forked from mirrors/gecko-dev
Extend the per-frame-class bit we have to devirtualize IsLeaf to also devirtualize IsFrameOfType. That is, move this data to FrameClasses.py. This was done by going through all the frame classes, trying to preserve behavior. The only quirky thing is that I had to add two more trivial frame classes, `nsAudioFrame` for audio elements, and `nsFloatingFirstLetterFrame`. That's because these frame classes were returning different answers at runtime, but they do this only on conditions that trigger frame reconstruction (floating, and being an audio element, respectively). Differential Revision: https://phabricator.services.mozilla.com/D194703
6233 lines
265 KiB
C++
6233 lines
265 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* rendering object for CSS "display: flex" */
|
|
|
|
#include "nsFlexContainerFrame.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "gfxContext.h"
|
|
#include "mozilla/Baseline.h"
|
|
#include "mozilla/ComputedStyle.h"
|
|
#include "mozilla/CSSOrderAwareFrameIterator.h"
|
|
#include "mozilla/FloatingPoint.h"
|
|
#include "mozilla/Logging.h"
|
|
#include "mozilla/PresShell.h"
|
|
#include "mozilla/StaticPrefs_layout.h"
|
|
#include "mozilla/WritingModes.h"
|
|
#include "nsBlockFrame.h"
|
|
#include "nsContentUtils.h"
|
|
#include "nsCSSAnonBoxes.h"
|
|
#include "nsDebug.h"
|
|
#include "nsDisplayList.h"
|
|
#include "nsFieldSetFrame.h"
|
|
#include "nsIFrameInlines.h"
|
|
#include "nsLayoutUtils.h"
|
|
#include "nsPlaceholderFrame.h"
|
|
#include "nsPresContext.h"
|
|
|
|
using namespace mozilla;
|
|
using namespace mozilla::layout;
|
|
|
|
// Convenience typedefs for helper classes that we forward-declare in .h file
|
|
// (so that nsFlexContainerFrame methods can use them as parameters):
|
|
using FlexItem = nsFlexContainerFrame::FlexItem;
|
|
using FlexLine = nsFlexContainerFrame::FlexLine;
|
|
using FlexboxAxisTracker = nsFlexContainerFrame::FlexboxAxisTracker;
|
|
using StrutInfo = nsFlexContainerFrame::StrutInfo;
|
|
using CachedBAxisMeasurement = nsFlexContainerFrame::CachedBAxisMeasurement;
|
|
|
|
static mozilla::LazyLogModule gFlexContainerLog("FlexContainer");
|
|
#define FLEX_LOG(...) \
|
|
MOZ_LOG(gFlexContainerLog, LogLevel::Debug, (__VA_ARGS__));
|
|
#define FLEX_LOGV(...) \
|
|
MOZ_LOG(gFlexContainerLog, LogLevel::Verbose, (__VA_ARGS__));
|
|
|
|
// Returns true if aFlexContainer is a frame for some element that has
|
|
// display:-webkit-{inline-}box (or -moz-{inline-}box). aFlexContainer is
|
|
// expected to be an instance of nsFlexContainerFrame (enforced with an assert);
|
|
// otherwise, this function's state-bit-check here is bogus.
|
|
static bool IsLegacyBox(const nsIFrame* aFlexContainer) {
|
|
MOZ_ASSERT(aFlexContainer->IsFlexContainerFrame(),
|
|
"only flex containers may be passed to this function");
|
|
return aFlexContainer->HasAnyStateBits(
|
|
NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX);
|
|
}
|
|
|
|
// Returns the OrderState enum we should pass to CSSOrderAwareFrameIterator
|
|
// (depending on whether aFlexContainer has
|
|
// NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER state bit).
|
|
static CSSOrderAwareFrameIterator::OrderState OrderStateForIter(
|
|
const nsFlexContainerFrame* aFlexContainer) {
|
|
return aFlexContainer->HasAnyStateBits(
|
|
NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
|
|
? CSSOrderAwareFrameIterator::OrderState::Ordered
|
|
: CSSOrderAwareFrameIterator::OrderState::Unordered;
|
|
}
|
|
|
|
// Returns the OrderingProperty enum that we should pass to
|
|
// CSSOrderAwareFrameIterator (depending on whether it's a legacy box).
|
|
static CSSOrderAwareFrameIterator::OrderingProperty OrderingPropertyForIter(
|
|
const nsFlexContainerFrame* aFlexContainer) {
|
|
return IsLegacyBox(aFlexContainer)
|
|
? CSSOrderAwareFrameIterator::OrderingProperty::BoxOrdinalGroup
|
|
: CSSOrderAwareFrameIterator::OrderingProperty::Order;
|
|
}
|
|
|
|
// Returns the "align-items" value that's equivalent to the legacy "box-align"
|
|
// value in the given style struct.
|
|
static StyleAlignFlags ConvertLegacyStyleToAlignItems(
|
|
const nsStyleXUL* aStyleXUL) {
|
|
// -[moz|webkit]-box-align corresponds to modern "align-items"
|
|
switch (aStyleXUL->mBoxAlign) {
|
|
case StyleBoxAlign::Stretch:
|
|
return StyleAlignFlags::STRETCH;
|
|
case StyleBoxAlign::Start:
|
|
return StyleAlignFlags::FLEX_START;
|
|
case StyleBoxAlign::Center:
|
|
return StyleAlignFlags::CENTER;
|
|
case StyleBoxAlign::Baseline:
|
|
return StyleAlignFlags::BASELINE;
|
|
case StyleBoxAlign::End:
|
|
return StyleAlignFlags::FLEX_END;
|
|
}
|
|
|
|
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxAlign enum value");
|
|
// Fall back to default value of "align-items" property:
|
|
return StyleAlignFlags::STRETCH;
|
|
}
|
|
|
|
// Returns the "justify-content" value that's equivalent to the legacy
|
|
// "box-pack" value in the given style struct.
|
|
static StyleContentDistribution ConvertLegacyStyleToJustifyContent(
|
|
const nsStyleXUL* aStyleXUL) {
|
|
// -[moz|webkit]-box-pack corresponds to modern "justify-content"
|
|
switch (aStyleXUL->mBoxPack) {
|
|
case StyleBoxPack::Start:
|
|
return {StyleAlignFlags::FLEX_START};
|
|
case StyleBoxPack::Center:
|
|
return {StyleAlignFlags::CENTER};
|
|
case StyleBoxPack::End:
|
|
return {StyleAlignFlags::FLEX_END};
|
|
case StyleBoxPack::Justify:
|
|
return {StyleAlignFlags::SPACE_BETWEEN};
|
|
}
|
|
|
|
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxPack enum value");
|
|
// Fall back to default value of "justify-content" property:
|
|
return {StyleAlignFlags::FLEX_START};
|
|
}
|
|
|
|
// Check if the size is auto or it is a keyword in the block axis.
|
|
// |aIsInline| should represent whether aSize is in the inline axis, from the
|
|
// perspective of the writing mode of the flex item that the size comes from.
|
|
//
|
|
// max-content and min-content should behave as property's initial value.
|
|
// Bug 567039: We treat -moz-fit-content and -moz-available as property's
|
|
// initial value for now.
|
|
static inline bool IsAutoOrEnumOnBSize(const StyleSize& aSize, bool aIsInline) {
|
|
return aSize.IsAuto() || (!aIsInline && !aSize.IsLengthPercentage());
|
|
}
|
|
|
|
// Encapsulates our flex container's main & cross axes. This class is backed by
|
|
// a FlexboxAxisInfo helper member variable, and it adds some convenience APIs
|
|
// on top of what that struct offers.
|
|
class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker {
|
|
public:
|
|
explicit FlexboxAxisTracker(const nsFlexContainerFrame* aFlexContainer);
|
|
|
|
// Accessors:
|
|
LogicalAxis MainAxis() const {
|
|
return IsRowOriented() ? eLogicalAxisInline : eLogicalAxisBlock;
|
|
}
|
|
LogicalAxis CrossAxis() const {
|
|
return IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline;
|
|
}
|
|
|
|
LogicalSide MainAxisStartSide() const;
|
|
LogicalSide MainAxisEndSide() const {
|
|
return GetOppositeSide(MainAxisStartSide());
|
|
}
|
|
|
|
LogicalSide CrossAxisStartSide() const;
|
|
LogicalSide CrossAxisEndSide() const {
|
|
return GetOppositeSide(CrossAxisStartSide());
|
|
}
|
|
|
|
mozilla::Side MainAxisPhysicalStartSide() const {
|
|
return mWM.PhysicalSide(MainAxisStartSide());
|
|
}
|
|
mozilla::Side MainAxisPhysicalEndSide() const {
|
|
return mWM.PhysicalSide(MainAxisEndSide());
|
|
}
|
|
|
|
mozilla::Side CrossAxisPhysicalStartSide() const {
|
|
return mWM.PhysicalSide(CrossAxisStartSide());
|
|
}
|
|
mozilla::Side CrossAxisPhysicalEndSide() const {
|
|
return mWM.PhysicalSide(CrossAxisEndSide());
|
|
}
|
|
|
|
// Returns the flex container's writing mode.
|
|
WritingMode GetWritingMode() const { return mWM; }
|
|
|
|
// Returns true if our main axis is in the reverse direction of our
|
|
// writing mode's corresponding axis. (From 'flex-direction: *-reverse')
|
|
bool IsMainAxisReversed() const { return mAxisInfo.mIsMainAxisReversed; }
|
|
// Returns true if our cross axis is in the reverse direction of our
|
|
// writing mode's corresponding axis. (From 'flex-wrap: *-reverse')
|
|
bool IsCrossAxisReversed() const { return mAxisInfo.mIsCrossAxisReversed; }
|
|
|
|
bool IsRowOriented() const { return mAxisInfo.mIsRowOriented; }
|
|
bool IsColumnOriented() const { return !IsRowOriented(); }
|
|
|
|
// aSize is expected to match the flex container's WritingMode.
|
|
nscoord MainComponent(const LogicalSize& aSize) const {
|
|
return IsRowOriented() ? aSize.ISize(mWM) : aSize.BSize(mWM);
|
|
}
|
|
int32_t MainComponent(const LayoutDeviceIntSize& aIntSize) const {
|
|
return IsMainAxisHorizontal() ? aIntSize.width : aIntSize.height;
|
|
}
|
|
|
|
// aSize is expected to match the flex container's WritingMode.
|
|
nscoord CrossComponent(const LogicalSize& aSize) const {
|
|
return IsRowOriented() ? aSize.BSize(mWM) : aSize.ISize(mWM);
|
|
}
|
|
int32_t CrossComponent(const LayoutDeviceIntSize& aIntSize) const {
|
|
return IsMainAxisHorizontal() ? aIntSize.height : aIntSize.width;
|
|
}
|
|
|
|
// NOTE: aMargin is expected to use the flex container's WritingMode.
|
|
nscoord MarginSizeInMainAxis(const LogicalMargin& aMargin) const {
|
|
// If we're row-oriented, our main axis is the inline axis.
|
|
return IsRowOriented() ? aMargin.IStartEnd(mWM) : aMargin.BStartEnd(mWM);
|
|
}
|
|
nscoord MarginSizeInCrossAxis(const LogicalMargin& aMargin) const {
|
|
// If we're row-oriented, our cross axis is the block axis.
|
|
return IsRowOriented() ? aMargin.BStartEnd(mWM) : aMargin.IStartEnd(mWM);
|
|
}
|
|
|
|
/**
|
|
* Converts a "flex-relative" point (a main-axis & cross-axis coordinate)
|
|
* into a LogicalPoint, using the flex container's writing mode.
|
|
*
|
|
* @arg aMainCoord The main-axis coordinate -- i.e an offset from the
|
|
* main-start edge of the flex container's content box.
|
|
* @arg aCrossCoord The cross-axis coordinate -- i.e an offset from the
|
|
* cross-start edge of the flex container's content box.
|
|
* @arg aContainerMainSize The main size of flex container's content box.
|
|
* @arg aContainerCrossSize The cross size of flex container's content box.
|
|
* @return A LogicalPoint, with the flex container's writing mode, that
|
|
* represents the same position. The logical coordinates are
|
|
* relative to the flex container's content box.
|
|
*/
|
|
LogicalPoint LogicalPointFromFlexRelativePoint(
|
|
nscoord aMainCoord, nscoord aCrossCoord, nscoord aContainerMainSize,
|
|
nscoord aContainerCrossSize) const {
|
|
nscoord logicalCoordInMainAxis =
|
|
IsMainAxisReversed() ? aContainerMainSize - aMainCoord : aMainCoord;
|
|
nscoord logicalCoordInCrossAxis =
|
|
IsCrossAxisReversed() ? aContainerCrossSize - aCrossCoord : aCrossCoord;
|
|
|
|
return IsRowOriented() ? LogicalPoint(mWM, logicalCoordInMainAxis,
|
|
logicalCoordInCrossAxis)
|
|
: LogicalPoint(mWM, logicalCoordInCrossAxis,
|
|
logicalCoordInMainAxis);
|
|
}
|
|
|
|
/**
|
|
* Converts a "flex-relative" size (a main-axis & cross-axis size)
|
|
* into a LogicalSize, using the flex container's writing mode.
|
|
*
|
|
* @arg aMainSize The main-axis size.
|
|
* @arg aCrossSize The cross-axis size.
|
|
* @return A LogicalSize, with the flex container's writing mode, that
|
|
* represents the same size.
|
|
*/
|
|
LogicalSize LogicalSizeFromFlexRelativeSizes(nscoord aMainSize,
|
|
nscoord aCrossSize) const {
|
|
return IsRowOriented() ? LogicalSize(mWM, aMainSize, aCrossSize)
|
|
: LogicalSize(mWM, aCrossSize, aMainSize);
|
|
}
|
|
|
|
/**
|
|
* Converts a "flex-relative" ascent (the distance from the flex container's
|
|
* content-box cross-start edge to its baseline) into a logical ascent (the
|
|
* distance from the flex container's content-box block-start edge to its
|
|
* baseline).
|
|
*/
|
|
nscoord LogicalAscentFromFlexRelativeAscent(
|
|
nscoord aFlexRelativeAscent, nscoord aContentBoxCrossSize) const {
|
|
return (IsCrossAxisReversed() ? aContentBoxCrossSize - aFlexRelativeAscent
|
|
: aFlexRelativeAscent);
|
|
}
|
|
|
|
bool IsMainAxisHorizontal() const {
|
|
// If we're row-oriented, and our writing mode is NOT vertical,
|
|
// or we're column-oriented and our writing mode IS vertical,
|
|
// then our main axis is horizontal. This handles all cases:
|
|
return IsRowOriented() != mWM.IsVertical();
|
|
}
|
|
|
|
// Returns true if this flex item's inline axis in aItemWM is parallel (or
|
|
// antiparallel) to the container's main axis. Returns false, otherwise.
|
|
//
|
|
// Note: this is a helper used before constructing FlexItem. Inside of flex
|
|
// reflow code, FlexItem::IsInlineAxisMainAxis() is equivalent & more optimal.
|
|
bool IsInlineAxisMainAxis(WritingMode aItemWM) const {
|
|
return IsRowOriented() != GetWritingMode().IsOrthogonalTo(aItemWM);
|
|
}
|
|
|
|
// Maps justify-*: 'left' or 'right' to 'start' or 'end'.
|
|
StyleAlignFlags ResolveJustifyLeftRight(const StyleAlignFlags& aFlags) const {
|
|
MOZ_ASSERT(
|
|
aFlags == StyleAlignFlags::LEFT || aFlags == StyleAlignFlags::RIGHT,
|
|
"This helper accepts only 'LEFT' or 'RIGHT' flags!");
|
|
|
|
const auto wm = GetWritingMode();
|
|
const bool isJustifyLeft = aFlags == StyleAlignFlags::LEFT;
|
|
if (IsColumnOriented()) {
|
|
if (!wm.IsVertical()) {
|
|
// Container's alignment axis (main axis) is *not* parallel to the
|
|
// line-left <-> line-right axis or the physical left <-> physical right
|
|
// axis, so we map both 'left' and 'right' to 'start'.
|
|
return StyleAlignFlags::START;
|
|
}
|
|
|
|
MOZ_ASSERT(wm.PhysicalAxis(MainAxis()) == eAxisHorizontal,
|
|
"Vertical column-oriented flex container's main axis should "
|
|
"be parallel to physical left <-> right axis!");
|
|
// Map 'left' or 'right' to 'start' or 'end', depending on its block flow
|
|
// direction.
|
|
return isJustifyLeft == wm.IsVerticalLR() ? StyleAlignFlags::START
|
|
: StyleAlignFlags::END;
|
|
}
|
|
|
|
MOZ_ASSERT(MainAxis() == eLogicalAxisInline,
|
|
"Row-oriented flex container's main axis should be parallel to "
|
|
"line-left <-> line-right axis!");
|
|
|
|
// If we get here, we're operating on the flex container's inline axis,
|
|
// so we map 'left' to whichever of 'start' or 'end' corresponds to the
|
|
// *line-relative* left side; and similar for 'right'.
|
|
return isJustifyLeft == wm.IsBidiLTR() ? StyleAlignFlags::START
|
|
: StyleAlignFlags::END;
|
|
}
|
|
|
|
// Delete copy-constructor & reassignment operator, to prevent accidental
|
|
// (unnecessary) copying.
|
|
FlexboxAxisTracker(const FlexboxAxisTracker&) = delete;
|
|
FlexboxAxisTracker& operator=(const FlexboxAxisTracker&) = delete;
|
|
|
|
private:
|
|
const WritingMode mWM; // The flex container's writing mode.
|
|
const FlexboxAxisInfo mAxisInfo;
|
|
};
|
|
|
|
/**
|
|
* Represents a flex item.
|
|
* Includes the various pieces of input that the Flexbox Layout Algorithm uses
|
|
* to resolve a flexible width.
