fune/dom/canvas/DrawTargetWebgl.cpp
Lee Salzman 44d3c382b8 Bug 1881194 - Send TexTypeForWebgl from CanvasChild to CanvasTranslator. r=sotaro
ImageBridgeChild::GetSingleton returns null in the GPU process. This causes
DrawTargetWebgl::CopyToSwapChain to use an incorrect texture type for WebGL
canvases when in the GPU process. To work around this, determine the texture
type for WebGL in the content process and send it to CanvasTranslator for
later usage.

Differential Revision: https://phabricator.services.mozilla.com/D202292
2024-02-22 04:28:44 +00:00

4837 lines
187 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DrawTargetWebglInternal.h"
#include "SourceSurfaceWebgl.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/StaticPrefs_gfx.h"
#include "mozilla/gfx/AAStroke.h"
#include "mozilla/gfx/Blur.h"
#include "mozilla/gfx/DrawTargetSkia.h"
#include "mozilla/gfx/gfxVars.h"
#include "mozilla/gfx/Helpers.h"
#include "mozilla/gfx/HelpersSkia.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/gfx/PathHelpers.h"
#include "mozilla/gfx/PathSkia.h"
#include "mozilla/gfx/Swizzle.h"
#include "mozilla/layers/ImageDataSerializer.h"
#include "mozilla/layers/RemoteTextureMap.h"
#include "skia/include/core/SkPixmap.h"
#include "nsContentUtils.h"
#include "GLContext.h"
#include "WebGLContext.h"
#include "WebGLChild.h"
#include "WebGLBuffer.h"
#include "WebGLFramebuffer.h"
#include "WebGLProgram.h"
#include "WebGLShader.h"
#include "WebGLTexture.h"
#include "WebGLVertexArray.h"
#include "gfxPlatform.h"
namespace mozilla::gfx {
// Inserts (allocates) a rectangle of the requested size into the tree.
Maybe<IntPoint> TexturePacker::Insert(const IntSize& aSize) {
// Check if the available space could possibly fit the requested size. If
// not, there is no reason to continue searching within this sub-tree.
if (mAvailable < std::min(aSize.width, aSize.height) ||
mBounds.width < aSize.width || mBounds.height < aSize.height) {
return Nothing();
}
if (mChildren) {
// If this node has children, then try to insert into each of the children
// in turn.
Maybe<IntPoint> inserted = mChildren[0].Insert(aSize);
if (!inserted) {
inserted = mChildren[1].Insert(aSize);
}
// If the insertion succeeded, adjust the available state to reflect the
// remaining space in the children.
if (inserted) {
mAvailable = std::max(mChildren[0].mAvailable, mChildren[1].mAvailable);
if (!mAvailable) {
DiscardChildren();
}
}
return inserted;
}
// If we get here, we've encountered a leaf node. First check if its size is
// exactly the requested size. If so, mark the node as unavailable and return
// its offset.
if (mBounds.Size() == aSize) {
mAvailable = 0;
return Some(mBounds.TopLeft());
}
// The node is larger than the requested size. Choose the axis which has the
// most excess space beyond the requested size and split it so that at least
// one of the children matches the requested size for that axis.
if (mBounds.width - aSize.width > mBounds.height - aSize.height) {
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, aSize.width, mBounds.height)),
TexturePacker(IntRect(mBounds.x + aSize.width, mBounds.y,
mBounds.width - aSize.width, mBounds.height))});
} else {
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, mBounds.width, aSize.height)),
TexturePacker(IntRect(mBounds.x, mBounds.y + aSize.height,
mBounds.width, mBounds.height - aSize.height))});
}
// After splitting, try to insert into the first child, which should usually
// be big enough to accomodate the request. Adjust the available state to the
// remaining space.
Maybe<IntPoint> inserted = mChildren[0].Insert(aSize);
mAvailable = std::max(mChildren[0].mAvailable, mChildren[1].mAvailable);
return inserted;
}
// Removes (frees) a rectangle with the given bounds from the tree.
bool TexturePacker::Remove(const IntRect& aBounds) {
if (!mChildren) {
// If there are no children, we encountered a leaf node. Non-zero available
// state means that this node was already removed previously. Also, if the
// bounds don't contain the request, and assuming the tree was previously
// split during insertion, then this node is not the node we're searching
// for.
if (mAvailable > 0 || !mBounds.Contains(aBounds)) {
return false;
}
// The bounds match exactly and it was previously inserted, so in this case
// we can just remove it.
if (mBounds == aBounds) {
mAvailable = std::min(mBounds.width, mBounds.height);
return true;
}
// We need to split this leaf node so that it can exactly match the removed
// bounds. We know the leaf node at least contains the removed bounds, but
// needs to be subdivided until it has a child node that exactly matches.
// Choose the axis to split with the largest amount of excess space. Within
// that axis, choose the larger of the space before or after the subrect as
// the split point to the new children.
if (mBounds.width - aBounds.width > mBounds.height - aBounds.height) {
int split = aBounds.x - mBounds.x > mBounds.XMost() - aBounds.XMost()
? aBounds.x
: aBounds.XMost();
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, split - mBounds.x, mBounds.height),
false),
TexturePacker(IntRect(split, mBounds.y, mBounds.XMost() - split,
mBounds.height),
false)});
} else {
int split = aBounds.y - mBounds.y > mBounds.YMost() - aBounds.YMost()
? aBounds.y
: aBounds.YMost();
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, mBounds.width, split - mBounds.y),
false),
TexturePacker(
IntRect(mBounds.x, split, mBounds.width, mBounds.YMost() - split),
false)});
}
}
// We've encountered a branch node. Determine which of the two child nodes
// would possibly contain the removed bounds. We first check which axis the
// children were split on and then whether the removed bounds on that axis
// are past the start of the second child. Proceed to recurse into that
// child node for removal.
bool next = mChildren[0].mBounds.x < mChildren[1].mBounds.x
? aBounds.x >= mChildren[1].mBounds.x
: aBounds.y >= mChildren[1].mBounds.y;
bool removed = mChildren[next ? 1 : 0].Remove(aBounds);
if (removed) {
if (mChildren[0].IsFullyAvailable() && mChildren[1].IsFullyAvailable()) {
DiscardChildren();
mAvailable = std::min(mBounds.width, mBounds.height);
} else {
mAvailable = std::max(mChildren[0].mAvailable, mChildren[1].mAvailable);
}
}
return removed;
}
BackingTexture::BackingTexture(const IntSize& aSize, SurfaceFormat aFormat,
const RefPtr<WebGLTexture>& aTexture)
: mSize(aSize), mFormat(aFormat), mTexture(aTexture) {}
SharedTexture::SharedTexture(const IntSize& aSize, SurfaceFormat aFormat,
const RefPtr<WebGLTexture>& aTexture)
: BackingTexture(aSize, aFormat, aTexture),
mPacker(IntRect(IntPoint(0, 0), aSize)) {}
SharedTextureHandle::SharedTextureHandle(const IntRect& aBounds,
SharedTexture* aTexture)
: mBounds(aBounds), mTexture(aTexture) {}
already_AddRefed<SharedTextureHandle> SharedTexture::Allocate(
const IntSize& aSize) {
RefPtr<SharedTextureHandle> handle;
if (Maybe<IntPoint> origin = mPacker.Insert(aSize)) {
handle = new SharedTextureHandle(IntRect(*origin, aSize), this);
++mAllocatedHandles;
}
return handle.forget();
}
bool SharedTexture::Free(const SharedTextureHandle& aHandle) {
if (aHandle.mTexture != this) {
return false;
}
if (!mPacker.Remove(aHandle.mBounds)) {
return false;
}
--mAllocatedHandles;
return true;
}
StandaloneTexture::StandaloneTexture(const IntSize& aSize,
SurfaceFormat aFormat,
const RefPtr<WebGLTexture>& aTexture)
: BackingTexture(aSize, aFormat, aTexture) {}
DrawTargetWebgl::DrawTargetWebgl() = default;
inline void SharedContextWebgl::ClearLastTexture(bool aFullClear) {
mLastTexture = nullptr;
if (aFullClear) {
mLastClipMask = nullptr;
}
}
// Attempts to clear the snapshot state. If the snapshot is only referenced by
// this target, then it should simply be destroyed. If it is a WebGL surface in
// use by something else, then special cleanup such as reusing the texture or
// copy-on-write may be possible.
void DrawTargetWebgl::ClearSnapshot(bool aCopyOnWrite, bool aNeedHandle) {
if (!mSnapshot) {
return;
}
mSharedContext->ClearLastTexture();
RefPtr<SourceSurfaceWebgl> snapshot = mSnapshot.forget();
if (snapshot->hasOneRef()) {
return;
}
if (aCopyOnWrite) {
// WebGL snapshots must be notified that the framebuffer contents will be
// changing so that it can copy the data.
snapshot->DrawTargetWillChange(aNeedHandle);
} else {
// If not copying, then give the backing texture to the surface for reuse.
snapshot->GiveTexture(
mSharedContext->WrapSnapshot(GetSize(), GetFormat(), mTex.forget()));
}
}
DrawTargetWebgl::~DrawTargetWebgl() {
ClearSnapshot(false);
if (mSharedContext) {
// Force any Skia snapshots to copy the shmem before it deallocs.
if (mSkia) {
mSkia->DetachAllSnapshots();
}
mSharedContext->ClearLastTexture(true);
mClipMask = nullptr;
mFramebuffer = nullptr;
mTex = nullptr;
mSharedContext->mDrawTargetCount--;
}
}
SharedContextWebgl::SharedContextWebgl() = default;
SharedContextWebgl::~SharedContextWebgl() {
// Detect context loss before deletion.
if (mWebgl) {
ExitTlsScope();
mWebgl->ActiveTexture(0);
}
if (mWGRPathBuilder) {
WGR::wgr_builder_release(mWGRPathBuilder);
mWGRPathBuilder = nullptr;
}
ClearAllTextures();
UnlinkSurfaceTextures();
UnlinkGlyphCaches();
}
gl::GLContext* SharedContextWebgl::GetGLContext() {
return mWebgl ? mWebgl->GL() : nullptr;
}
void SharedContextWebgl::EnterTlsScope() {
if (mTlsScope.isSome()) {
return;
}
if (gl::GLContext* gl = GetGLContext()) {
mTlsScope = Some(gl->mUseTLSIsCurrent);
gl::GLContext::InvalidateCurrentContext();
gl->mUseTLSIsCurrent = true;
}
}
void SharedContextWebgl::ExitTlsScope() {
if (mTlsScope.isNothing()) {
return;
}
if (gl::GLContext* gl = GetGLContext()) {
gl->mUseTLSIsCurrent = mTlsScope.value();
}
mTlsScope = Nothing();
}
// Remove any SourceSurface user data associated with this TextureHandle.
inline void SharedContextWebgl::UnlinkSurfaceTexture(
const RefPtr<TextureHandle>& aHandle) {
if (RefPtr<SourceSurface> surface = aHandle->GetSurface()) {
// Ensure any WebGL snapshot textures get unlinked.
if (surface->GetType() == SurfaceType::WEBGL) {
static_cast<SourceSurfaceWebgl*>(surface.get())->OnUnlinkTexture(this);
}
surface->RemoveUserData(aHandle->IsShadow() ? &mShadowTextureKey
: &mTextureHandleKey);
}
}
// Unlinks TextureHandles from any SourceSurface user data.
void SharedContextWebgl::UnlinkSurfaceTextures() {
for (RefPtr<TextureHandle> handle = mTextureHandles.getFirst(); handle;
handle = handle->getNext()) {
UnlinkSurfaceTexture(handle);
}
}
// Unlinks GlyphCaches from any ScaledFont user data.
void SharedContextWebgl::UnlinkGlyphCaches() {
GlyphCache* cache = mGlyphCaches.getFirst();
while (cache) {
ScaledFont* font = cache->GetFont();
// Access the next cache before removing the user data, as it might destroy
// the cache.
cache = cache->getNext();
font->RemoveUserData(&mGlyphCacheKey);
}
}
void SharedContextWebgl::OnMemoryPressure() { mShouldClearCaches = true; }
// Clear out the entire list of texture handles from any source.
void SharedContextWebgl::ClearAllTextures() {
while (!mTextureHandles.isEmpty()) {
PruneTextureHandle(mTextureHandles.popLast());
--mNumTextureHandles;
}
}
// Scan through the shared texture pages looking for any that are empty and
// delete them.
void SharedContextWebgl::ClearEmptyTextureMemory() {
for (auto pos = mSharedTextures.begin(); pos != mSharedTextures.end();) {
if (!(*pos)->HasAllocatedHandles()) {
RefPtr<SharedTexture> shared = *pos;
size_t usedBytes = shared->UsedBytes();
mEmptyTextureMemory -= usedBytes;
mTotalTextureMemory -= usedBytes;
pos = mSharedTextures.erase(pos);
} else {
++pos;
}
}
}
// If there is a request to clear out the caches because of memory pressure,
// then first clear out all the texture handles in the texture cache. If there
// are still empty texture pages being kept around, then clear those too.
void SharedContextWebgl::ClearCachesIfNecessary() {
if (!mShouldClearCaches.exchange(false)) {
return;
}
mZeroBuffer = nullptr;
ClearAllTextures();
if (mEmptyTextureMemory) {
ClearEmptyTextureMemory();
}
ClearLastTexture();
}
// Try to initialize a new WebGL context. Verifies that the requested size does
// not exceed the available texture limits and that shader creation succeeded.
bool DrawTargetWebgl::Init(const IntSize& size, const SurfaceFormat format,
const RefPtr<SharedContextWebgl>& aSharedContext) {
MOZ_ASSERT(format == SurfaceFormat::B8G8R8A8 ||
format == SurfaceFormat::B8G8R8X8);
mSize = size;
mFormat = format;
if (!aSharedContext || aSharedContext->IsContextLost() ||
aSharedContext->mDrawTargetCount >=
StaticPrefs::gfx_canvas_accelerated_max_draw_target_count()) {
return false;
}
mSharedContext = aSharedContext;
mSharedContext->mDrawTargetCount++;
if (size_t(std::max(size.width, size.height)) >
mSharedContext->mMaxTextureSize) {
return false;
}
if (!CreateFramebuffer()) {
return false;
}
size_t byteSize = layers::ImageDataSerializer::ComputeRGBBufferSize(
mSize, SurfaceFormat::B8G8R8A8);
if (byteSize == 0) {
return false;
}
size_t shmemSize = mozilla::ipc::SharedMemory::PageAlignedSize(byteSize);
if (NS_WARN_IF(shmemSize > UINT32_MAX)) {
MOZ_ASSERT_UNREACHABLE("Buffer too big?");
return false;
}
auto shmem = MakeRefPtr<mozilla::ipc::SharedMemoryBasic>();
if (NS_WARN_IF(!shmem->Create(shmemSize)) ||
NS_WARN_IF(!shmem->Map(shmemSize))) {
return false;
}
mShmem = std::move(shmem);
mShmemSize = shmemSize;
mSkia = new DrawTargetSkia;
auto stride = layers::ImageDataSerializer::ComputeRGBStride(
SurfaceFormat::B8G8R8A8, size.width);
if (!mSkia->Init(reinterpret_cast<uint8_t*>(mShmem->memory()), size, stride,
SurfaceFormat::B8G8R8A8, true)) {
return false;
}
// Allocate an unclipped copy of the DT pointing to its data.
uint8_t* dtData = nullptr;
IntSize dtSize;
int32_t dtStride = 0;
SurfaceFormat dtFormat = SurfaceFormat::UNKNOWN;
if (!mSkia->LockBits(&dtData, &dtSize, &dtStride, &dtFormat)) {
return false;
}
mSkiaNoClip = new DrawTargetSkia;
if (!mSkiaNoClip->Init(dtData, dtSize, dtStride, dtFormat, true)) {
mSkia->ReleaseBits(dtData);
return false;
}
mSkia->ReleaseBits(dtData);
SetPermitSubpixelAA(IsOpaque(format));
return true;
}
// If a non-recoverable error occurred that would stop the canvas from initing.
static Atomic<bool> sContextInitError(false);
already_AddRefed<SharedContextWebgl> SharedContextWebgl::Create() {
// If context initialization would fail, don't even try to create a context.
if (sContextInitError) {
return nullptr;
}
RefPtr<SharedContextWebgl> sharedContext = new SharedContextWebgl;
if (!sharedContext->Initialize()) {
return nullptr;
}
return sharedContext.forget();
}
bool SharedContextWebgl::Initialize() {
WebGLContextOptions options = {};
options.alpha = true;
options.depth = false;
options.stencil = false;
options.antialias = false;
options.preserveDrawingBuffer = true;
options.failIfMajorPerformanceCaveat = false;
const bool resistFingerprinting = nsContentUtils::ShouldResistFingerprinting(
"Fallback", RFPTarget::WebGLRenderCapability);
const auto initDesc =
webgl::InitContextDesc{/*isWebgl2*/ true, resistFingerprinting,
/*size*/ {1, 1}, options, /*principalKey*/ 0};
webgl::InitContextResult initResult;
mWebgl = WebGLContext::Create(nullptr, initDesc, &initResult);
if (!mWebgl) {
// There was a non-recoverable error when trying to create a host context.
sContextInitError = true;
mWebgl = nullptr;
return false;
}
if (mWebgl->IsContextLost()) {
mWebgl = nullptr;
return false;
}
mMaxTextureSize = initResult.limits.maxTex2dSize;
if (kIsMacOS) {
mRasterizationTruncates = initResult.vendor == gl::GLVendor::ATI;
}
CachePrefs();
if (!CreateShaders()) {
// There was a non-recoverable error when trying to init shaders.
sContextInitError = true;
mWebgl = nullptr;
return false;
}
mWGRPathBuilder = WGR::wgr_new_builder();
return true;
}
inline void SharedContextWebgl::BlendFunc(GLenum aSrcFactor,
GLenum aDstFactor) {
mWebgl->BlendFuncSeparate({}, aSrcFactor, aDstFactor, aSrcFactor, aDstFactor);
}
void SharedContextWebgl::SetBlendState(CompositionOp aOp,
const Maybe<DeviceColor>& aColor) {
if (aOp == mLastCompositionOp && mLastBlendColor == aColor) {
return;
}
mLastCompositionOp = aOp;
mLastBlendColor = aColor;
// AA is not supported for all composition ops, so switching blend modes may
// cause a toggle in AA state. Certain ops such as OP_SOURCE require output
// alpha that is blended separately from AA coverage. This would require two
// stage blending which can incur a substantial performance penalty, so to
// work around this currently we just disable AA for those ops.
// Map the composition op to a WebGL blend mode, if possible.
bool enabled = true;
switch (aOp) {
case CompositionOp::OP_OVER:
if (aColor) {
// If a color is supplied, then we blend subpixel text.
mWebgl->BlendColor(aColor->b, aColor->g, aColor->r, 1.0f);
BlendFunc(LOCAL_GL_CONSTANT_COLOR, LOCAL_GL_ONE_MINUS_SRC_COLOR);
} else {
BlendFunc(LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
}
break;
case CompositionOp::OP_ADD:
BlendFunc(LOCAL_GL_ONE, LOCAL_GL_ONE);
break;
case CompositionOp::OP_ATOP:
BlendFunc(LOCAL_GL_DST_ALPHA, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
break;
case CompositionOp::OP_SOURCE:
if (aColor) {
// If a color is supplied, then we assume there is clipping or AA. This
// requires that we still use an over blend func with the clip/AA alpha,
// while filling the interior with the unaltered color. Normally this
// would require dual source blending, but we can emulate it with only
// a blend color.
mWebgl->BlendColor(aColor->b, aColor->g, aColor->r, aColor->a);
BlendFunc(LOCAL_GL_CONSTANT_COLOR, LOCAL_GL_ONE_MINUS_SRC_COLOR);
} else {
enabled = false;
}
break;
case CompositionOp::OP_CLEAR:
// Assume the source is an alpha mask for clearing. Be careful to blend in
// the correct alpha if the target is opaque.
mWebgl->BlendFuncSeparate(
{}, LOCAL_GL_ZERO, LOCAL_GL_ONE_MINUS_SRC_ALPHA,
IsOpaque(mCurrentTarget->GetFormat()) ? LOCAL_GL_ONE : LOCAL_GL_ZERO,
LOCAL_GL_ONE_MINUS_SRC_ALPHA);
break;
default:
enabled = false;
break;
}
mWebgl->SetEnabled(LOCAL_GL_BLEND, {}, enabled);
}
// Ensure the WebGL framebuffer is set to the current target.
bool SharedContextWebgl::SetTarget(DrawTargetWebgl* aDT) {
if (!mWebgl || mWebgl->IsContextLost()) {
return false;
}
if (aDT != mCurrentTarget) {
mCurrentTarget = aDT;
if (aDT) {
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, aDT->mFramebuffer);
mViewportSize = aDT->GetSize();
mWebgl->Viewport(0, 0, mViewportSize.width, mViewportSize.height);
}
}
return true;
}
// Replace the current clip rect with a new potentially-AA'd clip rect.
void SharedContextWebgl::SetClipRect(const Rect& aClipRect) {
// Only invalidate the clip rect if it actually changes.
if (!mClipAARect.IsEqualEdges(aClipRect)) {
mClipAARect = aClipRect;
// Store the integer-aligned bounds.
mClipRect = RoundedOut(aClipRect);
}
}
bool SharedContextWebgl::SetClipMask(const RefPtr<WebGLTexture>& aTex) {
if (mLastClipMask != aTex) {
if (!mWebgl) {
return false;
}
mWebgl->ActiveTexture(1);
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, aTex);
mWebgl->ActiveTexture(0);
mLastClipMask = aTex;
}
return true;
}
bool SharedContextWebgl::SetNoClipMask() {
if (mNoClipMask) {
return SetClipMask(mNoClipMask);
}
if (!mWebgl) {
return false;
}
mNoClipMask = mWebgl->CreateTexture();
if (!mNoClipMask) {
return false;
}
mWebgl->ActiveTexture(1);
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, mNoClipMask);
static const uint8_t solidMask[4] = {0xFF, 0xFF, 0xFF, 0xFF};
mWebgl->TexImage(
0, LOCAL_GL_RGBA8, {0, 0, 0}, {LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_BYTE},
{LOCAL_GL_TEXTURE_2D,
{1, 1, 1},
gfxAlphaType::NonPremult,
Some(RawBuffer(Range<const uint8_t>(solidMask, sizeof(solidMask))))});
InitTexParameters(mNoClipMask, false);
mWebgl->ActiveTexture(0);
mLastClipMask = mNoClipMask;
return true;
}
inline bool DrawTargetWebgl::ClipStack::operator==(
const DrawTargetWebgl::ClipStack& aOther) const {
// Verify the transform and bounds match.
if (!mTransform.FuzzyEquals(aOther.mTransform) ||
!mRect.IsEqualInterior(aOther.mRect)) {
return false;
}
// Verify the paths match.
if (!mPath) {
return !aOther.mPath;
}
if (!aOther.mPath ||
mPath->GetBackendType() != aOther.mPath->GetBackendType()) {
return false;
}
if (mPath->GetBackendType() != BackendType::SKIA) {
return mPath == aOther.mPath;
}
return static_cast<const PathSkia*>(mPath.get())->GetPath() ==
static_cast<const PathSkia*>(aOther.mPath.get())->GetPath();
}
// If the clip region can't be approximated by a simple clip rect, then we need
// to generate a clip mask that can represent the clip region per-pixel. We
// render to the Skia target temporarily, transparent outside the clip region,
// opaque inside, and upload this to a texture that can be used by the shaders.
bool DrawTargetWebgl::GenerateComplexClipMask() {
if (!mClipChanged || (mClipMask && mCachedClipStack == mClipStack)) {
mClipChanged = false;
// If the clip mask was already generated, use the cached mask and bounds.
mSharedContext->SetClipMask(mClipMask);
mSharedContext->SetClipRect(mClipBounds);
return true;
}
if (!mWebglValid) {
// If the Skia target is currently being used, then we can't render the mask
// in it.
return false;
}
RefPtr<WebGLContext> webgl = mSharedContext->mWebgl;
if (!webgl) {
return false;
}
bool init = false;
if (!mClipMask) {
mClipMask = webgl->CreateTexture();
if (!mClipMask) {
return false;
}
init = true;
}
// Try to get the bounds of the clip to limit the size of the mask.
if (Maybe<IntRect> clip = mSkia->GetDeviceClipRect(true)) {
mClipBounds = *clip;
} else {
// If we can't get bounds, then just use the entire viewport.
mClipBounds = GetRect();
}
mClipAARect = Rect(mClipBounds);
// If initializing the clip mask, then allocate the entire texture to ensure
// all pixels get filled with an empty mask regardless. Otherwise, restrict
// uploading to only the clip region.
