forked from mirrors/gecko-dev
		
	 7bc752e42b
			
		
	
	
		7bc752e42b
		
	
	
	
	
		
			
			Also move MOZ_MUST_USE before function declarations' specifiers and return type. While clang and gcc's __attribute__((warn_unused_result)) can appear before, between, or after function specifiers and return types, the [[nodiscard]] attribute must precede the function specifiers. Depends on D108344 Differential Revision: https://phabricator.services.mozilla.com/D108345
		
			
				
	
	
		
			652 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			652 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| /* Smart pointer managing sole ownership of a resource. */
 | |
| 
 | |
| #ifndef mozilla_UniquePtr_h
 | |
| #define mozilla_UniquePtr_h
 | |
| 
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| #include "mozilla/Assertions.h"
 | |
| #include "mozilla/Attributes.h"
 | |
| #include "mozilla/CompactPair.h"
 | |
| #include "mozilla/Compiler.h"
 | |
| 
 | |
| namespace mozilla {
 | |
| 
 | |
| template <typename T>
 | |
| class DefaultDelete;
 | |
| template <typename T, class D = DefaultDelete<T>>
 | |
| class UniquePtr;
 | |
| 
 | |
| }  // namespace mozilla
 | |
| 
 | |
| namespace mozilla {
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| struct HasPointerTypeHelper {
 | |
|   template <class U>
 | |
|   static double Test(...);
 | |
|   template <class U>
 | |
|   static char Test(typename U::pointer* = 0);
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| class HasPointerType
 | |
|     : public std::integral_constant<bool, sizeof(HasPointerTypeHelper::Test<T>(
 | |
|                                               0)) == 1> {};
 | |
| 
 | |
| template <class T, class D, bool = HasPointerType<D>::value>
 | |
| struct PointerTypeImpl {
 | |
|   typedef typename D::pointer Type;
 | |
| };
 | |
| 
 | |
| template <class T, class D>
 | |
| struct PointerTypeImpl<T, D, false> {
 | |
|   typedef T* Type;
 | |
| };
 | |
| 
 | |
| template <class T, class D>
 | |
| struct PointerType {
 | |
|   typedef typename PointerTypeImpl<T, std::remove_reference_t<D>>::Type Type;
 | |
| };
 | |
| 
 | |
| }  // namespace detail
 | |
| 
 | |
| /**
 | |
|  * UniquePtr is a smart pointer that wholly owns a resource.  Ownership may be
 | |
|  * transferred out of a UniquePtr through explicit action, but otherwise the
 | |
|  * resource is destroyed when the UniquePtr is destroyed.
 | |
|  *
 | |
|  * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
 | |
|  * in one crucial way: it's impossible to copy a UniquePtr.  Copying an auto_ptr
 | |
|  * obviously *can't* copy ownership of its singly-owned resource.  So what
 | |
|  * happens if you try to copy one?  Bizarrely, ownership is implicitly
 | |
|  * *transferred*, preserving single ownership but breaking code that assumes a
 | |
|  * copy of an object is identical to the original.  (This is why auto_ptr is
 | |
|  * prohibited in STL containers.)
 | |
|  *
 | |
|  * UniquePtr solves this problem by being *movable* rather than copyable.
 | |
|  * Instead of passing a |UniquePtr u| directly to the constructor or assignment
 | |
|  * operator, you pass |Move(u)|.  In doing so you indicate that you're *moving*
 | |
|  * ownership out of |u|, into the target of the construction/assignment.  After
 | |
|  * the transfer completes, |u| contains |nullptr| and may be safely destroyed.
 | |
|  * This preserves single ownership but also allows UniquePtr to be moved by
 | |
|  * algorithms that have been made move-safe.  (Note: if |u| is instead a
 | |
|  * temporary expression, don't use |Move()|: just pass the expression, because
 | |
|  * it's already move-ready.  For more information see Move.h.)
 | |
|  *
 | |
|  * UniquePtr is also better than std::auto_ptr in that the deletion operation is
 | |
|  * customizable.  An optional second template parameter specifies a class that
 | |
|  * (through its operator()(T*)) implements the desired deletion policy.  If no
 | |
|  * policy is specified, mozilla::DefaultDelete<T> is used -- which will either
 | |
|  * |delete| or |delete[]| the resource, depending whether the resource is an
 | |
|  * array.  Custom deletion policies ideally should be empty classes (no member
 | |
|  * fields, no member fields in base classes, no virtual methods/inheritance),
 | |
|  * because then UniquePtr can be just as efficient as a raw pointer.
