T> ac = c - a;
 | 
						|
 | 
						|
    return ac.CrossProduct(ab);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the matrix has any transform other
 | 
						|
   * than a straight translation.
 | 
						|
   */
 | 
						|
  bool HasNonTranslation() const {
 | 
						|
    return !gfx::FuzzyEqual(_11, 1.0) || !gfx::FuzzyEqual(_22, 1.0) ||
 | 
						|
           !gfx::FuzzyEqual(_12, 0.0) || !gfx::FuzzyEqual(_21, 0.0) ||
 | 
						|
           !gfx::FuzzyEqual(_13, 0.0) || !gfx::FuzzyEqual(_23, 0.0) ||
 | 
						|
           !gfx::FuzzyEqual(_31, 0.0) || !gfx::FuzzyEqual(_32, 0.0) ||
 | 
						|
           !gfx::FuzzyEqual(_33, 1.0);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns true if the matrix is anything other than a straight
 | 
						|
   * translation by integers.
 | 
						|
   */
 | 
						|
  bool HasNonIntegerTranslation() const {
 | 
						|
    return HasNonTranslation() || !gfx::FuzzyEqual(_41, floor(_41 + 0.5)) ||
 | 
						|
           !gfx::FuzzyEqual(_42, floor(_42 + 0.5)) ||
 | 
						|
           !gfx::FuzzyEqual(_43, floor(_43 + 0.5));
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Return true if the matrix is with perspective (w).
 | 
						|
   */
 | 
						|
  bool HasPerspectiveComponent() const {
 | 
						|
    return _14 != 0 || _24 != 0 || _34 != 0 || _44 != 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns true if the matrix is a rectilinear transformation (i.e.
 | 
						|
   * grid-aligned rectangles are transformed to grid-aligned rectangles).
 | 
						|
   * This should only be called on 2D matrices.
 | 
						|
   */
 | 
						|
  bool IsRectilinear() const {
 | 
						|
    MOZ_ASSERT(Is2D());
 | 
						|
    if (gfx::FuzzyEqual(_12, 0) && gfx::FuzzyEqual(_21, 0)) {
 | 
						|
      return true;
 | 
						|
    } else if (gfx::FuzzyEqual(_22, 0) && gfx::FuzzyEqual(_11, 0)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Convert between typed and untyped matrices.
 | 
						|
   */
 | 
						|
  using UnknownMatrix = Matrix4x4Typed<UnknownUnits, UnknownUnits, T>;
 | 
						|
  UnknownMatrix ToUnknownMatrix() const {
 | 
						|
    return UnknownMatrix{_11, _12, _13, _14, _21, _22, _23, _24,
 | 
						|
                         _31, _32, _33, _34, _41, _42, _43, _44};
 | 
						|
  }
 | 
						|
  static Matrix4x4Typed FromUnknownMatrix(const UnknownMatrix& aUnknown) {
 | 
						|
    return Matrix4x4Typed{
 | 
						|
        aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14,
 | 
						|
        aUnknown._21, aUnknown._22, aUnknown._23, aUnknown._24,
 | 
						|
        aUnknown._31, aUnknown._32, aUnknown._33, aUnknown._34,
 | 
						|
        aUnknown._41, aUnknown._42, aUnknown._43, aUnknown._44};
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * For convenience, overload FromUnknownMatrix() for Maybe<Matrix>.
 | 
						|
   */
 | 
						|
  static Maybe<Matrix4x4Typed> FromUnknownMatrix(
 | 
						|
      const Maybe<UnknownMatrix>& aUnknown) {
 | 
						|
    if (aUnknown.isSome()) {
 | 
						|
      return Some(FromUnknownMatrix(*aUnknown));
 | 
						|
    }
 | 
						|
    return Nothing();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
typedef Matrix4x4Typed<UnknownUnits, UnknownUnits> Matrix4x4;
 | 
						|
typedef Matrix4x4Typed<UnknownUnits, UnknownUnits, double> Matrix4x4Double;
 | 
						|
 | 
						|
// This typedef is for IPDL, which can't reference a template-id directly.