RefPtr<DrawTargetSkia> dt = new DrawTargetSkia;
if (!dt->Init(mClipBounds.Size(), SurfaceFormat::A8)) {
return false;
}
// Set the clip region and fill the entire inside of it
// with opaque white.
mCachedClipStack.clear();
for (auto& clipStack : mClipStack) {
// Record the current state of the clip stack for this mask.
mCachedClipStack.push_back(clipStack);
dt->SetTransform(
Matrix(clipStack.mTransform).PostTranslate(-mClipBounds.TopLeft()));
if (clipStack.mPath) {
dt->PushClip(clipStack.mPath);
} else {
dt->PushClipRect(clipStack.mRect);
}
}
dt->SetTransform(Matrix::Translation(-mClipBounds.TopLeft()));
dt->FillRect(Rect(mClipBounds), ColorPattern(DeviceColor(1, 1, 1, 1)));
// Bind the clip mask for uploading.
webgl->ActiveTexture(1);
webgl->BindTexture(LOCAL_GL_TEXTURE_2D, mClipMask);
if (init) {
mSharedContext->InitTexParameters(mClipMask, false);
}
RefPtr<DataSourceSurface> data;
if (RefPtr<SourceSurface> snapshot = dt->Snapshot()) {
data = snapshot->GetDataSurface();
}
// Finally, upload the texture data and initialize texture storage if
// necessary.
if (init && mClipBounds.Size() != mSize) {
mSharedContext->UploadSurface(nullptr, SurfaceFormat::A8, GetRect(),
IntPoint(), true, true);
init = false;
}
mSharedContext->UploadSurface(data, SurfaceFormat::A8,
IntRect(IntPoint(), mClipBounds.Size()),
mClipBounds.TopLeft(), init);
webgl->ActiveTexture(0);
// We already bound the texture, so notify the shared context that the clip
// mask changed to it.
mSharedContext->mLastClipMask = mClipMask;
mSharedContext->SetClipRect(mClipBounds);
// We uploaded a surface, just as if we missed the texture cache, so account
// for that here.
mProfile.OnCacheMiss();
return !!data;
}
bool DrawTargetWebgl::SetSimpleClipRect() {
// Determine whether the clipping rectangle is simple enough to accelerate.
// Check if there is a device space clip rectangle available from the Skia
// target.
if (Maybe<IntRect> clip = mSkia->GetDeviceClipRect(false)) {
// If the clip is empty, leave the final integer clip rectangle empty to
// trivially discard the draw request.
// If the clip rect is larger than the viewport, just set it to the
// viewport.
if (!clip->IsEmpty() && clip->Contains(GetRect())) {
clip = Some(GetRect());
}
mSharedContext->SetClipRect(*clip);
mSharedContext->SetNoClipMask();
return true;
}
// There was no pixel-aligned clip rect available, so check the clip stack to
// see if there is an AA'd axis-aligned rectangle clip.
Rect rect(GetRect());
for (auto& clipStack : mClipStack) {
// If clip is a path or it has a non-axis-aligned transform, then it is
// complex.
if (clipStack.mPath ||
!clipStack.mTransform.PreservesAxisAlignedRectangles()) {
return false;
}
// Transform the rect and intersect it with the current clip.
rect =
clipStack.mTransform.TransformBounds(clipStack.mRect).Intersect(rect);
}
mSharedContext->SetClipRect(rect);
mSharedContext->SetNoClipMask();
return true;
}
// Installs the Skia clip rectangle, if applicable, onto the shared WebGL
// context as well as sets the WebGL framebuffer to the current target.
bool DrawTargetWebgl::PrepareContext(bool aClipped) {
if (!aClipped) {
// If no clipping requested, just set the clip rect to the viewport.
mSharedContext->SetClipRect(GetRect());
mSharedContext->SetNoClipMask();
// Ensure the clip gets reset if clipping is later requested for the target.
mRefreshClipState = true;
} else if (mRefreshClipState || !mSharedContext->IsCurrentTarget(this)) {
// Try to use a simple clip rect if possible. Otherwise, fall back to
// generating a clip mask texture that can represent complex clip regions.
if (!SetSimpleClipRect() && !GenerateComplexClipMask()) {
return false;
}
mClipChanged = false;
mRefreshClipState = false;
}
return mSharedContext->SetTarget(this);
}
bool SharedContextWebgl::IsContextLost() const {
return !mWebgl || mWebgl->IsContextLost();
}
// Signal to CanvasRenderingContext2D when the WebGL context is lost.
bool DrawTargetWebgl::IsValid() const {
return mSharedContext && !mSharedContext->IsContextLost();
}
bool DrawTargetWebgl::CanCreate(const IntSize& aSize, SurfaceFormat aFormat) {
if (!gfxVars::UseAcceleratedCanvas2D()) {
return false;
}
if (!Factory::AllowedSurfaceSize(aSize)) {
return false;
}
// The interpretation of the min-size and max-size follows from the old
// SkiaGL prefs. First just ensure that the context is not unreasonably
// small.
static const int32_t kMinDimension = 16;
if (std::min(aSize.width, aSize.height) < kMinDimension) {
return false;
}
int32_t minSize = StaticPrefs::gfx_canvas_accelerated_min_size();
if (aSize.width * aSize.height < minSize * minSize) {
return false;
}
// Maximum pref allows 3 different options:
// 0 means unlimited size,
// > 0 means use value as an absolute threshold,
// < 0 means use the number of screen pixels as a threshold.
int32_t maxSize = StaticPrefs::gfx_canvas_accelerated_max_size();
if (maxSize > 0) {
if (std::max(aSize.width, aSize.height) > maxSize) {
return false;
}
} else if (maxSize < 0) {
// Default to historical mobile screen size of 980x480, like FishIEtank.
// In addition, allow acceleration up to this size even if the screen is
// smaller. A lot content expects this size to work well. See Bug 999841
static const int32_t kScreenPixels = 980 * 480;
IntSize screenSize = gfxPlatform::GetPlatform()->GetScreenSize();
if (aSize.width * aSize.height >
std::max(screenSize.width * screenSize.height, kScreenPixels)) {
return false;
}
}
return true;
}
already_AddRefed<DrawTargetWebgl> DrawTargetWebgl::Create(
const IntSize& aSize, SurfaceFormat aFormat,
const RefPtr<SharedContextWebgl>& aSharedContext) {
// Validate the size and format.
if (!CanCreate(aSize, aFormat)) {
return nullptr;
}
RefPtr<DrawTargetWebgl> dt = new DrawTargetWebgl;
if (!dt->Init(aSize, aFormat, aSharedContext) || !dt->IsValid()) {
return nullptr;
}
return dt.forget();
}
void* DrawTargetWebgl::GetNativeSurface(NativeSurfaceType aType) {
switch (aType) {
case NativeSurfaceType::WEBGL_CONTEXT:
// If the context is lost, then don't attempt to access it.
if (mSharedContext->IsContextLost()) {
return nullptr;
}
if (!mWebglValid) {
FlushFromSkia();
}
return mSharedContext->mWebgl.get();
default:
return nullptr;
}
}
// Wrap a WebGL texture holding a snapshot with a texture handle. Note that
// while the texture is still in use as the backing texture of a framebuffer,
// it's texture memory is not currently tracked with other texture handles.
// Once it is finally orphaned and used as a texture handle, it must be added
// to the resource usage totals.
already_AddRefed<TextureHandle> SharedContextWebgl::WrapSnapshot(
const IntSize& aSize, SurfaceFormat aFormat, RefPtr<WebGLTexture> aTex) {
// Ensure there is enough space for the texture.
size_t usedBytes = BackingTexture::UsedBytes(aFormat, aSize);
PruneTextureMemory(usedBytes, false);
// Allocate a handle for the texture
RefPtr<StandaloneTexture> handle =
new StandaloneTexture(aSize, aFormat, aTex.forget());
mStandaloneTextures.push_back(handle);
mTextureHandles.insertFront(handle);
mTotalTextureMemory += usedBytes;
mUsedTextureMemory += usedBytes;
++mNumTextureHandles;
return handle.forget();
}
void SharedContextWebgl::SetTexFilter(WebGLTexture* aTex, bool aFilter) {
mWebgl->TexParameter_base(
LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER,
FloatOrInt(aFilter ? LOCAL_GL_LINEAR : LOCAL_GL_NEAREST));
mWebgl->TexParameter_base(
LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER,
FloatOrInt(aFilter ? LOCAL_GL_LINEAR : LOCAL_GL_NEAREST));
}
void SharedContextWebgl::InitTexParameters(WebGLTexture* aTex, bool aFilter) {
mWebgl->TexParameter_base(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_S,
FloatOrInt(LOCAL_GL_CLAMP_TO_EDGE));
mWebgl->TexParameter_base(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_T,
FloatOrInt(LOCAL_GL_CLAMP_TO_EDGE));
SetTexFilter(aTex, aFilter);
}
// Copy the contents of the WebGL framebuffer into a WebGL texture.
already_AddRefed<TextureHandle> SharedContextWebgl::CopySnapshot(
const IntRect& aRect, TextureHandle* aHandle) {
if (!mWebgl || mWebgl->IsContextLost()) {
return nullptr;
}
// If the target is going away, then we can just directly reuse the
// framebuffer texture since it will never change.
RefPtr<WebGLTexture> tex = mWebgl->CreateTexture();
if (!tex) {
return nullptr;
}
// If copying from a non-DT source, we have to bind a scratch framebuffer for
// reading.
if (aHandle) {
if (!mScratchFramebuffer) {
mScratchFramebuffer = mWebgl->CreateFramebuffer();
}
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mScratchFramebuffer);
webgl::FbAttachInfo attachInfo;
attachInfo.tex = aHandle->GetBackingTexture()->GetWebGLTexture();
mWebgl->FramebufferAttach(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D, attachInfo);
}
// Create a texture to hold the copy
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, tex);
mWebgl->TexStorage(LOCAL_GL_TEXTURE_2D, 1, LOCAL_GL_RGBA8,
{uint32_t(aRect.width), uint32_t(aRect.height), 1});
InitTexParameters(tex);
// Copy the framebuffer into the texture
mWebgl->CopyTexImage(LOCAL_GL_TEXTURE_2D, 0, 0, {0, 0, 0}, {aRect.x, aRect.y},
{uint32_t(aRect.width), uint32_t(aRect.height)});
ClearLastTexture();
SurfaceFormat format =
aHandle ? aHandle->GetFormat() : mCurrentTarget->GetFormat();
already_AddRefed<TextureHandle> result =
WrapSnapshot(aRect.Size(), format, tex.forget());
// Restore the actual framebuffer after reading is done.
if (aHandle && mCurrentTarget) {
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mCurrentTarget->mFramebuffer);
}
return result;
}
inline DrawTargetWebgl::AutoRestoreContext::AutoRestoreContext(
DrawTargetWebgl* aTarget)
: mTarget(aTarget),
mClipAARect(aTarget->mSharedContext->mClipAARect),
mLastClipMask(aTarget->mSharedContext->mLastClipMask) {}
inline DrawTargetWebgl::AutoRestoreContext::~AutoRestoreContext() {
mTarget->mSharedContext->SetClipRect(mClipAARect);
if (mLastClipMask) {
mTarget->mSharedContext->SetClipMask(mLastClipMask);
}
mTarget->mRefreshClipState = true;
}
// Utility method to install the target before copying a snapshot.
already_AddRefed<TextureHandle> DrawTargetWebgl::CopySnapshot(
const IntRect& aRect) {
AutoRestoreContext restore(this);
if (!PrepareContext(false)) {
return nullptr;
}
return mSharedContext->CopySnapshot(aRect);
}
bool DrawTargetWebgl::HasDataSnapshot() const {
return (mSkiaValid && !mSkiaLayer) || (mSnapshot && mSnapshot->HasReadData());
}
bool DrawTargetWebgl::PrepareSkia() {
if (!mSkiaValid) {
ReadIntoSkia();
} else if (mSkiaLayer) {
FlattenSkia();
}
return mSkiaValid;
}
bool DrawTargetWebgl::EnsureDataSnapshot() {
return HasDataSnapshot() || PrepareSkia();
}
void DrawTargetWebgl::PrepareShmem() { PrepareSkia(); }
// Borrow a snapshot that may be used by another thread for composition. Only
// Skia snapshots are safe to pass around.
already_AddRefed<SourceSurface> DrawTargetWebgl::GetDataSnapshot() {
PrepareSkia();
return mSkia->Snapshot(mFormat);
}
already_AddRefed<SourceSurface> DrawTargetWebgl::Snapshot() {
// If already using the Skia fallback, then just snapshot that.
if (mSkiaValid) {
return GetDataSnapshot();
}
// There's no valid Skia snapshot, so we need to get one from the WebGL
// context.
if (!mSnapshot) {
// Create a copy-on-write reference to this target.
mSnapshot = new SourceSurfaceWebgl(this);
}
return do_AddRef(mSnapshot);
}
// If we need to provide a snapshot for another DrawTargetWebgl that shares the
// same WebGL context, then it is safe to directly return a snapshot. Otherwise,
// we may be exporting to another thread and require a data snapshot.
already_AddRefed<SourceSurface> DrawTargetWebgl::GetOptimizedSnapshot(
DrawTarget* aTarget) {
if (aTarget && aTarget->GetBackendType() == BackendType::WEBGL &&
static_cast<DrawTargetWebgl*>(aTarget)->mSharedContext ==
mSharedContext) {
return Snapshot();
}
return GetDataSnapshot();
}
// Read from the WebGL context into a buffer. This handles both swizzling BGRA
// to RGBA and flipping the image.
bool SharedContextWebgl::ReadInto(uint8_t* aDstData, int32_t aDstStride,
SurfaceFormat aFormat, const IntRect& aBounds,
TextureHandle* aHandle) {
MOZ_ASSERT(aFormat == SurfaceFormat::B8G8R8A8 ||
aFormat == SurfaceFormat::B8G8R8X8);
// If reading into a new texture, we have to bind it to a scratch framebuffer
// for reading.
if (aHandle) {
if (!mScratchFramebuffer) {
mScratchFramebuffer = mWebgl->CreateFramebuffer();
}
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mScratchFramebuffer);
webgl::FbAttachInfo attachInfo;
attachInfo.tex = aHandle->GetBackingTexture()->GetWebGLTexture();
mWebgl->FramebufferAttach(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D, attachInfo);
} else if (mCurrentTarget && mCurrentTarget->mIsClear) {
// If reading from a target that is still clear, then avoid the readback by
// just clearing the data.
SkPixmap(MakeSkiaImageInfo(aBounds.Size(), aFormat), aDstData, aDstStride)
.erase(IsOpaque(aFormat) ? SK_ColorBLACK : SK_ColorTRANSPARENT);
return true;
}
webgl::ReadPixelsDesc desc;
desc.srcOffset = *ivec2::From(aBounds);
desc.size = *uvec2::FromSize(aBounds);
desc.packState.rowLength = aDstStride / 4;
Range<uint8_t> range = {aDstData, size_t(aDstStride) * aBounds.height};
mWebgl->ReadPixelsInto(desc, range);
// Restore the actual framebuffer after reading is done.
if (aHandle && mCurrentTarget) {
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mCurrentTarget->mFramebuffer);
}
return true;
}
already_AddRefed<DataSourceSurface> SharedContextWebgl::ReadSnapshot(
TextureHandle* aHandle) {
// Allocate a data surface, map it, and read from the WebGL context into the
// surface.
SurfaceFormat format = SurfaceFormat::UNKNOWN;
IntRect bounds;
if (aHandle) {
format = aHandle->GetFormat();
bounds = aHandle->GetBounds();
} else {
format = mCurrentTarget->GetFormat();
bounds = mCurrentTarget->GetRect();
}
RefPtr<DataSourceSurface> surface =
Factory::CreateDataSourceSurface(bounds.Size(), format);
if (!surface) {
return nullptr;
}
DataSourceSurface::ScopedMap dstMap(surface, DataSourceSurface::WRITE);
if (!dstMap.IsMapped() || !ReadInto(dstMap.GetData(), dstMap.GetStride(),
format, bounds, aHandle)) {
return nullptr;
}
return surface.forget();
}
// Utility method to install the target before reading a snapshot.
bool DrawTargetWebgl::ReadInto(uint8_t* aDstData, int32_t aDstStride) {
if (!PrepareContext(false)) {
return false;
}
return mSharedContext->ReadInto(aDstData, aDstStride, GetFormat(), GetRect());
}
// Utility method to install the target before reading a snapshot.
already_AddRefed<DataSourceSurface> DrawTargetWebgl::ReadSnapshot() {
AutoRestoreContext restore(this);
if (!PrepareContext(false)) {
return nullptr;
}
mProfile.OnReadback();
return mSharedContext->ReadSnapshot();
}
already_AddRefed<SourceSurface> DrawTargetWebgl::GetBackingSurface() {
return Snapshot();
}
void DrawTargetWebgl::DetachAllSnapshots() {
mSkia->DetachAllSnapshots();
ClearSnapshot();
}
// Prepare the framebuffer for accelerated drawing. Any cached snapshots will
// be invalidated if not detached and copied here. Ensure the WebGL
// framebuffer's contents are updated if still somehow stored in the Skia
// framebuffer.
bool DrawTargetWebgl::MarkChanged() {
if (mSnapshot) {
// Try to copy the target into a new texture if possible.
ClearSnapshot(true, true);
}
if (!mWebglValid && !FlushFromSkia()) {
return false;
}
mSkiaValid = false;
mIsClear = false;
return true;
}
void DrawTargetWebgl::MarkSkiaChanged(bool aOverwrite) {
if (aOverwrite) {
mSkiaValid = true;
mSkiaLayer = false;
} else if (!mSkiaValid) {
if (ReadIntoSkia()) {
// Signal that we've hit a complete software fallback.
mProfile.OnFallback();
}
} else if (mSkiaLayer) {
FlattenSkia();
}
mWebglValid = false;
mIsClear = false;
}
// Whether a given composition operator is associative and thus allows drawing
// into a separate layer that can be later composited back into the WebGL
// context.
static inline bool SupportsLayering(const DrawOptions& aOptions) {
switch (aOptions.mCompositionOp) {
case CompositionOp::OP_OVER:
// Layering is only supported for the default source-over composition op.
return true;
default:
return false;
}
}
void DrawTargetWebgl::MarkSkiaChanged(const DrawOptions& aOptions) {
if (SupportsLayering(aOptions)) {
if (!mSkiaValid) {
// If the Skia context needs initialization, clear it and enable layering.
mSkiaValid = true;
if (mWebglValid) {
mProfile.OnLayer();
mSkiaLayer = true;
mSkiaLayerClear = mIsClear;
mSkia->DetachAllSnapshots();
if (mSkiaLayerClear) {
// Avoid blending later by making sure the layer background is filled
// with opaque alpha values if necessary.
mSkiaNoClip->FillRect(Rect(mSkiaNoClip->GetRect()), GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_SOURCE));
} else {
mSkiaNoClip->ClearRect(Rect(mSkiaNoClip->GetRect()));
}
}
}
// The WebGL context is no longer up-to-date.
mWebglValid = false;
mIsClear = false;
} else {
// For other composition ops, just overwrite the Skia data.
MarkSkiaChanged();
}
}
bool DrawTargetWebgl::LockBits(uint8_t** aData, IntSize* aSize,
int32_t* aStride, SurfaceFormat* aFormat,
IntPoint* aOrigin) {
// Can only access pixels if there is valid, flattened Skia data.
if (mSkiaValid && !mSkiaLayer) {
MarkSkiaChanged();
return mSkia->LockBits(aData, aSize, aStride, aFormat, aOrigin);
}
return false;
}
void DrawTargetWebgl::ReleaseBits(uint8_t* aData) {
// Can only access pixels if there is valid, flattened Skia data.
if (mSkiaValid && !mSkiaLayer) {
mSkia->ReleaseBits(aData);
}
}
// Format is x, y, alpha
static const float kRectVertexData[12] = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f};
// Orphans the contents of the path vertex buffer. The beginning of the buffer
// always contains data for a simple rectangle draw to avoid needing to switch
// buffers.
void SharedContextWebgl::ResetPathVertexBuffer(bool aChanged) {
mWebgl->BindBuffer(LOCAL_GL_ARRAY_BUFFER, mPathVertexBuffer.get());
mWebgl->UninitializedBufferData_SizeOnly(
LOCAL_GL_ARRAY_BUFFER,
std::max(size_t(mPathVertexCapacity), sizeof(kRectVertexData)),
LOCAL_GL_DYNAMIC_DRAW);
mWebgl->BufferSubData(LOCAL_GL_ARRAY_BUFFER, 0, sizeof(kRectVertexData),
(const uint8_t*)kRectVertexData);
mPathVertexOffset = sizeof(kRectVertexData);
if (aChanged) {
mWGROutputBuffer.reset(
mPathVertexCapacity > 0
? new (fallible) WGR::OutputVertex[mPathVertexCapacity /
sizeof(WGR::OutputVertex)]
: nullptr);
}
}
// Attempts to create all shaders and resources to be used for drawing commands.
// Returns whether or not this succeeded.
bool SharedContextWebgl::CreateShaders() {
if (!mPathVertexArray) {
mPathVertexArray = mWebgl->CreateVertexArray();
}
if (!mPathVertexBuffer) {
mPathVertexBuffer = mWebgl->CreateBuffer();
mWebgl->BindVertexArray(mPathVertexArray.get());
ResetPathVertexBuffer();
mWebgl->EnableVertexAttribArray(0);
webgl::VertAttribPointerDesc attribDesc;
attribDesc.channels = 3;
attribDesc.type = LOCAL_GL_FLOAT;
attribDesc.normalized = false;
mWebgl->VertexAttribPointer(0, attribDesc);
}
if (!mSolidProgram) {
// AA is computed by using the basis vectors of the transform to determine
// both the scale and orientation. The scale is then used to extrude the
// rectangle outward by 1 screen-space pixel to account for the AA region.