 | |
|  *
 | |
|  * Use of UniquePtr proceeds like so:
 | |
|  *
 | |
|  *   UniquePtr<int> g1; // initializes to nullptr
 | |
|  *   g1.reset(new int); // switch resources using reset()
 | |
|  *   g1 = nullptr; // clears g1, deletes the int
 | |
|  *
 | |
|  *   UniquePtr<int> g2(new int); // owns that int
 | |
|  *   int* p = g2.release(); // g2 leaks its int -- still requires deletion
 | |
|  *   delete p; // now freed
 | |
|  *
 | |
|  *   struct S { int x; S(int x) : x(x) {} };
 | |
|  *   UniquePtr<S> g3, g4(new S(5));
 | |
|  *   g3 = std::move(g4); // g3 owns the S, g4 cleared
 | |
|  *   S* p = g3.get(); // g3 still owns |p|
 | |
|  *   assert(g3->x == 5); // operator-> works (if .get() != nullptr)
 | |
|  *   assert((*g3).x == 5); // also operator* (again, if not cleared)
 | |
|  *   std::swap(g3, g4); // g4 now owns the S, g3 cleared
 | |
|  *   g3.swap(g4);  // g3 now owns the S, g4 cleared
 | |
|  *   UniquePtr<S> g5(std::move(g3)); // g5 owns the S, g3 cleared
 | |
|  *   g5.reset(); // deletes the S, g5 cleared
 | |
|  *
 | |
|  *   struct FreePolicy { void operator()(void* p) { free(p); } };
 | |
|  *   UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
 | |
|  *   int* ptr = g6.get();
 | |
|  *   g6 = nullptr; // calls free(ptr)
 | |
|  *
 | |
|  * Now, carefully note a few things you *can't* do:
 | |
|  *
 | |
|  *   UniquePtr<int> b1;
 | |
|  *   b1 = new int; // BAD: can only assign another UniquePtr
 | |
|  *   int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
 | |
|  *
 | |
|  *   UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
 | |
|  *   UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
 | |
|  *
 | |
|  * (Note that changing a UniquePtr to store a direct |new| expression is
 | |
|  * permitted, but usually you should use MakeUnique, defined at the end of this
 | |
|  * header.)
 | |
|  *
 | |
|  * A few miscellaneous notes:
 | |
|  *
 | |
|  * UniquePtr, when not instantiated for an array type, can be move-constructed
 | |
|  * and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
 | |
|  * instantiations where U converts to T and E converts to D.  If you want to use
 | |
|  * this, you're going to have to specify a deletion policy for both UniquePtr
 | |
|  * instantations, and T pretty much has to have a virtual destructor.  In other
 | |
|  * words, this doesn't work:
 | |
|  *
 | |
|  *   struct Base { virtual ~Base() {} };
 | |
|  *   struct Derived : Base {};
 | |
|  *
 | |
|  *   UniquePtr<Base> b1;
 | |
|  *   // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
 | |
|  *   UniquePtr<Derived> d1(std::move(b));
 | |
|  *
 | |
|  *   UniquePtr<Base> b2;
 | |
|  *   UniquePtr<Derived, DefaultDelete<Base>> d2(std::move(b2)); // okay
 | |
|  *
 | |
|  * UniquePtr is specialized for array types.  Specializing with an array type
 | |
|  * creates a smart-pointer version of that array -- not a pointer to such an
 | |
|  * array.
 | |
|  *
 | |
|  *   UniquePtr<int[]> arr(new int[5]);
 | |
|  *   arr[0] = 4;
 | |
|  *
 | |
|  * What else is different?  Deletion of course uses |delete[]|.  An operator[]
 | |
|  * is provided.  Functionality that doesn't make sense for arrays is removed.
 | |
|  * The constructors and mutating methods only accept array pointers (not T*, U*
 | |
|  * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
 | |
|  *
 | |
|  * It's perfectly okay for a function to return a UniquePtr. This transfers
 | |
|  * the UniquePtr's sole ownership of the data, to the fresh UniquePtr created
 | |
|  * in the calling function, that will then solely own that data. Such functions
 | |
|  * can return a local variable UniquePtr, |nullptr|, |UniquePtr(ptr)| where
 | |
|  * |ptr| is a |T*|, or a UniquePtr |Move()|'d from elsewhere.