 | 
						|
typedef Maybe<Matrix4x4> MaybeMatrix4x4;
 | 
						|
 | 
						|
class Matrix5x4 {
 | 
						|
 public:
 | 
						|
  Matrix5x4()
 | 
						|
      : _11(1.0f),
 | 
						|
        _12(0),
 | 
						|
        _13(0),
 | 
						|
        _14(0),
 | 
						|
        _21(0),
 | 
						|
        _22(1.0f),
 | 
						|
        _23(0),
 | 
						|
        _24(0),
 | 
						|
        _31(0),
 | 
						|
        _32(0),
 | 
						|
        _33(1.0f),
 | 
						|
        _34(0),
 | 
						|
        _41(0),
 | 
						|
        _42(0),
 | 
						|
        _43(0),
 | 
						|
        _44(1.0f),
 | 
						|
        _51(0),
 | 
						|
        _52(0),
 | 
						|
        _53(0),
 | 
						|
        _54(0) {}
 | 
						|
  Matrix5x4(Float a11, Float a12, Float a13, Float a14, Float a21, Float a22,
 | 
						|
            Float a23, Float a24, Float a31, Float a32, Float a33, Float a34,
 | 
						|
            Float a41, Float a42, Float a43, Float a44, Float a51, Float a52,
 | 
						|
            Float a53, Float a54)
 | 
						|
      : _11(a11),
 | 
						|
        _12(a12),
 | 
						|
        _13(a13),
 | 
						|
        _14(a14),
 | 
						|
        _21(a21),
 | 
						|
        _22(a22),
 | 
						|
        _23(a23),
 | 
						|
        _24(a24),
 | 
						|
        _31(a31),
 | 
						|
        _32(a32),
 | 
						|
        _33(a33),
 | 
						|
        _34(a34),
 | 
						|
        _41(a41),
 | 
						|
        _42(a42),
 | 
						|
        _43(a43),
 | 
						|
        _44(a44),
 | 
						|
        _51(a51),
 | 
						|
        _52(a52),
 | 
						|
        _53(a53),
 | 
						|
        _54(a54) {}
 | 
						|
 | 
						|
  bool operator==(const Matrix5x4& o) const {
 | 
						|
    return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
 | 
						|
           _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
 | 
						|
           _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
 | 
						|
           _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44 &&
 | 
						|
           _51 == o._51 && _52 == o._52 && _53 == o._53 && _54 == o._54;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const Matrix5x4& aMatrix) const {
 | 
						|
    return !(*this == aMatrix);
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix5x4 operator*(const Matrix5x4& aMatrix) const {
 | 
						|
    Matrix5x4 resultMatrix;
 | 
						|
 | 
						|
    resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21 +
 | 
						|
                       this->_13 * aMatrix._31 + this->_14 * aMatrix._41;
 | 
						|
    resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22 +
 | 
						|
                       this->_13 * aMatrix._32 + this->_14 * aMatrix._42;
 | 
						|
    resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23 +
 | 
						|
                       this->_13 * aMatrix._33 + this->_14 * aMatrix._43;
 | 
						|
    resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24 +
 | 
						|
                       this->_13 * aMatrix._34 + this->_14 * aMatrix._44;
 | 
						|
    resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21 +
 | 
						|
                       this->_23 * aMatrix._31 + this->_24 * aMatrix._41;
 | 
						|
    resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22 +
 | 
						|
                       this->_23 * aMatrix._32 + this->_24 * aMatrix._42;
 | 
						|
    resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23 +
 | 
						|
                       this->_23 * aMatrix._33 + this->_24 * aMatrix._43;
 | 
						|
    resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24 +
 | 
						|
                       this->_23 * aMatrix._34 + this->_24 * aMatrix._44;
 | 
						|
    resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 +
 | 
						|
                       this->_33 * aMatrix._31 + this->_34 * aMatrix._41;