// The distance to the rectangle edges is passed to the fragment shader in
// an interpolant, biased by 0.5 so it represents the desired coverage. The
// minimum coverage is then chosen by the fragment shader to use as an AA
// coverage value to modulate the color.
auto vsSource =
"attribute vec3 a_vertex;\n"
"uniform vec2 u_transform[3];\n"
"uniform vec2 u_viewport;\n"
"uniform vec4 u_clipbounds;\n"
"uniform float u_aa;\n"
"varying vec2 v_cliptc;\n"
"varying vec4 v_clipdist;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" vec2 scale = vec2(dot(u_transform[0], u_transform[0]),\n"
" dot(u_transform[1], u_transform[1]));\n"
" vec2 invScale = u_aa * inversesqrt(scale + 1.0e-6);\n"
" scale *= invScale;\n"
" vec2 extrude = a_vertex.xy + invScale * (2.0 * a_vertex.xy - "
"1.0);\n"
" vec2 vertex = u_transform[0] * extrude.x +\n"
" u_transform[1] * extrude.y +\n"
" u_transform[2];\n"
" gl_Position = vec4(vertex * 2.0 / u_viewport - 1.0, 0.0, 1.0);\n"
" v_cliptc = vertex / u_viewport;\n"
" v_clipdist = vec4(vertex - u_clipbounds.xy,\n"
" u_clipbounds.zw - vertex);\n"
" v_dist = vec4(extrude, 1.0 - extrude) * scale.xyxy + 1.5 - u_aa;\n"
" v_alpha = a_vertex.z;\n"
"}\n";
auto fsSource =
"precision mediump float;\n"
"uniform vec4 u_color;\n"
"uniform sampler2D u_clipmask;\n"
"varying highp vec2 v_cliptc;\n"
"varying vec4 v_clipdist;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" float clip = texture2D(u_clipmask, v_cliptc).r;\n"
" vec4 dist = min(v_dist, v_clipdist);\n"
" dist.xy = min(dist.xy, dist.zw);\n"
" float aa = v_alpha * clamp(min(dist.x, dist.y), 0.0, 1.0);\n"
" gl_FragColor = clip * aa * u_color;\n"
"}\n";
RefPtr<WebGLShader> vsId = mWebgl->CreateShader(LOCAL_GL_VERTEX_SHADER);
mWebgl->ShaderSource(*vsId, vsSource);
mWebgl->CompileShader(*vsId);
if (!mWebgl->GetCompileResult(*vsId).success) {
return false;
}
RefPtr<WebGLShader> fsId = mWebgl->CreateShader(LOCAL_GL_FRAGMENT_SHADER);
mWebgl->ShaderSource(*fsId, fsSource);
mWebgl->CompileShader(*fsId);
if (!mWebgl->GetCompileResult(*fsId).success) {
return false;
}
mSolidProgram = mWebgl->CreateProgram();
mWebgl->AttachShader(*mSolidProgram, *vsId);
mWebgl->AttachShader(*mSolidProgram, *fsId);
mWebgl->BindAttribLocation(*mSolidProgram, 0, "a_vertex");
mWebgl->LinkProgram(*mSolidProgram);
if (!mWebgl->GetLinkResult(*mSolidProgram).success) {
return false;
}
mSolidProgramViewport = GetUniformLocation(mSolidProgram, "u_viewport");
mSolidProgramAA = GetUniformLocation(mSolidProgram, "u_aa");
mSolidProgramTransform = GetUniformLocation(mSolidProgram, "u_transform");
mSolidProgramColor = GetUniformLocation(mSolidProgram, "u_color");
mSolidProgramClipMask = GetUniformLocation(mSolidProgram, "u_clipmask");
mSolidProgramClipBounds = GetUniformLocation(mSolidProgram, "u_clipbounds");
if (!mSolidProgramViewport || !mSolidProgramAA || !mSolidProgramTransform ||
!mSolidProgramColor || !mSolidProgramClipMask ||
!mSolidProgramClipBounds) {
return false;
}
mWebgl->UseProgram(mSolidProgram);
UniformData(LOCAL_GL_INT, mSolidProgramClipMask, Array<int32_t, 1>{1});
}
if (!mImageProgram) {
auto vsSource =
"attribute vec3 a_vertex;\n"
"uniform vec2 u_viewport;\n"
"uniform vec4 u_clipbounds;\n"
"uniform float u_aa;\n"
"uniform vec2 u_transform[3];\n"
"uniform vec2 u_texmatrix[3];\n"
"varying vec2 v_cliptc;\n"
"varying vec2 v_texcoord;\n"
"varying vec4 v_clipdist;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" vec2 scale = vec2(dot(u_transform[0], u_transform[0]),\n"
" dot(u_transform[1], u_transform[1]));\n"
" vec2 invScale = u_aa * inversesqrt(scale + 1.0e-6);\n"
" scale *= invScale;\n"
" vec2 extrude = a_vertex.xy + invScale * (2.0 * a_vertex.xy - "
"1.0);\n"
" vec2 vertex = u_transform[0] * extrude.x +\n"
" u_transform[1] * extrude.y +\n"
" u_transform[2];\n"
" gl_Position = vec4(vertex * 2.0 / u_viewport - 1.0, 0.0, 1.0);\n"
" v_cliptc = vertex / u_viewport;\n"
" v_clipdist = vec4(vertex - u_clipbounds.xy,\n"
" u_clipbounds.zw - vertex);\n"
" v_texcoord = u_texmatrix[0] * extrude.x +\n"
" u_texmatrix[1] * extrude.y +\n"
" u_texmatrix[2];\n"
" v_dist = vec4(extrude, 1.0 - extrude) * scale.xyxy + 1.5 - u_aa;\n"
" v_alpha = a_vertex.z;\n"
"}\n";
auto fsSource =
"precision mediump float;\n"
"uniform vec4 u_texbounds;\n"
"uniform vec4 u_color;\n"
"uniform float u_swizzle;\n"
"uniform sampler2D u_sampler;\n"
"uniform sampler2D u_clipmask;\n"
"varying highp vec2 v_cliptc;\n"
"varying highp vec2 v_texcoord;\n"
"varying vec4 v_clipdist;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" highp vec2 tc = clamp(v_texcoord, u_texbounds.xy,\n"
" u_texbounds.zw);\n"
" vec4 image = texture2D(u_sampler, tc);\n"
" float clip = texture2D(u_clipmask, v_cliptc).r;\n"
" vec4 dist = min(v_dist, v_clipdist);\n"
" dist.xy = min(dist.xy, dist.zw);\n"
" float aa = v_alpha * clamp(min(dist.x, dist.y), 0.0, 1.0);\n"
" gl_FragColor = clip * aa * u_color *\n"
" mix(image, image.rrrr, u_swizzle);\n"
"}\n";
RefPtr<WebGLShader> vsId = mWebgl->CreateShader(LOCAL_GL_VERTEX_SHADER);
mWebgl->ShaderSource(*vsId, vsSource);
mWebgl->CompileShader(*vsId);
if (!mWebgl->GetCompileResult(*vsId).success) {
return false;
}
RefPtr<WebGLShader> fsId = mWebgl->CreateShader(LOCAL_GL_FRAGMENT_SHADER);
mWebgl->ShaderSource(*fsId, fsSource);
mWebgl->CompileShader(*fsId);
if (!mWebgl->GetCompileResult(*fsId).success) {
return false;
}
mImageProgram = mWebgl->CreateProgram();
mWebgl->AttachShader(*mImageProgram, *vsId);
mWebgl->AttachShader(*mImageProgram, *fsId);
mWebgl->BindAttribLocation(*mImageProgram, 0, "a_vertex");
mWebgl->LinkProgram(*mImageProgram);
if (!mWebgl->GetLinkResult(*mImageProgram).success) {
return false;
}
mImageProgramViewport = GetUniformLocation(mImageProgram, "u_viewport");
mImageProgramAA = GetUniformLocation(mImageProgram, "u_aa");
mImageProgramTransform = GetUniformLocation(mImageProgram, "u_transform");
mImageProgramTexMatrix = GetUniformLocation(mImageProgram, "u_texmatrix");
mImageProgramTexBounds = GetUniformLocation(mImageProgram, "u_texbounds");
mImageProgramSwizzle = GetUniformLocation(mImageProgram, "u_swizzle");
mImageProgramColor = GetUniformLocation(mImageProgram, "u_color");
mImageProgramSampler = GetUniformLocation(mImageProgram, "u_sampler");
mImageProgramClipMask = GetUniformLocation(mImageProgram, "u_clipmask");
mImageProgramClipBounds = GetUniformLocation(mImageProgram, "u_clipbounds");
if (!mImageProgramViewport || !mImageProgramAA || !mImageProgramTransform ||
!mImageProgramTexMatrix || !mImageProgramTexBounds ||
!mImageProgramSwizzle || !mImageProgramColor || !mImageProgramSampler ||
!mImageProgramClipMask || !mImageProgramClipBounds) {
return false;
}
mWebgl->UseProgram(mImageProgram);
UniformData(LOCAL_GL_INT, mImageProgramSampler, Array<int32_t, 1>{0});
UniformData(LOCAL_GL_INT, mImageProgramClipMask, Array<int32_t, 1>{1});
}
return true;
}
void SharedContextWebgl::EnableScissor(const IntRect& aRect) {
// Only update scissor state if it actually changes.
if (!mLastScissor.IsEqualEdges(aRect)) {
mLastScissor = aRect;
mWebgl->Scissor(aRect.x, aRect.y, aRect.width, aRect.height);
}
if (!mScissorEnabled) {
mScissorEnabled = true;
mWebgl->SetEnabled(LOCAL_GL_SCISSOR_TEST, {}, true);
}
}
void SharedContextWebgl::DisableScissor() {
if (mScissorEnabled) {
mScissorEnabled = false;
mWebgl->SetEnabled(LOCAL_GL_SCISSOR_TEST, {}, false);
}
}
inline ColorPattern DrawTargetWebgl::GetClearPattern() const {
return ColorPattern(
DeviceColor(0.0f, 0.0f, 0.0f, IsOpaque(mFormat) ? 1.0f : 0.0f));
}
// Check if the transformed rect would contain the entire viewport.
inline bool DrawTargetWebgl::RectContainsViewport(const Rect& aRect) const {
return mTransform.PreservesAxisAlignedRectangles() &&
MatrixDouble(mTransform)
.TransformBounds(
RectDouble(aRect.x, aRect.y, aRect.width, aRect.height))
.Contains(RectDouble(GetRect()));
}
// Ensure that the rect, after transform, is within reasonable precision limits
// such that when transformed and clipped in the shader it will not round bits
// from the mantissa in a way that will diverge in a noticeable way from path
// geometry calculated by the path fallback.
static inline bool RectInsidePrecisionLimits(const Rect& aRect,
const Matrix& aTransform) {
return Rect(-(1 << 20), -(1 << 20), 2 << 20, 2 << 20)
.Contains(aTransform.TransformBounds(aRect));
}
void DrawTargetWebgl::ClearRect(const Rect& aRect) {
if (mIsClear) {
// No need to clear anything if the entire framebuffer is already clear.
return;
}
bool containsViewport = RectContainsViewport(aRect);
if (containsViewport) {
// If the rect encompasses the entire viewport, just clear the viewport
// instead to avoid transform issues.
DrawRect(Rect(GetRect()), GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_CLEAR), Nothing(), nullptr,
false);
} else if (RectInsidePrecisionLimits(aRect, mTransform)) {
// If the rect transform won't stress precision, then just use it.
DrawRect(aRect, GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_CLEAR));
} else {
// Otherwise, using the transform in the shader may lead to inaccuracies, so
// just fall back.
MarkSkiaChanged();
mSkia->ClearRect(aRect);
}
// If the clear rectangle encompasses the entire viewport and is not clipped,
// then mark the target as entirely clear.
if (containsViewport && mSharedContext->IsCurrentTarget(this) &&
!mSharedContext->HasClipMask() &&
mSharedContext->mClipAARect.Contains(Rect(GetRect()))) {
mIsClear = true;
}
}
static inline DeviceColor PremultiplyColor(const DeviceColor& aColor,
float aAlpha = 1.0f) {
float a = aColor.a * aAlpha;
return DeviceColor(aColor.r * a, aColor.g * a, aColor.b * a, a);
}
// Attempts to create the framebuffer used for drawing and also any relevant
// non-shared resources. Returns whether or not this succeeded.
bool DrawTargetWebgl::CreateFramebuffer() {
RefPtr<WebGLContext> webgl = mSharedContext->mWebgl;
if (!mFramebuffer) {
mFramebuffer = webgl->CreateFramebuffer();
}
if (!mTex) {
mTex = webgl->CreateTexture();
webgl->BindTexture(LOCAL_GL_TEXTURE_2D, mTex);
webgl->TexStorage(LOCAL_GL_TEXTURE_2D, 1, LOCAL_GL_RGBA8,
{uint32_t(mSize.width), uint32_t(mSize.height), 1});
mSharedContext->InitTexParameters(mTex);
webgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mFramebuffer);
webgl::FbAttachInfo attachInfo;
attachInfo.tex = mTex;
webgl->FramebufferAttach(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D, attachInfo);
webgl->Viewport(0, 0, mSize.width, mSize.height);
mSharedContext->DisableScissor();
DeviceColor color = PremultiplyColor(GetClearPattern().mColor);
webgl->ClearColor(color.b, color.g, color.r, color.a);
webgl->Clear(LOCAL_GL_COLOR_BUFFER_BIT);
mSharedContext->ClearTarget();
mSharedContext->ClearLastTexture();
}
return true;
}
void DrawTargetWebgl::CopySurface(SourceSurface* aSurface,
const IntRect& aSourceRect,
const IntPoint& aDestination) {
// Intersect the source and destination rectangles with the viewport bounds.
IntRect destRect =
IntRect(aDestination, aSourceRect.Size()).SafeIntersect(GetRect());
IntRect srcRect = destRect - aDestination + aSourceRect.TopLeft();
if (srcRect.IsEmpty()) {
return;
}
if (mSkiaValid) {
if (mSkiaLayer) {
if (destRect.Contains(GetRect())) {
// If the the destination would override the entire layer, discard the
// layer.
mSkiaLayer = false;
} else if (!IsOpaque(aSurface->GetFormat())) {
// If the surface is not opaque, copying it into the layer results in
// unintended blending rather than a copy to the destination.
FlattenSkia();
}
} else {
// If there is no layer, copying is safe.
MarkSkiaChanged();
}
mSkia->CopySurface(aSurface, srcRect, destRect.TopLeft());
return;
}
IntRect samplingRect;
if (!mSharedContext->IsCompatibleSurface(aSurface)) {
// If this data surface completely overwrites the framebuffer, then just
// copy it to the Skia target.
if (destRect.Contains(GetRect())) {
MarkSkiaChanged(true);
mSkia->DetachAllSnapshots();
mSkiaNoClip->CopySurface(aSurface, srcRect, destRect.TopLeft());
return;
}
// CopySurface usually only samples a surface once, so don't cache the
// entire surface as it is unlikely to be reused. Limit it to the used
// source rectangle instead.
IntRect surfaceRect = aSurface->GetRect();
if (!srcRect.IsEqualEdges(surfaceRect)) {
samplingRect = srcRect.SafeIntersect(surfaceRect);
}
}
Matrix matrix = Matrix::Translation(destRect.TopLeft() - srcRect.TopLeft());
SurfacePattern pattern(aSurface, ExtendMode::CLAMP, matrix,
SamplingFilter::POINT, samplingRect);
DrawRect(Rect(destRect), pattern, DrawOptions(1.0f, CompositionOp::OP_SOURCE),
Nothing(), nullptr, false, false);
}
void DrawTargetWebgl::PushClip(const Path* aPath) {
if (aPath && aPath->GetBackendType() == BackendType::SKIA) {
// Detect if the path is really just a rect to simplify caching.
const PathSkia* pathSkia = static_cast<const PathSkia*>(aPath);
const SkPath& skPath = pathSkia->GetPath();
SkRect rect = SkRect::MakeEmpty();
if (skPath.isRect(&rect)) {
PushClipRect(SkRectToRect(rect));
return;
}
}
mClipChanged = true;
mRefreshClipState = true;
mSkia->PushClip(aPath);
mClipStack.push_back({GetTransform(), Rect(), aPath});
}
void DrawTargetWebgl::PushClipRect(const Rect& aRect) {
mClipChanged = true;
mRefreshClipState = true;
mSkia->PushClipRect(aRect);
mClipStack.push_back({GetTransform(), aRect, nullptr});
}
void DrawTargetWebgl::PushDeviceSpaceClipRects(const IntRect* aRects,
uint32_t aCount) {
mClipChanged = true;
mRefreshClipState = true;
mSkia->PushDeviceSpaceClipRects(aRects, aCount);
for (uint32_t i = 0; i < aCount; i++) {
mClipStack.push_back({Matrix(), Rect(aRects[i]), nullptr});
}
}
void DrawTargetWebgl::PopClip() {
mClipChanged = true;
mRefreshClipState = true;
mSkia->PopClip();
mClipStack.pop_back();
}
bool DrawTargetWebgl::RemoveAllClips() {
if (mClipStack.empty()) {
return true;
}
if (!mSkia->RemoveAllClips()) {
return false;
}
mClipChanged = true;
mRefreshClipState = true;
mClipStack.clear();
return true;
}
void DrawTargetWebgl::CopyToFallback(DrawTarget* aDT) {
if (RefPtr<SourceSurface> snapshot = Snapshot()) {
aDT->CopySurface(snapshot, snapshot->GetRect(), gfx::IntPoint(0, 0));
}
aDT->RemoveAllClips();
for (auto& clipStack : mClipStack) {
aDT->SetTransform(clipStack.mTransform);
if (clipStack.mPath) {
aDT->PushClip(clipStack.mPath);
} else {
aDT->PushClipRect(clipStack.mRect);
}
}
aDT->SetTransform(GetTransform());
}
// Whether a given composition operator can be mapped to a WebGL blend mode.
static inline bool SupportsDrawOptions(const DrawOptions& aOptions) {
switch (aOptions.mCompositionOp) {
case CompositionOp::OP_OVER:
case CompositionOp::OP_ADD:
case CompositionOp::OP_ATOP:
case CompositionOp::OP_SOURCE:
case CompositionOp::OP_CLEAR:
return true;
default:
return false;
}
}
// Whether a pattern can be mapped to an available WebGL shader.
bool SharedContextWebgl::SupportsPattern(const Pattern& aPattern) {
switch (aPattern.GetType()) {
case PatternType::COLOR:
return true;
case PatternType::SURFACE: {
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
if (surfacePattern.mExtendMode != ExtendMode::CLAMP) {
return false;
}
if (surfacePattern.mSurface) {
// If the surface is already uploaded to a texture, then just use it.
if (IsCompatibleSurface(surfacePattern.mSurface)) {
return true;
}
IntSize size = surfacePattern.mSurface->GetSize();
// The maximum size a surface can be before triggering a fallback to
// software. Bound the maximum surface size by the actual texture size
// limit.
int32_t maxSize = int32_t(
std::min(StaticPrefs::gfx_canvas_accelerated_max_surface_size(),
mMaxTextureSize));
// Check if either of the surface dimensions or the sampling rect,
// if supplied, exceed the maximum.
if (std::max(size.width, size.height) > maxSize &&
(surfacePattern.mSamplingRect.IsEmpty() ||
std::max(surfacePattern.mSamplingRect.width,
surfacePattern.mSamplingRect.height) > maxSize)) {
return false;
}
}
return true;
}
default:
// Patterns other than colors and surfaces are currently not accelerated.
return false;
}
}
bool DrawTargetWebgl::DrawRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions,
Maybe<DeviceColor> aMaskColor,
RefPtr<TextureHandle>* aHandle,
bool aTransformed, bool aClipped,
bool aAccelOnly, bool aForceUpdate,
const StrokeOptions* aStrokeOptions) {
// If there is nothing to draw, then don't draw...
if (aRect.IsEmpty()) {
return true;
}
// If we're already drawing directly to the WebGL context, then we want to
// continue to do so. However, if we're drawing into a Skia layer over the
// WebGL context, then we need to be careful to avoid repeatedly clearing
// and flushing the layer if we hit a drawing request that can be accelerated
// in between layered drawing requests, as clearing and flushing the layer
// can be significantly expensive when repeated. So when a Skia layer is
// active, if it is possible to continue drawing into the layer, then don't
// accelerate the drawing request.
if (mWebglValid || (mSkiaLayer && !mLayerDepth &&
(aAccelOnly || !SupportsLayering(aOptions)))) {
// If we get here, either the WebGL context is being directly drawn to
// or we are going to flush the Skia layer to it before doing so. The shared
// context still needs to be claimed and prepared for drawing. If this
// fails, we just fall back to drawing with Skia below.
if (PrepareContext(aClipped)) {
// The shared context is claimed and the framebuffer is now valid, so try
// accelerated drawing.
return mSharedContext->DrawRectAccel(
aRect, aPattern, aOptions, aMaskColor, aHandle, aTransformed,
aClipped, aAccelOnly, aForceUpdate, aStrokeOptions);
}
}
// Either there is no valid WebGL target to draw into, or we failed to prepare
// it for drawing. The only thing we can do at this point is fall back to
// drawing with Skia. If the request explicitly requires accelerated drawing,
// then draw nothing before returning failure.
if (!aAccelOnly) {
DrawRectFallback(aRect, aPattern, aOptions, aMaskColor, aTransformed,
aClipped, aStrokeOptions);
}
return false;
}
void DrawTargetWebgl::DrawRectFallback(const Rect& aRect,
const Pattern& aPattern,
const DrawOptions& aOptions,
Maybe<DeviceColor> aMaskColor,
bool aTransformed, bool aClipped,
const StrokeOptions* aStrokeOptions) {
// Invalidate the WebGL target and prepare the Skia target for drawing.
MarkSkiaChanged(aOptions);
if (aTransformed) {
// If transforms are requested, then just translate back to FillRect.
if (aMaskColor) {
mSkia->Mask(ColorPattern(*aMaskColor), aPattern, aOptions);
} else if (aStrokeOptions) {
mSkia->StrokeRect(aRect, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->FillRect(aRect, aPattern, aOptions);
}
} else if (aClipped) {
// If no transform was requested but clipping is still required, then
// temporarily reset the transform before translating to FillRect.
mSkia->SetTransform(Matrix());
if (aMaskColor) {
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
if (surfacePattern.mSamplingRect.IsEmpty()) {
mSkia->MaskSurface(ColorPattern(*aMaskColor), surfacePattern.mSurface,
aRect.TopLeft(), aOptions);
} else {
mSkia->Mask(ColorPattern(*aMaskColor), aPattern, aOptions);
}
} else if (aStrokeOptions) {
mSkia->StrokeRect(aRect, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->FillRect(aRect, aPattern, aOptions);
}
mSkia->SetTransform(mTransform);
} else if (aPattern.GetType() == PatternType::SURFACE) {
// No transform nor clipping was requested, so it is essentially just a
// copy.