|
|
*/
|
|
class nsFlexContainerFrame::FlexItem final {
|
|
public:
|
|
// Normal constructor:
|
|
FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
|
|
float aFlexShrink, nscoord aFlexBaseSize, nscoord aMainMinSize,
|
|
nscoord aMainMaxSize, nscoord aTentativeCrossSize,
|
|
nscoord aCrossMinSize, nscoord aCrossMaxSize,
|
|
const FlexboxAxisTracker& aAxisTracker);
|
|
|
|
// Simplified constructor, to be used only for generating "struts":
|
|
// (NOTE: This "strut" constructor uses the *container's* writing mode, which
|
|
// we'll use on this FlexItem instead of the child frame's real writing mode.
|
|
// This is fine - it doesn't matter what writing mode we use for a
|
|
// strut, since it won't render any content and we already know its size.)
|
|
FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM,
|
|
const FlexboxAxisTracker& aAxisTracker);
|
|
|
|
// Clone existing FlexItem for its underlying frame's continuation.
|
|
// @param aContinuation a continuation in our next-in-flow chain.
|
|
FlexItem CloneFor(nsIFrame* const aContinuation) const {
|
|
MOZ_ASSERT(Frame() == aContinuation->FirstInFlow(),
|
|
"aContinuation should be in aItem's continuation chain!");
|
|
FlexItem item(*this);
|
|
item.mFrame = aContinuation;
|
|
item.mHadMeasuringReflow = false;
|
|
return item;
|
|
}
|
|
|
|
// Accessors
|
|
nsIFrame* Frame() const { return mFrame; }
|
|
nscoord FlexBaseSize() const { return mFlexBaseSize; }
|
|
|
|
nscoord MainMinSize() const {
|
|
MOZ_ASSERT(!mNeedsMinSizeAutoResolution,
|
|
"Someone's using an unresolved 'auto' main min-size");
|
|
return mMainMinSize;
|
|
}
|
|
nscoord MainMaxSize() const { return mMainMaxSize; }
|
|
|
|
// Note: These return the main-axis position and size of our *content box*.
|
|
nscoord MainSize() const { return mMainSize; }
|
|
nscoord MainPosition() const { return mMainPosn; }
|
|
|
|
nscoord CrossMinSize() const { return mCrossMinSize; }
|
|
nscoord CrossMaxSize() const { return mCrossMaxSize; }
|
|
|
|
// Note: These return the cross-axis position and size of our *content box*.
|
|
nscoord CrossSize() const { return mCrossSize; }
|
|
nscoord CrossPosition() const { return mCrossPosn; }
|
|
|
|
// Lazy getter for mAscent or mAscentForLast.
|
|
nscoord ResolvedAscent(bool aUseFirstBaseline) const {
|
|
// XXX We should be using the *container's* writing-mode (mCBWM) here,
|
|
// instead of the item's (mWM). This is essentially bug 1155322.
|
|
nscoord& ascent = aUseFirstBaseline ? mAscent : mAscentForLast;
|
|
if (ascent != ReflowOutput::ASK_FOR_BASELINE) {
|
|
return ascent;
|
|
}
|
|
|
|
// Use GetFirstLineBaseline() or GetLastLineBaseline() as appropriate:
|
|
bool found = aUseFirstBaseline
|
|
? nsLayoutUtils::GetFirstLineBaseline(mWM, mFrame, &ascent)
|
|
: nsLayoutUtils::GetLastLineBaseline(mWM, mFrame, &ascent);
|
|
if (found) {
|
|
return ascent;
|
|
}
|
|
|
|
// If the nsLayoutUtils getter fails, then ask the frame directly:
|
|
auto baselineGroup = aUseFirstBaseline ? BaselineSharingGroup::First
|
|
: BaselineSharingGroup::Last;
|
|
if (auto baseline = mFrame->GetNaturalBaselineBOffset(
|
|
mWM, baselineGroup, BaselineExportContext::Other)) {
|
|
// Offset for last baseline from `GetNaturalBaselineBOffset` originates
|
|
// from the frame's block end, so convert it back.
|
|
ascent = baselineGroup == BaselineSharingGroup::First
|
|
? *baseline
|
|
: mFrame->BSize(mWM) - *baseline;
|
|
return ascent;
|
|
}
|
|
|
|
// We couldn't determine a baseline, so we synthesize one from border box:
|
|
ascent = Baseline::SynthesizeBOffsetFromBorderBox(
|
|
mFrame, mWM, BaselineSharingGroup::First);
|
|
return ascent;
|
|
}
|
|
|
|
// Convenience methods to compute the main & cross size of our *margin-box*.
|
|
nscoord OuterMainSize() const {
|
|
return mMainSize + MarginBorderPaddingSizeInMainAxis();
|
|
}
|
|
|
|
nscoord OuterCrossSize() const {
|
|
return mCrossSize + MarginBorderPaddingSizeInCrossAxis();
|
|
}
|
|
|
|
// Convenience methods to synthesize a style main size or a style cross size
|
|
// with box-size considered, to provide the size overrides when constructing
|
|
// ReflowInput for flex items.
|
|
StyleSize StyleMainSize() const {
|
|
nscoord mainSize = MainSize();
|
|
if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) {
|
|
mainSize += BorderPaddingSizeInMainAxis();
|
|
}
|
|
return StyleSize::LengthPercentage(
|
|
LengthPercentage::FromAppUnits(mainSize));
|
|
}
|
|
|
|
StyleSize StyleCrossSize() const {
|
|
nscoord crossSize = CrossSize();
|
|
if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) {
|
|
crossSize += BorderPaddingSizeInCrossAxis();
|
|
}
|
|
return StyleSize::LengthPercentage(
|
|
LengthPercentage::FromAppUnits(crossSize));
|
|
}
|
|
|
|
// Returns the distance between this FlexItem's baseline and the cross-start
|
|
// edge of its margin-box. Used in baseline alignment.
|
|
//
|
|
// (This function needs to be told which physical start side we're measuring
|
|
// the baseline from, so that it can look up the appropriate components from
|
|
// margin.)
|
|
nscoord BaselineOffsetFromOuterCrossEdge(mozilla::Side aStartSide,
|
|
bool aUseFirstLineBaseline) const;
|
|
|
|
double ShareOfWeightSoFar() const { return mShareOfWeightSoFar; }
|
|
|
|
bool IsFrozen() const { return mIsFrozen; }
|
|
|
|
bool HadMinViolation() const {
|
|
MOZ_ASSERT(!mIsFrozen, "min violation has no meaning for frozen items.");
|
|
return mHadMinViolation;
|
|
}
|
|
|
|
bool HadMaxViolation() const {
|
|
MOZ_ASSERT(!mIsFrozen, "max violation has no meaning for frozen items.");
|
|
return mHadMaxViolation;
|
|
}
|
|
|
|
bool WasMinClamped() const {
|
|
MOZ_ASSERT(mIsFrozen, "min clamping has no meaning for unfrozen items.");
|
|
return mHadMinViolation;
|
|
}
|
|
|
|
bool WasMaxClamped() const {
|
|
MOZ_ASSERT(mIsFrozen, "max clamping has no meaning for unfrozen items.");
|
|
return mHadMaxViolation;
|
|
}
|
|
|
|
// Indicates whether this item received a preliminary "measuring" reflow
|
|
// before its actual reflow.
|
|
bool HadMeasuringReflow() const { return mHadMeasuringReflow; }
|
|
|
|
// Indicates whether this item's computed cross-size property is 'auto'.
|
|
bool IsCrossSizeAuto() const;
|
|
|
|
// Indicates whether the cross-size property is set to something definite,
|
|
// for the purpose of preferred aspect ratio calculations.
|
|
bool IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const;
|
|
|
|
// Indicates whether this item's cross-size has been stretched (from having
|
|
// "align-self: stretch" with an auto cross-size and no auto margins in the
|
|
// cross axis).
|
|
bool IsStretched() const { return mIsStretched; }
|
|
|
|
// Indicates whether we need to resolve an 'auto' value for the main-axis
|
|
// min-[width|height] property.
|
|
bool NeedsMinSizeAutoResolution() const {
|
|
return mNeedsMinSizeAutoResolution;
|
|
}
|
|
|
|
bool HasAnyAutoMargin() const { return mHasAnyAutoMargin; }
|
|
|
|
BaselineSharingGroup ItemBaselineSharingGroup() const {
|
|
MOZ_ASSERT(mAlignSelf._0 == StyleAlignFlags::BASELINE ||
|
|
mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE,
|
|
"mBaselineSharingGroup only gets a meaningful value "
|
|
"for baseline-aligned items");
|
|
return mBaselineSharingGroup;
|
|
}
|
|
|
|
// Indicates whether this item is a "strut" left behind by an element with
|
|
// visibility:collapse.
|
|
bool IsStrut() const { return mIsStrut; }
|
|
|
|
// The main axis and cross axis are relative to mCBWM.
|
|
LogicalAxis MainAxis() const { return mMainAxis; }
|
|
LogicalAxis CrossAxis() const { return GetOrthogonalAxis(mMainAxis); }
|
|
|
|
// IsInlineAxisMainAxis() returns true if this item's inline axis is parallel
|
|
// (or antiparallel) to the container's main axis. Otherwise (i.e. if this
|
|
// item's inline axis is orthogonal to the container's main axis), this
|
|
// function returns false. The next 3 methods are all other ways of asking
|
|
// the same question, and only exist for readability at callsites (depending
|
|
// on which axes those callsites are reasoning about).
|
|
bool IsInlineAxisMainAxis() const { return mIsInlineAxisMainAxis; }
|
|
bool IsInlineAxisCrossAxis() const { return !mIsInlineAxisMainAxis; }
|
|
bool IsBlockAxisMainAxis() const { return !mIsInlineAxisMainAxis; }
|
|
bool IsBlockAxisCrossAxis() const { return mIsInlineAxisMainAxis; }
|
|
|
|
WritingMode GetWritingMode() const { return mWM; }
|
|
WritingMode ContainingBlockWM() const { return mCBWM; }
|
|
StyleAlignSelf AlignSelf() const { return mAlignSelf; }
|
|
StyleAlignFlags AlignSelfFlags() const { return mAlignSelfFlags; }
|
|
|
|
// Returns the flex factor (flex-grow or flex-shrink), depending on
|
|
// 'aIsUsingFlexGrow'.
|
|
//
|
|
// Asserts fatally if called on a frozen item (since frozen items are not
|
|
// flexible).
|
|
float GetFlexFactor(bool aIsUsingFlexGrow) {
|
|
MOZ_ASSERT(!IsFrozen(), "shouldn't need flex factor after item is frozen");
|
|
|
|
return aIsUsingFlexGrow ? mFlexGrow : mFlexShrink;
|
|
}
|
|
|
|
// Returns the weight that we should use in the "resolving flexible lengths"
|
|
// algorithm. If we're using the flex grow factor, we just return that;
|
|
// otherwise, we return the "scaled flex shrink factor" (scaled by our flex
|
|
// base size, so that when both large and small items are shrinking, the large
|
|
// items shrink more).
|
|
//
|
|
// I'm calling this a "weight" instead of a "[scaled] flex-[grow|shrink]
|
|
// factor", to more clearly distinguish it from the actual flex-grow &
|
|
// flex-shrink factors.
|
|
//
|
|
// Asserts fatally if called on a frozen item (since frozen items are not
|
|
// flexible).
|
|
float GetWeight(bool aIsUsingFlexGrow) {
|
|
MOZ_ASSERT(!IsFrozen(), "shouldn't need weight after item is frozen");
|
|
|
|
if (aIsUsingFlexGrow) {
|
|
return mFlexGrow;
|
|
}
|
|
|
|
// We're using flex-shrink --> return mFlexShrink * mFlexBaseSize
|
|
if (mFlexBaseSize == 0) {
|
|
// Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so
|
|
// regardless of mFlexShrink, we should just return 0.
|
|
// (This is really a special-case for when mFlexShrink is infinity, to
|
|
// avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.)
|
|
return 0.0f;
|
|
}
|
|
return mFlexShrink * mFlexBaseSize;
|
|
}
|
|
|
|
bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; }
|
|
|
|
const AspectRatio& GetAspectRatio() const { return mAspectRatio; }
|
|
bool HasAspectRatio() const { return !!mAspectRatio; }
|
|
|
|
// Getters for margin:
|
|
// ===================
|
|
LogicalMargin Margin() const { return mMargin; }
|
|
nsMargin PhysicalMargin() const { return mMargin.GetPhysicalMargin(mCBWM); }
|
|
|
|
// Returns the margin component for a given LogicalSide in flex container's
|
|
// writing-mode.
|
|
nscoord GetMarginComponentForSide(LogicalSide aSide) const {
|
|
return mMargin.Side(aSide, mCBWM);
|
|
}
|
|
|
|
// Returns the total space occupied by this item's margins in the given axis
|
|
nscoord MarginSizeInMainAxis() const {
|
|
return mMargin.StartEnd(MainAxis(), mCBWM);
|
|
}
|
|
nscoord MarginSizeInCrossAxis() const {
|
|
return mMargin.StartEnd(CrossAxis(), mCBWM);
|
|
}
|
|
|
|
// Getters for border/padding
|
|
// ==========================
|
|
// Returns the total space occupied by this item's borders and padding in
|
|
// the given axis
|
|
LogicalMargin BorderPadding() const { return mBorderPadding; }
|
|
nscoord BorderPaddingSizeInMainAxis() const {
|
|
return mBorderPadding.StartEnd(MainAxis(), mCBWM);
|
|
}
|
|
nscoord BorderPaddingSizeInCrossAxis() const {
|
|
return mBorderPadding.StartEnd(CrossAxis(), mCBWM);
|
|
}
|
|
|
|
// Getter for combined margin/border/padding
|
|
// =========================================
|
|
// Returns the total space occupied by this item's margins, borders and
|
|
// padding in the given axis
|
|
nscoord MarginBorderPaddingSizeInMainAxis() const {
|
|
return MarginSizeInMainAxis() + BorderPaddingSizeInMainAxis();
|
|
}
|
|
nscoord MarginBorderPaddingSizeInCrossAxis() const {
|
|
return MarginSizeInCrossAxis() + BorderPaddingSizeInCrossAxis();
|
|
}
|
|
|
|
// Setters
|
|
// =======
|
|
// Helper to set the resolved value of min-[width|height]:auto for the main
|
|
// axis. (Should only be used if NeedsMinSizeAutoResolution() returns true.)
|
|
void UpdateMainMinSize(nscoord aNewMinSize) {
|
|
NS_ASSERTION(aNewMinSize >= 0,
|
|
"How did we end up with a negative min-size?");
|
|
MOZ_ASSERT(
|
|
mMainMaxSize == NS_UNCONSTRAINEDSIZE || mMainMaxSize >= aNewMinSize,
|
|
"Should only use this function for resolving min-size:auto, "
|
|
"and main max-size should be an upper-bound for resolved val");
|
|
MOZ_ASSERT(
|
|
mNeedsMinSizeAutoResolution &&
|
|
(mMainMinSize == 0 || mFrame->IsThemed(mFrame->StyleDisplay())),
|
|
"Should only use this function for resolving min-size:auto, "
|
|
"so we shouldn't already have a nonzero min-size established "
|
|
"(unless it's a themed-widget-imposed minimum size)");
|
|
|
|
if (aNewMinSize > mMainMinSize) {
|
|
mMainMinSize = aNewMinSize;
|
|
// Also clamp main-size to be >= new min-size:
|
|
mMainSize = std::max(mMainSize, aNewMinSize);
|
|
}
|
|
mNeedsMinSizeAutoResolution = false;
|
|
}
|
|
|
|
// This sets our flex base size, and then sets our main size to the
|
|
// resulting "hypothetical main size" (the base size clamped to our
|
|
// main-axis [min,max] sizing constraints).
|
|
void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) {
|
|
MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_UNCONSTRAINEDSIZE,
|
|
"flex base size shouldn't change after we're frozen "
|
|
"(unless we're just resolving an intrinsic size)");
|
|
mFlexBaseSize = aNewFlexBaseSize;
|
|
|
|
// Before we've resolved flexible lengths, we keep mMainSize set to
|
|
// the 'hypothetical main size', which is the flex base size, clamped
|
|
// to the [min,max] range:
|
|
mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize);
|
|
|
|
FLEX_LOGV(
|
|
"Set flex base size: %d, hypothetical main size: %d for flex item %p",
|
|
mFlexBaseSize, mMainSize, mFrame);
|
|
}
|
|
|
|
// Setters used while we're resolving flexible lengths
|
|
// ---------------------------------------------------
|
|
|
|
// Sets the main-size of our flex item's content-box.
|
|
void SetMainSize(nscoord aNewMainSize) {
|
|
MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen");
|
|
mMainSize = aNewMainSize;
|
|
}
|
|
|
|
void SetShareOfWeightSoFar(double aNewShare) {
|
|
MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0,
|
|
"shouldn't be giving this item any share of the weight "
|
|
"after it's frozen");
|
|
mShareOfWeightSoFar = aNewShare;
|
|
}
|
|
|
|
void Freeze() {
|
|
mIsFrozen = true;
|
|
// Now that we are frozen, the meaning of mHadMinViolation and
|
|
// mHadMaxViolation changes to indicate min and max clamping. Clear
|
|
// both of the member variables so that they are ready to be set
|
|
// as clamping state later, if necessary.
|
|
mHadMinViolation = false;
|
|
mHadMaxViolation = false;
|
|
}
|
|
|
|
void SetHadMinViolation() {
|
|
MOZ_ASSERT(!mIsFrozen,
|
|
"shouldn't be changing main size & having violations "
|
|
"after we're frozen");
|
|
mHadMinViolation = true;
|
|
}
|
|
void SetHadMaxViolation() {
|
|
MOZ_ASSERT(!mIsFrozen,
|
|
"shouldn't be changing main size & having violations "
|
|
"after we're frozen");
|
|
mHadMaxViolation = true;
|
|
}
|
|
void ClearViolationFlags() {
|
|
MOZ_ASSERT(!mIsFrozen,
|
|
"shouldn't be altering violation flags after we're "
|
|
"frozen");
|
|
mHadMinViolation = mHadMaxViolation = false;
|
|
}
|
|
|
|
void SetWasMinClamped() {
|
|
MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
|
|
// This reuses the mHadMinViolation member variable to track clamping
|
|
// events. This is allowable because mHadMinViolation only reflects
|
|
// a violation up until the item is frozen.