 | 
						|
    resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 +
 | 
						|
                       this->_33 * aMatrix._32 + this->_34 * aMatrix._42;
 | 
						|
    resultMatrix._33 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 +
 | 
						|
                       this->_33 * aMatrix._33 + this->_34 * aMatrix._43;
 | 
						|
    resultMatrix._34 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 +
 | 
						|
                       this->_33 * aMatrix._34 + this->_34 * aMatrix._44;
 | 
						|
    resultMatrix._41 = this->_41 * aMatrix._11 + this->_42 * aMatrix._21 +
 | 
						|
                       this->_43 * aMatrix._31 + this->_44 * aMatrix._41;
 | 
						|
    resultMatrix._42 = this->_41 * aMatrix._12 + this->_42 * aMatrix._22 +
 | 
						|
                       this->_43 * aMatrix._32 + this->_44 * aMatrix._42;
 | 
						|
    resultMatrix._43 = this->_41 * aMatrix._13 + this->_42 * aMatrix._23 +
 | 
						|
                       this->_43 * aMatrix._33 + this->_44 * aMatrix._43;
 | 
						|
    resultMatrix._44 = this->_41 * aMatrix._14 + this->_42 * aMatrix._24 +
 | 
						|
                       this->_43 * aMatrix._34 + this->_44 * aMatrix._44;
 | 
						|
    resultMatrix._51 = this->_51 * aMatrix._11 + this->_52 * aMatrix._21 +
 | 
						|
                       this->_53 * aMatrix._31 + this->_54 * aMatrix._41 +
 | 
						|
                       aMatrix._51;
 | 
						|
    resultMatrix._52 = this->_51 * aMatrix._12 + this->_52 * aMatrix._22 +
 | 
						|
                       this->_53 * aMatrix._32 + this->_54 * aMatrix._42 +
 | 
						|
                       aMatrix._52;
 | 
						|
    resultMatrix._53 = this->_51 * aMatrix._13 + this->_52 * aMatrix._23 +
 | 
						|
                       this->_53 * aMatrix._33 + this->_54 * aMatrix._43 +
 | 
						|
                       aMatrix._53;
 | 
						|
    resultMatrix._54 = this->_51 * aMatrix._14 + this->_52 * aMatrix._24 +
 | 
						|
                       this->_53 * aMatrix._34 + this->_54 * aMatrix._44 +
 | 
						|
                       aMatrix._54;
 | 
						|
 | 
						|
    return resultMatrix;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix5x4& operator*=(const Matrix5x4& aMatrix) {
 | 
						|
    *this = *this * aMatrix;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  friend std::ostream& operator<<(std::ostream& aStream,
 | 
						|
                                  const Matrix5x4& aMatrix) {
 | 
						|
    const Float* f = &aMatrix._11;
 | 
						|
    aStream << "[ " << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
 | 
						|
    f += 4;
 | 
						|
    aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
 | 
						|
    f += 4;
 | 
						|
    aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
 | 
						|
    f += 4;
 | 
						|
    aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
 | 
						|
    f += 4;
 | 
						|
    aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3]
 | 
						|
            << "; ]";
 | 
						|
    return aStream;
 | 
						|
  }
 | 
						|
 | 
						|
  union {
 | 
						|
    struct {
 | 
						|
      Float _11, _12, _13, _14;
 | 
						|
      Float _21, _22, _23, _24;
 | 
						|
      Float _31, _32, _33, _34;
 | 
						|
      Float _41, _42, _43, _44;
 | 
						|
      Float _51, _52, _53, _54;
 | 
						|
    };
 | 
						|
    Float components[20];
 | 
						|
  };
 | 
						|
};
 | 
						|
 | 
						|
/* This Matrix class will carry one additional type field in order to
 | 
						|
 * track what type of 4x4 matrix we're dealing with, it can then execute
 | 
						|
 * simplified versions of certain operations when applicable.
 | 
						|
 * This does not allow access to the parent class directly, as a caller
 | 
						|
 * could then mutate the parent class without updating the type.