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
mSkia->CopySurface(surfacePattern.mSurface,
surfacePattern.mSurface->GetRect(),
IntPoint::Round(aRect.TopLeft()));
} else {
MOZ_ASSERT(false);
}
}
inline already_AddRefed<WebGLTexture> SharedContextWebgl::GetCompatibleSnapshot(
SourceSurface* aSurface) const {
if (aSurface->GetType() == SurfaceType::WEBGL) {
RefPtr<SourceSurfaceWebgl> webglSurf =
static_cast<SourceSurfaceWebgl*>(aSurface);
if (this == webglSurf->mSharedContext) {
// If there is a snapshot copy in a texture handle, use that.
if (webglSurf->mHandle) {
return do_AddRef(
webglSurf->mHandle->GetBackingTexture()->GetWebGLTexture());
}
if (RefPtr<DrawTargetWebgl> webglDT = webglSurf->GetTarget()) {
// If there is a copy-on-write reference to a target, use its backing
// texture directly. This is only safe if the targets don't match, but
// MarkChanged should ensure that any snapshots were copied into a
// texture handle before we ever get here.
if (!IsCurrentTarget(webglDT)) {
return do_AddRef(webglDT->mTex);
}
}
}
}
return nullptr;
}
inline bool SharedContextWebgl::IsCompatibleSurface(
SourceSurface* aSurface) const {
return bool(RefPtr<WebGLTexture>(GetCompatibleSnapshot(aSurface)));
}
bool SharedContextWebgl::UploadSurface(DataSourceSurface* aData,
SurfaceFormat aFormat,
const IntRect& aSrcRect,
const IntPoint& aDstOffset, bool aInit,
bool aZero,
const RefPtr<WebGLTexture>& aTex) {
webgl::TexUnpackBlobDesc texDesc = {
LOCAL_GL_TEXTURE_2D,
{uint32_t(aSrcRect.width), uint32_t(aSrcRect.height), 1}};
if (aData) {
// The surface needs to be uploaded to its backing texture either to
// initialize or update the texture handle contents. Map the data
// contents of the surface so it can be read.
DataSourceSurface::ScopedMap map(aData, DataSourceSurface::READ);
if (!map.IsMapped()) {
return false;
}
int32_t stride = map.GetStride();
int32_t bpp = BytesPerPixel(aFormat);
// Get the data pointer range considering the sampling rect offset and
// size.
Range<const uint8_t> range(
map.GetData() + aSrcRect.y * size_t(stride) + aSrcRect.x * bpp,
std::max(aSrcRect.height - 1, 0) * size_t(stride) +
aSrcRect.width * bpp);
texDesc.cpuData = Some(RawBuffer(range));
// If the stride happens to be 4 byte aligned, assume that is the
// desired alignment regardless of format (even A8). Otherwise, we
// default to byte alignment.
texDesc.unpacking.alignmentInTypeElems = stride % 4 ? 1 : 4;
texDesc.unpacking.rowLength = stride / bpp;
} else if (aZero) {
// Create a PBO filled with zero data to initialize the texture data and
// avoid slow initialization inside WebGL.
MOZ_ASSERT(aSrcRect.TopLeft() == IntPoint(0, 0));
size_t size =
size_t(GetAlignedStride<4>(aSrcRect.width, BytesPerPixel(aFormat))) *
aSrcRect.height;
if (!mZeroBuffer || size > mZeroSize) {
mZeroBuffer = mWebgl->CreateBuffer();
mZeroSize = size;
mWebgl->BindBuffer(LOCAL_GL_PIXEL_UNPACK_BUFFER, mZeroBuffer);
// WebGL will zero initialize the empty buffer, so we don't send zero data
// explicitly.
mWebgl->BufferData(LOCAL_GL_PIXEL_UNPACK_BUFFER, size, nullptr,
LOCAL_GL_STATIC_DRAW);
} else {
mWebgl->BindBuffer(LOCAL_GL_PIXEL_UNPACK_BUFFER, mZeroBuffer);
}
texDesc.pboOffset = Some(0);
}
// Upload as RGBA8 to avoid swizzling during upload. Surfaces provide
// data as BGRA, but we manually swizzle that in the shader. An A8
// surface will be stored as an R8 texture that will also be swizzled
// in the shader.
GLenum intFormat =
aFormat == SurfaceFormat::A8 ? LOCAL_GL_R8 : LOCAL_GL_RGBA8;
GLenum extFormat =
aFormat == SurfaceFormat::A8 ? LOCAL_GL_RED : LOCAL_GL_RGBA;
webgl::PackingInfo texPI = {extFormat, LOCAL_GL_UNSIGNED_BYTE};
// Do the (partial) upload for the shared or standalone texture.
if (aTex) {
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, aTex);
}
mWebgl->TexImage(0, aInit ? intFormat : 0,
{uint32_t(aDstOffset.x), uint32_t(aDstOffset.y), 0}, texPI,
texDesc);
if (aTex) {
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, mLastTexture);
}
if (!aData && aZero) {
mWebgl->BindBuffer(LOCAL_GL_PIXEL_UNPACK_BUFFER, 0);
}
return true;
}
// Allocate a new texture handle backed by either a standalone texture or as a
// sub-texture of a larger shared texture.
already_AddRefed<TextureHandle> SharedContextWebgl::AllocateTextureHandle(
SurfaceFormat aFormat, const IntSize& aSize, bool aAllowShared,
bool aRenderable) {
RefPtr<TextureHandle> handle;
// Calculate the bytes that would be used by this texture handle, and prune
// enough other textures to ensure we have that much usable texture space
// available to allocate.
size_t usedBytes = BackingTexture::UsedBytes(aFormat, aSize);
PruneTextureMemory(usedBytes, false);
// The requested page size for shared textures.
int32_t pageSize = int32_t(std::min(
StaticPrefs::gfx_canvas_accelerated_shared_page_size(), mMaxTextureSize));
if (aAllowShared && std::max(aSize.width, aSize.height) <= pageSize / 2) {
// Ensure that the surface is no bigger than a quadrant of a shared texture
// page. If so, try to allocate it to a shared texture. Look for any
// existing shared texture page with a matching format and allocate
// from that if possible.
for (auto& shared : mSharedTextures) {
if (shared->GetFormat() == aFormat &&
shared->IsRenderable() == aRenderable) {
bool wasEmpty = !shared->HasAllocatedHandles();
handle = shared->Allocate(aSize);
if (handle) {
if (wasEmpty) {
// If the page was previously empty, then deduct it from the
// empty memory reserves.
mEmptyTextureMemory -= shared->UsedBytes();
}
break;
}
}
}
// If we couldn't find an existing shared texture page with matching
// format, then allocate a new page to put the request in.
if (!handle) {
if (RefPtr<WebGLTexture> tex = mWebgl->CreateTexture()) {
RefPtr<SharedTexture> shared =
new SharedTexture(IntSize(pageSize, pageSize), aFormat, tex);
if (aRenderable) {
shared->MarkRenderable();
}
mSharedTextures.push_back(shared);
mTotalTextureMemory += shared->UsedBytes();
handle = shared->Allocate(aSize);
}
}
} else {
// The surface wouldn't fit in a shared texture page, so we need to
// allocate a standalone texture for it instead.
if (RefPtr<WebGLTexture> tex = mWebgl->CreateTexture()) {
RefPtr<StandaloneTexture> standalone =
new StandaloneTexture(aSize, aFormat, tex);
if (aRenderable) {
standalone->MarkRenderable();
}
mStandaloneTextures.push_back(standalone);
mTotalTextureMemory += standalone->UsedBytes();
handle = standalone;
}
}
if (!handle) {
return nullptr;
}
// Insert the new texture handle into the front of the MRU list and
// update used space for it.
mTextureHandles.insertFront(handle);
++mNumTextureHandles;
mUsedTextureMemory += handle->UsedBytes();
return handle.forget();
}
static inline SamplingFilter GetSamplingFilter(const Pattern& aPattern) {
return aPattern.GetType() == PatternType::SURFACE
? static_cast<const SurfacePattern&>(aPattern).mSamplingFilter
: SamplingFilter::GOOD;
}
static inline bool UseNearestFilter(const Pattern& aPattern) {
return GetSamplingFilter(aPattern) == SamplingFilter::POINT;
}
// Determine if the rectangle is still axis-aligned and pixel-aligned.
static inline Maybe<IntRect> IsAlignedRect(bool aTransformed,
const Matrix& aCurrentTransform,
const Rect& aRect) {
if (!aTransformed || aCurrentTransform.HasOnlyIntegerTranslation()) {
auto intRect = RoundedToInt(aRect);
if (aRect.WithinEpsilonOf(Rect(intRect), 1.0e-3f)) {
if (aTransformed) {
intRect += RoundedToInt(aCurrentTransform.GetTranslation());
}
return Some(intRect);
}
}
return Nothing();
}
Maybe<uint32_t> SharedContextWebgl::GetUniformLocation(
const RefPtr<WebGLProgram>& aProg, const std::string& aName) const {
if (!aProg || !aProg->LinkInfo()) {
return Nothing();
}
for (const auto& activeUniform : aProg->LinkInfo()->active.activeUniforms) {
if (activeUniform.block_index != -1) continue;
auto locName = activeUniform.name;
const auto indexed = webgl::ParseIndexed(locName);
if (indexed) {
locName = indexed->name;
}
const auto baseLength = locName.size();
for (const auto& pair : activeUniform.locByIndex) {
if (indexed) {
locName.erase(baseLength); // Erase previous "[N]".
locName += '[';
locName += std::to_string(pair.first);
locName += ']';
}
if (locName == aName || locName == aName + "[0]") {
return Some(pair.second);
}
}
}
return Nothing();
}
template <class T>
struct IsUniformDataValT : std::false_type {};
template <>
struct IsUniformDataValT<webgl::UniformDataVal> : std::true_type {};
template <>
struct IsUniformDataValT<float> : std::true_type {};
template <>
struct IsUniformDataValT<int32_t> : std::true_type {};
template <>
struct IsUniformDataValT<uint32_t> : std::true_type {};
template <typename T, typename = std::enable_if_t<IsUniformDataValT<T>::value>>
inline Range<const webgl::UniformDataVal> AsUniformDataVal(
const Range<const T>& data) {
return {data.begin().template ReinterpretCast<const webgl::UniformDataVal>(),
data.end().template ReinterpretCast<const webgl::UniformDataVal>()};
}
template <class T, size_t N>
inline void SharedContextWebgl::UniformData(GLenum aFuncElemType,
const Maybe<uint32_t>& aLoc,
const Array<T, N>& aData) {
// We currently always pass false for transpose. If in the future we need
// support for transpose then caching needs to take that in to account.
mWebgl->UniformData(*aLoc, false,
AsUniformDataVal(Range<const T>(Span<const T>(aData))));
}
template <class T, size_t N>
void SharedContextWebgl::MaybeUniformData(GLenum aFuncElemType,
const Maybe<uint32_t>& aLoc,
const Array<T, N>& aData,
Maybe<Array<T, N>>& aCached) {
if (aCached.isNothing() || !(*aCached == aData)) {
aCached = Some(aData);
UniformData(aFuncElemType, aLoc, aData);
}
}
inline void SharedContextWebgl::DrawQuad() {
mWebgl->DrawArraysInstanced(LOCAL_GL_TRIANGLE_FAN, 0, 4, 1);
}
void SharedContextWebgl::DrawTriangles(const PathVertexRange& aRange) {
mWebgl->DrawArraysInstanced(LOCAL_GL_TRIANGLES, GLint(aRange.mOffset),
GLsizei(aRange.mLength), 1);
}
// Common rectangle and pattern drawing function shared by many DrawTarget
// commands. If aMaskColor is specified, the provided surface pattern will be
// treated as a mask. If aHandle is specified, then the surface pattern's
// texture will be cached in the supplied handle, as opposed to using the
// surface's user data. If aTransformed or aClipped are false, then transforms
// and/or clipping will be disabled. If aAccelOnly is specified, then this
// function will return before it would have otherwise drawn without
// acceleration. If aForceUpdate is specified, then the provided texture handle
// will be respecified with the provided surface.
bool SharedContextWebgl::DrawRectAccel(
const Rect& aRect, const Pattern& aPattern, const DrawOptions& aOptions,
Maybe<DeviceColor> aMaskColor, RefPtr<TextureHandle>* aHandle,
bool aTransformed, bool aClipped, bool aAccelOnly, bool aForceUpdate,
const StrokeOptions* aStrokeOptions, const PathVertexRange* aVertexRange,
const Matrix* aRectXform) {
// If the rect or clip rect is empty, then there is nothing to draw.
if (aRect.IsEmpty() || mClipRect.IsEmpty()) {
return true;
}
// Check if the drawing options and the pattern support acceleration. Also
// ensure the framebuffer is prepared for drawing. If not, fall back to using
// the Skia target. When we need to forcefully update a texture, we must be
// careful to override any pattern limits, as the caller ensures the pattern
// is otherwise a supported type.
if (!SupportsDrawOptions(aOptions) ||
(!aForceUpdate && !SupportsPattern(aPattern)) || aStrokeOptions ||
!mCurrentTarget->MarkChanged()) {
// If only accelerated drawing was requested, bail out without software
// drawing fallback.
if (!aAccelOnly) {
MOZ_ASSERT(!aVertexRange);
mCurrentTarget->DrawRectFallback(aRect, aPattern, aOptions, aMaskColor,
aTransformed, aClipped, aStrokeOptions);
}
return false;
}
const Matrix& currentTransform = mCurrentTarget->GetTransform();
// rectXform only applies to the rect, but should not apply to the pattern,
// as it might inadvertently alter the pattern.
Matrix rectXform = currentTransform;
if (aRectXform) {
rectXform.PreMultiply(*aRectXform);
}
if (aOptions.mCompositionOp == CompositionOp::OP_SOURCE && aTransformed &&
aClipped &&
(HasClipMask() || !rectXform.PreservesAxisAlignedRectangles() ||
!rectXform.TransformBounds(aRect).Contains(Rect(mClipAARect)) ||
(aPattern.GetType() == PatternType::SURFACE &&
!IsAlignedRect(aTransformed, rectXform, aRect)))) {
// Clear outside the mask region for masks that are not bounded by clip.
return DrawRectAccel(Rect(mClipRect), ColorPattern(DeviceColor(0, 0, 0, 0)),
DrawOptions(1.0f, CompositionOp::OP_SOURCE,
aOptions.mAntialiasMode),
Nothing(), nullptr, false, aClipped, aAccelOnly) &&
DrawRectAccel(aRect, aPattern,
DrawOptions(aOptions.mAlpha, CompositionOp::OP_ADD,
aOptions.mAntialiasMode),
aMaskColor, aHandle, aTransformed, aClipped,
aAccelOnly, aForceUpdate, aStrokeOptions, aVertexRange,
aRectXform);
}
if (aOptions.mCompositionOp == CompositionOp::OP_CLEAR &&
aPattern.GetType() == PatternType::SURFACE && !aMaskColor) {
// If the surface being drawn with clear is not a mask, then its contents
// needs to be ignored. Just use a color pattern instead.
return DrawRectAccel(aRect, ColorPattern(DeviceColor(1, 1, 1, 1)), aOptions,
Nothing(), aHandle, aTransformed, aClipped, aAccelOnly,
aForceUpdate, aStrokeOptions, aVertexRange,
aRectXform);
}
// Set up the scissor test to reflect the clipping rectangle, if supplied.
if (!mClipRect.Contains(IntRect(IntPoint(), mViewportSize))) {
EnableScissor(mClipRect);
} else {
DisableScissor();
}
bool success = false;
// Now try to actually draw the pattern...
switch (aPattern.GetType()) {
case PatternType::COLOR: {
if (!aVertexRange) {
// Only an uncached draw if not using the vertex cache.
mCurrentTarget->mProfile.OnUncachedDraw();
}
DeviceColor color = PremultiplyColor(
static_cast<const ColorPattern&>(aPattern).mColor, aOptions.mAlpha);
if (((color.a == 1.0f &&
aOptions.mCompositionOp == CompositionOp::OP_OVER) ||
aOptions.mCompositionOp == CompositionOp::OP_SOURCE ||
aOptions.mCompositionOp == CompositionOp::OP_CLEAR) &&
!aStrokeOptions && !aVertexRange && !HasClipMask() &&
mClipAARect.IsEqualEdges(Rect(mClipRect))) {
// Certain color patterns can be mapped to scissored clears. The
// composition op must effectively overwrite the destination, and the
// transform must map to an axis-aligned integer rectangle.
if (Maybe<IntRect> intRect =
IsAlignedRect(aTransformed, rectXform, aRect)) {
// Only use a clear if the area is larger than a quarter or the
// viewport.
if (intRect->Area() >=
(mViewportSize.width / 2) * (mViewportSize.height / 2)) {
if (!intRect->Contains(mClipRect)) {
EnableScissor(intRect->Intersect(mClipRect));
}
if (aOptions.mCompositionOp == CompositionOp::OP_CLEAR) {
color =
PremultiplyColor(mCurrentTarget->GetClearPattern().mColor);
}
mWebgl->ClearColor(color.b, color.g, color.r, color.a);
mWebgl->Clear(LOCAL_GL_COLOR_BUFFER_BIT);
success = true;
break;
}
}
}
// Map the composition op to a WebGL blend mode, if possible.
Maybe<DeviceColor> blendColor;
if (aOptions.mCompositionOp == CompositionOp::OP_SOURCE ||
aOptions.mCompositionOp == CompositionOp::OP_CLEAR) {
// The source operator can support clipping and AA by emulating it with
// the over op. Supply the color with blend state, and set the shader
// color to white, to avoid needing dual-source blending.
blendColor = Some(color);
// Both source and clear operators should output a mask from the shader.
color = DeviceColor(1, 1, 1, 1);
}
SetBlendState(aOptions.mCompositionOp, blendColor);
// Since it couldn't be mapped to a scissored clear, we need to use the
// solid color shader with supplied transform.
if (mLastProgram != mSolidProgram) {
mWebgl->UseProgram(mSolidProgram);
mLastProgram = mSolidProgram;
}
Array<float, 2> viewportData = {float(mViewportSize.width),
float(mViewportSize.height)};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mSolidProgramViewport, viewportData,
mSolidProgramUniformState.mViewport);
// Generated paths provide their own AA as vertex alpha.
Array<float, 1> aaData = {aVertexRange ? 0.0f : 1.0f};
MaybeUniformData(LOCAL_GL_FLOAT, mSolidProgramAA, aaData,
mSolidProgramUniformState.mAA);
// Offset the clip AA bounds by 0.5 to ensure AA falls to 0 at pixel
// boundary.
Array<float, 4> clipData = {mClipAARect.x - 0.5f, mClipAARect.y - 0.5f,
mClipAARect.XMost() + 0.5f,
mClipAARect.YMost() + 0.5f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mSolidProgramClipBounds, clipData,
mSolidProgramUniformState.mClipBounds);
Array<float, 4> colorData = {color.b, color.g, color.r, color.a};
Matrix xform(aRect.width, 0.0f, 0.0f, aRect.height, aRect.x, aRect.y);
if (aTransformed) {
xform *= rectXform;
}
Array<float, 6> xformData = {xform._11, xform._12, xform._21,
xform._22, xform._31, xform._32};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mSolidProgramTransform, xformData,
mSolidProgramUniformState.mTransform);
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mSolidProgramColor, colorData,
mSolidProgramUniformState.mColor);
// Finally draw the colored rectangle.
if (aVertexRange) {
// If there's a vertex range, then we need to draw triangles within from
// generated from a path stored in the path vertex buffer.
DrawTriangles(*aVertexRange);
} else {
// Otherwise we're drawing a simple filled rectangle.
DrawQuad();
}
success = true;
break;
}
case PatternType::SURFACE: {
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
// If a texture handle was supplied, or if the surface already has an
// assigned texture handle stashed in its used data, try to use it.
RefPtr<TextureHandle> handle =
aHandle ? aHandle->get()
: (surfacePattern.mSurface
? static_cast<TextureHandle*>(
surfacePattern.mSurface->GetUserData(
&mTextureHandleKey))
: nullptr);
IntSize texSize;
IntPoint offset;
SurfaceFormat format;
// Check if the found handle is still valid and if its sampling rect
// matches the requested sampling rect.
if (handle && handle->IsValid() &&
(surfacePattern.mSamplingRect.IsEmpty() ||
handle->GetSamplingRect().IsEqualEdges(
surfacePattern.mSamplingRect))) {
texSize = handle->GetSize();
format = handle->GetFormat();
offset = handle->GetSamplingOffset();
} else {
// Otherwise, there is no handle that can be used yet, so extract
// information from the surface pattern.
handle = nullptr;
if (!surfacePattern.mSurface) {
// If there was no actual surface supplied, then we tried to draw
// using a texture handle, but the texture handle wasn't valid.
break;
}
texSize = surfacePattern.mSurface->GetSize();
format = surfacePattern.mSurface->GetFormat();
if (!surfacePattern.mSamplingRect.IsEmpty()) {
texSize = surfacePattern.mSamplingRect.Size();
offset = surfacePattern.mSamplingRect.TopLeft();
}
}
// We need to be able to transform from local space into texture space.
Matrix invMatrix = surfacePattern.mMatrix;
// If drawing a pre-transformed vertex range, then we need to ensure the
// user-space pattern is still transformed to screen-space.
if (aVertexRange && !aTransformed) {
invMatrix *= currentTransform;
}
if (!invMatrix.Invert()) {
break;
}
if (aRectXform) {
// If there is aRectXform, it must be applied to the source rectangle to
// generate the proper input coordinates for the inverse pattern matrix.
invMatrix.PreMultiply(*aRectXform);
}
RefPtr<WebGLTexture> tex;
IntRect bounds;
IntSize backingSize;
RefPtr<DataSourceSurface> data;
if (handle) {
if (aForceUpdate) {
data = surfacePattern.mSurface->GetDataSurface();
if (!data) {
break;
}
// The size of the texture may change if we update contents.
mUsedTextureMemory -= handle->UsedBytes();
handle->UpdateSize(texSize);
mUsedTextureMemory += handle->UsedBytes();
handle->SetSamplingOffset(surfacePattern.mSamplingRect.TopLeft());
}
// If using an existing handle, move it to the front of the MRU list.
handle->remove();
mTextureHandles.insertFront(handle);
} else if ((tex = GetCompatibleSnapshot(surfacePattern.mSurface))) {
backingSize = surfacePattern.mSurface->GetSize();
bounds = IntRect(offset, texSize);
// Count reusing a snapshot texture (no readback) as a cache hit.
mCurrentTarget->mProfile.OnCacheHit();
} else {
// If we get here, we need a data surface for a texture upload.
data = surfacePattern.mSurface->GetDataSurface();
if (!data) {
break;
}
// There is no existing handle. Try to allocate a new one. If the
// surface size may change via a forced update, then don't allocate
// from a shared texture page.
handle = AllocateTextureHandle(format, texSize, !aForceUpdate);
if (!handle) {
MOZ_ASSERT(false);
break;
}
// Link the handle to the surface's user data.
handle->SetSamplingOffset(surfacePattern.mSamplingRect.TopLeft());
if (aHandle) {
*aHandle = handle;
} else {
handle->SetSurface(surfacePattern.mSurface);
surfacePattern.mSurface->AddUserData(&mTextureHandleKey, handle.get(),
nullptr);
}
}
// Map the composition op to a WebGL blend mode, if possible. If there is
// a mask color and a texture with multiple channels, assume subpixel
// blending. If we encounter the source op here, then assume the surface
// is opaque (non-opaque is handled above) and emulate it with over.