|
|
MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
|
|
mHadMinViolation = true;
|
|
}
|
|
void SetWasMaxClamped() {
|
|
MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
|
|
// This reuses the mHadMaxViolation member variable to track clamping
|
|
// events. This is allowable because mHadMaxViolation only reflects
|
|
// a violation up until the item is frozen.
|
|
MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
|
|
mHadMaxViolation = true;
|
|
}
|
|
|
|
// Setters for values that are determined after we've resolved our main size
|
|
// -------------------------------------------------------------------------
|
|
|
|
// Sets the main-axis position of our flex item's content-box.
|
|
// (This is the distance between the main-start edge of the flex container
|
|
// and the main-start edge of the flex item's content-box.)
|
|
void SetMainPosition(nscoord aPosn) {
|
|
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
|
|
mMainPosn = aPosn;
|
|
}
|
|
|
|
// Sets the cross-size of our flex item's content-box.
|
|
void SetCrossSize(nscoord aCrossSize) {
|
|
MOZ_ASSERT(!mIsStretched,
|
|
"Cross size shouldn't be modified after it's been stretched");
|
|
mCrossSize = aCrossSize;
|
|
}
|
|
|
|
// Sets the cross-axis position of our flex item's content-box.
|
|
// (This is the distance between the cross-start edge of the flex container
|
|
// and the cross-start edge of the flex item.)
|
|
void SetCrossPosition(nscoord aPosn) {
|
|
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
|
|
mCrossPosn = aPosn;
|
|
}
|
|
|
|
// After a FlexItem has had a reflow, this method can be used to cache its
|
|
// (possibly-unresolved) ascent, in case it's needed later for
|
|
// baseline-alignment or to establish the container's baseline.
|
|
// (NOTE: This can be marked 'const' even though it's modifying mAscent,
|
|
// because mAscent is mutable. It's nice for this to be 'const', because it
|
|
// means our final reflow can iterate over const FlexItem pointers, and we
|
|
// can be sure it's not modifying those FlexItems, except via this method.)
|
|
void SetAscent(nscoord aAscent) const {
|
|
mAscent = aAscent; // NOTE: this may be ASK_FOR_BASELINE
|
|
}
|
|
|
|
void SetHadMeasuringReflow() { mHadMeasuringReflow = true; }
|
|
|
|
void SetIsStretched() {
|
|
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
|
|
mIsStretched = true;
|
|
}
|
|
|
|
// Setter for margin components (for resolving "auto" margins)
|
|
void SetMarginComponentForSide(LogicalSide aSide, nscoord aLength) {
|
|
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
|
|
mMargin.Side(aSide, mCBWM) = aLength;
|
|
}
|
|
|
|
void ResolveStretchedCrossSize(nscoord aLineCrossSize);
|
|
|
|
// Resolves flex base size if flex-basis' used value is 'content', using this
|
|
// item's preferred aspect ratio and cross size.
|
|
void ResolveFlexBaseSizeFromAspectRatio(const ReflowInput& aItemReflowInput);
|
|
|
|
uint32_t NumAutoMarginsInMainAxis() const {
|
|
return NumAutoMarginsInAxis(MainAxis());
|
|
};
|
|
|
|
uint32_t NumAutoMarginsInCrossAxis() const {
|
|
return NumAutoMarginsInAxis(CrossAxis());
|
|
};
|
|
|
|
// Once the main size has been resolved, should we bother doing layout to
|
|
// establish the cross size?
|
|
bool CanMainSizeInfluenceCrossSize() const;
|
|
|
|
// Returns a main size, clamped by any definite min and max cross size
|
|
// converted through the preferred aspect ratio. The caller is responsible for
|
|
// ensuring that the flex item's preferred aspect ratio is not zero.
|
|
nscoord ClampMainSizeViaCrossAxisConstraints(
|
|
nscoord aMainSize, const ReflowInput& aItemReflowInput) const;
|
|
|
|
// Indicates whether we think this flex item needs a "final" reflow
|
|
// (after its final flexed size & final position have been determined).
|
|
//
|
|
// @param aParentReflowInput the flex container's reflow input.
|
|
// @return true if such a reflow is needed, or false if we believe it can
|
|
// simply be moved to its final position and skip the reflow.
|
|
bool NeedsFinalReflow(const ReflowInput& aParentReflowInput) const;
|
|
|
|
// Gets the block frame that contains the flex item's content. This is
|
|
// Frame() itself or one of its descendants.
|
|
nsBlockFrame* BlockFrame() const;
|
|
|
|
protected:
|
|
bool IsMinSizeAutoResolutionNeeded() const;
|
|
|
|
uint32_t NumAutoMarginsInAxis(LogicalAxis aAxis) const;
|
|
|
|
// Values that we already know in constructor, and remain unchanged:
|
|
// The flex item's frame.
|
|
nsIFrame* mFrame = nullptr;
|
|
float mFlexGrow = 0.0f;
|
|
float mFlexShrink = 0.0f;
|
|
AspectRatio mAspectRatio;
|
|
|
|
// The flex item's writing mode.
|
|
WritingMode mWM;
|
|
|
|
// The flex container's writing mode.
|
|
WritingMode mCBWM;
|
|
|
|
// The flex container's main axis in flex container's writing mode.
|
|
LogicalAxis mMainAxis;
|
|
|
|
// Stored in flex container's writing mode.
|
|
LogicalMargin mBorderPadding;
|
|
|
|
// Stored in flex container's writing mode. Its value can change when we
|
|
// resolve "auto" marigns.
|
|
LogicalMargin mMargin;
|
|
|
|
// These are non-const so that we can lazily update them with the item's
|
|
// intrinsic size (obtained via a "measuring" reflow), when necessary.
|
|
// (e.g. for "flex-basis:auto;height:auto" & "min-height:auto")
|
|
nscoord mFlexBaseSize = 0;
|
|
nscoord mMainMinSize = 0;
|
|
nscoord mMainMaxSize = 0;
|
|
|
|
// mCrossMinSize and mCrossMaxSize are not changed after constructor.
|
|
nscoord mCrossMinSize = 0;
|
|
nscoord mCrossMaxSize = 0;
|
|
|
|
// Values that we compute after constructor:
|
|
nscoord mMainSize = 0;
|
|
nscoord mMainPosn = 0;
|
|
nscoord mCrossSize = 0;
|
|
nscoord mCrossPosn = 0;
|
|
|
|
// Mutable b/c it's set & resolved lazily, sometimes via const pointer. See
|
|
// comment above SetAscent().
|
|
// We initialize this to ASK_FOR_BASELINE, and opportunistically fill it in
|
|
// with a real value if we end up reflowing this flex item. (But if we don't
|
|
// reflow this flex item, then this sentinel tells us that we don't know it
|
|
// yet & anyone who cares will need to explicitly request it.)
|
|
//
|
|
// Both mAscent and mAscentForLast are distance from the frame's border-box
|
|
// block-start edge.
|
|
mutable nscoord mAscent = ReflowOutput::ASK_FOR_BASELINE;
|
|
mutable nscoord mAscentForLast = ReflowOutput::ASK_FOR_BASELINE;
|
|
|
|
// Temporary state, while we're resolving flexible widths (for our main size)
|
|
// XXXdholbert To save space, we could use a union to make these variables
|
|
// overlay the same memory as some other member vars that aren't touched
|
|
// until after main-size has been resolved. In particular, these could share
|
|
// memory with mMainPosn through mAscent, and mIsStretched.
|
|
double mShareOfWeightSoFar = 0.0;
|
|
|
|
bool mIsFrozen = false;
|
|
bool mHadMinViolation = false;
|
|
bool mHadMaxViolation = false;
|
|
|
|
// Did this item get a preliminary reflow, to measure its desired height?
|
|
bool mHadMeasuringReflow = false;
|
|
|
|
// See IsStretched() documentation.
|
|
bool mIsStretched = false;
|
|
|
|
// Is this item a "strut" left behind by an element with visibility:collapse?
|
|
bool mIsStrut = false;
|
|
|
|
// See IsInlineAxisMainAxis() documentation. This is not changed after
|
|
// constructor.
|
|
bool mIsInlineAxisMainAxis = true;
|
|
|
|
// Does this item need to resolve a min-[width|height]:auto (in main-axis)?
|
|
//
|
|
// Note: mNeedsMinSizeAutoResolution needs to be declared towards the end of
|
|
// the member variables since it's initialized in a method that depends on
|
|
// other members declared above such as mCBWM, mMainAxis, and
|
|
// mIsInlineAxisMainAxis.
|
|
bool mNeedsMinSizeAutoResolution = false;
|
|
|
|
// Should we take care to treat this item's resolved BSize as indefinite?
|
|
bool mTreatBSizeAsIndefinite = false;
|
|
|
|
// Does this item have an auto margin in either main or cross axis?
|
|
bool mHasAnyAutoMargin = false;
|
|
|
|
// If this item is {first,last}-baseline-aligned using 'align-self', which of
|
|
// its FlexLine's baseline sharing groups does it participate in?
|
|
BaselineSharingGroup mBaselineSharingGroup = BaselineSharingGroup::First;
|
|
|
|
// My "align-self" computed value (with "auto" swapped out for parent"s
|
|
// "align-items" value, in our constructor).
|
|
StyleAlignSelf mAlignSelf{StyleAlignFlags::AUTO};
|
|
|
|
// Flags for 'align-self' (safe/unsafe/legacy).
|
|
StyleAlignFlags mAlignSelfFlags{0};
|
|
};
|
|
|
|
/**
|
|
* Represents a single flex line in a flex container.
|
|
* Manages an array of the FlexItems that are in the line.
|
|
*/
|
|
class nsFlexContainerFrame::FlexLine final {
|
|
public:
|
|
explicit FlexLine(nscoord aMainGapSize) : mMainGapSize(aMainGapSize) {}
|
|
|
|
nscoord SumOfGaps() const {
|
|
return NumItems() > 0 ? (NumItems() - 1) * mMainGapSize : 0;
|
|
}
|
|
|
|
// Returns the sum of our FlexItems' outer hypothetical main sizes plus the
|
|
// sum of main axis {row,column}-gaps between items.
|
|
// ("outer" = margin-box, and "hypothetical" = before flexing)
|
|
AuCoord64 TotalOuterHypotheticalMainSize() const {
|
|
return mTotalOuterHypotheticalMainSize;
|
|
}
|
|
|
|
// Accessors for our FlexItems & information about them:
|
|
//
|
|
// Note: Callers must use IsEmpty() to ensure that the FlexLine is non-empty
|
|
// before calling accessors that return FlexItem.
|
|
FlexItem& FirstItem() { return mItems[0]; }
|
|
const FlexItem& FirstItem() const { return mItems[0]; }
|
|
|
|
FlexItem& LastItem() { return mItems.LastElement(); }
|
|
const FlexItem& LastItem() const { return mItems.LastElement(); }
|
|
|
|
// The "startmost"/"endmost" is from the perspective of the flex container's
|
|
// writing-mode, not from the perspective of the flex-relative main axis.
|
|
const FlexItem& StartmostItem(const FlexboxAxisTracker& aAxisTracker) const {
|
|
return aAxisTracker.IsMainAxisReversed() ? LastItem() : FirstItem();
|
|
}
|
|
const FlexItem& EndmostItem(const FlexboxAxisTracker& aAxisTracker) const {
|
|
return aAxisTracker.IsMainAxisReversed() ? FirstItem() : LastItem();
|
|
}
|
|
|
|
bool IsEmpty() const { return mItems.IsEmpty(); }
|
|
|
|
uint32_t NumItems() const { return mItems.Length(); }
|
|
|
|
nsTArray<FlexItem>& Items() { return mItems; }
|
|
const nsTArray<FlexItem>& Items() const { return mItems; }
|
|
|
|
// Adds the last flex item's hypothetical outer main-size and
|
|
// margin/border/padding to our totals. This should be called exactly once for
|
|
// each flex item, after we've determined that this line is the correct home
|
|
// for that item.
|
|
void AddLastItemToMainSizeTotals() {
|
|
const FlexItem& lastItem = Items().LastElement();
|
|
|
|
// Update our various bookkeeping member-vars:
|
|
if (lastItem.IsFrozen()) {
|
|
mNumFrozenItems++;
|
|
}
|
|
|
|
mTotalItemMBP += lastItem.MarginBorderPaddingSizeInMainAxis();
|
|
mTotalOuterHypotheticalMainSize += lastItem.OuterMainSize();
|
|
|
|
// If the item added was not the first item in the line, we add in any gap
|
|
// space as needed.
|
|
if (NumItems() >= 2) {
|
|
mTotalOuterHypotheticalMainSize += mMainGapSize;
|
|
}
|
|
}
|
|
|
|
// Computes the cross-size and baseline position of this FlexLine, based on
|
|
// its FlexItems.
|
|
void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker);
|
|
|
|
// Returns the cross-size of this line.
|
|
nscoord LineCrossSize() const { return mLineCrossSize; }
|
|
|
|
// Setter for line cross-size -- needed for cases where the flex container
|
|
// imposes a cross-size on the line. (e.g. for single-line flexbox, or for
|
|
// multi-line flexbox with 'align-content: stretch')
|
|
void SetLineCrossSize(nscoord aLineCrossSize) {
|
|
mLineCrossSize = aLineCrossSize;
|
|
}
|
|
|
|
/**
|
|
* Returns the offset within this line where any baseline-aligned FlexItems
|
|
* should place their baseline. The return value represents a distance from
|
|
* the line's cross-start edge.
|
|
*
|
|
* If there are no baseline-aligned FlexItems, returns nscoord_MIN.
|
|
*/
|
|
nscoord FirstBaselineOffset() const { return mFirstBaselineOffset; }
|
|
|
|
/**
|
|
* Returns the offset within this line where any last baseline-aligned
|
|
* FlexItems should place their baseline. Opposite the case of the first
|
|
* baseline offset, this represents a distance from the line's cross-end
|
|
* edge (since last baseline-aligned items are flush to the cross-end edge).
|
|
*
|
|
* If there are no last baseline-aligned FlexItems, returns nscoord_MIN.
|
|
*/
|
|
nscoord LastBaselineOffset() const { return mLastBaselineOffset; }
|
|
|
|
// Extract a baseline from this line, which would be suitable for use as the
|
|
// flex container's 'aBaselineGroup' (i.e. first/last) baseline.
|
|
// https://drafts.csswg.org/css-flexbox-1/#flex-baselines
|
|
//
|
|
// The return value always represents a distance from the line's cross-start
|
|
// edge, even if we are querying last baseline. If this line has no flex items
|
|
// in its aBaselineGroup group, this method falls back to trying the opposite
|
|
// group. If this line has no baseline-aligned items at all, this returns
|
|
// nscoord_MIN.
|
|
nscoord ExtractBaselineOffset(BaselineSharingGroup aBaselineGroup) const;
|
|
|
|
/**
|
|
* Returns the gap size in the main axis for this line. Used for gap
|
|
* calculations.
|
|
*/
|
|
nscoord MainGapSize() const { return mMainGapSize; }
|
|
|
|
// Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the
|
|
// CSS flexbox spec to distribute aFlexContainerMainSize among our flex items.
|
|
// https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths
|
|
void ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
|
|
ComputedFlexLineInfo* aLineInfo);
|
|
|
|
void PositionItemsInMainAxis(const StyleContentDistribution& aJustifyContent,
|
|
nscoord aContentBoxMainSize,
|
|
const FlexboxAxisTracker& aAxisTracker);
|
|
|
|
void PositionItemsInCrossAxis(nscoord aLineStartPosition,
|
|
const FlexboxAxisTracker& aAxisTracker);
|
|
|
|
private:
|
|
// Helpers for ResolveFlexibleLengths():
|
|
void FreezeItemsEarly(bool aIsUsingFlexGrow, ComputedFlexLineInfo* aLineInfo);
|
|
|
|
void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
|
|
bool aIsFinalIteration);
|
|
|
|
// Stores this line's flex items.
|
|
nsTArray<FlexItem> mItems;
|
|
|
|
// Number of *frozen* FlexItems in this line, based on FlexItem::IsFrozen().
|
|
// Mostly used for optimization purposes, e.g. to bail out early from loops
|
|
// when we can tell they have nothing left to do.
|
|
uint32_t mNumFrozenItems = 0;
|
|
|
|
// Sum of margin/border/padding for the FlexItems in this FlexLine.
|
|
nscoord mTotalItemMBP = 0;
|
|
|
|
// Sum of FlexItems' outer hypothetical main sizes and all main-axis
|
|
// {row,columnm}-gaps between items.
|
|
// (i.e. their flex base sizes, clamped via their min/max-size properties,
|
|
// plus their main-axis margin/border/padding, plus the sum of the gaps.)
|
|
//
|
|
// This variable uses a 64-bit coord type to avoid integer overflow in case
|
|
// several of the individual items have huge hypothetical main sizes, which
|
|
// can happen with percent-width table-layout:fixed descendants. We have to
|
|
// avoid integer overflow in order to shrink items properly in that scenario.
|
|
AuCoord64 mTotalOuterHypotheticalMainSize = 0;
|
|
|
|
nscoord mLineCrossSize = 0;
|
|
nscoord mFirstBaselineOffset = nscoord_MIN;
|
|
nscoord mLastBaselineOffset = nscoord_MIN;
|
|
|
|
// Maintain size of each {row,column}-gap in the main axis
|
|
const nscoord mMainGapSize;
|
|
};
|
|
|
|
// The "startmost"/"endmost" is from the perspective of the flex container's
|
|
// writing-mode, not from the perspective of the flex-relative cross axis.