 | 
						|
 */
 | 
						|
template <typename SourceUnits, typename TargetUnits>
 | 
						|
class Matrix4x4TypedFlagged
 | 
						|
    : protected Matrix4x4Typed<SourceUnits, TargetUnits> {
 | 
						|
 public:
 | 
						|
  using Parent = Matrix4x4Typed<SourceUnits, TargetUnits>;
 | 
						|
  using TargetPoint = PointTyped<TargetUnits>;
 | 
						|
  using Parent::_11;
 | 
						|
  using Parent::_12;
 | 
						|
  using Parent::_13;
 | 
						|
  using Parent::_14;
 | 
						|
  using Parent::_21;
 | 
						|
  using Parent::_22;
 | 
						|
  using Parent::_23;
 | 
						|
  using Parent::_24;
 | 
						|
  using Parent::_31;
 | 
						|
  using Parent::_32;
 | 
						|
  using Parent::_33;
 | 
						|
  using Parent::_34;
 | 
						|
  using Parent::_41;
 | 
						|
  using Parent::_42;
 | 
						|
  using Parent::_43;
 | 
						|
  using Parent::_44;
 | 
						|
 | 
						|
  Matrix4x4TypedFlagged() : mType(MatrixType::Identity) {}
 | 
						|
 | 
						|
  Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21,
 | 
						|
                        Float a22, Float a23, Float a24, Float a31, Float a32,
 | 
						|
                        Float a33, Float a34, Float a41, Float a42, Float a43,
 | 
						|
                        Float a44)
 | 
						|
      : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41,
 | 
						|
               a42, a43, a44) {
 | 
						|
    Analyze();
 | 
						|
  }
 | 
						|
 | 
						|
  MOZ_IMPLICIT Matrix4x4TypedFlagged(const Parent& aOther) : Parent(aOther) {
 | 
						|
    Analyze();
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  PointTyped<TargetUnits, F> TransformPoint(
 | 
						|
      const PointTyped<SourceUnits, F>& aPoint) const {
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      return aPoint;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mType == MatrixType::Simple) {
 | 
						|
      return TransformPointSimple(aPoint);
 | 
						|
    }
 | 
						|
 | 
						|
    return Parent::TransformPoint(aPoint);
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  RectTyped<TargetUnits, F> TransformAndClipBounds(
 | 
						|
      const RectTyped<SourceUnits, F>& aRect,
 | 
						|
      const RectTyped<TargetUnits, F>& aClip) const {
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      const RectTyped<SourceUnits, F>& clipped = aRect.Intersect(aClip);
 | 
						|
      return RectTyped<TargetUnits, F>(clipped.X(), clipped.Y(),
 | 
						|
                                       clipped.Width(), clipped.Height());
 | 
						|
    }
 | 
						|
 | 
						|
    if (mType == MatrixType::Simple) {
 | 
						|
      PointTyped<UnknownUnits, F> p1 = TransformPointSimple(aRect.TopLeft());
 | 
						|
      PointTyped<UnknownUnits, F> p2 = TransformPointSimple(aRect.TopRight());
 | 
						|
      PointTyped<UnknownUnits, F> p3 = TransformPointSimple(aRect.BottomLeft());
 | 
						|
      PointTyped<UnknownUnits, F> p4 =
 | 
						|
          TransformPointSimple(aRect.BottomRight());
 | 
						|
 | 
						|
      F min_x = std::min(std::min(std::min(p1.x, p2.x), p3.x), p4.x);
 | 
						|
      F max_x = std::max(std::max(std::max(p1.x, p2.x), p3.x), p4.x);
 | 
						|
      F min_y = std::min(std::min(std::min(p1.y, p2.y), p3.y), p4.y);
 | 
						|
      F max_y = std::max(std::max(std::max(p1.y, p2.y), p3.y), p4.y);
 | 
						|
 | 
						|
      TargetPoint topLeft(std::max(min_x, aClip.x), std::max(min_y, aClip.y));
 | 
						|
      F width = std::min(max_x, aClip.XMost()) - topLeft.x;
 | 
						|
      F height = std::min(max_y, aClip.YMost()) - topLeft.y;
 | 
						|
 | 
						|
      return RectTyped<TargetUnits, F>(topLeft.x, topLeft.y, width, height);
 | 
						|
    }
 | 
						|
    return Parent::TransformAndClipBounds(aRect, aClip);
 | 
						|
  }
 | 
						|
 | 
						|
  bool FuzzyEqual(const Parent& o) const { return Parent::FuzzyEqual(o); }
 | 
						|
 | 
						|
  bool FuzzyEqual(const Matrix4x4TypedFlagged& o) const {
 | 
						|
    if (mType == MatrixType::Identity && o.mType == MatrixType::Identity) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return Parent::FuzzyEqual(o);
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4TypedFlagged& PreTranslate(Float aX, Float aY, Float aZ) {