 | |
|  *
 | |
|  * UniquePtr will commonly be a member of a class, with lifetime equivalent to
 | |
|  * that of that class.  If you want to expose the related resource, you could
 | |
|  * expose a raw pointer via |get()|, but ownership of a raw pointer is
 | |
|  * inherently unclear.  So it's better to expose a |const UniquePtr&| instead.
 | |
|  * This prohibits mutation but still allows use of |get()| when needed (but
 | |
|  * operator-> is preferred).  Of course, you can only use this smart pointer as
 | |
|  * long as the enclosing class instance remains live -- no different than if you
 | |
|  * exposed the |get()| raw pointer.
 | |
|  *
 | |
|  * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
 | |
|  * argument.  To specify an inout parameter (where the method may or may not
 | |
|  * take ownership of the resource, or reset it), or to specify an out parameter
 | |
|  * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
 | |
|  * argument.  To unconditionally transfer ownership of a UniquePtr
 | |
|  * into a method, use a |UniquePtr| argument.  To conditionally transfer
 | |
|  * ownership of a resource into a method, should the method want it, use a
 | |
|  * |UniquePtr&&| argument.
 | |
|  */
 | |
| template <typename T, class D>
 | |
| class UniquePtr {
 | |
|  public:
 | |
|   typedef T ElementType;
 | |
|   typedef D DeleterType;
 | |
|   typedef typename detail::PointerType<T, DeleterType>::Type Pointer;
 | |
| 
 | |
|  private:
 | |
|   mozilla::CompactPair<Pointer, DeleterType> mTuple;
 | |
| 
 | |
|   Pointer& ptr() { return mTuple.first(); }
 | |
|   const Pointer& ptr() const { return mTuple.first(); }
 | |
| 
 | |
|   DeleterType& del() { return mTuple.second(); }
 | |
|   const DeleterType& del() const { return mTuple.second(); }
 | |
| 
 | |
|  public:
 | |
|   /**
 | |
|    * Construct a UniquePtr containing |nullptr|.
 | |
|    */
 | |
|   constexpr UniquePtr() : mTuple(static_cast<Pointer>(nullptr), DeleterType()) {
 | |
|     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
 | |
|     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Construct a UniquePtr containing |aPtr|.
 | |
|    */
 | |
|   explicit UniquePtr(Pointer aPtr) : mTuple(aPtr, DeleterType()) {
 | |
|     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
 | |
|     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
 | |
|   }
 | |
| 
 | |
|   UniquePtr(Pointer aPtr,
 | |
|             std::conditional_t<std::is_reference_v<D>, D, const D&> aD1)
 | |
|       : mTuple(aPtr, aD1) {}
 | |
| 
 | |
|   UniquePtr(Pointer aPtr, std::remove_reference_t<D>&& aD2)
 | |
|       : mTuple(aPtr, std::move(aD2)) {
 | |
|     static_assert(!std::is_reference_v<D>,
 | |
|                   "rvalue deleter can't be stored by reference");
 | |
|   }
 | |
| 
 | |
|   UniquePtr(UniquePtr&& aOther)
 | |
|       : mTuple(aOther.release(),
 | |
|                std::forward<DeleterType>(aOther.get_deleter())) {}
 | |
| 
 | |
|   MOZ_IMPLICIT
 | |
|   UniquePtr(decltype(nullptr)) : mTuple(nullptr, DeleterType()) {
 | |
|     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
 | |
|     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
 | |
|   }
 | |
| 
 | |
|   template <typename U, class E>
 | |
|   MOZ_IMPLICIT UniquePtr(
 | |
|       UniquePtr<U, E>&& aOther,
 | |
|       std::enable_if_t<
 | |
|           std::is_convertible_v<typename UniquePtr<U, E>::Pointer, Pointer> &&
 | |
|               !std::is_array_v<U> &&
 | |
|               (std::is_reference_v<D> ? std::is_same_v<D, E>
 | |
|                                       : std::is_convertible_v<E, D>),
 | |
|           int>
 | |
|           aDummy = 0)
 | |