|
|
const FlexLine& StartmostLine(const nsTArray<FlexLine>& aLines,
|
|
const FlexboxAxisTracker& aAxisTracker) {
|
|
return aAxisTracker.IsCrossAxisReversed() ? aLines.LastElement() : aLines[0];
|
|
}
|
|
const FlexLine& EndmostLine(const nsTArray<FlexLine>& aLines,
|
|
const FlexboxAxisTracker& aAxisTracker) {
|
|
return aAxisTracker.IsCrossAxisReversed() ? aLines[0] : aLines.LastElement();
|
|
}
|
|
|
|
// Information about a strut left behind by a FlexItem that's been collapsed
|
|
// using "visibility:collapse".
|
|
struct nsFlexContainerFrame::StrutInfo {
|
|
StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize)
|
|
: mItemIdx(aItemIdx), mStrutCrossSize(aStrutCrossSize) {}
|
|
|
|
uint32_t mItemIdx; // Index in the child list.
|
|
nscoord mStrutCrossSize; // The cross-size of this strut.
|
|
};
|
|
|
|
// Flex data shared by the flex container frames in a continuation chain, owned
|
|
// by the first-in-flow. The data is initialized at the end of the
|
|
// first-in-flow's Reflow().
|
|
struct nsFlexContainerFrame::SharedFlexData final {
|
|
// The flex lines generated in DoFlexLayout() by our first-in-flow.
|
|
nsTArray<FlexLine> mLines;
|
|
|
|
// The final content main/cross size computed by DoFlexLayout.
|
|
nscoord mContentBoxMainSize = NS_UNCONSTRAINEDSIZE;
|
|
nscoord mContentBoxCrossSize = NS_UNCONSTRAINEDSIZE;
|
|
|
|
// Update this struct. Called by the first-in-flow.
|
|
void Update(FlexLayoutResult&& aFlr) {
|
|
mLines = std::move(aFlr.mLines);
|
|
mContentBoxMainSize = aFlr.mContentBoxMainSize;
|
|
mContentBoxCrossSize = aFlr.mContentBoxCrossSize;
|
|
}
|
|
|
|
// The frame property under which this struct is stored. Set only on the
|
|
// first-in-flow.
|
|
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedFlexData)
|
|
};
|
|
|
|
// Flex data stored in every flex container's in-flow fragment (continuation).
|
|
//
|
|
// It's intended to prevent quadratic operations resulting from each fragment
|
|
// having to walk its full prev-in-flow chain, and also serves as an argument to
|
|
// the flex container next-in-flow's ReflowChildren(), to compute the position
|
|
// offset for each flex item.
|
|
struct nsFlexContainerFrame::PerFragmentFlexData final {
|
|
// Suppose D is the distance from a flex container fragment's content-box
|
|
// block-start edge to whichever is larger of either (a) the block-end edge of
|
|
// its children, or (b) the available space's block-end edge. (Note: in case
|
|
// (b), D is conceptually the sum of the block-size of the children, the
|
|
// packing space before & in between them, and part of the packing space after
|
|
// them.)
|
|
//
|
|
// This variable stores the sum of the D values for the current flex container
|
|
// fragments and for all its previous fragments
|
|
nscoord mCumulativeContentBoxBSize = 0;
|
|
|
|
// This variable accumulates FirstLineOrFirstItemBAxisMetrics::mBEndEdgeShift,
|
|
// for the current flex container fragment and for all its previous fragments.
|
|
// See the comment of mBEndEdgeShift for its computation details. In short,
|
|
// this value is the net block-end edge shift, accumulated for the children in
|
|
// all the previous fragments. This number is non-negative.
|
|
//
|
|
// This value is also used to grow a flex container's block-size if the
|
|
// container's computed block-size is unconstrained. For example: a tall item
|
|
// may be pushed to the next page/column, which leaves some wasted area at the
|
|
// bottom of the current flex container fragment, and causes the flex
|
|
// container fragments to be (collectively) larger than the hypothetical
|
|
// unfragmented size. Another example: a tall flex item may be broken into
|
|
// multiple fragments, and those fragments may have a larger collective
|
|
// block-size as compared to the item's original unfragmented size; the
|
|
// container would need to increase its block-size to account for this.
|
|
nscoord mCumulativeBEndEdgeShift = 0;
|
|
|
|
// The frame property under which this struct is stored. Cached on every
|
|
// in-flow fragment (continuation) at the end of the flex container's
|
|
// Reflow().
|
|
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, PerFragmentFlexData)
|
|
};
|
|
|
|
static void BuildStrutInfoFromCollapsedItems(const nsTArray<FlexLine>& aLines,
|
|
nsTArray<StrutInfo>& aStruts) {
|
|
MOZ_ASSERT(aStruts.IsEmpty(),
|
|
"We should only build up StrutInfo once per reflow, so "
|
|
"aStruts should be empty when this is called");
|
|
|
|
uint32_t itemIdxInContainer = 0;
|
|
for (const FlexLine& line : aLines) {
|
|
for (const FlexItem& item : line.Items()) {
|
|
if (item.Frame()->StyleVisibility()->IsCollapse()) {
|
|
// Note the cross size of the line as the item's strut size.
|
|
aStruts.AppendElement(
|
|
StrutInfo(itemIdxInContainer, line.LineCrossSize()));
|
|
}
|
|
itemIdxInContainer++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static mozilla::StyleAlignFlags SimplifyAlignOrJustifyContentForOneItem(
|
|
const StyleContentDistribution& aAlignmentVal, bool aIsAlign) {
|
|
// Mask away any explicit fallback, to get the main (non-fallback) part of
|
|
// the specified value:
|
|
StyleAlignFlags specified = aAlignmentVal.primary;
|
|
|
|
// XXX strip off <overflow-position> bits until we implement it (bug 1311892)
|
|
specified &= ~StyleAlignFlags::FLAG_BITS;
|
|
|
|
// FIRST: handle a special-case for "justify-content:stretch" (or equivalent),
|
|
// which requires that we ignore any author-provided explicit fallback value.
|
|
if (specified == StyleAlignFlags::NORMAL) {
|
|
// In a flex container, *-content: "'normal' behaves as 'stretch'".
|
|
// Do that conversion early, so it benefits from our 'stretch' special-case.
|
|
// https://drafts.csswg.org/css-align-3/#distribution-flex
|
|
specified = StyleAlignFlags::STRETCH;
|
|
}
|
|
if (!aIsAlign && specified == StyleAlignFlags::STRETCH) {
|
|
// In a flex container, in "justify-content Axis: [...] 'stretch' behaves
|
|
// as 'flex-start' (ignoring the specified fallback alignment, if any)."
|
|
// https://drafts.csswg.org/css-align-3/#distribution-flex
|
|
// So, we just directly return 'flex-start', & ignore explicit fallback..
|
|
return StyleAlignFlags::FLEX_START;
|
|
}
|
|
|
|
// TODO: Check for an explicit fallback value (and if it's present, use it)
|
|
// here once we parse it, see https://github.com/w3c/csswg-drafts/issues/1002.
|
|
|
|
// If there's no explicit fallback, use the implied fallback values for
|
|
// space-{between,around,evenly} (since those values only make sense with
|
|
// multiple alignment subjects), and otherwise just use the specified value:
|
|
if (specified == StyleAlignFlags::SPACE_BETWEEN) {
|
|
return StyleAlignFlags::FLEX_START;
|
|
}
|
|
if (specified == StyleAlignFlags::SPACE_AROUND ||
|
|
specified == StyleAlignFlags::SPACE_EVENLY) {
|
|
return StyleAlignFlags::CENTER;
|
|
}
|
|
return specified;
|
|
}
|
|
|
|
bool nsFlexContainerFrame::DrainSelfOverflowList() {
|
|
return DrainAndMergeSelfOverflowList();
|
|
}
|
|
|
|
void nsFlexContainerFrame::AppendFrames(ChildListID aListID,
|
|
nsFrameList&& aFrameList) {
|
|
NoteNewChildren(aListID, aFrameList);
|
|
nsContainerFrame::AppendFrames(aListID, std::move(aFrameList));
|
|
}
|
|
|
|
void nsFlexContainerFrame::InsertFrames(
|
|
ChildListID aListID, nsIFrame* aPrevFrame,
|
|
const nsLineList::iterator* aPrevFrameLine, nsFrameList&& aFrameList) {
|
|
NoteNewChildren(aListID, aFrameList);
|
|
nsContainerFrame::InsertFrames(aListID, aPrevFrame, aPrevFrameLine,
|
|
std::move(aFrameList));
|
|
}
|
|
|
|
void nsFlexContainerFrame::RemoveFrame(DestroyContext& aContext,
|
|
ChildListID aListID,
|
|
nsIFrame* aOldFrame) {
|
|
MOZ_ASSERT(aListID == FrameChildListID::Principal, "unexpected child list");
|
|
|
|
#ifdef DEBUG
|
|
SetDidPushItemsBitIfNeeded(aListID, aOldFrame);
|
|
#endif
|
|
|
|
nsContainerFrame::RemoveFrame(aContext, aListID, aOldFrame);
|
|
}
|
|
|
|
StyleAlignFlags nsFlexContainerFrame::CSSAlignmentForAbsPosChild(
|
|
const ReflowInput& aChildRI, LogicalAxis aLogicalAxis) const {
|
|
const FlexboxAxisTracker axisTracker(this);
|
|
|
|
// If we're row-oriented and the caller is asking about our inline axis (or
|
|
// alternately, if we're column-oriented and the caller is asking about our
|
|
// block axis), then the caller is really asking about our *main* axis.
|
|
// Otherwise, the caller is asking about our cross axis.
|
|
const bool isMainAxis =
|
|
(axisTracker.IsRowOriented() == (aLogicalAxis == eLogicalAxisInline));
|
|
const nsStylePosition* containerStylePos = StylePosition();
|
|
const bool isAxisReversed = isMainAxis ? axisTracker.IsMainAxisReversed()
|
|
: axisTracker.IsCrossAxisReversed();
|
|
|
|
StyleAlignFlags alignment{0};
|
|
StyleAlignFlags alignmentFlags{0};
|
|
if (isMainAxis) {
|
|
// We're aligning in the main axis: align according to 'justify-content'.
|
|
// (We don't care about justify-self; it has no effect on children of flex
|
|
// containers, unless https://github.com/w3c/csswg-drafts/issues/7644
|
|
// changes that.)
|
|
alignment = SimplifyAlignOrJustifyContentForOneItem(
|
|
containerStylePos->mJustifyContent,
|
|
/*aIsAlign = */ false);
|
|
} else {
|
|
// We're aligning in the cross axis: align according to 'align-self'.
|
|
// (We don't care about align-content; it has no effect on abspos flex
|
|
// children, per https://github.com/w3c/csswg-drafts/issues/7596 )
|
|
alignment = aChildRI.mStylePosition->UsedAlignSelf(Style())._0;
|
|
// Extract and strip align flag bits
|
|
alignmentFlags = alignment & StyleAlignFlags::FLAG_BITS;
|
|
alignment &= ~StyleAlignFlags::FLAG_BITS;
|
|
|
|
if (alignment == StyleAlignFlags::NORMAL) {
|
|
// "the 'normal' keyword behaves as 'start' on replaced
|
|
// absolutely-positioned boxes, and behaves as 'stretch' on all other
|
|
// absolutely-positioned boxes."
|
|
// https://drafts.csswg.org/css-align/#align-abspos
|
|
alignment = aChildRI.mFrame->IsReplaced() ? StyleAlignFlags::START
|
|
: StyleAlignFlags::STRETCH;
|
|
}
|
|
}
|
|
|
|
if (alignment == StyleAlignFlags::STRETCH) {
|
|
// The default fallback alignment for 'stretch' is 'flex-start'.
|
|
alignment = StyleAlignFlags::FLEX_START;
|
|
}
|
|
|
|
// Resolve flex-start, flex-end, auto, left, right, baseline, last baseline;
|
|
if (alignment == StyleAlignFlags::FLEX_START) {
|
|
alignment = isAxisReversed ? StyleAlignFlags::END : StyleAlignFlags::START;
|
|
} else if (alignment == StyleAlignFlags::FLEX_END) {
|
|
alignment = isAxisReversed ? StyleAlignFlags::START : StyleAlignFlags::END;
|
|
} else if (alignment == StyleAlignFlags::LEFT ||
|
|
alignment == StyleAlignFlags::RIGHT) {
|
|
MOZ_ASSERT(isMainAxis, "Only justify-* can have 'left' and 'right'!");
|
|
alignment = axisTracker.ResolveJustifyLeftRight(alignment);
|
|
} else if (alignment == StyleAlignFlags::BASELINE) {
|
|
alignment = StyleAlignFlags::START;
|
|
} else if (alignment == StyleAlignFlags::LAST_BASELINE) {
|
|
alignment = StyleAlignFlags::END;
|
|
}
|
|
|
|
MOZ_ASSERT(alignment != StyleAlignFlags::STRETCH,
|
|
"We should've converted 'stretch' to the fallback alignment!");
|
|
MOZ_ASSERT(alignment != StyleAlignFlags::FLEX_START &&
|
|
alignment != StyleAlignFlags::FLEX_END,
|
|
"nsAbsoluteContainingBlock doesn't know how to handle "
|
|
"flex-relative axis for flex containers!");
|
|
|
|
return (alignment | alignmentFlags);
|
|
}
|
|
|
|
void nsFlexContainerFrame::GenerateFlexItemForChild(
|
|
FlexLine& aLine, nsIFrame* aChildFrame,
|
|
const ReflowInput& aParentReflowInput,
|
|
const FlexboxAxisTracker& aAxisTracker,
|
|
const nscoord aTentativeContentBoxCrossSize) {
|
|
const auto flexWM = aAxisTracker.GetWritingMode();
|
|
const auto childWM = aChildFrame->GetWritingMode();
|
|
|
|
// Note: we use GetStyleFrame() to access the sizing & flex properties here.
|
|
// This lets us correctly handle table wrapper frames as flex items since
|
|
// their inline-size and block-size properties are always 'auto'. In order for
|
|
// 'flex-basis:auto' to actually resolve to the author's specified inline-size
|
|
// or block-size, we need to dig through to the inner table.
|
|
const auto* stylePos =
|
|
nsLayoutUtils::GetStyleFrame(aChildFrame)->StylePosition();
|
|
|
|
// Construct a StyleSizeOverrides for this flex item so that its ReflowInput
|
|
// below will use and resolve its flex base size rather than its corresponding
|
|
// preferred main size property (only for modern CSS flexbox).
|
|
StyleSizeOverrides sizeOverrides;
|
|
if (!IsLegacyBox(this)) {
|
|
Maybe<StyleSize> styleFlexBaseSize;
|
|
|
|
// When resolving flex base size, flex items use their 'flex-basis' property
|
|
// in place of their preferred main size (e.g. 'width') for sizing purposes,
|
|
// *unless* they have 'flex-basis:auto' in which case they use their
|
|
// preferred main size after all.
|
|
const auto& flexBasis = stylePos->mFlexBasis;
|
|
const auto& styleMainSize = stylePos->Size(aAxisTracker.MainAxis(), flexWM);
|
|
if (IsUsedFlexBasisContent(flexBasis, styleMainSize)) {
|
|
// If we get here, we're resolving the flex base size for a flex item, and
|
|
// we fall into the flexbox spec section 9.2 step 3, substep C (if we have
|
|
// a definite cross size) or E (if not).
|
|
styleFlexBaseSize.emplace(StyleSize::MaxContent());
|
|
} else if (flexBasis.IsSize() && !flexBasis.IsAuto()) {
|
|
// For all other non-'auto' flex-basis values, we just swap in the
|
|
// flex-basis itself for the preferred main-size property.
|
|
styleFlexBaseSize.emplace(flexBasis.AsSize());
|
|
} else {
|
|
// else: flex-basis is 'auto', which is deferring to some explicit value
|
|
// in the preferred main size.
|
|
MOZ_ASSERT(flexBasis.IsAuto());
|
|
styleFlexBaseSize.emplace(styleMainSize);
|
|
}
|
|
|
|
MOZ_ASSERT(styleFlexBaseSize, "We should've emplace styleFlexBaseSize!");
|
|
|
|
// Provide the size override for the preferred main size property.
|
|
if (aAxisTracker.IsInlineAxisMainAxis(childWM)) {
|
|
sizeOverrides.mStyleISize = std::move(styleFlexBaseSize);
|
|
} else {
|
|
sizeOverrides.mStyleBSize = std::move(styleFlexBaseSize);
|
|
}
|
|
|
|
// 'flex-basis' should works on the inner table frame for a table flex item,
|
|
// just like how 'height' works on a table element.
|
|
sizeOverrides.mApplyOverridesVerbatim = true;
|
|
}
|
|
|
|
// Create temporary reflow input just for sizing -- to get hypothetical
|
|
// main-size and the computed values of min / max main-size property.
|
|
// (This reflow input will _not_ be used for reflow.)