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      _41 = aX;
 | 
						|
      _42 = aY;
 | 
						|
      _43 = aZ;
 | 
						|
 | 
						|
      if (!aZ) {
 | 
						|
        mType = MatrixType::Simple;
 | 
						|
        return *this;
 | 
						|
      }
 | 
						|
      mType = MatrixType::Full;
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    Parent::PreTranslate(aX, aY, aZ);
 | 
						|
 | 
						|
    if (aZ != 0) {
 | 
						|
      mType = MatrixType::Full;
 | 
						|
    }
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4TypedFlagged& PostTranslate(Float aX, Float aY, Float aZ) {
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      _41 = aX;
 | 
						|
      _42 = aY;
 | 
						|
      _43 = aZ;
 | 
						|
 | 
						|
      if (!aZ) {
 | 
						|
        mType = MatrixType::Simple;
 | 
						|
        return *this;
 | 
						|
      }
 | 
						|
      mType = MatrixType::Full;
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    Parent::PostTranslate(aX, aY, aZ);
 | 
						|
 | 
						|
    if (aZ != 0) {
 | 
						|
      mType = MatrixType::Full;
 | 
						|
    }
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4TypedFlagged& ChangeBasis(Float aX, Float aY, Float aZ) {
 | 
						|
    // Translate to the origin before applying this matrix
 | 
						|
    PreTranslate(-aX, -aY, -aZ);
 | 
						|
 | 
						|
    // Translate back into position after applying this matrix
 | 
						|
    PostTranslate(aX, aY, aZ);
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsIdentity() const { return mType == MatrixType::Identity; }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  Point4DTyped<TargetUnits, F> ProjectPoint(
 | 
						|
      const PointTyped<SourceUnits, F>& aPoint) const {
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      return Point4DTyped<TargetUnits, F>(aPoint.x, aPoint.y, 0, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (mType == MatrixType::Simple) {
 | 
						|
      TargetPoint point = TransformPointSimple(aPoint);
 | 
						|
      return Point4DTyped<TargetUnits, F>(point.x, point.y, 0, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    return Parent::ProjectPoint(aPoint);
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4TypedFlagged& ProjectTo2D() {
 | 
						|
    if (mType == MatrixType::Full) {
 | 
						|
      Parent::ProjectTo2D();
 | 
						|
    }
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsSingular() const {
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return Parent::Determinant() == 0.0;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Invert() {
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return Parent::Invert();
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4TypedFlagged<TargetUnits, SourceUnits> Inverse() const {
 | 
						|
    typedef Matrix4x4TypedFlagged<TargetUnits, SourceUnits> InvertedMatrix;
 | 
						|
    InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix());
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      return clone;
 | 
						|
    }
 | 
						|
    DebugOnly<bool> inverted = clone.Invert();
 | 
						|
    MOZ_ASSERT(inverted,
 | 
						|
               "Attempted to get the inverse of a non-invertible matrix");
 | 
						|
 | 
						|
    // Inverting a 2D Matrix should result in a 2D matrix, ergo mType doesn't
 | 
						|
    // change.
 | 
						|
    return clone;
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename NewTargetUnits>
 | 
						|
  bool operator==(
 | 
						|
      const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
 | 
						|
    if (mType == MatrixType::Identity &&
 | 
						|
        aMatrix.mType == MatrixType::Identity) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Depending on the usage it may make sense to compare more flags.
 | 
						|
    return Parent::operator==(aMatrix);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename NewTargetUnits>
 | 
						|
  bool operator!=(
 | 
						|
      const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
 | 
						|
    if (mType == MatrixType::Identity &&
 | 
						|
        aMatrix.mType == MatrixType::Identity) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    // Depending on the usage it may make sense to compare more flags.