SetBlendState(aOptions.mCompositionOp,
format != SurfaceFormat::A8 ? aMaskColor : Nothing());
// Switch to the image shader and set up relevant transforms.
if (mLastProgram != mImageProgram) {
mWebgl->UseProgram(mImageProgram);
mLastProgram = mImageProgram;
}
Array<float, 2> viewportData = {float(mViewportSize.width),
float(mViewportSize.height)};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mImageProgramViewport, viewportData,
mImageProgramUniformState.mViewport);
// AA is not supported for OP_SOURCE. Generated paths provide their own
// AA as vertex alpha.
Array<float, 1> aaData = {
mLastCompositionOp == CompositionOp::OP_SOURCE || aVertexRange
? 0.0f
: 1.0f};
MaybeUniformData(LOCAL_GL_FLOAT, mImageProgramAA, aaData,
mImageProgramUniformState.mAA);
// Offset the clip AA bounds by 0.5 to ensure AA falls to 0 at pixel
// boundary.
Array<float, 4> clipData = {mClipAARect.x - 0.5f, mClipAARect.y - 0.5f,
mClipAARect.XMost() + 0.5f,
mClipAARect.YMost() + 0.5f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mImageProgramClipBounds, clipData,
mImageProgramUniformState.mClipBounds);
DeviceColor color =
mLastCompositionOp == CompositionOp::OP_CLEAR
? DeviceColor(1, 1, 1, 1)
: PremultiplyColor(
aMaskColor && format != SurfaceFormat::A8
? DeviceColor::Mask(1.0f, aMaskColor->a)
: aMaskColor.valueOr(DeviceColor(1, 1, 1, 1)),
aOptions.mAlpha);
Array<float, 4> colorData = {color.b, color.g, color.r, color.a};
Array<float, 1> swizzleData = {format == SurfaceFormat::A8 ? 1.0f : 0.0f};
Matrix xform(aRect.width, 0.0f, 0.0f, aRect.height, aRect.x, aRect.y);
if (aTransformed) {
xform *= rectXform;
}
Array<float, 6> xformData = {xform._11, xform._12, xform._21,
xform._22, xform._31, xform._32};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mImageProgramTransform, xformData,
mImageProgramUniformState.mTransform);
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mImageProgramColor, colorData,
mImageProgramUniformState.mColor);
MaybeUniformData(LOCAL_GL_FLOAT, mImageProgramSwizzle, swizzleData,
mImageProgramUniformState.mSwizzle);
// Start binding the WebGL state for the texture.
BackingTexture* backing = nullptr;
if (handle) {
backing = handle->GetBackingTexture();
if (!tex) {
tex = backing->GetWebGLTexture();
}
bounds = handle->GetBounds();
backingSize = backing->GetSize();
}
if (mLastTexture != tex) {
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, tex);
mLastTexture = tex;
}
if (backing && !backing->IsInitialized()) {
// If this is the first time the texture is used, we need to initialize
// the clamping and filtering state.
backing->MarkInitialized();
InitTexParameters(tex);
if (texSize != backingSize) {
// If this is a shared texture handle whose actual backing texture is
// larger than it, then we need to allocate the texture page to the
// full backing size before we can do a partial upload of the surface.
UploadSurface(nullptr, format, IntRect(IntPoint(), backingSize),
IntPoint(), true, true);
}
}
if (data) {
UploadSurface(data, format, IntRect(offset, texSize), bounds.TopLeft(),
texSize == backingSize);
// Signal that we had to upload new data to the texture cache.
mCurrentTarget->mProfile.OnCacheMiss();
} else {
// Signal that we are reusing data from the texture cache.
mCurrentTarget->mProfile.OnCacheHit();
}
// Set up the texture coordinate matrix to map from the input rectangle to
// the backing texture subrect.
Size backingSizeF(backingSize);
Matrix uvMatrix(aRect.width, 0.0f, 0.0f, aRect.height, aRect.x, aRect.y);
uvMatrix *= invMatrix;
uvMatrix *= Matrix(1.0f / backingSizeF.width, 0.0f, 0.0f,
1.0f / backingSizeF.height,
float(bounds.x - offset.x) / backingSizeF.width,
float(bounds.y - offset.y) / backingSizeF.height);
Array<float, 6> uvData = {uvMatrix._11, uvMatrix._12, uvMatrix._21,
uvMatrix._22, uvMatrix._31, uvMatrix._32};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mImageProgramTexMatrix, uvData,
mImageProgramUniformState.mTexMatrix);
// Clamp sampling to within the bounds of the backing texture subrect.
Array<float, 4> texBounds = {
(bounds.x + 0.5f) / backingSizeF.width,
(bounds.y + 0.5f) / backingSizeF.height,
(bounds.XMost() - 0.5f) / backingSizeF.width,
(bounds.YMost() - 0.5f) / backingSizeF.height,
};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mImageProgramTexBounds, texBounds,
mImageProgramUniformState.mTexBounds);
// Ensure we use nearest filtering when no antialiasing is requested.
if (UseNearestFilter(surfacePattern)) {
SetTexFilter(tex, false);
}
// Finally draw the image rectangle.
if (aVertexRange) {
// If there's a vertex range, then we need to draw triangles within from
// generated from a path stored in the path vertex buffer.
DrawTriangles(*aVertexRange);
} else {
// Otherwise we're drawing a simple filled rectangle.
DrawQuad();
}
// Restore the default linear filter if overridden.
if (UseNearestFilter(surfacePattern)) {
SetTexFilter(tex, true);
}
success = true;
break;
}
default:
gfxWarning() << "Unknown DrawTargetWebgl::DrawRect pattern type: "
<< (int)aPattern.GetType();
break;
}
return success;
}
bool SharedContextWebgl::RemoveSharedTexture(
const RefPtr<SharedTexture>& aTexture) {
auto pos =
std::find(mSharedTextures.begin(), mSharedTextures.end(), aTexture);
if (pos == mSharedTextures.end()) {
return false;
}
// Keep around a reserve of empty pages to avoid initialization costs from
// allocating shared pages. If still below the limit of reserved pages, then
// just add it to the reserve. Otherwise, erase the empty texture page.
size_t maxBytes = StaticPrefs::gfx_canvas_accelerated_reserve_empty_cache()
<< 20;
size_t usedBytes = aTexture->UsedBytes();
if (mEmptyTextureMemory + usedBytes <= maxBytes) {
mEmptyTextureMemory += usedBytes;
} else {
mTotalTextureMemory -= usedBytes;
mSharedTextures.erase(pos);
ClearLastTexture();
}
return true;
}
void SharedTextureHandle::Cleanup(SharedContextWebgl& aContext) {
mTexture->Free(*this);
// Check if the shared handle's owning page has no more allocated handles
// after we freed it. If so, remove the empty shared texture page also.
if (!mTexture->HasAllocatedHandles()) {
aContext.RemoveSharedTexture(mTexture);
}
}
bool SharedContextWebgl::RemoveStandaloneTexture(
const RefPtr<StandaloneTexture>& aTexture) {
auto pos = std::find(mStandaloneTextures.begin(), mStandaloneTextures.end(),
aTexture);
if (pos == mStandaloneTextures.end()) {
return false;
}
mTotalTextureMemory -= aTexture->UsedBytes();
mStandaloneTextures.erase(pos);
ClearLastTexture();
return true;
}
void StandaloneTexture::Cleanup(SharedContextWebgl& aContext) {
aContext.RemoveStandaloneTexture(this);
}
// Prune a given texture handle and release its associated resources.
void SharedContextWebgl::PruneTextureHandle(
const RefPtr<TextureHandle>& aHandle) {
// Invalidate the handle so nothing will subsequently use its contents.
aHandle->Invalidate();
// If the handle has an associated SourceSurface, unlink it.
UnlinkSurfaceTexture(aHandle);
// If the handle has an associated CacheEntry, unlink it.
if (RefPtr<CacheEntry> entry = aHandle->GetCacheEntry()) {
entry->Unlink();
}
// Deduct the used space from the total.
mUsedTextureMemory -= aHandle->UsedBytes();
// Ensure any allocated shared or standalone texture regions get freed.
aHandle->Cleanup(*this);
}
// Prune any texture memory above the limit (or margin below the limit) or any
// least-recently-used handles that are no longer associated with any usable
// surface.
bool SharedContextWebgl::PruneTextureMemory(size_t aMargin, bool aPruneUnused) {
// The maximum amount of texture memory that may be used by textures.
size_t maxBytes = StaticPrefs::gfx_canvas_accelerated_cache_size() << 20;
maxBytes -= std::min(maxBytes, aMargin);
size_t maxItems = StaticPrefs::gfx_canvas_accelerated_cache_items();
size_t oldItems = mNumTextureHandles;
while (!mTextureHandles.isEmpty() &&
(mUsedTextureMemory > maxBytes || mNumTextureHandles > maxItems ||
(aPruneUnused && !mTextureHandles.getLast()->IsUsed()))) {
PruneTextureHandle(mTextureHandles.popLast());
--mNumTextureHandles;
}
return mNumTextureHandles < oldItems;
}
void DrawTargetWebgl::FillRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions) {
if (SupportsPattern(aPattern)) {
if (RectInsidePrecisionLimits(aRect, mTransform)) {
DrawRect(aRect, aPattern, aOptions);
return;
}
if (aPattern.GetType() == PatternType::COLOR &&
RectContainsViewport(aRect)) {
// If the pattern is transform-invariant and the rect encompasses the
// entire viewport, just clip drawing to the viewport to avoid transform
// issues.
DrawRect(Rect(GetRect()), aPattern, aOptions, Nothing(), nullptr, false);
return;
}
}
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->FillRect(aRect, aPattern, aOptions);
} else {
// If the pattern is unsupported, then transform the rect to a path so it
// can be cached.
SkPath skiaPath;
skiaPath.addRect(RectToSkRect(aRect));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
DrawPath(path, aPattern, aOptions);
}
}
void CacheEntry::Link(const RefPtr<TextureHandle>& aHandle) {
mHandle = aHandle;
mHandle->SetCacheEntry(this);
}
// When the CacheEntry becomes unused, it marks the corresponding
// TextureHandle as unused and unlinks it from the CacheEntry. The
// entry is removed from its containing Cache, if applicable.
void CacheEntry::Unlink() {
// The entry may not have a valid handle if rasterization failed.
if (mHandle) {
mHandle->SetCacheEntry(nullptr);
mHandle = nullptr;
}
RemoveFromList();
}
// Hashes a path and pattern to a single hash value that can be used for quick
// comparisons. This currently avoids to expensive hashing of internal path
// and pattern data for speed, relying instead on later exact comparisons for
// disambiguation.
HashNumber PathCacheEntry::HashPath(const QuantizedPath& aPath,
const Pattern* aPattern,
const Matrix& aTransform,
const IntRect& aBounds,
const Point& aOrigin) {
HashNumber hash = 0;
hash = AddToHash(hash, aPath.mPath.num_types);
hash = AddToHash(hash, aPath.mPath.num_points);
if (aPath.mPath.num_points > 0) {
hash = AddToHash(hash, aPath.mPath.points[0].x);
hash = AddToHash(hash, aPath.mPath.points[0].y);
if (aPath.mPath.num_points > 1) {
hash = AddToHash(hash, aPath.mPath.points[1].x);
hash = AddToHash(hash, aPath.mPath.points[1].y);
}
}
// Quantize the relative offset of the path to its bounds.
IntPoint offset = RoundedToInt((aOrigin - Point(aBounds.TopLeft())) * 16.0f);
hash = AddToHash(hash, offset.x);
hash = AddToHash(hash, offset.y);
hash = AddToHash(hash, aBounds.width);
hash = AddToHash(hash, aBounds.height);
if (aPattern) {
hash = AddToHash(hash, (int)aPattern->GetType());
}
return hash;
}
// When caching rendered geometry, we need to ensure the scale and orientation
// is approximately the same. The offset will be considered separately.
static inline bool HasMatchingScale(const Matrix& aTransform1,
const Matrix& aTransform2) {
return FuzzyEqual(aTransform1._11, aTransform2._11) &&
FuzzyEqual(aTransform1._12, aTransform2._12) &&
FuzzyEqual(aTransform1._21, aTransform2._21) &&
FuzzyEqual(aTransform1._22, aTransform2._22);
}
// Determines if an existing path cache entry matches an incoming path and
// pattern.
inline bool PathCacheEntry::MatchesPath(const QuantizedPath& aPath,
const Pattern* aPattern,
const StrokeOptions* aStrokeOptions,
const Matrix& aTransform,
const IntRect& aBounds,
const Point& aOrigin, HashNumber aHash,
float aSigma) {
return aHash == mHash && HasMatchingScale(aTransform, mTransform) &&
// Ensure the clipped relative bounds fit inside those of the entry
aBounds.x - aOrigin.x >= mBounds.x - mOrigin.x &&
(aBounds.x - aOrigin.x) + aBounds.width <=
(mBounds.x - mOrigin.x) + mBounds.width &&
aBounds.y - aOrigin.y >= mBounds.y - mOrigin.y &&
(aBounds.y - aOrigin.y) + aBounds.height <=
(mBounds.y - mOrigin.y) + mBounds.height &&
aPath == mPath &&
(!aPattern ? !mPattern : mPattern && *aPattern == *mPattern) &&
(!aStrokeOptions
? !mStrokeOptions
: mStrokeOptions && *aStrokeOptions == *mStrokeOptions) &&
aSigma == mSigma;
}
PathCacheEntry::PathCacheEntry(QuantizedPath&& aPath, Pattern* aPattern,
StoredStrokeOptions* aStrokeOptions,
const Matrix& aTransform, const IntRect& aBounds,
const Point& aOrigin, HashNumber aHash,
float aSigma)
: CacheEntryImpl<PathCacheEntry>(aTransform, aBounds, aHash),
mPath(std::move(aPath)),
mOrigin(aOrigin),
mPattern(aPattern),
mStrokeOptions(aStrokeOptions),
mSigma(aSigma) {}
// Attempt to find a matching entry in the path cache. If one isn't found,
// a new entry will be created. The caller should check whether the contained
// texture handle is valid to determine if it will need to render the text run
// or just reuse the cached texture.
already_AddRefed<PathCacheEntry> PathCache::FindOrInsertEntry(
QuantizedPath aPath, const Pattern* aPattern,
const StrokeOptions* aStrokeOptions, const Matrix& aTransform,
const IntRect& aBounds, const Point& aOrigin, float aSigma) {
HashNumber hash =
PathCacheEntry::HashPath(aPath, aPattern, aTransform, aBounds, aOrigin);
for (const RefPtr<PathCacheEntry>& entry : GetChain(hash)) {
if (entry->MatchesPath(aPath, aPattern, aStrokeOptions, aTransform, aBounds,
aOrigin, hash, aSigma)) {
return do_AddRef(entry);
}
}
Pattern* pattern = nullptr;
if (aPattern) {
pattern = aPattern->CloneWeak();
if (!pattern) {
return nullptr;
}
}
StoredStrokeOptions* strokeOptions = nullptr;
if (aStrokeOptions) {
strokeOptions = aStrokeOptions->Clone();
if (!strokeOptions) {
return nullptr;
}
}
RefPtr<PathCacheEntry> entry =
new PathCacheEntry(std::move(aPath), pattern, strokeOptions, aTransform,
aBounds, aOrigin, hash, aSigma);
Insert(entry);
return entry.forget();
}
void DrawTargetWebgl::Fill(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions) {
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const SkPath& skiaPath = static_cast<const PathSkia*>(aPath)->GetPath();
SkRect skiaRect = SkRect::MakeEmpty();
// Draw the path as a simple rectangle with a supported pattern when possible.
if (skiaPath.isRect(&skiaRect) && SupportsPattern(aPattern)) {
Rect rect = SkRectToRect(skiaRect);
if (RectInsidePrecisionLimits(rect, mTransform)) {
DrawRect(rect, aPattern, aOptions);
return;
}
if (aPattern.GetType() == PatternType::COLOR &&
RectContainsViewport(rect)) {
// If the pattern is transform-invariant and the rect encompasses the
// entire viewport, just clip drawing to the viewport to avoid transform
// issues.
DrawRect(Rect(GetRect()), aPattern, aOptions, Nothing(), nullptr, false);
return;
}
}
DrawPath(aPath, aPattern, aOptions);
}
void DrawTargetWebgl::FillCircle(const Point& aOrigin, float aRadius,
const Pattern& aPattern,
const DrawOptions& aOptions) {
DrawCircle(aOrigin, aRadius, aPattern, aOptions);
}
QuantizedPath::QuantizedPath(const WGR::Path& aPath) : mPath(aPath) {}
QuantizedPath::QuantizedPath(QuantizedPath&& aPath) noexcept
: mPath(aPath.mPath) {
aPath.mPath.points = nullptr;
aPath.mPath.num_points = 0;
aPath.mPath.types = nullptr;
aPath.mPath.num_types = 0;
}
QuantizedPath::~QuantizedPath() {
if (mPath.points || mPath.types) {
WGR::wgr_path_release(mPath);
}
}
bool QuantizedPath::operator==(const QuantizedPath& aOther) const {
return mPath.num_types == aOther.mPath.num_types &&
mPath.num_points == aOther.mPath.num_points &&
mPath.fill_mode == aOther.mPath.fill_mode &&
!memcmp(mPath.types, aOther.mPath.types,
mPath.num_types * sizeof(uint8_t)) &&
!memcmp(mPath.points, aOther.mPath.points,
mPath.num_points * sizeof(WGR::Point));
}
// Generate a quantized path from the Skia path using WGR. The supplied
// transform will be applied to the path. The path is stored relative to its
// bounds origin to support translation later.
static Maybe<QuantizedPath> GenerateQuantizedPath(
WGR::PathBuilder* aPathBuilder, const SkPath& aPath, const Rect& aBounds,
const Matrix& aTransform) {
if (!aPathBuilder) {
return Nothing();
}
WGR::wgr_builder_reset(aPathBuilder);
WGR::wgr_builder_set_fill_mode(aPathBuilder,
aPath.getFillType() == SkPathFillType::kWinding
? WGR::FillMode::Winding
: WGR::FillMode::EvenOdd);
SkPath::RawIter iter(aPath);
SkPoint params[4];
SkPath::Verb currentVerb;
// printf_stderr("bounds: (%d, %d) %d x %d\n", aBounds.x, aBounds.y,
// aBounds.width, aBounds.height);
Matrix transform = aTransform;
transform.PostTranslate(-aBounds.TopLeft());
while ((currentVerb = iter.next(params)) != SkPath::kDone_Verb) {
switch (currentVerb) {
case SkPath::kMove_Verb: {
Point p0 = transform.TransformPoint(SkPointToPoint(params[0]));
WGR::wgr_builder_move_to(aPathBuilder, p0.x, p0.y);
break;
}
case SkPath::kLine_Verb: {
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
WGR::wgr_builder_line_to(aPathBuilder, p1.x, p1.y);
break;
}
case SkPath::kCubic_Verb: {
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
Point p2 = transform.TransformPoint(SkPointToPoint(params[2]));
Point p3 = transform.TransformPoint(SkPointToPoint(params[3]));
// printf_stderr("cubic (%f, %f), (%f, %f), (%f, %f)\n", p1.x, p1.y,
// p2.x, p2.y, p3.x, p3.y);
WGR::wgr_builder_curve_to(aPathBuilder, p1.x, p1.y, p2.x, p2.y, p3.x,
p3.y);
break;
}
case SkPath::kQuad_Verb: {
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
Point p2 = transform.TransformPoint(SkPointToPoint(params[2]));
// printf_stderr("quad (%f, %f), (%f, %f)\n", p1.x, p1.y, p2.x, p2.y);
WGR::wgr_builder_quad_to(aPathBuilder, p1.x, p1.y, p2.x, p2.y);
break;
}
case SkPath::kConic_Verb: {
Point p0 = transform.TransformPoint(SkPointToPoint(params[0]));
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
Point p2 = transform.TransformPoint(SkPointToPoint(params[2]));
float w = iter.conicWeight();
std::vector<Point> quads;
int numQuads = ConvertConicToQuads(p0, p1, p2, w, quads);
for (int i = 0; i < numQuads; i++) {
Point q1 = quads[2 * i + 1];
Point q2 = quads[2 * i + 2];
// printf_stderr("conic quad (%f, %f), (%f, %f)\n", q1.x, q1.y, q2.x,
// q2.y);
WGR::wgr_builder_quad_to(aPathBuilder, q1.x, q1.y, q2.x, q2.y);
}
break;
}
case SkPath::kClose_Verb:
// printf_stderr("close\n");
WGR::wgr_builder_close(aPathBuilder);
break;
default:
MOZ_ASSERT(false);
// Unexpected verb found in path!
return Nothing();
}
}
WGR::Path p = WGR::wgr_builder_get_path(aPathBuilder);
if (!p.num_points || !p.num_types) {
WGR::wgr_path_release(p);
return Nothing();
}
return Some(QuantizedPath(p));
}
// Get the output vertex buffer using WGR from an input quantized path.
static Maybe<WGR::VertexBuffer> GeneratePathVertexBuffer(
const QuantizedPath& aPath, const IntRect& aClipRect,
bool aRasterizationTruncates, WGR::OutputVertex* aBuffer,
size_t aBufferCapacity) {
WGR::VertexBuffer vb = WGR::wgr_path_rasterize_to_tri_list(
&aPath.mPath, aClipRect.x, aClipRect.y, aClipRect.width, aClipRect.height,
true, false, aRasterizationTruncates, aBuffer, aBufferCapacity);
if (!vb.len || (aBuffer && vb.len > aBufferCapacity)) {
WGR::wgr_vertex_buffer_release(vb);
return Nothing();
}
return Some(vb);
}
static inline AAStroke::LineJoin ToAAStrokeLineJoin(JoinStyle aJoin) {
switch (aJoin) {
case JoinStyle::BEVEL:
return AAStroke::LineJoin::Bevel;
case JoinStyle::ROUND:
return AAStroke::LineJoin::Round;
case JoinStyle::MITER:
case JoinStyle::MITER_OR_BEVEL:
return AAStroke::LineJoin::Miter;
}
return AAStroke::LineJoin::Miter;
}
static inline AAStroke::LineCap ToAAStrokeLineCap(CapStyle aCap) {
switch (aCap) {
case CapStyle::BUTT:
return AAStroke::LineCap::Butt;
case CapStyle::ROUND:
return AAStroke::LineCap::Round;
case CapStyle::SQUARE:
return AAStroke::LineCap::Square;
}
return AAStroke::LineCap::Butt;
}
static inline Point WGRPointToPoint(const WGR::Point& aPoint) {
return Point(IntPoint(aPoint.x, aPoint.y)) * (1.0f / 16.0f);
}
// Generates a vertex buffer for a stroked path using aa-stroke.