|
|
ReflowInput childRI(PresContext(), aParentReflowInput, aChildFrame,
|
|
aParentReflowInput.ComputedSize(childWM), Nothing(), {},
|
|
sizeOverrides);
|
|
|
|
// FLEX GROW & SHRINK WEIGHTS
|
|
// --------------------------
|
|
float flexGrow, flexShrink;
|
|
if (IsLegacyBox(this)) {
|
|
flexGrow = flexShrink = aChildFrame->StyleXUL()->mBoxFlex;
|
|
} else {
|
|
flexGrow = stylePos->mFlexGrow;
|
|
flexShrink = stylePos->mFlexShrink;
|
|
}
|
|
|
|
// MAIN SIZES (flex base size, min/max size)
|
|
// -----------------------------------------
|
|
const LogicalSize computedSizeInFlexWM = childRI.ComputedSize(flexWM);
|
|
const LogicalSize computedMinSizeInFlexWM = childRI.ComputedMinSize(flexWM);
|
|
const LogicalSize computedMaxSizeInFlexWM = childRI.ComputedMaxSize(flexWM);
|
|
|
|
const nscoord flexBaseSize = aAxisTracker.MainComponent(computedSizeInFlexWM);
|
|
const nscoord mainMinSize =
|
|
aAxisTracker.MainComponent(computedMinSizeInFlexWM);
|
|
const nscoord mainMaxSize =
|
|
aAxisTracker.MainComponent(computedMaxSizeInFlexWM);
|
|
|
|
// This is enforced by the ReflowInput where these values come from:
|
|
MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size");
|
|
|
|
// CROSS SIZES (tentative cross size, min/max cross size)
|
|
// ------------------------------------------------------
|
|
// Grab the cross size from the reflow input. This might be the right value,
|
|
// or we might resolve it to something else in SizeItemInCrossAxis(); hence,
|
|
// it's tentative. See comment under "Cross Size Determination" for more.
|
|
const nscoord tentativeCrossSize =
|
|
aAxisTracker.CrossComponent(computedSizeInFlexWM);
|
|
const nscoord crossMinSize =
|
|
aAxisTracker.CrossComponent(computedMinSizeInFlexWM);
|
|
const nscoord crossMaxSize =
|
|
aAxisTracker.CrossComponent(computedMaxSizeInFlexWM);
|
|
|
|
// Construct the flex item!
|
|
FlexItem& item = *aLine.Items().EmplaceBack(
|
|
childRI, flexGrow, flexShrink, flexBaseSize, mainMinSize, mainMaxSize,
|
|
tentativeCrossSize, crossMinSize, crossMaxSize, aAxisTracker);
|
|
|
|
// We may be about to do computations based on our item's cross-size
|
|
// (e.g. using it as a constraint when measuring our content in the
|
|
// main axis, or using it with the preferred aspect ratio to obtain a main
|
|
// size). BEFORE WE DO THAT, we need let the item "pre-stretch" its cross size
|
|
// (if it's got 'align-self:stretch'), for a certain case where the spec says
|
|
// the stretched cross size is considered "definite". That case is if we
|
|
// have a single-line (nowrap) flex container which itself has a definite
|
|
// cross-size. Otherwise, we'll wait to do stretching, since (in other
|
|
// cases) we don't know how much the item should stretch yet.
|
|
const bool isSingleLine =
|
|
StyleFlexWrap::Nowrap == aParentReflowInput.mStylePosition->mFlexWrap;
|
|
if (isSingleLine) {
|
|
// Is container's cross size "definite"?
|
|
// - If it's column-oriented, then "yes", because its cross size is its
|
|
// inline-size which is always definite from its descendants' perspective.
|
|
// - Otherwise (if it's row-oriented), then we check the actual size
|
|
// and call it definite if it's not NS_UNCONSTRAINEDSIZE.
|
|
if (aAxisTracker.IsColumnOriented() ||
|
|
aTentativeContentBoxCrossSize != NS_UNCONSTRAINEDSIZE) {
|
|
// Container's cross size is "definite", so we can resolve the item's
|
|
// stretched cross size using that.
|
|
item.ResolveStretchedCrossSize(aTentativeContentBoxCrossSize);
|
|
}
|
|
}
|
|
|
|
// Before thinking about freezing the item at its base size, we need to give
|
|
// it a chance to recalculate the base size from its cross size and aspect
|
|
// ratio (since its cross size might've *just* now become definite due to
|
|
// 'stretch' above)
|
|
item.ResolveFlexBaseSizeFromAspectRatio(childRI);
|
|
|
|
// If we're inflexible, we can just freeze to our hypothetical main-size
|
|
// up-front.
|
|
if (flexGrow == 0.0f && flexShrink == 0.0f) {
|
|
item.Freeze();
|
|
if (flexBaseSize < mainMinSize) {
|
|
item.SetWasMinClamped();
|
|
} else if (flexBaseSize > mainMaxSize) {
|
|
item.SetWasMaxClamped();
|
|
}
|
|
}
|
|
|
|
// Resolve "flex-basis:auto" and/or "min-[width|height]:auto" (which might
|
|
// require us to reflow the item to measure content height)
|
|
ResolveAutoFlexBasisAndMinSize(item, childRI, aAxisTracker);
|
|
}
|
|
|
|
// Static helper-functions for ResolveAutoFlexBasisAndMinSize():
|
|
// -------------------------------------------------------------
|
|
// Partially resolves "min-[width|height]:auto" and returns the resulting value.
|
|
// By "partially", I mean we don't consider the min-content size (but we do
|
|
// consider the main-size and main max-size properties, and the preferred aspect
|
|
// ratio). The caller is responsible for computing & considering the min-content
|
|
// size in combination with the partially-resolved value that this function
|
|
// returns.
|
|
//
|
|
// Basically, this function gets the specified size suggestion; if not, the
|
|
// transferred size suggestion; if both sizes do not exist, return nscoord_MAX.
|
|
//
|
|
// Spec reference: https://drafts.csswg.org/css-flexbox-1/#min-size-auto
|
|
static nscoord PartiallyResolveAutoMinSize(
|
|
const FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
|
|
const FlexboxAxisTracker& aAxisTracker) {
|
|
MOZ_ASSERT(aFlexItem.NeedsMinSizeAutoResolution(),
|
|
"only call for FlexItems that need min-size auto resolution");
|
|
|
|
const auto itemWM = aFlexItem.GetWritingMode();
|
|
const auto cbWM = aAxisTracker.GetWritingMode();
|
|
const auto& mainStyleSize =
|
|
aItemReflowInput.mStylePosition->Size(aAxisTracker.MainAxis(), cbWM);
|
|
const auto& maxMainStyleSize =
|
|
aItemReflowInput.mStylePosition->MaxSize(aAxisTracker.MainAxis(), cbWM);
|
|
const auto boxSizingAdjust =
|
|
aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
|
|
? aFlexItem.BorderPadding().Size(cbWM)
|
|
: LogicalSize(cbWM);
|
|
|
|
// If this flex item is a compressible replaced element list in CSS Sizing 3
|
|
// §5.2.2, CSS Sizing 3 §5.2.1c requires us to resolve the percentage part of
|
|
// the preferred main size property against zero, yielding a definite
|
|
// specified size suggestion. Here we can use a zero percentage basis to
|
|
// fulfill this requirement.
|
|
const auto percentBasis =
|
|
aFlexItem.Frame()->IsPercentageResolvedAgainstZero(mainStyleSize,
|
|
maxMainStyleSize)
|
|
? LogicalSize(cbWM, 0, 0)
|
|
: aItemReflowInput.mContainingBlockSize.ConvertTo(cbWM, itemWM);
|
|
|
|
// Compute the specified size suggestion, which is the main-size property if
|
|
// it's definite.
|
|
nscoord specifiedSizeSuggestion = nscoord_MAX;
|
|
|
|
if (aAxisTracker.IsRowOriented()) {
|
|
if (mainStyleSize.IsLengthPercentage()) {
|
|
// NOTE: We ignore extremum inline-size. This is OK because the caller is
|
|
// responsible for computing the min-content inline-size and min()'ing it
|
|
// with the value we return.
|
|
specifiedSizeSuggestion = aFlexItem.Frame()->ComputeISizeValue(
|
|
cbWM, percentBasis, boxSizingAdjust,
|
|
mainStyleSize.AsLengthPercentage());
|
|
}
|
|
} else {
|
|
if (!nsLayoutUtils::IsAutoBSize(mainStyleSize, percentBasis.BSize(cbWM))) {
|
|
// NOTE: We ignore auto and extremum block-size. This is OK because the
|
|
// caller is responsible for computing the min-content block-size and
|
|
// min()'ing it with the value we return.
|
|
specifiedSizeSuggestion = nsLayoutUtils::ComputeBSizeValue(
|
|
percentBasis.BSize(cbWM), boxSizingAdjust.BSize(cbWM),
|
|
mainStyleSize.AsLengthPercentage());
|
|
}
|
|
}
|
|
|
|
if (specifiedSizeSuggestion != nscoord_MAX) {
|
|
// We have the specified size suggestion. Return it now since we don't need
|
|
// to consider transferred size suggestion.
|
|
FLEX_LOGV(" Specified size suggestion: %d", specifiedSizeSuggestion);
|
|
return specifiedSizeSuggestion;
|
|
}
|
|
|
|
// Compute the transferred size suggestion, which is the cross size converted
|
|
// through the aspect ratio (if the item is replaced, and it has an aspect
|
|
// ratio and a definite cross size).
|
|
if (const auto& aspectRatio = aFlexItem.GetAspectRatio();
|
|
aFlexItem.Frame()->IsReplaced() && aspectRatio &&
|
|
aFlexItem.IsCrossSizeDefinite(aItemReflowInput)) {
|
|
// We have a usable aspect ratio. (not going to divide by 0)
|
|
nscoord transferredSizeSuggestion = aspectRatio.ComputeRatioDependentSize(
|
|
aFlexItem.MainAxis(), cbWM, aFlexItem.CrossSize(), boxSizingAdjust);
|
|
|
|
// Clamp the transferred size suggestion by any definite min and max
|
|
// cross size converted through the aspect ratio.
|
|
transferredSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints(
|
|
transferredSizeSuggestion, aItemReflowInput);
|
|
|
|
FLEX_LOGV(" Transferred size suggestion: %d", transferredSizeSuggestion);
|
|
return transferredSizeSuggestion;
|
|
}
|
|
|
|
return nscoord_MAX;
|
|
}
|
|
|
|
// Note: If & when we handle "min-height: min-content" for flex items,
|
|
// we may want to resolve that in this function, too.
|
|
void nsFlexContainerFrame::ResolveAutoFlexBasisAndMinSize(
|
|
FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
|
|
const FlexboxAxisTracker& aAxisTracker) {
|
|
// (Note: We can guarantee that the flex-basis will have already been
|
|
// resolved if the main axis is the same as the item's inline
|
|
// axis. Inline-axis values should always be resolvable without reflow.)
|
|
const bool isMainSizeAuto =
|
|
(!aFlexItem.IsInlineAxisMainAxis() &&
|
|
NS_UNCONSTRAINEDSIZE == aFlexItem.FlexBaseSize());
|
|
|
|
const bool isMainMinSizeAuto = aFlexItem.NeedsMinSizeAutoResolution();
|
|
|
|
if (!isMainSizeAuto && !isMainMinSizeAuto) {
|
|
// Nothing to do; this function is only needed for flex items
|
|
// with a used flex-basis of "auto" or a min-main-size of "auto".
|
|
return;
|
|
}
|
|
|
|
FLEX_LOGV("Resolving auto main size or auto min main size for flex item %p",
|
|
aFlexItem.Frame());
|
|
|
|
nscoord resolvedMinSize; // (only set/used if isMainMinSizeAuto==true)
|
|
bool minSizeNeedsToMeasureContent = false; // assume the best
|
|
if (isMainMinSizeAuto) {
|
|
// Resolve the min-size, except for considering the min-content size.
|
|
// (We'll consider that later, if we need to.)
|
|
resolvedMinSize =
|
|
PartiallyResolveAutoMinSize(aFlexItem, aItemReflowInput, aAxisTracker);
|
|
if (resolvedMinSize > 0) {
|
|
// If resolvedMinSize were already at 0, we could skip calculating content
|
|
// size suggestion because it can't go any lower.
|
|
minSizeNeedsToMeasureContent = true;
|
|
}
|
|
}
|
|
|
|
const bool flexBasisNeedsToMeasureContent = isMainSizeAuto;
|
|
|
|
// Measure content, if needed (w/ intrinsic-width method or a reflow)
|
|
if (minSizeNeedsToMeasureContent || flexBasisNeedsToMeasureContent) {
|
|
// Compute the content size suggestion, which is the min-content size in the
|
|
// main axis.
|
|
nscoord contentSizeSuggestion = nscoord_MAX;
|
|
|
|
if (aFlexItem.IsInlineAxisMainAxis()) {
|
|
if (minSizeNeedsToMeasureContent) {
|
|
// Compute the flex item's content size suggestion, which is the
|
|
// 'min-content' size on the main axis.
|
|
// https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion
|
|
const auto cbWM = aAxisTracker.GetWritingMode();
|
|
const auto itemWM = aFlexItem.GetWritingMode();
|
|
const nscoord availISize = 0; // for min-content size
|
|
StyleSizeOverrides sizeOverrides;
|
|
sizeOverrides.mStyleISize.emplace(StyleSize::Auto());
|
|
const auto sizeInItemWM = aFlexItem.Frame()->ComputeSize(
|
|
aItemReflowInput.mRenderingContext, itemWM,
|
|
aItemReflowInput.mContainingBlockSize, availISize,
|
|
aItemReflowInput.ComputedLogicalMargin(itemWM).Size(itemWM),
|
|
aItemReflowInput.ComputedLogicalBorderPadding(itemWM).Size(itemWM),
|
|
sizeOverrides, {ComputeSizeFlag::ShrinkWrap});
|
|
|
|
contentSizeSuggestion = aAxisTracker.MainComponent(
|
|
sizeInItemWM.mLogicalSize.ConvertTo(cbWM, itemWM));
|
|
}
|
|
NS_ASSERTION(!flexBasisNeedsToMeasureContent,
|
|
"flex-basis:auto should have been resolved in the "
|
|
"reflow input, for horizontal flexbox. It shouldn't need "
|
|
"special handling here");
|
|
} else {
|
|
// If this item is flexible (in its block axis)...
|
|
// OR if we're measuring its 'auto' min-BSize, with its main-size (in its
|
|
// block axis) being something non-"auto"...
|
|
// THEN: we assume that the computed BSize that we're reflowing with now
|
|
// could be different from the one we'll use for this flex item's
|
|
// "actual" reflow later on. In that case, we need to be sure the flex
|
|
// item treats this as a block-axis resize (regardless of whether there
|
|
// are actually any ancestors being resized in that axis).
|
|
// (Note: We don't have to do this for the inline axis, because
|
|
// InitResizeFlags will always turn on mIsIResize on when it sees that
|
|
// the computed ISize is different from current ISize, and that's all we
|
|
// need.)
|
|
bool forceBResizeForMeasuringReflow =
|
|
!aFlexItem.IsFrozen() || // Is the item flexible?
|
|
!flexBasisNeedsToMeasureContent; // Are we *only* measuring it for
|
|
// 'min-block-size:auto'?
|
|
|
|
const ReflowInput& flexContainerRI = *aItemReflowInput.mParentReflowInput;
|
|
nscoord contentBSize = MeasureFlexItemContentBSize(
|
|
aFlexItem, forceBResizeForMeasuringReflow, flexContainerRI);
|
|
if (minSizeNeedsToMeasureContent) {
|
|
contentSizeSuggestion = contentBSize;
|
|
}
|
|
if (flexBasisNeedsToMeasureContent) {
|
|
aFlexItem.SetFlexBaseSizeAndMainSize(contentBSize);
|
|
}
|
|
}
|
|
|
|
if (minSizeNeedsToMeasureContent) {
|
|
// Clamp the content size suggestion by any definite min and max cross
|
|
// size converted through the aspect ratio.
|
|
if (aFlexItem.HasAspectRatio()) {
|
|
contentSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints(
|
|
contentSizeSuggestion, aItemReflowInput);
|
|
}
|
|
|
|
FLEX_LOGV(" Content size suggestion: %d", contentSizeSuggestion);
|
|
resolvedMinSize = std::min(resolvedMinSize, contentSizeSuggestion);
|
|
|
|
// Clamp the resolved min main size by the max main size if it's definite.
|
|
if (aFlexItem.MainMaxSize() != NS_UNCONSTRAINEDSIZE) {
|
|
resolvedMinSize = std::min(resolvedMinSize, aFlexItem.MainMaxSize());
|
|
} else if (MOZ_UNLIKELY(resolvedMinSize > nscoord_MAX)) {
|
|
NS_WARNING("Bogus resolved auto min main size!");
|
|
// Our resolved min-size is bogus, probably due to some huge sizes in
|
|
// the content. Clamp it to the valid nscoord range, so that we can at
|
|
// least depend on it being <= the max-size (which is also the
|
|
// nscoord_MAX sentinel value if we reach this point).
|
|
resolvedMinSize = nscoord_MAX;
|
|
}
|
|
FLEX_LOGV(" Resolved auto min main size: %d", resolvedMinSize);
|
|
}
|
|
}
|
|
|
|
if (isMainMinSizeAuto) {
|
|
aFlexItem.UpdateMainMinSize(resolvedMinSize);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A cached result for a flex item's block-axis measuring reflow. This cache
|
|
* prevents us from doing exponential reflows in cases of deeply nested flex
|
|
* and scroll frames.
|
|
*
|
|
* We store the cached value in the flex item's frame property table, for
|
|
* simplicity.
|
|
*
|
|
* Right now, we cache the following as a "key", from the item's ReflowInput:
|
|
* - its ComputedSize
|
|
* - its min/max block size (in case its ComputedBSize is unconstrained)
|
|
* - its AvailableBSize
|
|
* ...and we cache the following as the "value", from the item's ReflowOutput:
|
|
* - its final content-box BSize
|
|
*
|
|
* The assumption here is that a given flex item measurement from our "value"
|
|
* won't change unless one of the pieces of the "key" change, or the flex
|
|
* item's intrinsic size is marked as dirty (due to a style or DOM change).
|
|
* (The latter will cause the cached value to be discarded, in
|
|
* nsIFrame::MarkIntrinsicISizesDirty.)
|
|
*
|
|
* Note that the components of "Key" (mComputed{MinB,MaxB,}Size and
|
|
* mAvailableBSize) are sufficient to catch any changes to the flex container's
|
|
* size that the item may care about for its measuring reflow. Specifically:
|
|
* - If the item cares about the container's size (e.g. if it has a percent
|
|
* height and the container's height changes, in a horizontal-WM container)
|
|
* then that'll be detectable via the item's ReflowInput's "ComputedSize()"
|
|
* differing from the value in our Key. And the same applies for the
|
|
* inline axis.