|       : mTuple(aOther.release(), std::forward<E>(aOther.get_deleter())) {}
 | |
| 
 | |
|   ~UniquePtr() { reset(nullptr); }
 | |
| 
 | |
|   UniquePtr& operator=(UniquePtr&& aOther) {
 | |
|     reset(aOther.release());
 | |
|     get_deleter() = std::forward<DeleterType>(aOther.get_deleter());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   template <typename U, typename E>
 | |
|   UniquePtr& operator=(UniquePtr<U, E>&& aOther) {
 | |
|     static_assert(
 | |
|         std::is_convertible_v<typename UniquePtr<U, E>::Pointer, Pointer>,
 | |
|         "incompatible UniquePtr pointees");
 | |
|     static_assert(!std::is_array_v<U>,
 | |
|                   "can't assign from UniquePtr holding an array");
 | |
| 
 | |
|     reset(aOther.release());
 | |
|     get_deleter() = std::forward<E>(aOther.get_deleter());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   UniquePtr& operator=(decltype(nullptr)) {
 | |
|     reset(nullptr);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   std::add_lvalue_reference_t<T> operator*() const {
 | |
|     MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with *");
 | |
|     return *get();
 | |
|   }
 | |
|   Pointer operator->() const {
 | |
|     MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with ->");
 | |
|     return get();
 | |
|   }
 | |
| 
 | |
|   explicit operator bool() const { return get() != nullptr; }
 | |
| 
 | |
|   Pointer get() const { return ptr(); }
 | |
| 
 | |
|   DeleterType& get_deleter() { return del(); }
 | |
|   const DeleterType& get_deleter() const { return del(); }
 | |
| 
 | |
|   [[nodiscard]] Pointer release() {
 | |
|     Pointer p = ptr();
 | |
|     ptr() = nullptr;
 | |
|     return p;
 | |
|   }
 | |
| 
 | |
|   void reset(Pointer aPtr = Pointer()) {
 | |
|     Pointer old = ptr();
 | |
|     ptr() = aPtr;
 | |
|     if (old != nullptr) {
 | |
|       get_deleter()(old);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }
 | |
| 
 | |
|   UniquePtr(const UniquePtr& aOther) = delete;  // construct using std::move()!
 | |
|   void operator=(const UniquePtr& aOther) =
 | |
|       delete;  // assign using std::move()!
 | |
| };
 | |
| 
 | |
| // In case you didn't read the comment by the main definition (you should!): the
 | |
| // UniquePtr<T[]> specialization exists to manage array pointers.  It deletes
 | |
| // such pointers using delete[], it will reject construction and modification
 | |
| // attempts using U* or U[].  Otherwise it works like the normal UniquePtr.
 | |
| template <typename T, class D>
 | |
| class UniquePtr<T[], D> {
 | |
|  public:
 | |
|   typedef T* Pointer;
 | |
|   typedef T ElementType;
 | |
|   typedef D DeleterType;
 | |
| 
 | |
|  private:
 | |
|   mozilla::CompactPair<Pointer, DeleterType> mTuple;
 | |
| 
 | |
|  public:
 | |
|   /**
 | |
|    * Construct a UniquePtr containing nullptr.
 | |
|    */
 | |
|   constexpr UniquePtr() : mTuple(static_cast<Pointer>(nullptr), DeleterType()) {
 | |
|     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
 | |
|     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Construct a UniquePtr containing |aPtr|.
 | |
|    */
 | |
|   explicit UniquePtr(Pointer aPtr) : mTuple(aPtr, DeleterType()) {
 | |
|     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
 | |
|     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
 | |
|   }
 | |
| 
 | |
|   // delete[] knows how to handle *only* an array of a single class type.  For
 | |
|   // delete[] to work correctly, it must know the size of each element, the
 | |
|   // fields and base classes of each element requiring destruction, and so on.
 | |
|   // So forbid all overloads which would end up invoking delete[] on a pointer
 | |
|   // of the wrong type.