 | 
						|
    return Parent::operator!=(aMatrix);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename NewTargetUnits>
 | 
						|
  Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*(
 | 
						|
      const Matrix4x4Typed<TargetUnits, NewTargetUnits>& aMatrix) const {
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      return aMatrix;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mType == MatrixType::Simple) {
 | 
						|
      Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
 | 
						|
      matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
 | 
						|
      matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
 | 
						|
      matrix._31 = aMatrix._31;
 | 
						|
      matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
 | 
						|
      matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
 | 
						|
      matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
 | 
						|
      matrix._32 = aMatrix._32;
 | 
						|
      matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
 | 
						|
      matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23;
 | 
						|
      matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23;
 | 
						|
      matrix._33 = aMatrix._33;
 | 
						|
      matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43;
 | 
						|
      matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24;
 | 
						|
      matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24;
 | 
						|
      matrix._34 = aMatrix._34;
 | 
						|
      matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44;
 | 
						|
      matrix.Analyze();
 | 
						|
      return matrix;
 | 
						|
    }
 | 
						|
 | 
						|
    return Parent::operator*(aMatrix);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename NewTargetUnits>
 | 
						|
  Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*(
 | 
						|
      const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
 | 
						|
    if (mType == MatrixType::Identity) {
 | 
						|
      return aMatrix;
 | 
						|
    }
 | 
						|
 | 
						|
    if (aMatrix.mType == MatrixType::Identity) {
 | 
						|
      return Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits>::
 | 
						|
          FromUnknownMatrix(this->ToUnknownMatrix());
 | 
						|
    }
 | 
						|
 | 
						|
    if (mType == MatrixType::Simple && aMatrix.mType == MatrixType::Simple) {
 | 
						|
      Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
 | 
						|
      matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
 | 
						|
      matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
 | 
						|
      matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
 | 
						|
      matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
 | 
						|
      matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
 | 
						|
      matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
 | 
						|
      matrix.mType = MatrixType::Simple;
 | 
						|
      return matrix;
 | 
						|
    } else if (mType == MatrixType::Simple) {
 | 
						|
      Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
 | 
						|
      matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
 | 
						|
      matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
 | 
						|
      matrix._31 = aMatrix._31;
 | 
						|
      matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
 | 
						|
      matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
 | 
						|
      matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
 | 
						|
      matrix._32 = aMatrix._32;
 | 
						|
      matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
 | 
						|
      matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23;
 | 
						|
      matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23;
 | 
						|
      matrix._33 = aMatrix._33;
 | 
						|
      matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43;
 | 
						|
      matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24;
 | 
						|
      matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24;
 | 
						|
      matrix._34 = aMatrix._34;
 | 
						|
      matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44;
 | 
						|
      matrix.mType = MatrixType::Full;
 | 
						|
      return matrix;
 | 
						|
    } else if (aMatrix.mType == MatrixType::Simple) {
 | 
						|
      Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
 | 
						|
      matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _14 * aMatrix._41;
 | 
						|
      matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _24 * aMatrix._41;
 | 
						|
      matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _34 * aMatrix._41;
 | 
						|
      matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _44 * aMatrix._41;
 | 
						|
      matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _14 * aMatrix._42;
 | 
						|
      matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _24 * aMatrix._42;
 | 
						|
      matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _34 * aMatrix._42;
 | 
						|
      matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _44 * aMatrix._42;
 | 
						|
      matrix._13 = _13;
 | 
						|
      matrix._23 = _23;
 | 
						|
      matrix._33 = _33;
 | 
						|
      matrix._43 = _43;
 | 
						|
      matrix._14 = _14;
 | 
						|
      matrix._24 = _24;
 | 
						|
      matrix._34 = _34;
 | 
						|
      matrix._44 = _44;
 | 
						|
      matrix.mType = MatrixType::Full;
 | 
						|
      return matrix;
 | 
						|
    }
 | 
						|
 | 
						|
    return Parent::operator*(aMatrix);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Is2D() const { return mType != MatrixType::Full; }
 | 
						|
 | 
						|
  bool CanDraw2D(Matrix* aMatrix = nullptr) const {
 | 
						|
    if (mType != MatrixType::Full) {
 | 
						|
      if (aMatrix) {
 | 
						|
        aMatrix->_11 = _11;
 | 
						|
        aMatrix->_12 = _12;
 | 
						|
        aMatrix->_21 = _21;
 | 
						|
        aMatrix->_22 = _22;
 | 
						|
        aMatrix->_31 = _41;
 | 
						|
        aMatrix->_32 = _42;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return Parent::CanDraw2D(aMatrix);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Is2D(Matrix* aMatrix) const {
 | 
						|
    if (!Is2D()) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (aMatrix) {
 | 
						|
      aMatrix->_11 = _11;
 | 
						|
      aMatrix->_12 = _12;
 | 
						|
      aMatrix->_21 = _21;
 | 
						|
      aMatrix->_22 = _22;
 | 
						|
      aMatrix->_31 = _41;
 | 
						|
      aMatrix->_32 = _42;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  RectTyped<TargetUnits, F> ProjectRectBounds(
 | 
						|
      const RectTyped<SourceUnits, F>& aRect,
 | 
						|
      const RectTyped<TargetUnits, F>& aClip) const {
 | 
						|
    return Parent::ProjectRectBounds(aRect, aClip);
 | 
						|
  }
 | 
						|
 | 
						|
  const Parent& GetMatrix() const { return *this; }
 | 
						|
 | 
						|
 private:
 | 
						|
  enum class MatrixType : uint8_t {
 | 
						|
    Identity,
 | 
						|
    Simple,  // 2x3 Matrix
 | 
						|
    Full     // 4x4 Matrix
 | 
						|
  };
 | 
						|
 | 
						|
  Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21,
 | 
						|
                        Float a22, Float a23, Float a24, Float a31, Float a32,
 | 
						|
                        Float a33, Float a34, Float a41, Float a42, Float a43,
 | 
						|
                        Float a44,
 | 
						|
                        typename Matrix4x4TypedFlagged::MatrixType aType)
 | 
						|
      : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41,
 | 
						|
               a42, a43, a44) {
 | 
						|
    mType = aType;
 | 
						|
  }
 | 
						|
  static Matrix4x4TypedFlagged FromUnknownMatrix(
 | 
						|
      const Matrix4x4Flagged& aUnknown) {
 | 
						|
    return Matrix4x4TypedFlagged{
 | 
						|
        aUnknown._11, aUnknown._12,  aUnknown._13, aUnknown._14, aUnknown._21,
 | 
						|
        aUnknown._22, aUnknown._23,  aUnknown._24, aUnknown._31, aUnknown._32,
 | 
						|
        aUnknown._33, aUnknown._34,  aUnknown._41, aUnknown._42, aUnknown._43,
 | 
						|
        aUnknown._44, aUnknown.mType};
 | 
						|
  }
 | 
						|
  Matrix4x4Flagged ToUnknownMatrix() const {
 | 
						|
    return Matrix4x4Flagged{_11, _12, _13, _14, _21, _22, _23, _24,  _31,
 | 
						|
                            _32, _33, _34, _41, _42, _43, _44, mType};
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F>
 | 
						|
  PointTyped<TargetUnits, F> TransformPointSimple(
 | 
						|
      const PointTyped<SourceUnits, F>& aPoint) const {
 | 
						|
    PointTyped<SourceUnits, F> temp;
 | 
						|
    temp.x = aPoint.x * _11 + aPoint.y * +_21 + _41;
 | 
						|
    temp.y = aPoint.x * _12 + aPoint.y * +_22 + _42;
 | 
						|
    return temp;
 | 
						|
  }
 | 
						|
 | 
						|
  void Analyze() {
 | 
						|
    if (Parent::IsIdentity()) {
 | 
						|
      mType = MatrixType::Identity;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Parent::Is2D()) {
 | 
						|
      mType = MatrixType::Simple;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    mType = MatrixType::Full;
 | 
						|
  }
 | 
						|
 | 
						|
  MatrixType mType;
 | 
						|
};
 | 
						|
 | 
						|
using Matrix4x4Flagged = Matrix4x4TypedFlagged<UnknownUnits, UnknownUnits>;
 | 
						|
 | 
						|
}  // namespace gfx
 | 
						|
}  // namespace mozilla
 | 
						|
 | 
						|
#endif /* MOZILLA_GFX_MATRIX_H_ */
 |