|
|
* - If the item is fragmentable (pending bug 939897) and its measured BSize
|
|
* depends on where it gets fragmented, then that sort of change can be
|
|
* detected due to the item's ReflowInput's "AvailableBSize()" differing
|
|
* from the value in our Key.
|
|
*
|
|
* One particular case to consider (& need to be sure not to break when
|
|
* changing this class): the flex item's computed BSize may change between
|
|
* measuring reflows due to how the mIsFlexContainerMeasuringBSize flag affects
|
|
* size computation (see bug 1336708). This is one reason we need to use the
|
|
* computed BSize as part of the key.
|
|
*/
|
|
class nsFlexContainerFrame::CachedBAxisMeasurement {
|
|
struct Key {
|
|
const LogicalSize mComputedSize;
|
|
const nscoord mComputedMinBSize;
|
|
const nscoord mComputedMaxBSize;
|
|
const nscoord mAvailableBSize;
|
|
|
|
explicit Key(const ReflowInput& aRI)
|
|
: mComputedSize(aRI.ComputedSize()),
|
|
mComputedMinBSize(aRI.ComputedMinBSize()),
|
|
mComputedMaxBSize(aRI.ComputedMaxBSize()),
|
|
mAvailableBSize(aRI.AvailableBSize()) {}
|
|
|
|
bool operator==(const Key& aOther) const {
|
|
return mComputedSize == aOther.mComputedSize &&
|
|
mComputedMinBSize == aOther.mComputedMinBSize &&
|
|
mComputedMaxBSize == aOther.mComputedMaxBSize &&
|
|
mAvailableBSize == aOther.mAvailableBSize;
|
|
}
|
|
};
|
|
|
|
const Key mKey;
|
|
|
|
// This could/should be const, but it's non-const for now just because it's
|
|
// assigned via a series of steps in the constructor body:
|
|
nscoord mBSize;
|
|
|
|
public:
|
|
CachedBAxisMeasurement(const ReflowInput& aReflowInput,
|
|
const ReflowOutput& aReflowOutput)
|
|
: mKey(aReflowInput) {
|
|
// To get content-box bsize, we have to subtract off border & padding
|
|
// (and floor at 0 in case the border/padding are too large):
|
|
WritingMode itemWM = aReflowInput.GetWritingMode();
|
|
nscoord borderBoxBSize = aReflowOutput.BSize(itemWM);
|
|
mBSize =
|
|
borderBoxBSize -
|
|
aReflowInput.ComputedLogicalBorderPadding(itemWM).BStartEnd(itemWM);
|
|
mBSize = std::max(0, mBSize);
|
|
}
|
|
|
|
/**
|
|
* Returns true if this cached flex item measurement is valid for (i.e. can
|
|
* be expected to match the output of) a measuring reflow whose input
|
|
* parameters are given via aReflowInput.
|
|
*/
|
|
bool IsValidFor(const ReflowInput& aReflowInput) const {
|
|
return mKey == Key(aReflowInput);
|
|
}
|
|
|
|
nscoord BSize() const { return mBSize; }
|
|
};
|
|
|
|
/**
|
|
* A cached copy of various metrics from a flex item's most recent final reflow.
|
|
* It can be used to determine whether we can optimize away the flex item's
|
|
* final reflow, when we perform an incremental reflow of its flex container.
|
|
*/
|
|
class CachedFinalReflowMetrics final {
|
|
public:
|
|
CachedFinalReflowMetrics(const ReflowInput& aReflowInput,
|
|
const ReflowOutput& aReflowOutput)
|
|
: CachedFinalReflowMetrics(aReflowInput.GetWritingMode(), aReflowInput,
|
|
aReflowOutput) {}
|
|
|
|
CachedFinalReflowMetrics(const FlexItem& aItem, const LogicalSize& aSize)
|
|
: mBorderPadding(aItem.BorderPadding().ConvertTo(
|
|
aItem.GetWritingMode(), aItem.ContainingBlockWM())),
|
|
mSize(aSize),
|
|
mTreatBSizeAsIndefinite(aItem.TreatBSizeAsIndefinite()) {}
|
|
|
|
const LogicalSize& Size() const { return mSize; }
|
|
const LogicalMargin& BorderPadding() const { return mBorderPadding; }
|
|
bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; }
|
|
|
|
private:
|
|
// A convenience constructor with a WritingMode argument.
|
|
CachedFinalReflowMetrics(WritingMode aWM, const ReflowInput& aReflowInput,
|
|
const ReflowOutput& aReflowOutput)
|
|
: mBorderPadding(aReflowInput.ComputedLogicalBorderPadding(aWM)),
|
|
mSize(aReflowOutput.Size(aWM) - mBorderPadding.Size(aWM)),
|
|
mTreatBSizeAsIndefinite(aReflowInput.mFlags.mTreatBSizeAsIndefinite) {}
|
|
|
|
// The flex item's border and padding, in its own writing-mode, that it used
|
|
// used during its most recent "final reflow".
|
|
LogicalMargin mBorderPadding;
|
|
|
|
// The flex item's content-box size, in its own writing-mode, that it used
|
|
// during its most recent "final reflow".
|
|
LogicalSize mSize;
|
|
|
|
// True if the flex item's BSize was considered "indefinite" in its most
|
|
// recent "final reflow". (For a flex item "final reflow", this is fully
|
|
// determined by the mTreatBSizeAsIndefinite flag in ReflowInput. See the
|
|
// flag's documentation for more information.)
|
|
bool mTreatBSizeAsIndefinite;
|
|
};
|
|
|
|
/**
|
|
* When we instantiate/update a CachedFlexItemData, this enum must be used to
|
|
* indicate the sort of reflow whose results we're capturing. This impacts
|
|
* what we cache & how we use the cached information.
|
|
*/
|
|
enum class FlexItemReflowType {
|
|
// A reflow to measure the block-axis size of a flex item (as an input to the
|
|
// flex layout algorithm).
|
|
Measuring,
|
|
|
|
// A reflow with the flex item's "final" size at the end of the flex layout
|
|
// algorithm.
|
|
Final,
|
|
};
|
|
|
|
/**
|
|
* This class stores information about the conditions and results for the most
|
|
* recent ReflowChild call that we made on a given flex item. This information
|
|
* helps us reason about whether we can assume that a subsequent ReflowChild()
|
|
* invocation is unnecessary & skippable.
|
|
*/
|
|
class nsFlexContainerFrame::CachedFlexItemData {
|
|
public:
|
|
CachedFlexItemData(const ReflowInput& aReflowInput,
|
|
const ReflowOutput& aReflowOutput,
|
|
FlexItemReflowType aType) {
|
|
Update(aReflowInput, aReflowOutput, aType);
|
|
}
|
|
|
|
// This method is intended to be called after we perform either a "measuring
|
|
// reflow" or a "final reflow" for a given flex item.
|
|
void Update(const ReflowInput& aReflowInput,
|
|
const ReflowOutput& aReflowOutput, FlexItemReflowType aType) {
|
|
if (aType == FlexItemReflowType::Measuring) {
|
|
mBAxisMeasurement.reset();
|
|
mBAxisMeasurement.emplace(aReflowInput, aReflowOutput);
|
|
// Clear any cached "last final reflow metrics", too, because now the most
|
|
// recent reflow was *not* a "final reflow".
|
|
mFinalReflowMetrics.reset();
|
|
return;
|
|
}
|
|
|
|
MOZ_ASSERT(aType == FlexItemReflowType::Final);
|
|
mFinalReflowMetrics.reset();
|
|
mFinalReflowMetrics.emplace(aReflowInput, aReflowOutput);
|
|
}
|
|
|
|
// This method is intended to be called for situations where we decide to
|
|
// skip a final reflow because we've just done a measuring reflow which left
|
|
// us (and our descendants) with the correct sizes. In this scenario, we
|
|
// still want to cache the size as if we did a final reflow (because we've
|
|
// determined that the recent measuring reflow was sufficient). That way,
|
|
// our flex container can still skip a final reflow for this item in the
|
|
// future as long as conditions are right.
|
|
void Update(const FlexItem& aItem, const LogicalSize& aSize) {
|
|
MOZ_ASSERT(!mFinalReflowMetrics,
|
|
"This version of the method is only intended to be called when "
|
|
"the most recent reflow was a 'measuring reflow'; and that "
|
|
"should have cleared out mFinalReflowMetrics");
|
|
|
|
mFinalReflowMetrics.reset(); // Just in case this assert^ fails.
|
|
mFinalReflowMetrics.emplace(aItem, aSize);
|
|
}
|
|
|
|
// If the flex container needs a measuring reflow for the flex item, then the
|
|
// resulting block-axis measurements can be cached here. If no measurement
|
|
// has been needed so far, then this member will be Nothing().
|
|
Maybe<CachedBAxisMeasurement> mBAxisMeasurement;
|
|
|
|
// The metrics that the corresponding flex item used in its most recent
|
|
// "final reflow". (Note: the assumption here is that this reflow was this
|
|
// item's most recent reflow of any type. If the item ends up undergoing a
|
|
// subsequent measuring reflow, then this value needs to be cleared, because
|
|
// at that point it's no longer an accurate way of reasoning about the
|
|
// current state of the frame tree.)
|
|
Maybe<CachedFinalReflowMetrics> mFinalReflowMetrics;
|
|
|
|
// Instances of this class are stored under this frame property, on
|
|
// frames that are flex items:
|
|
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, CachedFlexItemData)
|
|
};
|
|
|
|
void nsFlexContainerFrame::MarkCachedFlexMeasurementsDirty(
|
|
nsIFrame* aItemFrame) {
|
|
MOZ_ASSERT(aItemFrame->IsFlexItem());
|
|
if (auto* cache = aItemFrame->GetProperty(CachedFlexItemData::Prop())) {
|
|
cache->mBAxisMeasurement.reset();
|
|
cache->mFinalReflowMetrics.reset();
|
|
}
|
|
}
|
|
|
|
const CachedBAxisMeasurement& nsFlexContainerFrame::MeasureBSizeForFlexItem(
|
|
FlexItem& aItem, ReflowInput& aChildReflowInput) {
|
|
auto* cachedData = aItem.Frame()->GetProperty(CachedFlexItemData::Prop());
|
|
|
|
if (cachedData && cachedData->mBAxisMeasurement) {
|
|
if (!aItem.Frame()->IsSubtreeDirty() &&
|
|
cachedData->mBAxisMeasurement->IsValidFor(aChildReflowInput)) {
|
|
FLEX_LOG("[perf] MeasureBSizeForFlexItem accepted cached value");
|
|
return *(cachedData->mBAxisMeasurement);
|
|
}
|
|
FLEX_LOG("[perf] MeasureBSizeForFlexItem rejected cached value");
|
|
} else {
|
|
FLEX_LOG("[perf] MeasureBSizeForFlexItem didn't have a cached value");
|
|
}
|
|
|
|
// CachedFlexItemData is stored in item's writing mode, so we pass
|
|
// aChildReflowInput into ReflowOutput's constructor.
|
|
ReflowOutput childReflowOutput(aChildReflowInput);
|
|
nsReflowStatus childReflowStatus;
|
|
|
|
const ReflowChildFlags flags = ReflowChildFlags::NoMoveFrame;
|
|
const WritingMode outerWM = GetWritingMode();
|
|
const LogicalPoint dummyPosition(outerWM);
|
|
const nsSize dummyContainerSize;
|
|
|
|
// We use NoMoveFrame, so the position and container size used here are
|
|
// unimportant.
|
|
ReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
|
|
aChildReflowInput, outerWM, dummyPosition, dummyContainerSize,
|
|
flags, childReflowStatus);
|
|
aItem.SetHadMeasuringReflow();
|
|
|
|
// We always use unconstrained available block-size to measure flex items,
|
|
// which means they should always complete.
|
|
MOZ_ASSERT(childReflowStatus.IsComplete(),
|
|
"We gave flex item unconstrained available block-size, so it "
|
|
"should be complete");
|
|
|
|
// Tell the child we're done with its initial reflow.
|
|
// (Necessary for e.g. GetBaseline() to work below w/out asserting)
|
|
FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
|
|
&aChildReflowInput, outerWM, dummyPosition,
|
|
dummyContainerSize, flags);
|
|
|
|
aItem.SetAscent(childReflowOutput.BlockStartAscent());
|
|
|
|
// Update (or add) our cached measurement, so that we can hopefully skip this
|
|
// measuring reflow the next time around:
|
|
if (cachedData) {
|
|
cachedData->Update(aChildReflowInput, childReflowOutput,
|
|
FlexItemReflowType::Measuring);
|
|
} else {
|
|
cachedData = new CachedFlexItemData(aChildReflowInput, childReflowOutput,
|
|
FlexItemReflowType::Measuring);
|
|
aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cachedData);
|
|
}
|
|
return *(cachedData->mBAxisMeasurement);
|
|
}
|
|
|
|
/* virtual */
|
|
void nsFlexContainerFrame::MarkIntrinsicISizesDirty() {
|
|
mCachedMinISize = NS_INTRINSIC_ISIZE_UNKNOWN;
|
|
mCachedPrefISize = NS_INTRINSIC_ISIZE_UNKNOWN;
|
|
|
|
nsContainerFrame::MarkIntrinsicISizesDirty();
|
|
}
|
|
|
|
nscoord nsFlexContainerFrame::MeasureFlexItemContentBSize(
|
|
FlexItem& aFlexItem, bool aForceBResizeForMeasuringReflow,
|
|
const ReflowInput& aParentReflowInput) {
|
|
FLEX_LOG("Measuring flex item's content block-size");
|
|
|
|
// Set up a reflow input for measuring the flex item's content block-size:
|
|
WritingMode wm = aFlexItem.Frame()->GetWritingMode();
|
|
LogicalSize availSize = aParentReflowInput.ComputedSize(wm);
|
|
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
|
|
|
|
StyleSizeOverrides sizeOverrides;
|
|
if (aFlexItem.IsStretched()) {
|
|
sizeOverrides.mStyleISize.emplace(aFlexItem.StyleCrossSize());
|
|
// Suppress any AspectRatio that we might have to prevent ComputeSize() from
|
|
// transferring our inline-size override through the aspect-ratio to set the
|
|
// block-size, because that would prevent us from measuring the content
|
|
// block-size.
|
|
sizeOverrides.mAspectRatio.emplace(AspectRatio());
|
|
FLEX_LOGV(" Cross size override: %d", aFlexItem.CrossSize());
|
|
}
|
|
sizeOverrides.mStyleBSize.emplace(StyleSize::Auto());
|
|
|
|
ReflowInput childRIForMeasuringBSize(
|
|
PresContext(), aParentReflowInput, aFlexItem.Frame(), availSize,
|
|
Nothing(), ReflowInput::InitFlag::CallerWillInit, sizeOverrides);
|
|
childRIForMeasuringBSize.Init(PresContext());
|
|
|
|
// When measuring flex item's content block-size, disregard the item's
|
|
// min-block-size and max-block-size by resetting both to to their
|
|
// unconstraining (extreme) values. The flexbox layout algorithm does still
|
|
// explicitly clamp both sizes when resolving the target main size.
|
|
childRIForMeasuringBSize.SetComputedMinBSize(0);
|
|
childRIForMeasuringBSize.SetComputedMaxBSize(NS_UNCONSTRAINEDSIZE);
|
|
|
|
if (aForceBResizeForMeasuringReflow) {
|
|
childRIForMeasuringBSize.SetBResize(true);
|
|
// Not 100% sure this is needed, but be conservative for now:
|
|
childRIForMeasuringBSize.mFlags.mIsBResizeForPercentages = true;
|
|
}
|
|
|
|
const CachedBAxisMeasurement& measurement =
|
|
MeasureBSizeForFlexItem(aFlexItem, childRIForMeasuringBSize);
|
|
|
|
return measurement.BSize();
|
|
}
|
|
|
|
FlexItem::FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
|
|
float aFlexShrink, nscoord aFlexBaseSize,
|
|
nscoord aMainMinSize, nscoord aMainMaxSize,
|
|
nscoord aTentativeCrossSize, nscoord aCrossMinSize,
|
|
nscoord aCrossMaxSize,
|
|
const FlexboxAxisTracker& aAxisTracker)
|
|
: mFrame(aFlexItemReflowInput.mFrame),
|
|
mFlexGrow(aFlexGrow),
|
|
mFlexShrink(aFlexShrink),
|
|
mAspectRatio(mFrame->GetAspectRatio()),
|
|
mWM(aFlexItemReflowInput.GetWritingMode()),
|
|
mCBWM(aAxisTracker.GetWritingMode()),
|
|
mMainAxis(aAxisTracker.MainAxis()),
|
|
mBorderPadding(aFlexItemReflowInput.ComputedLogicalBorderPadding(mCBWM)),
|
|
mMargin(aFlexItemReflowInput.ComputedLogicalMargin(mCBWM)),
|
|
mMainMinSize(aMainMinSize),
|
|
mMainMaxSize(aMainMaxSize),
|
|
mCrossMinSize(aCrossMinSize),
|
|
mCrossMaxSize(aCrossMaxSize),
|
|
mCrossSize(aTentativeCrossSize),
|
|
mIsInlineAxisMainAxis(aAxisTracker.IsInlineAxisMainAxis(mWM)),
|
|
mNeedsMinSizeAutoResolution(IsMinSizeAutoResolutionNeeded())
|
|
// mAlignSelf, mHasAnyAutoMargin see below
|
|
{
|
|
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
|
|
MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
|
|
"placeholder frames should not be treated as flex items");
|
|
MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
|
|
"out-of-flow frames should not be treated as flex items");
|
|
MOZ_ASSERT(mIsInlineAxisMainAxis ==
|
|
nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame),
|
|
"public API should be consistent with internal state (about "
|
|
"whether flex item's inline axis is flex container's main axis)");
|
|
|
|
const ReflowInput* containerRS = aFlexItemReflowInput.mParentReflowInput;
|
|
if (IsLegacyBox(containerRS->mFrame)) {
|
|
// For -webkit-{inline-}box and -moz-{inline-}box, we need to:
|
|
// (1) Use prefixed "box-align" instead of "align-items" to determine the
|
|
// container's cross-axis alignment behavior.