 | |
|   template <typename U>
 | |
|   UniquePtr(U&& aU,
 | |
|             std::enable_if_t<
 | |
|                 std::is_pointer_v<U> && std::is_convertible_v<U, Pointer>, int>
 | |
|                 aDummy = 0) = delete;
 | |
| 
 | |
|   UniquePtr(Pointer aPtr,
 | |
|             std::conditional_t<std::is_reference_v<D>, D, const D&> aD1)
 | |
|       : mTuple(aPtr, aD1) {}
 | |
| 
 | |
|   UniquePtr(Pointer aPtr, std::remove_reference_t<D>&& aD2)
 | |
|       : mTuple(aPtr, std::move(aD2)) {
 | |
|     static_assert(!std::is_reference_v<D>,
 | |
|                   "rvalue deleter can't be stored by reference");
 | |
|   }
 | |
| 
 | |
|   // Forbidden for the same reasons as stated above.
 | |
|   template <typename U, typename V>
 | |
|   UniquePtr(U&& aU, V&& aV,
 | |
|             std::enable_if_t<
 | |
|                 std::is_pointer_v<U> && std::is_convertible_v<U, Pointer>, int>
 | |
|                 aDummy = 0) = delete;
 | |
| 
 | |
|   UniquePtr(UniquePtr&& aOther)
 | |
|       : mTuple(aOther.release(),
 | |
|                std::forward<DeleterType>(aOther.get_deleter())) {}
 | |
| 
 | |
|   MOZ_IMPLICIT
 | |
|   UniquePtr(decltype(nullptr)) : mTuple(nullptr, DeleterType()) {
 | |
|     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
 | |
|     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
 | |
|   }
 | |
| 
 | |
|   ~UniquePtr() { reset(nullptr); }
 | |
| 
 | |
|   UniquePtr& operator=(UniquePtr&& aOther) {
 | |
|     reset(aOther.release());
 | |
|     get_deleter() = std::forward<DeleterType>(aOther.get_deleter());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   UniquePtr& operator=(decltype(nullptr)) {
 | |
|     reset();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   explicit operator bool() const { return get() != nullptr; }
 | |
| 
 | |
|   T& operator[](decltype(sizeof(int)) aIndex) const { return get()[aIndex]; }
 | |
|   Pointer get() const { return mTuple.first(); }
 | |
| 
 | |
|   DeleterType& get_deleter() { return mTuple.second(); }
 | |
|   const DeleterType& get_deleter() const { return mTuple.second(); }
 | |
| 
 | |
|   [[nodiscard]] Pointer release() {
 | |
|     Pointer p = mTuple.first();
 | |
|     mTuple.first() = nullptr;
 | |
|     return p;
 | |
|   }
 | |
| 
 | |
|   void reset(Pointer aPtr = Pointer()) {
 | |
|     Pointer old = mTuple.first();
 | |
|     mTuple.first() = aPtr;
 | |
|     if (old != nullptr) {
 | |
|       mTuple.second()(old);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void reset(decltype(nullptr)) {
 | |
|     Pointer old = mTuple.first();
 | |
|     mTuple.first() = nullptr;
 | |
|     if (old != nullptr) {
 | |
|       mTuple.second()(old);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename U>
 | |
|   void reset(U) = delete;
 | |
| 
 | |
|   void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }
 | |
| 
 | |
|   UniquePtr(const UniquePtr& aOther) = delete;  // construct using std::move()!
 | |
|   void operator=(const UniquePtr& aOther) =
 | |
|       delete;  // assign using std::move()!
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * A default deletion policy using plain old operator delete.
 | |
|  *
 | |
|  * Note that this type can be specialized, but authors should beware of the risk
 | |
|  * that the specialization may at some point cease to match (either because it
 | |
|  * gets moved to a different compilation unit or the signature changes). If the
 | |
|  * non-specialized (|delete|-based) version compiles for that type but does the
 | |
|  * wrong thing, bad things could happen.
 | |
|  *
 | |
|  * This is a non-issue for types which are always incomplete (i.e. opaque handle
 | |
|  * types), since |delete|-ing such a type will always trigger a compilation
 | |
|  * error.