static Maybe<AAStroke::VertexBuffer> GenerateStrokeVertexBuffer(
const QuantizedPath& aPath, const StrokeOptions* aStrokeOptions,
float aScale, WGR::OutputVertex* aBuffer, size_t aBufferCapacity) {
AAStroke::StrokeStyle style = {aStrokeOptions->mLineWidth * aScale,
ToAAStrokeLineCap(aStrokeOptions->mLineCap),
ToAAStrokeLineJoin(aStrokeOptions->mLineJoin),
aStrokeOptions->mMiterLimit};
if (style.width <= 0.0f || !std::isfinite(style.width) ||
style.miter_limit <= 0.0f || !std::isfinite(style.miter_limit)) {
return Nothing();
}
AAStroke::Stroker* s = AAStroke::aa_stroke_new(
&style, (AAStroke::OutputVertex*)aBuffer, aBufferCapacity);
bool valid = true;
size_t curPoint = 0;
for (size_t curType = 0; valid && curType < aPath.mPath.num_types;) {
// Verify that we are at the start of a sub-path.
if ((aPath.mPath.types[curType] & WGR::PathPointTypePathTypeMask) !=
WGR::PathPointTypeStart) {
valid = false;
break;
}
// Find where the next sub-path starts so we can locate the end.
size_t endType = curType + 1;
for (; endType < aPath.mPath.num_types; endType++) {
if ((aPath.mPath.types[endType] & WGR::PathPointTypePathTypeMask) ==
WGR::PathPointTypeStart) {
break;
}
}
// Check if the path is closed. This is a flag modifying the last type.
bool closed =
(aPath.mPath.types[endType - 1] & WGR::PathPointTypeCloseSubpath) != 0;
for (; curType < endType; curType++) {
// If this is the last type and the sub-path is not closed, determine if
// this segment should be capped.
bool end = curType + 1 == endType && !closed;
switch (aPath.mPath.types[curType] & WGR::PathPointTypePathTypeMask) {
case WGR::PathPointTypeStart: {
if (curPoint + 1 > aPath.mPath.num_points) {
valid = false;
break;
}
Point p1 = WGRPointToPoint(aPath.mPath.points[curPoint]);
AAStroke::aa_stroke_move_to(s, p1.x, p1.y, closed);
if (end) {
AAStroke::aa_stroke_line_to(s, p1.x, p1.y, true);
}
curPoint++;
break;
}
case WGR::PathPointTypeLine: {
if (curPoint + 1 > aPath.mPath.num_points) {
valid = false;
break;
}
Point p1 = WGRPointToPoint(aPath.mPath.points[curPoint]);
AAStroke::aa_stroke_line_to(s, p1.x, p1.y, end);
curPoint++;
break;
}
case WGR::PathPointTypeBezier: {
if (curPoint + 3 > aPath.mPath.num_points) {
valid = false;
break;
}
Point p1 = WGRPointToPoint(aPath.mPath.points[curPoint]);
Point p2 = WGRPointToPoint(aPath.mPath.points[curPoint + 1]);
Point p3 = WGRPointToPoint(aPath.mPath.points[curPoint + 2]);
AAStroke::aa_stroke_curve_to(s, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y,
end);
curPoint += 3;
break;
}
default:
MOZ_ASSERT(false, "Unknown WGR path point type");
valid = false;
break;
}
}
// Close the sub-path if necessary.
if (valid && closed) {
AAStroke::aa_stroke_close(s);
}
}
Maybe<AAStroke::VertexBuffer> result;
if (valid) {
AAStroke::VertexBuffer vb = AAStroke::aa_stroke_finish(s);
if (!vb.len || (aBuffer && vb.len > aBufferCapacity)) {
AAStroke::aa_stroke_vertex_buffer_release(vb);
} else {
result = Some(vb);
}
}
AAStroke::aa_stroke_release(s);
return result;
}
// Search the path cache for any entries stored in the path vertex buffer and
// remove them.
void PathCache::ClearVertexRanges() {
for (auto& chain : mChains) {
PathCacheEntry* entry = chain.getFirst();
while (entry) {
PathCacheEntry* next = entry->getNext();
if (entry->GetVertexRange().IsValid()) {
entry->Unlink();
}
entry = next;
}
}
}
inline bool DrawTargetWebgl::ShouldAccelPath(
const DrawOptions& aOptions, const StrokeOptions* aStrokeOptions) {
return mWebglValid && SupportsDrawOptions(aOptions) && PrepareContext();
}
enum class AAStrokeMode {
Unsupported,
Geometry,
Mask,
};
// For now, we only directly support stroking solid color patterns to limit
// artifacts from blending of overlapping geometry generated by AAStroke. Other
// types of patterns may be partially supported by rendering to a temporary
// mask.
static inline AAStrokeMode SupportsAAStroke(const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions& aStrokeOptions,
bool aAllowStrokeAlpha) {
if (aStrokeOptions.mDashPattern) {
return AAStrokeMode::Unsupported;
}
switch (aOptions.mCompositionOp) {
case CompositionOp::OP_SOURCE:
return AAStrokeMode::Geometry;
case CompositionOp::OP_OVER:
if (aPattern.GetType() == PatternType::COLOR) {
return static_cast<const ColorPattern&>(aPattern).mColor.a *
aOptions.mAlpha <
1.0f &&
!aAllowStrokeAlpha
? AAStrokeMode::Mask
: AAStrokeMode::Geometry;
}
return AAStrokeMode::Unsupported;
default:
return AAStrokeMode::Unsupported;
}
}
// Render an AA-Stroke'd vertex range into an R8 mask texture for subsequent
// drawing.
already_AddRefed<TextureHandle> SharedContextWebgl::DrawStrokeMask(
const PathVertexRange& aVertexRange, const IntSize& aSize) {
// Allocate a new texture handle to store the rendered mask.
RefPtr<TextureHandle> handle =
AllocateTextureHandle(SurfaceFormat::A8, aSize, true, true);
if (!handle) {
return nullptr;
}
IntRect texBounds = handle->GetBounds();
BackingTexture* backing = handle->GetBackingTexture();
if (!backing->IsInitialized()) {
// If the backing texture is uninitialized, it needs its sampling parameters
// set for later use.
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, backing->GetWebGLTexture());
mWebgl->TexStorage(LOCAL_GL_TEXTURE_2D, 1, LOCAL_GL_R8,
{uint32_t(backing->GetSize().width),
uint32_t(backing->GetSize().height), 1});
InitTexParameters(backing->GetWebGLTexture());
ClearLastTexture();
}
// Set up a scratch framebuffer to render to the appropriate sub-texture of
// the backing texture.
if (!mScratchFramebuffer) {
mScratchFramebuffer = mWebgl->CreateFramebuffer();
}
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mScratchFramebuffer);
webgl::FbAttachInfo attachInfo;
attachInfo.tex = backing->GetWebGLTexture();
mWebgl->FramebufferAttach(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D, attachInfo);
mWebgl->Viewport(texBounds.x, texBounds.y, texBounds.width, texBounds.height);
EnableScissor(texBounds);
if (!backing->IsInitialized()) {
backing->MarkInitialized();
// WebGL implicitly clears the backing texture the first time it is used.
} else {
// Ensure the mask background is clear.
mWebgl->ClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mWebgl->Clear(LOCAL_GL_COLOR_BUFFER_BIT);
}
// Reset any blending when drawing the mask.
SetBlendState(CompositionOp::OP_OVER);
// Set up the solid color shader to draw a simple opaque mask.
if (mLastProgram != mSolidProgram) {
mWebgl->UseProgram(mSolidProgram);
mLastProgram = mSolidProgram;
}
Array<float, 2> viewportData = {float(texBounds.width),
float(texBounds.height)};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mSolidProgramViewport, viewportData,
mSolidProgramUniformState.mViewport);
Array<float, 1> aaData = {0.0f};
MaybeUniformData(LOCAL_GL_FLOAT, mSolidProgramAA, aaData,
mSolidProgramUniformState.mAA);
Array<float, 4> clipData = {-0.5f, -0.5f, float(texBounds.width) + 0.5f,
float(texBounds.height) + 0.5f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mSolidProgramClipBounds, clipData,
mSolidProgramUniformState.mClipBounds);
Array<float, 4> colorData = {1.0f, 1.0f, 1.0f, 1.0f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mSolidProgramColor, colorData,
mSolidProgramUniformState.mColor);
Array<float, 6> xformData = {1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mSolidProgramTransform, xformData,
mSolidProgramUniformState.mTransform);
// Ensure the current clip mask is ignored.
RefPtr<WebGLTexture> prevClipMask = mLastClipMask;
SetNoClipMask();
// Draw the mask using the supplied path vertex range.
DrawTriangles(aVertexRange);
// Restore the previous framebuffer state.
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mCurrentTarget->mFramebuffer);
mWebgl->Viewport(0, 0, mViewportSize.width, mViewportSize.height);
if (prevClipMask) {
SetClipMask(prevClipMask);
}
return handle.forget();
}
bool SharedContextWebgl::DrawPathAccel(
const Path* aPath, const Pattern& aPattern, const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions, bool aAllowStrokeAlpha,
const ShadowOptions* aShadow, bool aCacheable, const Matrix* aPathXform) {
// Get the transformed bounds for the path and conservatively check if the
// bounds overlap the canvas.
const PathSkia* pathSkia = static_cast<const PathSkia*>(aPath);
const Matrix& currentTransform = mCurrentTarget->GetTransform();
Matrix pathXform = currentTransform;
// If there is a path-specific transform that shouldn't be applied to the
// pattern, then generate a matrix that should only be used with the Skia
// path.
if (aPathXform) {
pathXform.PreMultiply(*aPathXform);
}
Rect bounds = pathSkia->GetFastBounds(pathXform, aStrokeOptions);
// If the path is empty, then there is nothing to draw.
if (bounds.IsEmpty()) {
return true;
}
IntRect viewport(IntPoint(), mViewportSize);
if (aShadow) {
// Inflate the bounds to account for the blur radius.
bounds += aShadow->mOffset;
int32_t blurRadius = aShadow->BlurRadius();
bounds.Inflate(blurRadius);
viewport.Inflate(blurRadius);
}
Point realOrigin = bounds.TopLeft();
if (aCacheable) {
// Quantize the path origin to increase the reuse of cache entries.
bounds.Scale(4.0f);
bounds.Round();
bounds.Scale(0.25f);
}
Point quantizedOrigin = bounds.TopLeft();
// If the path doesn't intersect the viewport, then there is nothing to draw.
IntRect intBounds = RoundedOut(bounds).Intersect(viewport);
if (intBounds.IsEmpty()) {
return true;
}
// Nudge the bounds to account for the quantization rounding.
Rect quantBounds = Rect(intBounds) + (realOrigin - quantizedOrigin);
// If the pattern is a solid color, then this will be used along with a path
// mask to render the path, as opposed to baking the pattern into the cached
// path texture.
Maybe<DeviceColor> color =
aOptions.mCompositionOp == CompositionOp::OP_CLEAR
? Some(DeviceColor(1, 1, 1, 1))
: (aPattern.GetType() == PatternType::COLOR
? Some(static_cast<const ColorPattern&>(aPattern).mColor)
: Nothing());
// Look for an existing path cache entry, if possible, or otherwise create
// one. If the draw request is not cacheable, then don't create an entry.
RefPtr<PathCacheEntry> entry;
RefPtr<TextureHandle> handle;
if (aCacheable) {
if (!mPathCache) {
mPathCache = MakeUnique<PathCache>();
}
// Use a quantized, relative (to its bounds origin) version of the path as
// a cache key to help limit cache bloat.
Maybe<QuantizedPath> qp = GenerateQuantizedPath(
mWGRPathBuilder, pathSkia->GetPath(), quantBounds, pathXform);
if (!qp) {
return false;
}
entry = mPathCache->FindOrInsertEntry(
std::move(*qp), color ? nullptr : &aPattern, aStrokeOptions,
currentTransform, intBounds, quantizedOrigin,
aShadow ? aShadow->mSigma : -1.0f);
if (!entry) {
return false;
}
handle = entry->GetHandle();
}
// If there is a shadow, it needs to draw with the shadow color rather than
// the path color.
Maybe<DeviceColor> shadowColor = color;
if (aShadow && aOptions.mCompositionOp != CompositionOp::OP_CLEAR) {
shadowColor = Some(aShadow->mColor);
if (color) {
shadowColor->a *= color->a;
}
}
SamplingFilter filter =
aShadow ? SamplingFilter::GOOD : GetSamplingFilter(aPattern);
if (handle && handle->IsValid()) {
// If the entry has a valid texture handle still, use it. However, the
// entry texture is assumed to be located relative to its previous bounds.
// We need to offset the pattern by the difference between its new unclipped
// origin and its previous previous unclipped origin. Then when we finally
// draw a rectangle at the expected new bounds, it will overlap the portion
// of the old entry texture we actually need to sample from.
Point offset =
(realOrigin - entry->GetOrigin()) + entry->GetBounds().TopLeft();
SurfacePattern pathPattern(nullptr, ExtendMode::CLAMP,
Matrix::Translation(offset), filter);
return DrawRectAccel(quantBounds, pathPattern, aOptions, shadowColor,
&handle, false, true, true);
}
if (mPathVertexCapacity > 0 && !handle && entry && !aShadow &&
aOptions.mAntialiasMode != AntialiasMode::NONE &&
SupportsPattern(aPattern) &&
entry->GetPath().mPath.num_types <= mPathMaxComplexity) {
if (entry->GetVertexRange().IsValid()) {
// If there is a valid cached vertex data in the path vertex buffer, then
// just draw that. We must draw at integer pixel boundaries (using
// intBounds instead of quantBounds) due to WGR's reliance on pixel center
// location.
mCurrentTarget->mProfile.OnCacheHit();
return DrawRectAccel(Rect(intBounds.TopLeft(), Size(1, 1)), aPattern,
aOptions, Nothing(), nullptr, false, true, true,
false, nullptr, &entry->GetVertexRange());
}
// printf_stderr("Generating... verbs %d, points %d\n",
// int(pathSkia->GetPath().countVerbs()),
// int(pathSkia->GetPath().countPoints()));
WGR::OutputVertex* outputBuffer = nullptr;
size_t outputBufferCapacity = 0;
if (mWGROutputBuffer) {
outputBuffer = mWGROutputBuffer.get();
outputBufferCapacity = mPathVertexCapacity / sizeof(WGR::OutputVertex);
}
Maybe<WGR::VertexBuffer> wgrVB;
Maybe<AAStroke::VertexBuffer> strokeVB;
if (!aStrokeOptions) {
if (aPath == mUnitCirclePath) {
auto scaleFactors = pathXform.ScaleFactors();
if (scaleFactors.AreScalesSame()) {
Point center = pathXform.GetTranslation() - quantBounds.TopLeft();
float radius = scaleFactors.xScale;
AAStroke::VertexBuffer vb = AAStroke::aa_stroke_filled_circle(
center.x, center.y, radius, (AAStroke::OutputVertex*)outputBuffer,
outputBufferCapacity);
if (!vb.len || (outputBuffer && vb.len > outputBufferCapacity)) {
AAStroke::aa_stroke_vertex_buffer_release(vb);
} else {
strokeVB = Some(vb);
}
}
}
if (!strokeVB) {
wgrVB = GeneratePathVertexBuffer(
entry->GetPath(), IntRect(-intBounds.TopLeft(), mViewportSize),
mRasterizationTruncates, outputBuffer, outputBufferCapacity);
}
} else {
if (mPathAAStroke &&
SupportsAAStroke(aPattern, aOptions, *aStrokeOptions,
aAllowStrokeAlpha) != AAStrokeMode::Unsupported) {
auto scaleFactors = currentTransform.ScaleFactors();
if (scaleFactors.AreScalesSame()) {
strokeVB = GenerateStrokeVertexBuffer(
entry->GetPath(), aStrokeOptions, scaleFactors.xScale,
outputBuffer, outputBufferCapacity);
}
}
if (!strokeVB && mPathWGRStroke) {
// If stroking, then generate a path to fill the stroked region. This
// path will need to be quantized again because it differs from the
// path used for the cache entry, but this allows us to avoid
// generating a fill path on a cache hit.
Maybe<Rect> cullRect;
Matrix invTransform = currentTransform;
if (invTransform.Invert()) {
// Transform the stroking clip rect from device space to local
// space.
Rect invRect = invTransform.TransformBounds(Rect(mClipRect));
invRect.RoundOut();
cullRect = Some(invRect);
}
SkPath fillPath;
if (pathSkia->GetFillPath(*aStrokeOptions, pathXform, fillPath,
cullRect)) {
// printf_stderr(" stroke fill... verbs %d, points %d\n",
// int(fillPath.countVerbs()),
// int(fillPath.countPoints()));
if (Maybe<QuantizedPath> qp = GenerateQuantizedPath(
mWGRPathBuilder, fillPath, quantBounds, pathXform)) {
wgrVB = GeneratePathVertexBuffer(
*qp, IntRect(-intBounds.TopLeft(), mViewportSize),
mRasterizationTruncates, outputBuffer, outputBufferCapacity);
}
}
}
}
if (wgrVB || strokeVB) {
const uint8_t* vbData =
wgrVB ? (const uint8_t*)wgrVB->data : (const uint8_t*)strokeVB->data;
if (outputBuffer && !vbData) {
vbData = (const uint8_t*)outputBuffer;
}
size_t vbLen = wgrVB ? wgrVB->len : strokeVB->len;
uint32_t vertexBytes = uint32_t(
std::min(vbLen * sizeof(WGR::OutputVertex), size_t(UINT32_MAX)));
// printf_stderr(" ... %d verts, %d bytes\n", int(vbLen),
// int(vertexBytes));
if (vertexBytes > mPathVertexCapacity - mPathVertexOffset &&
vertexBytes <= mPathVertexCapacity - sizeof(kRectVertexData)) {
// If the vertex data is too large to fit in the remaining path vertex
// buffer, then orphan the contents of the vertex buffer to make room
// for it.
if (mPathCache) {
mPathCache->ClearVertexRanges();
}
ResetPathVertexBuffer(false);
}
if (vertexBytes <= mPathVertexCapacity - mPathVertexOffset) {
// If there is actually room to fit the vertex data in the vertex buffer
// after orphaning as necessary, then upload the data to the next
// available offset in the buffer.
PathVertexRange vertexRange(
uint32_t(mPathVertexOffset / sizeof(WGR::OutputVertex)),
uint32_t(vbLen));
// printf_stderr(" ... offset %d\n", mPathVertexOffset);
// Normal glBufferSubData interleaved with draw calls causes performance
// issues on Mali, so use our special unsynchronized version. This is
// safe as we never update regions referenced by pending draw calls.
mWebgl->BufferSubData(LOCAL_GL_ARRAY_BUFFER, mPathVertexOffset,
vertexBytes, vbData,
/* unsynchronized */ true);
mPathVertexOffset += vertexBytes;
if (wgrVB) {
WGR::wgr_vertex_buffer_release(wgrVB.ref());
} else {
AAStroke::aa_stroke_vertex_buffer_release(strokeVB.ref());
}
if (strokeVB && aStrokeOptions &&
SupportsAAStroke(aPattern, aOptions, *aStrokeOptions,
aAllowStrokeAlpha) == AAStrokeMode::Mask) {
// Attempt to generate a stroke mask for path.
if (RefPtr<TextureHandle> handle =
DrawStrokeMask(vertexRange, intBounds.Size())) {
// Finally, draw the rendered stroke mask.
if (entry) {
entry->Link(handle);
}
mCurrentTarget->mProfile.OnCacheMiss();
SurfacePattern maskPattern(
nullptr, ExtendMode::CLAMP,
Matrix::Translation(quantBounds.TopLeft()),
SamplingFilter::GOOD);
return DrawRectAccel(quantBounds, maskPattern, aOptions, color,
&handle, false, true, true);
}
} else {
// Remember the vertex range in the cache entry so that it can be
// reused later.
if (entry) {
entry->SetVertexRange(vertexRange);
}
// Finally, draw the uploaded vertex data.
mCurrentTarget->mProfile.OnCacheMiss();
return DrawRectAccel(Rect(intBounds.TopLeft(), Size(1, 1)), aPattern,
aOptions, Nothing(), nullptr, false, true, true,
false, nullptr, &vertexRange);
}
} else {
if (wgrVB) {
WGR::wgr_vertex_buffer_release(wgrVB.ref());
} else {
AAStroke::aa_stroke_vertex_buffer_release(strokeVB.ref());
}
}
// If we failed to draw the vertex data for some reason, then fall through
// to the texture rasterization path.
}
}
// If a stroke path covers too much screen area, it is likely that most is
// empty space in the interior. This usually imposes too high a cost versus
// just rasterizing without acceleration. Note that AA-Stroke generally
// produces more acceptable amounts of geometry for larger paths, so we do
// this heuristic after we attempt AA-Stroke.
if (aStrokeOptions &&
intBounds.width * intBounds.height >
(mViewportSize.width / 2) * (mViewportSize.height / 2)) {
return false;
}
// If there isn't a valid texture handle, then we need to rasterize the
// path in a software canvas and upload this to a texture. Solid color
// patterns will be rendered as a path mask that can then be modulated
// with any color. Other pattern types have to rasterize the pattern
// directly into the cached texture.
handle = nullptr;
RefPtr<DrawTargetSkia> pathDT = new DrawTargetSkia;
if (pathDT->Init(intBounds.Size(), color || aShadow
? SurfaceFormat::A8
: SurfaceFormat::B8G8R8A8)) {
Point offset = -quantBounds.TopLeft();
if (aShadow) {
// Ensure the the shadow is drawn at the requested offset
offset += aShadow->mOffset;
}
DrawOptions drawOptions(1.0f, CompositionOp::OP_OVER,
aOptions.mAntialiasMode);
static const ColorPattern maskPattern(DeviceColor(1.0f, 1.0f, 1.0f, 1.0f));
const Pattern& cachePattern = color ? maskPattern : aPattern;
// If the source pattern is a DrawTargetWebgl snapshot, we may shift
// targets when drawing the path, so back up the old target.
DrawTargetWebgl* oldTarget = mCurrentTarget;
{
RefPtr<const Path> path;
if (color || !aPathXform) {
// If the pattern is transform invariant or there is no pathXform, then
// it is safe to use the path directly.
path = aPath;
pathDT->SetTransform(pathXform * Matrix::Translation(offset));
} else {
// If there is a pathXform, then pre-apply that to the path to avoid
// altering the pattern.
RefPtr<PathBuilder> builder =
aPath->TransformedCopyToBuilder(*aPathXform);
path = builder->Finish();
pathDT->SetTransform(currentTransform * Matrix::Translation(offset));
}
if (aStrokeOptions) {
pathDT->Stroke(path, cachePattern, *aStrokeOptions, drawOptions);
} else {
pathDT->Fill(path, cachePattern, drawOptions);
}
}
if (aShadow && aShadow->mSigma > 0.0f) {
// Blur the shadow if required.
uint8_t* data = nullptr;
IntSize size;
int32_t stride = 0;
SurfaceFormat format = SurfaceFormat::UNKNOWN;
if (pathDT->LockBits(&data, &size, &stride, &format)) {
AlphaBoxBlur blur(Rect(pathDT->GetRect()), stride, aShadow->mSigma,
aShadow->mSigma);
blur.Blur(data);
pathDT->ReleaseBits(data);
}
}
RefPtr<SourceSurface> pathSurface = pathDT->Snapshot();
if (pathSurface) {
// If the target changed, try to restore it.
if (mCurrentTarget != oldTarget && !oldTarget->PrepareContext()) {
return false;
}
SurfacePattern pathPattern(pathSurface, ExtendMode::CLAMP,
Matrix::Translation(quantBounds.TopLeft()),
filter);
// Try and upload the rasterized path to a texture. If there is a
// valid texture handle after this, then link it to the entry.