|
|
// (2) Suppress the ability for flex items to override that with their own
|
|
// cross-axis alignment. (The legacy box model doesn't support this.)
|
|
// So, each FlexItem simply copies the container's converted "align-items"
|
|
// value and disregards their own "align-self" property.
|
|
const nsStyleXUL* containerStyleXUL = containerRS->mFrame->StyleXUL();
|
|
mAlignSelf = {ConvertLegacyStyleToAlignItems(containerStyleXUL)};
|
|
mAlignSelfFlags = {0};
|
|
} else {
|
|
mAlignSelf = aFlexItemReflowInput.mStylePosition->UsedAlignSelf(
|
|
containerRS->mFrame->Style());
|
|
if (MOZ_LIKELY(mAlignSelf._0 == StyleAlignFlags::NORMAL)) {
|
|
mAlignSelf = {StyleAlignFlags::STRETCH};
|
|
}
|
|
|
|
// Store and strip off the <overflow-position> bits
|
|
mAlignSelfFlags = mAlignSelf._0 & StyleAlignFlags::FLAG_BITS;
|
|
mAlignSelf._0 &= ~StyleAlignFlags::FLAG_BITS;
|
|
}
|
|
|
|
// Our main-size is considered definite if any of these are true:
|
|
// (a) main axis is the item's inline axis.
|
|
// (b) flex container has definite main size.
|
|
// (c) flex item has a definite flex basis.
|
|
//
|
|
// Hence, we need to take care to treat the final main-size as *indefinite*
|
|
// if none of these conditions are satisfied.
|
|
if (mIsInlineAxisMainAxis) {
|
|
// The item's block-axis is the flex container's cross axis. We don't need
|
|
// any special handling to treat cross sizes as indefinite, because the
|
|
// cases where we stomp on the cross size with a definite value are all...
|
|
// - situations where the spec requires us to treat the cross size as
|
|
// definite; specifically, `align-self:stretch` whose cross size is
|
|
// definite.
|
|
// - situations where definiteness doesn't matter (e.g. for an element with
|
|
// an aspect ratio, which for now are all leaf nodes and hence
|
|
// can't have any percent-height descendants that would care about the
|
|
// definiteness of its size. (Once bug 1528375 is fixed, we might need to
|
|
// be more careful about definite vs. indefinite sizing on flex items with
|
|
// aspect ratios.)
|
|
mTreatBSizeAsIndefinite = false;
|
|
} else {
|
|
// The item's block-axis is the flex container's main axis. So, the flex
|
|
// item's main size is its BSize, and is considered definite under certain
|
|
// conditions laid out for definite flex-item main-sizes in the spec.
|
|
if (aAxisTracker.IsRowOriented() ||
|
|
(containerRS->ComputedBSize() != NS_UNCONSTRAINEDSIZE &&
|
|
!containerRS->mFlags.mTreatBSizeAsIndefinite)) {
|
|
// The flex *container* has a definite main-size (either by being
|
|
// row-oriented [and using its own inline size which is by definition
|
|
// definite, or by being column-oriented and having a definite
|
|
// block-size). The spec says this means all of the flex items'
|
|
// post-flexing main sizes should *also* be treated as definite.
|
|
mTreatBSizeAsIndefinite = false;
|
|
} else if (aFlexBaseSize != NS_UNCONSTRAINEDSIZE) {
|
|
// The flex item has a definite flex basis, which we'll treat as making
|
|
// its main-size definite.
|
|
mTreatBSizeAsIndefinite = false;
|
|
} else {
|
|
// Otherwise, we have to treat the item's BSize as indefinite.
|
|
mTreatBSizeAsIndefinite = true;
|
|
}
|
|
}
|
|
|
|
SetFlexBaseSizeAndMainSize(aFlexBaseSize);
|
|
|
|
const nsStyleMargin* styleMargin = aFlexItemReflowInput.mStyleMargin;
|
|
mHasAnyAutoMargin = styleMargin->HasInlineAxisAuto(mCBWM) ||
|
|
styleMargin->HasBlockAxisAuto(mCBWM);
|
|
|
|
// Assert that any "auto" margin components are set to 0.
|
|
// (We'll resolve them later; until then, we want to treat them as 0-sized.)
|
|
#ifdef DEBUG
|
|
{
|
|
for (const auto side : AllLogicalSides()) {
|
|
if (styleMargin->mMargin.Get(mCBWM, side).IsAuto()) {
|
|
MOZ_ASSERT(GetMarginComponentForSide(side) == 0,
|
|
"Someone else tried to resolve our auto margin");
|
|
}
|
|
}
|
|
}
|
|
#endif // DEBUG
|
|
|
|
if (mAlignSelf._0 == StyleAlignFlags::BASELINE ||
|
|
mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE) {
|
|
// Check which of the item's baselines we're meant to use (first vs. last)
|
|
const bool usingItemFirstBaseline =
|
|
(mAlignSelf._0 == StyleAlignFlags::BASELINE);
|
|
if (IsBlockAxisCrossAxis()) {
|
|
// The flex item wants to be aligned in the cross axis using one of its
|
|
// baselines; and the cross axis is the item's block axis, so
|
|
// baseline-alignment in that axis makes sense.
|
|
|
|
// To determine the item's baseline sharing group, we check whether the
|
|
// item's block axis has the same vs. opposite flow direction as the
|
|
// corresponding LogicalAxis on the flex container. We do this by
|
|
// getting the physical side that corresponds to these axes' "logical
|
|
// start" sides, and we compare those physical sides to find out if
|
|
// they're the same vs. opposite.
|
|
mozilla::Side itemBlockStartSide = mWM.PhysicalSide(eLogicalSideBStart);
|
|
|
|
// (Note: this is *not* the "flex-start" side; rather, it's the *logical*
|
|
// i.e. WM-relative block-start or inline-start side.)
|
|
mozilla::Side containerStartSideInCrossAxis = mCBWM.PhysicalSide(
|
|
MakeLogicalSide(aAxisTracker.CrossAxis(), eLogicalEdgeStart));
|
|
|
|
// We already know these two Sides (the item's block-start and the
|
|
// container's 'logical start' side for its cross axis) are in the same
|
|
// physical axis, since we're inside of a check for
|
|
// FlexItem::IsBlockAxisCrossAxis(). So these two Sides must be either
|
|
// the same physical side or opposite from each other. If the Sides are
|
|
// the same, then the flow direction is the same, which means the item's
|
|
// {first,last} baseline participates in the {first,last}
|
|
// baseline-sharing group in its FlexLine. Otherwise, the flow direction
|
|
// is opposite, and so the item's {first,last} baseline participates in
|
|
// the opposite i.e. {last,first} baseline-sharing group. This is
|
|
// roughly per css-align-3 section 9.2, specifically the definition of
|
|
// what makes baseline alignment preferences "compatible".
|
|
bool itemBlockAxisFlowDirMatchesContainer =
|
|
(itemBlockStartSide == containerStartSideInCrossAxis);
|
|
mBaselineSharingGroup =
|
|
(itemBlockAxisFlowDirMatchesContainer == usingItemFirstBaseline)
|
|
? BaselineSharingGroup::First
|
|
: BaselineSharingGroup::Last;
|
|
} else {
|
|
// The flex item wants to be aligned in the cross axis using one of its
|
|
// baselines, but we cannot get its baseline because the FlexItem's block
|
|
// axis is *orthogonal* to the container's cross axis. To handle this, we
|
|
// are supposed to synthesize a baseline from the item's border box and
|
|
// using that for baseline alignment.
|
|
mBaselineSharingGroup = usingItemFirstBaseline
|
|
? BaselineSharingGroup::First
|
|
: BaselineSharingGroup::Last;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Simplified constructor for creating a special "strut" FlexItem, for a child
|
|
// with visibility:collapse. The strut has 0 main-size, and it only exists to
|
|
// impose a minimum cross size on whichever FlexLine it ends up in.
|
|
FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize,
|
|
WritingMode aContainerWM,
|
|
const FlexboxAxisTracker& aAxisTracker)
|
|
: mFrame(aChildFrame),
|
|
mWM(aChildFrame->GetWritingMode()),
|
|
mCBWM(aContainerWM),
|
|
mMainAxis(aAxisTracker.MainAxis()),
|
|
mBorderPadding(mCBWM),
|
|
mMargin(mCBWM),
|
|
mCrossSize(aCrossSize),
|
|
// Struts don't do layout, so its WM doesn't matter at this point. So, we
|
|
// just share container's WM for simplicity:
|
|
mIsFrozen(true),
|
|
mIsStrut(true), // (this is the constructor for making struts, after all)
|
|
mAlignSelf({StyleAlignFlags::FLEX_START}) {
|
|
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
|
|
MOZ_ASSERT(mFrame->StyleVisibility()->IsCollapse(),
|
|
"Should only make struts for children with 'visibility:collapse'");
|
|
MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
|
|
"placeholder frames should not be treated as flex items");
|
|
MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
|
|
"out-of-flow frames should not be treated as flex items");
|
|
}
|
|
|
|
bool FlexItem::IsMinSizeAutoResolutionNeeded() const {
|
|
// We'll need special behavior for "min-[width|height]:auto" (whichever is in
|
|
// the flex container's main axis) iff:
|
|
// (a) its computed value is "auto", and
|
|
// (b) the item is *not* a scroll container. (A scroll container's automatic
|
|
// minimum size is zero.)
|
|
// https://drafts.csswg.org/css-flexbox-1/#min-size-auto
|
|
const auto& mainMinSize =
|
|
Frame()->StylePosition()->MinSize(MainAxis(), ContainingBlockWM());
|
|
|
|
return IsAutoOrEnumOnBSize(mainMinSize, IsInlineAxisMainAxis()) &&
|
|
!Frame()->StyleDisplay()->IsScrollableOverflow();
|
|
}
|
|
|
|
nscoord FlexItem::BaselineOffsetFromOuterCrossEdge(
|
|
mozilla::Side aStartSide, bool aUseFirstLineBaseline) const {
|
|
// NOTE:
|
|
// * We only use baselines for aligning in the flex container's cross axis.
|
|
// * Baselines are a measurement in the item's block axis.
|
|
if (IsBlockAxisMainAxis()) {
|
|
// We get here if the item's block axis is *orthogonal* the container's
|
|
// cross axis. For example, a flex item with writing-mode:horizontal-tb in a
|
|
// column-oriented flex container. We need to synthesize the item's baseline
|
|
// from its border-box edge.
|
|
const bool isMainAxisHorizontal =
|
|
mCBWM.PhysicalAxis(MainAxis()) == mozilla::eAxisHorizontal;
|
|
|
|
// When the main axis is horizontal, the synthesized baseline is the bottom
|
|
// edge of the item's border-box. Otherwise, when the main axis is vertical,
|
|
// the left edge. This is for compatibility with Google Chrome.
|
|
nscoord marginTopOrLeftToBaseline =
|
|
isMainAxisHorizontal ? PhysicalMargin().top : PhysicalMargin().left;
|
|
if (mCBWM.IsAlphabeticalBaseline()) {
|
|
marginTopOrLeftToBaseline += (isMainAxisHorizontal ? CrossSize() : 0);
|
|
} else {
|
|
MOZ_ASSERT(mCBWM.IsCentralBaseline());
|
|
marginTopOrLeftToBaseline += CrossSize() / 2;
|
|
}
|
|
|
|
return aStartSide == mozilla::eSideTop || aStartSide == mozilla::eSideLeft
|
|
? marginTopOrLeftToBaseline
|
|
: OuterCrossSize() - marginTopOrLeftToBaseline;
|
|
}
|
|
|
|
// We get here if the item's block axis is parallel (or antiparallel) to the
|
|
// container's cross axis. We call ResolvedAscent() to get the item's
|
|
// baseline. If the item has no baseline, the method will synthesize one from
|
|
// the border-box edge.
|
|
MOZ_ASSERT(IsBlockAxisCrossAxis(),
|
|
"Only expecting to be doing baseline computations when the "
|
|
"cross axis is the block axis");
|
|
|
|
mozilla::Side itemBlockStartSide = mWM.PhysicalSide(eLogicalSideBStart);
|
|
|
|
nscoord marginBStartToBaseline = ResolvedAscent(aUseFirstLineBaseline) +
|
|
PhysicalMargin().Side(itemBlockStartSide);
|
|
|
|
return (aStartSide == itemBlockStartSide)
|
|
? marginBStartToBaseline
|
|
: OuterCrossSize() - marginBStartToBaseline;
|
|
}
|
|
|
|
bool FlexItem::IsCrossSizeAuto() const {
|
|
const nsStylePosition* stylePos =
|
|
nsLayoutUtils::GetStyleFrame(mFrame)->StylePosition();
|
|
// Check whichever component is in the flex container's cross axis.
|
|
// (IsInlineAxisCrossAxis() tells us whether that's our ISize or BSize, in
|
|
// terms of our own WritingMode, mWM.)
|
|
return IsInlineAxisCrossAxis() ? stylePos->ISize(mWM).IsAuto()
|
|
: stylePos->BSize(mWM).IsAuto();
|
|
}
|
|
|
|
bool FlexItem::IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const {
|
|
if (IsStretched()) {
|
|
// Definite cross-size, imposed via 'align-self:stretch' & flex container.
|
|
return true;
|
|
}
|
|
|
|
const nsStylePosition* pos = aItemReflowInput.mStylePosition;
|
|
const auto itemWM = GetWritingMode();
|
|
|
|
// The logic here should be similar to the logic for isAutoISize/isAutoBSize
|
|
// in nsContainerFrame::ComputeSizeWithIntrinsicDimensions().
|
|
if (IsInlineAxisCrossAxis()) {
|
|
return !pos->ISize(itemWM).IsAuto();
|
|
}
|
|
|
|
nscoord cbBSize = aItemReflowInput.mContainingBlockSize.BSize(itemWM);
|
|
return !nsLayoutUtils::IsAutoBSize(pos->BSize(itemWM), cbBSize);
|
|
}
|
|
|
|
void FlexItem::ResolveFlexBaseSizeFromAspectRatio(
|
|
const ReflowInput& aItemReflowInput) {
|
|
// This implements the Flex Layout Algorithm Step 3B:
|
|
// https://drafts.csswg.org/css-flexbox-1/#algo-main-item
|
|
// If the flex item has ...
|
|
// - an aspect ratio,
|
|
// - a [used] flex-basis of 'content', and
|
|
// - a definite cross size
|
|
// then the flex base size is calculated from its inner cross size and the
|
|
// flex item's preferred aspect ratio.
|
|
if (HasAspectRatio() &&
|
|
nsFlexContainerFrame::IsUsedFlexBasisContent(
|
|
aItemReflowInput.mStylePosition->mFlexBasis,
|
|
aItemReflowInput.mStylePosition->Size(MainAxis(), mCBWM)) &&
|
|
IsCrossSizeDefinite(aItemReflowInput)) {
|
|
const LogicalSize contentBoxSizeToBoxSizingAdjust =
|
|
aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
|
|
? BorderPadding().Size(mCBWM)
|
|
: LogicalSize(mCBWM);
|
|
const nscoord mainSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
|
|
MainAxis(), mCBWM, CrossSize(), contentBoxSizeToBoxSizingAdjust);
|
|
SetFlexBaseSizeAndMainSize(mainSizeFromRatio);
|
|
}
|
|
}
|
|
|
|
uint32_t FlexItem::NumAutoMarginsInAxis(LogicalAxis aAxis) const {
|
|
uint32_t numAutoMargins = 0;
|
|
const auto& styleMargin = mFrame->StyleMargin()->mMargin;
|
|
for (const auto edge : {eLogicalEdgeStart, eLogicalEdgeEnd}) {
|
|
const auto side = MakeLogicalSide(aAxis, edge);
|
|
if (styleMargin.Get(mCBWM, side).IsAuto()) {
|
|
numAutoMargins++;
|
|
}
|
|
}
|
|
|
|
// Mostly for clarity:
|
|
MOZ_ASSERT(numAutoMargins <= 2,
|
|
"We're just looking at one item along one dimension, so we "
|
|
"should only have examined 2 margins");
|
|
|
|
return numAutoMargins;
|
|
}
|
|
|
|
bool FlexItem::CanMainSizeInfluenceCrossSize() const {
|
|
if (mIsStretched) {
|
|
// We've already had our cross-size stretched for "align-self:stretch").
|
|
// The container is imposing its cross size on us.
|
|
return false;
|
|
}
|
|
|
|
if (mIsStrut) {
|
|
// Struts (for visibility:collapse items) have a predetermined size;
|
|
// no need to measure anything.
|
|
return false;
|
|
}
|
|
|
|
if (HasAspectRatio()) {
|
|
// For flex items that have an aspect ratio (and maintain it, i.e. are
|
|
// not stretched, which we already checked above): changes to main-size
|
|
// *do* influence the cross size.
|
|
return true;
|
|
}
|
|
|
|
if (IsInlineAxisCrossAxis()) {
|
|
// If we get here, this function is really asking: "can changes to this
|
|
// item's block size have an influence on its inline size"? For blocks and
|
|
// tables, the answer is "no".
|
|
if (mFrame->IsBlockFrame() || mFrame->IsTableWrapperFrame()) {
|
|
// XXXdholbert (Maybe use an IsFrameOfType query or something more
|
|
// general to test this across all frame types? For now, I'm just
|
|
// optimizing for block and table, since those are common containers that
|
|
// can contain arbitrarily-large subtrees (and that reliably have ISize
|
|
// being unaffected by BSize, per CSS2). So optimizing away needless
|
|
// relayout is possible & especially valuable for these containers.)