 | |
|  */
 | |
| template <typename T>
 | |
| class DefaultDelete {
 | |
|  public:
 | |
|   constexpr DefaultDelete() = default;
 | |
| 
 | |
|   template <typename U>
 | |
|   MOZ_IMPLICIT DefaultDelete(
 | |
|       const DefaultDelete<U>& aOther,
 | |
|       std::enable_if_t<std::is_convertible_v<U*, T*>, int> aDummy = 0) {}
 | |
| 
 | |
|   void operator()(T* aPtr) const {
 | |
|     static_assert(sizeof(T) > 0, "T must be complete");
 | |
|     delete aPtr;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /** A default deletion policy using operator delete[]. */
 | |
| template <typename T>
 | |
| class DefaultDelete<T[]> {
 | |
|  public:
 | |
|   constexpr DefaultDelete() = default;
 | |
| 
 | |
|   void operator()(T* aPtr) const {
 | |
|     static_assert(sizeof(T) > 0, "T must be complete");
 | |
|     delete[] aPtr;
 | |
|   }
 | |
| 
 | |
|   template <typename U>
 | |
|   void operator()(U* aPtr) const = delete;
 | |
| };
 | |
| 
 | |
| template <typename T, class D, typename U, class E>
 | |
| bool operator==(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY) {
 | |
|   return aX.get() == aY.get();
 | |
| }
 | |
| 
 | |
| template <typename T, class D, typename U, class E>
 | |
| bool operator!=(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY) {
 | |
|   return aX.get() != aY.get();
 | |
| }
 | |
| 
 | |
| template <typename T, class D>
 | |
| bool operator==(const UniquePtr<T, D>& aX, const T* aY) {
 | |
|   return aX.get() == aY;
 | |
| }
 | |
| 
 | |
| template <typename T, class D>
 | |
| bool operator==(const T* aY, const UniquePtr<T, D>& aX) {
 | |
|   return aY == aX.get();
 | |
| }
 | |
| 
 | |
| template <typename T, class D>
 | |
| bool operator!=(const UniquePtr<T, D>& aX, const T* aY) {
 | |
|   return aX.get() != aY;
 | |
| }
 | |
| 
 | |
| template <typename T, class D>
 | |
| bool operator!=(const T* aY, const UniquePtr<T, D>& aX) {
 | |
|   return aY != aX.get();
 | |
| }
 | |
| 
 | |
| template <typename T, class D>
 | |
| bool operator==(const UniquePtr<T, D>& aX, decltype(nullptr)) {
 | |
|   return !aX;
 | |
| }
 | |
| 
 | |
| template <typename T, class D>
 | |
| bool operator==(decltype(nullptr), const UniquePtr<T, D>& aX) {
 | |
|   return !aX;
 | |
| }
 | |
| 
 | |
| template <typename T, class D>
 | |
| bool operator!=(const UniquePtr<T, D>& aX, decltype(nullptr)) {
 | |
|   return bool(aX);
 | |
| }
 | |
| 
 | |
| template <typename T, class D>
 | |
| bool operator!=(decltype(nullptr), const UniquePtr<T, D>& aX) {
 | |
|   return bool(aX);
 | |
| }
 | |
| 
 | |
| // No operator<, operator>, operator<=, operator>= for now because simplicity.
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| template <typename T>
 | |
| struct UniqueSelector {
 | |
|   typedef UniquePtr<T> SingleObject;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct UniqueSelector<T[]> {
 | |
|   typedef UniquePtr<T[]> UnknownBound;
 | |
| };
 | |
| 
 | |
| template <typename T, decltype(sizeof(int)) N>
 | |
| struct UniqueSelector<T[N]> {
 | |
|   typedef UniquePtr<T[N]> KnownBound;
 | |
| };
 | |
| 
 | |
| }  // namespace detail
 | |
| 
 | |
| /**
 | |
|  * MakeUnique is a helper function for allocating new'd objects and arrays,
 | |
|  * returning a UniquePtr containing the resulting pointer.  The semantics of
 | |
|  * MakeUnique<Type>(...) are as follows.
 | |
|  *
 | |
|  *   If Type is an array T[n]:
 | |
|  *     Disallowed, deleted, no overload for you!
 | |
|  *   If Type is an array T[]:
 | |
|  *     MakeUnique<T[]>(size_t) is the only valid overload.  The pointer returned
 | |
|  *     is as if by |new T[n]()|, which value-initializes each element.  (If T
 | |
|  *     isn't a class type, this will zero each element.  If T is a class type,
 | |
|  *     then roughly speaking, each element will be constructed using its default
 | |
|  *     constructor.  See C++11 [dcl.init]p7 for the full gory details.)