// Otherwise, we might have to fall back to software drawing the
// path, so unlink it from the entry.
if (DrawRectAccel(quantBounds, pathPattern, aOptions, shadowColor,
&handle, false, true) &&
handle) {
if (entry) {
entry->Link(handle);
}
} else if (entry) {
entry->Unlink();
}
return true;
}
}
return false;
}
void DrawTargetWebgl::DrawPath(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions,
bool aAllowStrokeAlpha) {
// If there is a WebGL context, then try to cache the path to avoid slow
// fallbacks.
if (ShouldAccelPath(aOptions, aStrokeOptions) &&
mSharedContext->DrawPathAccel(aPath, aPattern, aOptions, aStrokeOptions,
aAllowStrokeAlpha)) {
return;
}
// There was no path cache entry available to use, so fall back to drawing the
// path with Skia.
MarkSkiaChanged(aOptions);
if (aStrokeOptions) {
mSkia->Stroke(aPath, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->Fill(aPath, aPattern, aOptions);
}
}
// DrawCircleAccel is a more specialized version of DrawPathAccel that attempts
// to cache a unit circle.
bool SharedContextWebgl::DrawCircleAccel(const Point& aCenter, float aRadius,
const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions) {
// Cache a unit circle and transform it to avoid creating a path repeatedly.
if (!mUnitCirclePath) {
mUnitCirclePath = MakePathForCircle(*mCurrentTarget, Point(0, 0), 1);
}
// Scale and translate the circle to the desired shape.
Matrix circleXform(aRadius, 0, 0, aRadius, aCenter.x, aCenter.y);
return DrawPathAccel(mUnitCirclePath, aPattern, aOptions, aStrokeOptions,
true, nullptr, true, &circleXform);
}
void DrawTargetWebgl::DrawCircle(const Point& aOrigin, float aRadius,
const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions) {
if (ShouldAccelPath(aOptions, aStrokeOptions) &&
mSharedContext->DrawCircleAccel(aOrigin, aRadius, aPattern, aOptions,
aStrokeOptions)) {
return;
}
MarkSkiaChanged(aOptions);
if (aStrokeOptions) {
mSkia->StrokeCircle(aOrigin, aRadius, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->FillCircle(aOrigin, aRadius, aPattern, aOptions);
}
}
void DrawTargetWebgl::DrawSurface(SourceSurface* aSurface, const Rect& aDest,
const Rect& aSource,
const DrawSurfaceOptions& aSurfOptions,
const DrawOptions& aOptions) {
Matrix matrix = Matrix::Scaling(aDest.width / aSource.width,
aDest.height / aSource.height);
matrix.PreTranslate(-aSource.x, -aSource.y);
matrix.PostTranslate(aDest.x, aDest.y);
SurfacePattern pattern(aSurface, ExtendMode::CLAMP, matrix,
aSurfOptions.mSamplingFilter);
DrawRect(aDest, pattern, aOptions);
}
void DrawTargetWebgl::Mask(const Pattern& aSource, const Pattern& aMask,
const DrawOptions& aOptions) {
if (!SupportsDrawOptions(aOptions) ||
aMask.GetType() != PatternType::SURFACE ||
aSource.GetType() != PatternType::COLOR) {
MarkSkiaChanged(aOptions);
mSkia->Mask(aSource, aMask, aOptions);
return;
}
auto sourceColor = static_cast<const ColorPattern&>(aSource).mColor;
auto maskPattern = static_cast<const SurfacePattern&>(aMask);
DrawRect(Rect(IntRect(IntPoint(), maskPattern.mSurface->GetSize())),
maskPattern, aOptions, Some(sourceColor));
}
void DrawTargetWebgl::MaskSurface(const Pattern& aSource, SourceSurface* aMask,
Point aOffset, const DrawOptions& aOptions) {
if (!SupportsDrawOptions(aOptions) ||
aSource.GetType() != PatternType::COLOR) {
MarkSkiaChanged(aOptions);
mSkia->MaskSurface(aSource, aMask, aOffset, aOptions);
} else {
auto sourceColor = static_cast<const ColorPattern&>(aSource).mColor;
SurfacePattern pattern(aMask, ExtendMode::CLAMP,
Matrix::Translation(aOffset));
DrawRect(Rect(aOffset, Size(aMask->GetSize())), pattern, aOptions,
Some(sourceColor));
}
}
// Extract the surface's alpha values into an A8 surface.
static already_AddRefed<DataSourceSurface> ExtractAlpha(SourceSurface* aSurface,
bool aAllowSubpixelAA) {
RefPtr<DataSourceSurface> surfaceData = aSurface->GetDataSurface();
if (!surfaceData) {
return nullptr;
}
DataSourceSurface::ScopedMap srcMap(surfaceData, DataSourceSurface::READ);
if (!srcMap.IsMapped()) {
return nullptr;
}
IntSize size = surfaceData->GetSize();
RefPtr<DataSourceSurface> alpha =
Factory::CreateDataSourceSurface(size, SurfaceFormat::A8, false);
if (!alpha) {
return nullptr;
}
DataSourceSurface::ScopedMap dstMap(alpha, DataSourceSurface::WRITE);
if (!dstMap.IsMapped()) {
return nullptr;
}
// For subpixel masks, ignore the alpha and instead sample one of the color
// channels as if they were alpha.
SwizzleData(
srcMap.GetData(), srcMap.GetStride(),
aAllowSubpixelAA ? SurfaceFormat::A8R8G8B8 : surfaceData->GetFormat(),
dstMap.GetData(), dstMap.GetStride(), SurfaceFormat::A8, size);
return alpha.forget();
}
void DrawTargetWebgl::DrawShadow(const Path* aPath, const Pattern& aPattern,
const ShadowOptions& aShadow,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions) {
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
// If there is a WebGL context, then try to cache the path to avoid slow
// fallbacks.
if (ShouldAccelPath(aOptions, aStrokeOptions) &&
mSharedContext->DrawPathAccel(aPath, aPattern, aOptions, aStrokeOptions,
false, &aShadow)) {
return;
}
// There was no path cache entry available to use, so fall back to drawing the
// path with Skia.
MarkSkiaChanged(aOptions);
mSkia->DrawShadow(aPath, aPattern, aShadow, aOptions, aStrokeOptions);
}
void DrawTargetWebgl::DrawSurfaceWithShadow(SourceSurface* aSurface,
const Point& aDest,
const ShadowOptions& aShadow,
CompositionOp aOperator) {
DrawOptions options(1.0f, aOperator);
if (ShouldAccelPath(options, nullptr)) {
SurfacePattern pattern(aSurface, ExtendMode::CLAMP,
Matrix::Translation(aDest));
SkPath skiaPath;
skiaPath.addRect(RectToSkRect(Rect(aSurface->GetRect()) + aDest));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
AutoRestoreTransform restore(this);
SetTransform(Matrix());
if (mSharedContext->DrawPathAccel(path, pattern, options, nullptr, false,
&aShadow, false)) {
DrawRect(Rect(aSurface->GetRect()) + aDest, pattern, options);
return;
}
}
MarkSkiaChanged(options);
mSkia->DrawSurfaceWithShadow(aSurface, aDest, aShadow, aOperator);
}
already_AddRefed<PathBuilder> DrawTargetWebgl::CreatePathBuilder(
FillRule aFillRule) const {
return mSkia->CreatePathBuilder(aFillRule);
}
void DrawTargetWebgl::SetTransform(const Matrix& aTransform) {
DrawTarget::SetTransform(aTransform);
mSkia->SetTransform(aTransform);
}
void DrawTargetWebgl::StrokeRect(const Rect& aRect, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->StrokeRect(aRect, aPattern, aStrokeOptions, aOptions);
} else {
// If the stroke options are unsupported, then transform the rect to a path
// so it can be cached.
SkPath skiaPath;
skiaPath.addRect(RectToSkRect(aRect));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
DrawPath(path, aPattern, aOptions, &aStrokeOptions, true);
}
}
static inline bool IsThinLine(const Matrix& aTransform,
const StrokeOptions& aStrokeOptions) {
auto scale = aTransform.ScaleFactors();
return std::max(scale.xScale, scale.yScale) * aStrokeOptions.mLineWidth <= 1;
}
bool DrawTargetWebgl::StrokeLineAccel(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions,
bool aClosed) {
// Approximating a wide line as a rectangle works only with certain cap styles
// in the general case (butt or square). However, if the line width is
// sufficiently thin, we can either ignore the round cap (or treat it like
// square for zero-length lines) without causing objectionable artifacts.
// Lines may sometimes be used in closed paths that immediately reverse back,
// in which case we need to use mLineJoin instead of mLineCap to determine the
// actual cap used.
CapStyle capStyle =
aClosed ? (aStrokeOptions.mLineJoin == JoinStyle::ROUND ? CapStyle::ROUND
: CapStyle::BUTT)
: aStrokeOptions.mLineCap;
if (mWebglValid && SupportsPattern(aPattern) &&
(capStyle != CapStyle::ROUND ||
IsThinLine(GetTransform(), aStrokeOptions)) &&
aStrokeOptions.mDashPattern == nullptr && aStrokeOptions.mLineWidth > 0) {
// Treat the line as a rectangle whose center-line is the supplied line and
// for which the height is the supplied line width. Generate a matrix that
// maps the X axis to the orientation of the line and the Y axis to the
// normal vector to the line. This only works if the line caps are squared,
// as rounded rectangles are currently not supported for round line caps.
Point start = aStart;
Point dirX = aEnd - aStart;
Point dirY;
float dirLen = dirX.Length();
float scale = aStrokeOptions.mLineWidth;
if (dirLen == 0.0f) {
// If the line is zero-length, then only a cap is rendered.
switch (capStyle) {
case CapStyle::BUTT:
// The cap doesn't extend beyond the line so nothing is drawn.
return true;
case CapStyle::ROUND:
case CapStyle::SQUARE:
// Draw a unit square centered at the single point.
dirX = Point(scale, 0.0f);
dirY = Point(0.0f, scale);
// Offset the start by half a unit.
start.x -= 0.5f * scale;
break;
}
} else {
// Make the scale map to a single unit length.
scale /= dirLen;
dirY = Point(-dirX.y, dirX.x) * scale;
if (capStyle == CapStyle::SQUARE) {
// Offset the start by half a unit.
start -= (dirX * scale) * 0.5f;
// Ensure the extent also accounts for the start and end cap.
dirX += dirX * scale;
}
}
Matrix lineXform(dirX.x, dirX.y, dirY.x, dirY.y, start.x - 0.5f * dirY.x,
start.y - 0.5f * dirY.y);
if (PrepareContext() &&
mSharedContext->DrawRectAccel(Rect(0, 0, 1, 1), aPattern, aOptions,
Nothing(), nullptr, true, true, true,
false, nullptr, nullptr, &lineXform)) {
return true;
}
}
return false;
}
void DrawTargetWebgl::StrokeLine(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->StrokeLine(aStart, aEnd, aPattern, aStrokeOptions, aOptions);
} else if (!StrokeLineAccel(aStart, aEnd, aPattern, aStrokeOptions,
aOptions)) {
// If the stroke options are unsupported, then transform the line to a path
// so it can be cached.
SkPath skiaPath;
skiaPath.moveTo(PointToSkPoint(aStart));
skiaPath.lineTo(PointToSkPoint(aEnd));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
DrawPath(path, aPattern, aOptions, &aStrokeOptions, true);
}
}
void DrawTargetWebgl::Stroke(const Path* aPath, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const auto& skiaPath = static_cast<const PathSkia*>(aPath)->GetPath();
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->Stroke(aPath, aPattern, aStrokeOptions, aOptions);
return;
}
// Avoid using Skia's isLine here because some paths erroneously include a
// closePath at the end, causing isLine to not detect the line. In that case
// we just draw a line in reverse right over the original line.
int numVerbs = skiaPath.countVerbs();
bool allowStrokeAlpha = false;
if (numVerbs >= 2 && numVerbs <= 3) {
uint8_t verbs[3];
skiaPath.getVerbs(verbs, numVerbs);
if (verbs[0] == SkPath::kMove_Verb && verbs[1] == SkPath::kLine_Verb &&
(numVerbs < 3 || verbs[2] == SkPath::kClose_Verb)) {
bool closed = numVerbs >= 3;
Point start = SkPointToPoint(skiaPath.getPoint(0));
Point end = SkPointToPoint(skiaPath.getPoint(1));
if (StrokeLineAccel(start, end, aPattern, aStrokeOptions, aOptions,
closed)) {
if (closed) {
StrokeLineAccel(end, start, aPattern, aStrokeOptions, aOptions, true);
}
return;
}
// If accelerated line drawing failed, just treat it as a path.
allowStrokeAlpha = true;
}
}
DrawPath(aPath, aPattern, aOptions, &aStrokeOptions, allowStrokeAlpha);
}
void DrawTargetWebgl::StrokeCircle(const Point& aOrigin, float aRadius,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
DrawCircle(aOrigin, aRadius, aPattern, aOptions, &aStrokeOptions);
}
bool DrawTargetWebgl::ShouldUseSubpixelAA(ScaledFont* aFont,
const DrawOptions& aOptions) {
AntialiasMode aaMode = aFont->GetDefaultAAMode();
if (aOptions.mAntialiasMode != AntialiasMode::DEFAULT) {
aaMode = aOptions.mAntialiasMode;
}
return GetPermitSubpixelAA() &&
(aaMode == AntialiasMode::DEFAULT ||
aaMode == AntialiasMode::SUBPIXEL) &&
aOptions.mCompositionOp == CompositionOp::OP_OVER;
}
void DrawTargetWebgl::StrokeGlyphs(ScaledFont* aFont,
const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!aFont || !aBuffer.mNumGlyphs) {
return;
}
bool useSubpixelAA = ShouldUseSubpixelAA(aFont, aOptions);
if (mWebglValid && SupportsDrawOptions(aOptions) &&
aPattern.GetType() == PatternType::COLOR && PrepareContext() &&
mSharedContext->DrawGlyphsAccel(aFont, aBuffer, aPattern, aOptions,
&aStrokeOptions, useSubpixelAA)) {
return;
}
if (useSubpixelAA) {
// Subpixel AA does not support layering because the subpixel masks can't
// blend with the over op.
MarkSkiaChanged();
} else {
MarkSkiaChanged(aOptions);
}
mSkia->StrokeGlyphs(aFont, aBuffer, aPattern, aStrokeOptions, aOptions);
}
// Depending on whether we enable subpixel position for a given font, Skia may
// round transformed coordinates differently on each axis. By default, text is
// subpixel quantized horizontally and snapped to a whole integer vertical
// baseline. Axis-flip transforms instead snap to horizontal boundaries while
// subpixel quantizing along the vertical. For other types of transforms, Skia
// just applies subpixel quantization to both axes.
// We must duplicate the amount of quantization Skia applies carefully as a
// boundary value such as 0.49 may round to 0.5 with subpixel quantization,
// but if Skia actually snapped it to a whole integer instead, it would round
// down to 0. If a subsequent glyph with offset 0.51 came in, we might
// mistakenly round it down to 0.5, whereas Skia would round it up to 1. Thus
// we would alias 0.49 and 0.51 to the same cache entry, while Skia would
// actually snap the offset to 0 or 1, depending, resulting in mismatched
// hinting.
static inline IntPoint QuantizeScale(ScaledFont* aFont,
const Matrix& aTransform) {
if (!aFont->UseSubpixelPosition()) {
return {1, 1};
}
if (aTransform._12 == 0) {
// Glyphs are rendered subpixel horizontally, so snap vertically.
return {4, 1};
}
if (aTransform._11 == 0) {
// Glyphs are rendered subpixel vertically, so snap horizontally.
return {1, 4};
}
// The transform isn't aligned, so don't snap.
return {4, 4};
}
// Skia only supports subpixel positioning to the nearest 1/4 fraction. It
// would be wasteful to attempt to cache text runs with positioning that is
// anymore precise than this. To prevent this cache bloat, we quantize the
// transformed glyph positions to the nearest 1/4. The scaling factor for
// the quantization is baked into the transform, so that if subpixel rounding
// is used on a given axis, then the axis will be multiplied by 4 before
// rounding. Since the quantized position is not used for rasterization, the
// transform is safe to modify as such.
static inline IntPoint QuantizePosition(const Matrix& aTransform,
const IntPoint& aOffset,
const Point& aPosition) {
return RoundedToInt(aTransform.TransformPoint(aPosition)) - aOffset;
}
// Get a quantized starting offset for the glyph buffer. We want this offset
// to encapsulate the transform and buffer offset while still preserving the
// relative subpixel positions of the glyphs this offset is subtracted from.
static inline IntPoint QuantizeOffset(const Matrix& aTransform,
const IntPoint& aQuantizeScale,
const GlyphBuffer& aBuffer) {
IntPoint offset =
RoundedToInt(aTransform.TransformPoint(aBuffer.mGlyphs[0].mPosition));
offset.x.value &= ~(aQuantizeScale.x.value - 1);
offset.y.value &= ~(aQuantizeScale.y.value - 1);
return offset;
}
// Hashes a glyph buffer to a single hash value that can be used for quick
// comparisons. Each glyph position is transformed and quantized before
// hashing.
HashNumber GlyphCacheEntry::HashGlyphs(const GlyphBuffer& aBuffer,
const Matrix& aTransform,
const IntPoint& aQuantizeScale) {
HashNumber hash = 0;
IntPoint offset = QuantizeOffset(aTransform, aQuantizeScale, aBuffer);
for (size_t i = 0; i < aBuffer.mNumGlyphs; i++) {
const Glyph& glyph = aBuffer.mGlyphs[i];
hash = AddToHash(hash, glyph.mIndex);
IntPoint pos = QuantizePosition(aTransform, offset, glyph.mPosition);
hash = AddToHash(hash, pos.x);
hash = AddToHash(hash, pos.y);
}
return hash;
}
// Determines if an existing glyph cache entry matches an incoming text run.
inline bool GlyphCacheEntry::MatchesGlyphs(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeOffset,
const IntPoint& aBoundsOffset, const IntRect& aClipRect, HashNumber aHash,
const StrokeOptions* aStrokeOptions) {
// First check if the hash matches to quickly reject the text run before any
// more expensive checking. If it matches, then check if the color and
// transform are the same.
if (aHash != mHash || aBuffer.mNumGlyphs != mBuffer.mNumGlyphs ||
aColor != mColor || !HasMatchingScale(aTransform, mTransform)) {
return false;
}
// Finally check if all glyphs and their quantized positions match.
for (size_t i = 0; i < aBuffer.mNumGlyphs; i++) {
const Glyph& dst = mBuffer.mGlyphs[i];
const Glyph& src = aBuffer.mGlyphs[i];
if (dst.mIndex != src.mIndex ||
dst.mPosition != Point(QuantizePosition(aTransform, aQuantizeOffset,
src.mPosition))) {
return false;
}
}
// Check that stroke options actually match.
if (aStrokeOptions) {
// If stroking, verify that the entry is also stroked with the same options.
if (!(mStrokeOptions && *aStrokeOptions == *mStrokeOptions)) {
return false;
}
} else if (mStrokeOptions) {
// If not stroking, check if the entry is stroked. If so, don't match.
return false;
}
// Verify that the full bounds, once translated and clipped, are equal to the
// clipped bounds.
return (mFullBounds + aBoundsOffset)
.Intersect(aClipRect)
.IsEqualEdges(GetBounds() + aBoundsOffset);
}
GlyphCacheEntry::GlyphCacheEntry(const GlyphBuffer& aBuffer,
const DeviceColor& aColor,
const Matrix& aTransform,
const IntPoint& aQuantizeScale,
const IntRect& aBounds,
const IntRect& aFullBounds, HashNumber aHash,
StoredStrokeOptions* aStrokeOptions)
: CacheEntryImpl<GlyphCacheEntry>(aTransform, aBounds, aHash),
mColor(aColor),
mFullBounds(aFullBounds),
mStrokeOptions(aStrokeOptions) {
// Store a copy of the glyph buffer with positions already quantized for fast
// comparison later.
Glyph* glyphs = new Glyph[aBuffer.mNumGlyphs];
IntPoint offset = QuantizeOffset(aTransform, aQuantizeScale, aBuffer);
// Make the bounds relative to the offset so we can add a new offset later.
IntPoint boundsOffset(offset.x / aQuantizeScale.x,
offset.y / aQuantizeScale.y);
mBounds -= boundsOffset;
mFullBounds -= boundsOffset;
for (size_t i = 0; i < aBuffer.mNumGlyphs; i++) {
Glyph& dst = glyphs[i];
const Glyph& src = aBuffer.mGlyphs[i];
dst.mIndex = src.mIndex;
dst.mPosition = Point(QuantizePosition(aTransform, offset, src.mPosition));
}
mBuffer.mGlyphs = glyphs;
mBuffer.mNumGlyphs = aBuffer.mNumGlyphs;
}
GlyphCacheEntry::~GlyphCacheEntry() { delete[] mBuffer.mGlyphs; }
// Attempt to find a matching entry in the glyph cache. The caller should check
// whether the contained texture handle is valid to determine if it will need to
// render the text run or just reuse the cached texture.
already_AddRefed<GlyphCacheEntry> GlyphCache::FindEntry(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeScale,
const IntRect& aClipRect, HashNumber aHash,
const StrokeOptions* aStrokeOptions) {
IntPoint offset = QuantizeOffset(aTransform, aQuantizeScale, aBuffer);
IntPoint boundsOffset(offset.x / aQuantizeScale.x,
offset.y / aQuantizeScale.y);
for (const RefPtr<GlyphCacheEntry>& entry : GetChain(aHash)) {
if (entry->MatchesGlyphs(aBuffer, aColor, aTransform, offset, boundsOffset,
aClipRect, aHash, aStrokeOptions)) {
return do_AddRef(entry);
}
}
return nullptr;
}
// Insert a new entry in the glyph cache.
already_AddRefed<GlyphCacheEntry> GlyphCache::InsertEntry(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeScale,
const IntRect& aBounds, const IntRect& aFullBounds, HashNumber aHash,
const StrokeOptions* aStrokeOptions) {
StoredStrokeOptions* strokeOptions = nullptr;
if (aStrokeOptions) {
strokeOptions = aStrokeOptions->Clone();
if (!strokeOptions) {
return nullptr;
}
}
RefPtr<GlyphCacheEntry> entry =
new GlyphCacheEntry(aBuffer, aColor, aTransform, aQuantizeScale, aBounds,
aFullBounds, aHash, strokeOptions);
Insert(entry);
return entry.forget();
}
GlyphCache::GlyphCache(ScaledFont* aFont) : mFont(aFont) {}
static void ReleaseGlyphCache(void* aPtr) {
delete static_cast<GlyphCache*>(aPtr);
}
void DrawTargetWebgl::SetPermitSubpixelAA(bool aPermitSubpixelAA) {
DrawTarget::SetPermitSubpixelAA(aPermitSubpixelAA);
mSkia->SetPermitSubpixelAA(aPermitSubpixelAA);
}
// Check for any color glyphs contained within a rasterized BGRA8 text result.
static bool CheckForColorGlyphs(const RefPtr<SourceSurface>& aSurface) {
if (aSurface->GetFormat() != SurfaceFormat::B8G8R8A8) {
return false;
}
RefPtr<DataSourceSurface> dataSurf = aSurface->GetDataSurface();
if (!dataSurf) {
return true;
}
DataSourceSurface::ScopedMap map(dataSurf, DataSourceSurface::READ);
if (!map.IsMapped()) {
return true;
}
IntSize size = dataSurf->GetSize();
const uint8_t* data = map.GetData();
int32_t stride = map.GetStride();
for (int y = 0; y < size.height; y++) {
const uint32_t* x = (const uint32_t*)data;
const uint32_t* end = x + size.width;
for (; x < end; x++) {
// Verify if all components are the same as for premultiplied grayscale.
uint32_t color = *x;
uint32_t gray = color & 0xFF;
gray |= gray << 8;
gray |= gray << 16;
if (color != gray) return true;
}
data += stride;
}
return false;
}
// Draws glyphs to the WebGL target by trying to generate a cached texture for
// the text run that can be subsequently reused to quickly render the text run
// without using any software surfaces.
bool SharedContextWebgl::DrawGlyphsAccel(ScaledFont* aFont,
const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions,
bool aUseSubpixelAA) {
// Whether the font may use bitmaps. If so, we need to render the glyphs with
// color as grayscale bitmaps will use the color while color emoji will not,
// with no easy way to know ahead of time. We currently have to check the
// rasterized result to see if there are any color glyphs. To render subpixel
// masks, we need to know that the rasterized result actually represents a
// subpixel mask rather than try to interpret it as a normal RGBA result such
// as for color emoji.
bool useBitmaps = !aStrokeOptions && aFont->MayUseBitmaps() &&
aOptions.mCompositionOp != CompositionOp::OP_CLEAR;
// Look for an existing glyph cache on the font. If not there, create it.