 | |
|  *   If Type is non-array T:
 | |
|  *     The arguments passed to MakeUnique<T>(...) are forwarded into a
 | |
|  *     |new T(...)| call, initializing the T as would happen if executing
 | |
|  *     |T(...)|.
 | |
|  *
 | |
|  * There are various benefits to using MakeUnique instead of |new| expressions.
 | |
|  *
 | |
|  * First, MakeUnique eliminates use of |new| from code entirely.  If objects are
 | |
|  * only created through UniquePtr, then (assuming all explicit release() calls
 | |
|  * are safe, including transitively, and no type-safety casting funniness)
 | |
|  * correctly maintained ownership of the UniquePtr guarantees no leaks are
 | |
|  * possible.  (This pays off best if a class is only ever created through a
 | |
|  * factory method on the class, using a private constructor.)
 | |
|  *
 | |
|  * Second, initializing a UniquePtr using a |new| expression requires repeating
 | |
|  * the name of the new'd type, whereas MakeUnique in concert with the |auto|
 | |
|  * keyword names it only once:
 | |
|  *
 | |
|  *   UniquePtr<char> ptr1(new char()); // repetitive
 | |
|  *   auto ptr2 = MakeUnique<char>();   // shorter
 | |
|  *
 | |
|  * Of course this assumes the reader understands the operation MakeUnique
 | |
|  * performs.  In the long run this is probably a reasonable assumption.  In the
 | |
|  * short run you'll have to use your judgment about what readers can be expected
 | |
|  * to know, or to quickly look up.
 | |
|  *
 | |
|  * Third, a call to MakeUnique can be assigned directly to a UniquePtr.  In
 | |
|  * contrast you can't assign a pointer into a UniquePtr without using the
 | |
|  * cumbersome reset().
 | |
|  *
 | |
|  *   UniquePtr<char> p;
 | |
|  *   p = new char;           // ERROR
 | |
|  *   p.reset(new char);      // works, but fugly
 | |
|  *   p = MakeUnique<char>(); // preferred
 | |
|  *
 | |
|  * (And third, although not relevant to Mozilla: MakeUnique is exception-safe.
 | |
|  * An exception thrown after |new T| succeeds will leak that memory, unless the
 | |
|  * pointer is assigned to an object that will manage its ownership.  UniquePtr
 | |
|  * ably serves this function.)
 | |
|  */
 | |
| 
 | |
| template <typename T, typename... Args>
 | |
| typename detail::UniqueSelector<T>::SingleObject MakeUnique(Args&&... aArgs) {
 | |
|   return UniquePtr<T>(new T(std::forward<Args>(aArgs)...));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| typename detail::UniqueSelector<T>::UnknownBound MakeUnique(
 | |
|     decltype(sizeof(int)) aN) {
 | |
|   using ArrayType = std::remove_extent_t<T>;
 | |
|   return UniquePtr<T>(new ArrayType[aN]());
 | |
| }
 | |
| 
 | |
| template <typename T, typename... Args>
 | |
| typename detail::UniqueSelector<T>::KnownBound MakeUnique(Args&&... aArgs) =
 | |
|     delete;
 | |
| 
 | |
| /**
 | |
|  * WrapUnique is a helper function to transfer ownership from a raw pointer
 | |
|  * into a UniquePtr<T>. It can only be used with a single non-array type.
 | |
|  *
 | |
|  * It is generally used this way:
 | |
|  *
 | |
|  *   auto p = WrapUnique(new char);
 | |
|  *
 | |
|  * It can be used when MakeUnique is not usable, for example, when the
 | |
|  * constructor you are using is private, or you want to use aggregate
 | |
|  * initialization.
 | |
|  */
 | |
| 
 | |
| template <typename T>
 | |
| typename detail::UniqueSelector<T>::SingleObject WrapUnique(T* aPtr) {
 | |
|   return UniquePtr<T>(aPtr);
 | |
| }
 | |
| 
 | |
| }  // namespace mozilla
 | |
| 
 | |
| namespace std {
 | |
| 
 | |
| template <typename T, class D>
 | |
| void swap(mozilla::UniquePtr<T, D>& aX, mozilla::UniquePtr<T, D>& aY) {
 | |
|   aX.swap(aY);
 | |
| }
 | |
| 
 | |
| }  // namespace std
 | |
| 
 | |
| #endif /* mozilla_UniquePtr_h */
 |