GlyphCache* cache =
static_cast<GlyphCache*>(aFont->GetUserData(&mGlyphCacheKey));
if (!cache) {
cache = new GlyphCache(aFont);
aFont->AddUserData(&mGlyphCacheKey, cache, ReleaseGlyphCache);
mGlyphCaches.insertFront(cache);
}
// Hash the incoming text run and looking for a matching entry.
DeviceColor color = aOptions.mCompositionOp == CompositionOp::OP_CLEAR
? DeviceColor(1, 1, 1, 1)
: static_cast<const ColorPattern&>(aPattern).mColor;
#ifdef XP_MACOSX
// On macOS, depending on whether the text is classified as light-on-dark or
// dark-on-light, we may end up with different amounts of dilation applied, so
// we can't use the same mask in the two circumstances, or the glyphs will be
// dilated incorrectly.
bool lightOnDark =
useBitmaps || (color.r >= 0.33f && color.g >= 0.33f && color.b >= 0.33f &&
color.r + color.g + color.b >= 2.0f);
#else
// On other platforms, we assume no color-dependent dilation.
const bool lightOnDark = true;
#endif
// If the font has bitmaps, use the color directly. Otherwise, the texture
// will hold a grayscale mask, so encode the key's subpixel and light-or-dark
// state in the color.
const Matrix& currentTransform = mCurrentTarget->GetTransform();
IntPoint quantizeScale = QuantizeScale(aFont, currentTransform);
Matrix quantizeTransform = currentTransform;
quantizeTransform.PostScale(quantizeScale.x, quantizeScale.y);
HashNumber hash =
GlyphCacheEntry::HashGlyphs(aBuffer, quantizeTransform, quantizeScale);
DeviceColor colorOrMask =
useBitmaps
? color
: DeviceColor::Mask(aUseSubpixelAA ? 1 : 0, lightOnDark ? 1 : 0);
IntRect clipRect(IntPoint(), mViewportSize);
RefPtr<GlyphCacheEntry> entry =
cache->FindEntry(aBuffer, colorOrMask, quantizeTransform, quantizeScale,
clipRect, hash, aStrokeOptions);
if (!entry) {
// For small text runs, bounds computations can be expensive relative to the
// cost of looking up a cache result. Avoid doing local bounds computations
// until actually inserting the entry into the cache.
Maybe<Rect> bounds = mCurrentTarget->mSkia->GetGlyphLocalBounds(
aFont, aBuffer, aPattern, aStrokeOptions, aOptions);
if (!bounds) {
return true;
}
// Transform the local bounds into device space so that we know how big
// the cached texture will be.
Rect xformBounds = currentTransform.TransformBounds(*bounds);
// Check if the transform flattens out the bounds before rounding.
if (xformBounds.IsEmpty()) {
return true;
}
IntRect fullBounds = RoundedOut(currentTransform.TransformBounds(*bounds));
IntRect clipBounds = fullBounds.Intersect(clipRect);
// Check if the bounds are completely clipped out.
if (clipBounds.IsEmpty()) {
return true;
}
entry = cache->InsertEntry(aBuffer, colorOrMask, quantizeTransform,
quantizeScale, clipBounds, fullBounds, hash,
aStrokeOptions);
if (!entry) {
return false;
}
}
// The bounds of the entry may have a different transform offset from the
// bounds of the currently drawn text run. The entry bounds are relative to
// the entry's quantized offset already, so just move the bounds to the new
// offset.
IntRect intBounds = entry->GetBounds();
IntPoint newOffset =
QuantizeOffset(quantizeTransform, quantizeScale, aBuffer);
intBounds +=
IntPoint(newOffset.x / quantizeScale.x, newOffset.y / quantizeScale.y);
// Ensure there is a clear border around the text. This must be applied only
// after clipping so that we always have some border texels for filtering.
intBounds.Inflate(2);
RefPtr<TextureHandle> handle = entry->GetHandle();
if (handle && handle->IsValid()) {
// If there is an entry with a valid cached texture handle, then try
// to draw with that. If that for some reason failed, then fall back
// to using the Skia target as that means we were preventing from
// drawing to the WebGL context based on something other than the
// texture.
SurfacePattern pattern(nullptr, ExtendMode::CLAMP,
Matrix::Translation(intBounds.TopLeft()));
if (DrawRectAccel(Rect(intBounds), pattern, aOptions,
useBitmaps ? Nothing() : Some(color), &handle, false,
true, true)) {
return true;
}
} else {
handle = nullptr;
// If we get here, either there wasn't a cached texture handle or it
// wasn't valid. Render the text run into a temporary target.
RefPtr<DrawTargetSkia> textDT = new DrawTargetSkia;
if (textDT->Init(intBounds.Size(),
lightOnDark && !useBitmaps && !aUseSubpixelAA
? SurfaceFormat::A8
: SurfaceFormat::B8G8R8A8)) {
if (!lightOnDark) {
// If rendering dark-on-light text, we need to clear the background to
// white while using an opaque alpha value to allow this.
textDT->FillRect(Rect(IntRect(IntPoint(), intBounds.Size())),
ColorPattern(DeviceColor(1, 1, 1, 1)),
DrawOptions(1.0f, CompositionOp::OP_OVER));
}
textDT->SetTransform(currentTransform *
Matrix::Translation(-intBounds.TopLeft()));
textDT->SetPermitSubpixelAA(aUseSubpixelAA);
DrawOptions drawOptions(1.0f, CompositionOp::OP_OVER,
aOptions.mAntialiasMode);
// If bitmaps might be used, then we have to supply the color, as color
// emoji may ignore it while grayscale bitmaps may use it, with no way to
// know ahead of time. Otherwise, assume the output will be a mask and
// just render it white to determine intensity. Depending on whether the
// text is light or dark, we render white or black text respectively.
ColorPattern colorPattern(
useBitmaps ? color : DeviceColor::Mask(lightOnDark ? 1 : 0, 1));
if (aStrokeOptions) {
textDT->StrokeGlyphs(aFont, aBuffer, colorPattern, *aStrokeOptions,
drawOptions);
} else {
textDT->FillGlyphs(aFont, aBuffer, colorPattern, drawOptions);
}
if (!lightOnDark) {
uint8_t* data = nullptr;
IntSize size;
int32_t stride = 0;
SurfaceFormat format = SurfaceFormat::UNKNOWN;
if (!textDT->LockBits(&data, &size, &stride, &format)) {
return false;
}
uint8_t* row = data;
for (int y = 0; y < size.height; ++y) {
uint8_t* px = row;
for (int x = 0; x < size.width; ++x) {
// If rendering dark-on-light text, we need to invert the final mask
// so that it is in the expected white text on transparent black
// format. The alpha will be initialized to the largest of the
// values.
px[0] = 255 - px[0];
px[1] = 255 - px[1];
px[2] = 255 - px[2];
px[3] = std::max(px[0], std::max(px[1], px[2]));
px += 4;
}
row += stride;
}
textDT->ReleaseBits(data);
}
RefPtr<SourceSurface> textSurface = textDT->Snapshot();
if (textSurface) {
// If we don't expect the text surface to contain color glyphs
// such as from subpixel AA, then do one final check to see if
// any ended up in the result. If not, extract the alpha values
// from the surface so we can render it as a mask.
if (textSurface->GetFormat() != SurfaceFormat::A8 &&
!CheckForColorGlyphs(textSurface)) {
textSurface = ExtractAlpha(textSurface, !useBitmaps);
if (!textSurface) {
// Failed extracting alpha for the text surface...
return false;
}
}
// Attempt to upload the rendered text surface into a texture
// handle and draw it.
SurfacePattern pattern(textSurface, ExtendMode::CLAMP,
Matrix::Translation(intBounds.TopLeft()));
if (DrawRectAccel(Rect(intBounds), pattern, aOptions,
useBitmaps ? Nothing() : Some(color), &handle, false,
true) &&
handle) {
// If drawing succeeded, then the text surface was uploaded to
// a texture handle. Assign it to the glyph cache entry.
entry->Link(handle);
} else {
// If drawing failed, remove the entry from the cache.
entry->Unlink();
}
return true;
}
}
}
return false;
}
void DrawTargetWebgl::FillGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions) {
if (!aFont || !aBuffer.mNumGlyphs) {
return;
}
bool useSubpixelAA = ShouldUseSubpixelAA(aFont, aOptions);
if (mWebglValid && SupportsDrawOptions(aOptions) &&
aPattern.GetType() == PatternType::COLOR && PrepareContext() &&
mSharedContext->DrawGlyphsAccel(aFont, aBuffer, aPattern, aOptions,
nullptr, useSubpixelAA)) {
return;
}
// If not able to cache the text run to a texture, then just fall back to
// drawing with the Skia target.
if (useSubpixelAA) {
// Subpixel AA does not support layering because the subpixel masks can't
// blend with the over op.
MarkSkiaChanged();
} else {
MarkSkiaChanged(aOptions);
}
mSkia->FillGlyphs(aFont, aBuffer, aPattern, aOptions);
}
// Attempts to read the contents of the WebGL context into the Skia target.
bool DrawTargetWebgl::ReadIntoSkia() {
if (mSkiaValid) {
return false;
}
bool didReadback = false;
if (mWebglValid) {
uint8_t* data = nullptr;
IntSize size;
int32_t stride;
SurfaceFormat format;
if (mIsClear) {
// If the WebGL target is still clear, then just clear the Skia target.
mSkia->DetachAllSnapshots();
mSkiaNoClip->FillRect(Rect(mSkiaNoClip->GetRect()), GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_SOURCE));
} else {
// If there's no existing snapshot and we can successfully map the Skia
// target for reading, then try to read into that.
if (!mSnapshot && mSkia->LockBits(&data, &size, &stride, &format)) {
(void)ReadInto(data, stride);
mSkia->ReleaseBits(data);
} else if (RefPtr<SourceSurface> snapshot = Snapshot()) {
// Otherwise, fall back to getting a snapshot from WebGL if available
// and then copying that to Skia.
mSkia->CopySurface(snapshot, GetRect(), IntPoint(0, 0));
}
didReadback = true;
}
}
mSkiaValid = true;
// The Skia data is flat after reading, so disable any layering.
mSkiaLayer = false;
return didReadback;
}
// Reads data from the WebGL context and blends it with the current Skia layer.
void DrawTargetWebgl::FlattenSkia() {
if (!mSkiaValid || !mSkiaLayer) {
return;
}
mSkiaLayer = false;
if (mSkiaLayerClear) {
// If the WebGL target is clear, then there is nothing to blend.
return;
}
if (RefPtr<DataSourceSurface> base = ReadSnapshot()) {
mSkia->DetachAllSnapshots();
mSkiaNoClip->DrawSurface(base, Rect(GetRect()), Rect(GetRect()),
DrawSurfaceOptions(SamplingFilter::POINT),
DrawOptions(1.f, CompositionOp::OP_DEST_OVER));
}
}
// Attempts to draw the contents of the Skia target into the WebGL context.
bool DrawTargetWebgl::FlushFromSkia() {
// If the WebGL context has been lost, then mark it as invalid and fail.
if (mSharedContext->IsContextLost()) {
mWebglValid = false;
return false;
}
// The WebGL target is already valid, so there is nothing to do.
if (mWebglValid) {
return true;
}
// Ensure that DrawRect doesn't recursively call into FlushFromSkia. If
// the Skia target isn't valid, then it doesn't matter what is in the the
// WebGL target either, so only try to blend if there is a valid Skia target.
mWebglValid = true;
if (mSkiaValid) {
AutoRestoreContext restore(this);
// If the Skia target is clear, then there is no need to use a snapshot.
// Directly clear the WebGL target instead.
if (mIsClear) {
if (!DrawRect(Rect(GetRect()), GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_SOURCE), Nothing(),
nullptr, false, false, true)) {
mWebglValid = false;
return false;
}
return true;
}
RefPtr<SourceSurface> skiaSnapshot = mSkia->Snapshot();
if (!skiaSnapshot) {
// There's a valid Skia target to draw to, but for some reason there is
// no available snapshot, so just keep using the Skia target.
mWebglValid = false;
return false;
}
// If there is no layer, then just upload it directly.
if (!mSkiaLayer) {
if (PrepareContext(false) && MarkChanged()) {
if (RefPtr<DataSourceSurface> data = skiaSnapshot->GetDataSurface()) {
mSharedContext->UploadSurface(data, mFormat, GetRect(), IntPoint(),
false, false, mTex);
return true;
}
}
// Failed to upload the Skia snapshot.
mWebglValid = false;
return false;
}
SurfacePattern pattern(skiaSnapshot, ExtendMode::CLAMP);
// If there is a layer, blend the snapshot with the WebGL context.
if (!DrawRect(Rect(GetRect()), pattern,
DrawOptions(1.0f, CompositionOp::OP_OVER), Nothing(),
&mSnapshotTexture, false, false, true, true)) {
// If accelerated drawing failed for some reason, then leave the Skia
// target unchanged.
mWebglValid = false;
return false;
}
}
return true;
}
void DrawTargetWebgl::UsageProfile::BeginFrame() {
// Reset the usage profile counters for the new frame.
mFallbacks = 0;
mLayers = 0;
mCacheMisses = 0;
mCacheHits = 0;
mUncachedDraws = 0;
mReadbacks = 0;
}
void DrawTargetWebgl::UsageProfile::EndFrame() {
bool failed = false;
// If we hit a complete fallback to software rendering, or if cache misses
// were more than cutoff ratio of all requests, then we consider the frame as
// having failed performance profiling.
float cacheRatio =
StaticPrefs::gfx_canvas_accelerated_profile_cache_miss_ratio();
if (mFallbacks > 0 ||
float(mCacheMisses + mReadbacks + mLayers) >
cacheRatio * float(mCacheMisses + mCacheHits + mUncachedDraws +
mReadbacks + mLayers)) {
failed = true;
}
if (failed) {
++mFailedFrames;
}
++mFrameCount;
}
bool DrawTargetWebgl::UsageProfile::RequiresRefresh() const {
// If we've rendered at least the required number of frames for a profile and
// more than the cutoff ratio of frames did not meet performance criteria,
// then we should stop using an accelerated canvas.
uint32_t profileFrames = StaticPrefs::gfx_canvas_accelerated_profile_frames();
if (!profileFrames || mFrameCount < profileFrames) {
return false;
}
float failRatio =
StaticPrefs::gfx_canvas_accelerated_profile_fallback_ratio();
return mFailedFrames > failRatio * mFrameCount;
}
void SharedContextWebgl::CachePrefs() {
uint32_t capacity = StaticPrefs::gfx_canvas_accelerated_gpu_path_size() << 20;
if (capacity != mPathVertexCapacity) {
mPathVertexCapacity = capacity;
if (mPathCache) {
mPathCache->ClearVertexRanges();
}
if (mPathVertexBuffer) {
ResetPathVertexBuffer();
}
}
mPathMaxComplexity =
StaticPrefs::gfx_canvas_accelerated_gpu_path_complexity();
mPathAAStroke = StaticPrefs::gfx_canvas_accelerated_aa_stroke_enabled();
mPathWGRStroke = StaticPrefs::gfx_canvas_accelerated_stroke_to_fill_path();
}
// For use within CanvasRenderingContext2D, called on BorrowDrawTarget.
void DrawTargetWebgl::BeginFrame(bool aInvalidContents) {
// If still rendering into the Skia target, switch back to the WebGL
// context.
if (!mWebglValid) {
if (aInvalidContents) {
// If nothing needs to persist, just mark the WebGL context valid.
mWebglValid = true;
// Even if the Skia framebuffer is marked clear, since the WebGL
// context is not valid, its contents may be out-of-date and not
// necessarily clear.
mIsClear = false;
} else {
FlushFromSkia();
}
}
// Check if we need to clear out any cached because of memory pressure.
mSharedContext->ClearCachesIfNecessary();
// Cache any prefs for the frame.
mSharedContext->CachePrefs();
mProfile.BeginFrame();
}
// For use within CanvasRenderingContext2D, called on ReturnDrawTarget.
void DrawTargetWebgl::EndFrame() {
if (StaticPrefs::gfx_canvas_accelerated_debug()) {
// Draw a green rectangle in the upper right corner to indicate
// acceleration.
IntRect corner = IntRect(mSize.width - 16, 0, 16, 16).Intersect(GetRect());
DrawRect(Rect(corner), ColorPattern(DeviceColor(0.0f, 1.0f, 0.0f, 1.0f)),
DrawOptions(), Nothing(), nullptr, false, false);
}
mProfile.EndFrame();
// Ensure we're not somehow using more than the allowed texture memory.
mSharedContext->PruneTextureMemory();
// Signal that we're done rendering the frame in case no present occurs.
mSharedContext->mWebgl->EndOfFrame();
// Check if we need to clear out any cached because of memory pressure.
mSharedContext->ClearCachesIfNecessary();
}
bool DrawTargetWebgl::CopyToSwapChain(
layers::TextureType aTextureType, layers::RemoteTextureId aId,
layers::RemoteTextureOwnerId aOwnerId,
layers::RemoteTextureOwnerClient* aOwnerClient) {
if (!mWebglValid && !FlushFromSkia()) {
return false;
}
// Copy and swizzle the WebGL framebuffer to the swap chain front buffer.
webgl::SwapChainOptions options;
options.bgra = true;
// Allow async present to be toggled on for accelerated Canvas2D
// independent of WebGL via pref.
options.forceAsyncPresent =
StaticPrefs::gfx_canvas_accelerated_async_present();
options.remoteTextureId = aId;
options.remoteTextureOwnerId = aOwnerId;
return mSharedContext->mWebgl->CopyToSwapChain(mFramebuffer, aTextureType,
options, aOwnerClient);
}
already_AddRefed<DrawTarget> DrawTargetWebgl::CreateSimilarDrawTarget(
const IntSize& aSize, SurfaceFormat aFormat) const {
return mSkia->CreateSimilarDrawTarget(aSize, aFormat);
}
bool DrawTargetWebgl::CanCreateSimilarDrawTarget(const IntSize& aSize,
SurfaceFormat aFormat) const {
return mSkia->CanCreateSimilarDrawTarget(aSize, aFormat);
}
RefPtr<DrawTarget> DrawTargetWebgl::CreateClippedDrawTarget(
const Rect& aBounds, SurfaceFormat aFormat) {
return mSkia->CreateClippedDrawTarget(aBounds, aFormat);
}
already_AddRefed<SourceSurface> DrawTargetWebgl::CreateSourceSurfaceFromData(
unsigned char* aData, const IntSize& aSize, int32_t aStride,
SurfaceFormat aFormat) const {
return mSkia->CreateSourceSurfaceFromData(aData, aSize, aStride, aFormat);
}
already_AddRefed<SourceSurface>
DrawTargetWebgl::CreateSourceSurfaceFromNativeSurface(
const NativeSurface& aSurface) const {
return mSkia->CreateSourceSurfaceFromNativeSurface(aSurface);
}
already_AddRefed<SourceSurface> DrawTargetWebgl::OptimizeSourceSurface(
SourceSurface* aSurface) const {
if (aSurface->GetType() == SurfaceType::WEBGL) {
return do_AddRef(aSurface);
}
return mSkia->OptimizeSourceSurface(aSurface);
}
already_AddRefed<SourceSurface>
DrawTargetWebgl::OptimizeSourceSurfaceForUnknownAlpha(
SourceSurface* aSurface) const {
return mSkia->OptimizeSourceSurfaceForUnknownAlpha(aSurface);
}
already_AddRefed<GradientStops> DrawTargetWebgl::CreateGradientStops(
GradientStop* aStops, uint32_t aNumStops, ExtendMode aExtendMode) const {
return mSkia->CreateGradientStops(aStops, aNumStops, aExtendMode);
}
already_AddRefed<FilterNode> DrawTargetWebgl::CreateFilter(FilterType aType) {
return mSkia->CreateFilter(aType);
}
void DrawTargetWebgl::DrawFilter(FilterNode* aNode, const Rect& aSourceRect,
const Point& aDestPoint,
const DrawOptions& aOptions) {
MarkSkiaChanged(aOptions);
mSkia->DrawFilter(aNode, aSourceRect, aDestPoint, aOptions);
}
bool DrawTargetWebgl::Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix) {
MarkSkiaChanged();
return mSkia->Draw3DTransformedSurface(aSurface, aMatrix);
}
void DrawTargetWebgl::PushLayer(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds, bool aCopyBackground) {
PushLayerWithBlend(aOpaque, aOpacity, aMask, aMaskTransform, aBounds,
aCopyBackground, CompositionOp::OP_OVER);
}
void DrawTargetWebgl::PushLayerWithBlend(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds,
bool aCopyBackground,
CompositionOp aCompositionOp) {
MarkSkiaChanged(DrawOptions(aOpacity, aCompositionOp));
mSkia->PushLayerWithBlend(aOpaque, aOpacity, aMask, aMaskTransform, aBounds,
aCopyBackground, aCompositionOp);
++mLayerDepth;
SetPermitSubpixelAA(mSkia->GetPermitSubpixelAA());
}
void DrawTargetWebgl::PopLayer() {
MOZ_ASSERT(mSkiaValid);
MOZ_ASSERT(mLayerDepth > 0);
--mLayerDepth;
mSkia->PopLayer();
SetPermitSubpixelAA(mSkia->GetPermitSubpixelAA());
}
} // namespace mozilla::gfx