|
|
return false;
|
|
}
|
|
// Other opt-outs can go here, as they're identified as being useful
|
|
// (particularly for containers where an extra reflow is expensive). But in
|
|
// general, we have to assume that a flexed BSize *could* influence the
|
|
// ISize. Some examples where this can definitely happen:
|
|
// * Intrinsically-sized multicol with fixed-ISize columns, which adds
|
|
// columns (i.e. grows in inline axis) depending on its block size.
|
|
// * Intrinsically-sized multi-line column-oriented flex container, which
|
|
// adds flex lines (i.e. grows in inline axis) depending on its block size.
|
|
}
|
|
|
|
// Default assumption, if we haven't proven otherwise: the resolved main size
|
|
// *can* change the cross size.
|
|
return true;
|
|
}
|
|
|
|
nscoord FlexItem::ClampMainSizeViaCrossAxisConstraints(
|
|
nscoord aMainSize, const ReflowInput& aItemReflowInput) const {
|
|
MOZ_ASSERT(HasAspectRatio(), "Caller should've checked the ratio is valid!");
|
|
|
|
const LogicalSize contentBoxSizeToBoxSizingAdjust =
|
|
aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
|
|
? BorderPadding().Size(mCBWM)
|
|
: LogicalSize(mCBWM);
|
|
|
|
const nscoord mainMinSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
|
|
MainAxis(), mCBWM, CrossMinSize(), contentBoxSizeToBoxSizingAdjust);
|
|
nscoord clampedMainSize = std::max(aMainSize, mainMinSizeFromRatio);
|
|
|
|
if (CrossMaxSize() != NS_UNCONSTRAINEDSIZE) {
|
|
const nscoord mainMaxSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
|
|
MainAxis(), mCBWM, CrossMaxSize(), contentBoxSizeToBoxSizingAdjust);
|
|
clampedMainSize = std::min(clampedMainSize, mainMaxSizeFromRatio);
|
|
}
|
|
|
|
return clampedMainSize;
|
|
}
|
|
|
|
/**
|
|
* Returns true if aFrame or any of its children have the
|
|
* NS_FRAME_CONTAINS_RELATIVE_BSIZE flag set -- i.e. if any of these frames (or
|
|
* their descendants) might have a relative-BSize dependency on aFrame (or its
|
|
* ancestors).
|
|
*/
|
|
static bool FrameHasRelativeBSizeDependency(nsIFrame* aFrame) {
|
|
if (aFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
|
|
return true;
|
|
}
|
|
for (const auto& childList : aFrame->ChildLists()) {
|
|
for (nsIFrame* childFrame : childList.mList) {
|
|
if (childFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool FlexItem::NeedsFinalReflow(const ReflowInput& aParentReflowInput) const {
|
|
if (!StaticPrefs::layout_flexbox_item_final_reflow_optimization_enabled()) {
|
|
FLEX_LOG(
|
|
"[perf] Flex item %p needed a final reflow due to optimization being "
|
|
"disabled via the preference",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
// NOTE: We can have continuations from an earlier constrained reflow.
|
|
if (mFrame->GetPrevInFlow() || mFrame->GetNextInFlow()) {
|
|
// This is an item has continuation(s). Reflow it.
|
|
FLEX_LOG("[frag] Flex item %p needed a final reflow due to continuation(s)",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
// A flex item can grow its block-size in a fragmented context if there's any
|
|
// force break within it (bug 1663079), or if it has a repeated table header
|
|
// or footer (bug 1744363). We currently always reflow it.
|
|
//
|
|
// Bug 1815294: investigate if we can design a more specific condition to
|
|
// prevent triggering O(n^2) behavior when printing a deeply-nested flex
|
|
// container.
|
|
if (aParentReflowInput.IsInFragmentedContext()) {
|
|
FLEX_LOG(
|
|
"[frag] Flex item %p needed both a measuring reflow and a final "
|
|
"reflow due to being in a fragmented context.",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
// Flex item's final content-box size (in terms of its own writing-mode):
|
|
const LogicalSize finalSize = mIsInlineAxisMainAxis
|
|
? LogicalSize(mWM, mMainSize, mCrossSize)
|
|
: LogicalSize(mWM, mCrossSize, mMainSize);
|
|
|
|
if (HadMeasuringReflow()) {
|
|
// We've already reflowed this flex item once, to measure it. In that
|
|
// reflow, did its frame happen to end up with the correct final size
|
|
// that the flex container would like it to have?
|
|
if (finalSize != mFrame->ContentSize(mWM)) {
|
|
// The measuring reflow left the item with a different size than its
|
|
// final flexed size. So, we need to reflow to give it the correct size.
|
|
FLEX_LOG(
|
|
"[perf] Flex item %p needed both a measuring reflow and a final "
|
|
"reflow due to measured size disagreeing with final size",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
if (FrameHasRelativeBSizeDependency(mFrame)) {
|
|
// This item has descendants with relative BSizes who may care that its
|
|
// size may now be considered "definite" in the final reflow (whereas it
|
|
// was indefinite during the measuring reflow).
|
|
FLEX_LOG(
|
|
"[perf] Flex item %p needed both a measuring reflow and a final "
|
|
"reflow due to BSize potentially becoming definite",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
// If we get here, then this flex item had a measuring reflow, it left us
|
|
// with the correct size, none of its descendants care that its BSize may
|
|
// now be considered definite, and it can fit into the available block-size.
|
|
// So it doesn't need a final reflow.
|
|
//
|
|
// We now cache this size as if we had done a final reflow (because we've
|
|
// determined that the measuring reflow was effectively equivalent). This
|
|
// way, in our next time through flex layout, we may be able to skip both
|
|
// the measuring reflow *and* the final reflow (if conditions are the same
|
|
// as they are now).
|
|
if (auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop())) {
|
|
cache->Update(*this, finalSize);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// This item didn't receive a measuring reflow (at least, not during this
|
|
// reflow of our flex container). We may still be able to skip reflowing it
|
|
// (i.e. return false from this function), if its subtree is clean & its most
|
|
// recent "final reflow" had it at the correct content-box size &
|
|
// definiteness.
|
|
// Let's check for each condition that would still require us to reflow:
|
|
if (mFrame->IsSubtreeDirty()) {
|
|
FLEX_LOG(
|
|
"[perf] Flex item %p needed a final reflow due to its subtree "
|
|
"being dirty",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
// Cool; this item & its subtree haven't experienced any style/content
|
|
// changes that would automatically require a reflow.
|
|
|
|
// Did we cache the metrics from its most recent "final reflow"?
|
|
auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop());
|
|
if (!cache || !cache->mFinalReflowMetrics) {
|
|
FLEX_LOG(
|
|
"[perf] Flex item %p needed a final reflow due to lacking a "
|
|
"cached mFinalReflowMetrics (maybe cache was cleared)",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
// Does the cached size match our current size?
|
|
if (cache->mFinalReflowMetrics->Size() != finalSize) {
|
|
FLEX_LOG(
|
|
"[perf] Flex item %p needed a final reflow due to having a "
|
|
"different content box size vs. its most recent final reflow",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
// Does the cached border and padding match our current ones?
|
|
//
|
|
// Note: this is just to detect cases where we have a percent padding whose
|
|
// basis has changed. Any other sort of change to BorderPadding() (e.g. a new
|
|
// specified value) should result in the frame being marked dirty via proper
|
|
// change hint (see nsStylePadding::CalcDifference()), which will force it to
|
|
// reflow.
|
|
if (cache->mFinalReflowMetrics->BorderPadding() !=
|
|
BorderPadding().ConvertTo(mWM, mCBWM)) {
|
|
FLEX_LOG(
|
|
"[perf] Flex item %p needed a final reflow due to having a "
|
|
"different border and padding vs. its most recent final reflow",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
// The flex container is giving this flex item the same size that the item
|
|
// had on its most recent "final reflow". But if its definiteness changed and
|
|
// one of the descendants cares, then it would still need a reflow.
|
|
if (cache->mFinalReflowMetrics->TreatBSizeAsIndefinite() !=
|
|
mTreatBSizeAsIndefinite &&
|
|
FrameHasRelativeBSizeDependency(mFrame)) {
|
|
FLEX_LOG(
|
|
"[perf] Flex item %p needed a final reflow due to having "
|
|
"its BSize change definiteness & having a rel-BSize child",
|
|
mFrame);
|
|
return true;
|
|
}
|
|
|
|
// If we get here, we can skip the final reflow! (The item's subtree isn't
|
|
// dirty, and our current conditions are sufficiently similar to the most
|
|
// recent "final reflow" that it should have left our subtree in the correct
|
|
// state.)
|
|
FLEX_LOG("[perf] Flex item %p didn't need a final reflow", mFrame);
|
|
return false;
|
|
}
|
|
|
|
// Keeps track of our position along a particular axis (where a '0' position
|
|
// corresponds to the 'start' edge of that axis).
|
|
// This class shouldn't be instantiated directly -- rather, it should only be
|
|
// instantiated via its subclasses defined below.
|
|
class MOZ_STACK_CLASS PositionTracker {
|
|
public:
|
|
// Accessor for the current value of the position that we're tracking.
|
|
inline nscoord Position() const { return mPosition; }
|
|
inline LogicalAxis Axis() const { return mAxis; }
|
|
|
|
inline LogicalSide StartSide() {
|
|
return MakeLogicalSide(
|
|
mAxis, mIsAxisReversed ? eLogicalEdgeEnd : eLogicalEdgeStart);
|
|
}
|
|
|
|
inline LogicalSide EndSide() {
|
|
return MakeLogicalSide(
|
|
mAxis, mIsAxisReversed ? eLogicalEdgeStart : eLogicalEdgeEnd);
|
|
}
|
|
|
|
// Advances our position across the start edge of the given margin, in the
|
|
// axis we're tracking.
|
|
void EnterMargin(const LogicalMargin& aMargin) {
|
|
mPosition += aMargin.Side(StartSide(), mWM);
|
|
}
|
|
|
|
// Advances our position across the end edge of the given margin, in the axis
|
|
// we're tracking.
|
|
void ExitMargin(const LogicalMargin& aMargin) {
|
|
mPosition += aMargin.Side(EndSide(), mWM);
|
|
}
|
|
|
|
// Advances our current position from the start side of a child frame's
|
|
// border-box to the frame's upper or left edge (depending on our axis).
|
|
// (Note that this is a no-op if our axis grows in the same direction as
|
|
// the corresponding logical axis.)
|
|
void EnterChildFrame(nscoord aChildFrameSize) {
|
|
if (mIsAxisReversed) {
|
|
mPosition += aChildFrameSize;
|
|
}
|
|
}
|
|
|
|
// Advances our current position from a frame's upper or left border-box edge
|
|
// (whichever is in the axis we're tracking) to the 'end' side of the frame
|
|
// in the axis that we're tracking. (Note that this is a no-op if our axis
|
|
// is reversed with respect to the corresponding logical axis.)
|
|
void ExitChildFrame(nscoord aChildFrameSize) {
|
|
if (!mIsAxisReversed) {
|
|
mPosition += aChildFrameSize;
|
|
}
|
|
}
|
|
|
|
// Delete copy-constructor & reassignment operator, to prevent accidental
|
|
// (unnecessary) copying.
|
|
PositionTracker(const PositionTracker&) = delete;
|
|
PositionTracker& operator=(const PositionTracker&) = delete;
|
|
|
|
protected:
|
|
// Protected constructor, to be sure we're only instantiated via a subclass.
|
|
PositionTracker(WritingMode aWM, LogicalAxis aAxis, bool aIsAxisReversed)
|
|
: mWM(aWM), mAxis(aAxis), mIsAxisReversed(aIsAxisReversed) {}
|
|
|
|
// Member data:
|
|
// The position we're tracking.
|
|
nscoord mPosition = 0;
|
|
|
|
// The flex container's writing mode.
|
|
const WritingMode mWM;
|
|
|
|
// The axis along which we're moving.
|
|
const LogicalAxis mAxis = eLogicalAxisInline;
|
|
|
|
// Is the axis along which we're moving reversed (e.g. LTR vs RTL) with
|
|
// respect to the corresponding axis on the flex container's WM?
|
|
const bool mIsAxisReversed = false;
|
|
};
|
|
|
|
// Tracks our position in the main axis, when we're laying out flex items.
|
|
// The "0" position represents the main-start edge of the flex container's
|
|
// content-box.
|
|
class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker {
|
|
public:
|
|
MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker,
|
|
const FlexLine* aLine,
|
|
const StyleContentDistribution& aJustifyContent,
|
|
nscoord aContentBoxMainSize);
|
|
|
|
~MainAxisPositionTracker() {
|
|
MOZ_ASSERT(mNumPackingSpacesRemaining == 0,
|
|
"miscounted the number of packing spaces");
|
|
MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0,
|
|
"miscounted the number of auto margins");
|
|
}
|
|
|
|
// Advances past the gap space (if any) between two flex items
|
|
void TraverseGap(nscoord aGapSize) { mPosition += aGapSize; }
|
|
|
|
// Advances past the packing space (if any) between two flex items
|
|
void TraversePackingSpace();
|
|
|
|
// If aItem has any 'auto' margins in the main axis, this method updates the
|
|
// corresponding values in its margin.
|
|
void ResolveAutoMarginsInMainAxis(FlexItem& aItem);
|
|
|
|
private:
|
|
nscoord mPackingSpaceRemaining = 0;
|
|
uint32_t mNumAutoMarginsInMainAxis = 0;
|
|
uint32_t mNumPackingSpacesRemaining = 0;
|
|
StyleContentDistribution mJustifyContent = {StyleAlignFlags::AUTO};
|
|
};
|
|
|
|
// Utility class for managing our position along the cross axis along
|
|
// the whole flex container (at a higher level than a single line).
|
|
// The "0" position represents the cross-start edge of the flex container's
|
|
// content-box.
|
|
class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker {
|
|
public:
|
|
CrossAxisPositionTracker(nsTArray<FlexLine>& aLines,
|
|
const ReflowInput& aReflowInput,
|
|
nscoord aContentBoxCrossSize,
|
|
bool aIsCrossSizeDefinite,
|
|
const FlexboxAxisTracker& aAxisTracker,
|
|
const nscoord aCrossGapSize);
|
|
|
|
// Advances past the gap (if any) between two flex lines
|
|
void TraverseGap() { mPosition += mCrossGapSize; }
|
|
|
|
// Advances past the packing space (if any) between two flex lines
|
|
void TraversePackingSpace();
|
|
|
|
// Advances past the given FlexLine
|
|
void TraverseLine(FlexLine& aLine) { mPosition += aLine.LineCrossSize(); }
|
|
|
|
// Redeclare the frame-related methods from PositionTracker with
|
|
// = delete, to be sure (at compile time) that no client code can invoke
|
|
// them. (Unlike the other PositionTracker derived classes, this class here
|
|
// deals with FlexLines, not with individual FlexItems or frames.)
|
|
void EnterMargin(const LogicalMargin& aMargin) = delete;
|
|
void ExitMargin(const LogicalMargin& aMargin) = delete;
|
|
void EnterChildFrame(nscoord aChildFrameSize) = delete;
|
|
void ExitChildFrame(nscoord aChildFrameSize) = delete;
|
|
|
|
private:
|
|
nscoord mPackingSpaceRemaining = 0;
|
|
uint32_t mNumPackingSpacesRemaining = 0;
|
|
StyleContentDistribution mAlignContent = {StyleAlignFlags::AUTO};
|
|
|
|
const nscoord mCrossGapSize;
|
|
};
|
|
|
|
// Utility class for managing our position along the cross axis, *within* a
|
|
// single flex line.
|
|
class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker
|
|
: public PositionTracker {
|
|
public:
|
|
explicit SingleLineCrossAxisPositionTracker(
|
|
const FlexboxAxisTracker& aAxisTracker);
|
|
|
|
void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, FlexItem& aItem);
|
|
|
|
void EnterAlignPackingSpace(const FlexLine& aLine, const FlexItem& aItem,
|
|
const FlexboxAxisTracker& aAxisTracker);
|
|
|
|
// Resets our position to the cross-start edge of this line.
|
|
inline void ResetPosition() { mPosition = 0; }
|
|
};
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
// Frame class boilerplate
|
|
// =======================
|
|
|
|
NS_QUERYFRAME_HEAD(nsFlexContainerFrame)
|
|
NS_QUERYFRAME_ENTRY(nsFlexContainerFrame)
|
|
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
|
|
|
|
NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame)
|
|
|
|
nsContainerFrame* NS_NewFlexContainerFrame(PresShell* aPresShell,
|
|
ComputedStyle* aStyle) {
|
|
return new (aPresShell)
|
|
nsFlexContainerFrame(aStyle, aPresShell->GetPresContext());
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
// nsFlexContainerFrame Method Implementations
|
|
// ===========================================
|
|
|
|
/* virtual */
|
|
nsFlexContainerFrame::~nsFlexContainerFrame() = default;
|
|
|
|
/* virtual */
|
|
void nsFlexContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
|
|
nsIFrame* aPrevInFlow) {
|
|
nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
|
|
|
|
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) {
|
|
AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT);
|
|
}
|
|
|
|
auto displayInside = StyleDisplay()->DisplayInside();
|
|
// If this frame is for a scrollable element, then it will actually have
|
|
// "display:block", and its *parent frame* will have the real
|
|
// flex-flavored display value. So in that case, check the parent frame to
|
|
// find out if we're legacy.
|
|
//
|
|
// TODO(emilio): Maybe ::-moz-scrolled-content and co should inherit `display`
|
|
// (or a blockified version thereof, to not hit bug 456484).
|
|
if (displayInside == StyleDisplayInside::Flow) {
|
|
MOZ_ASSERT(StyleDisplay()->mDisplay == StyleDisplay::Block);
|
|
MOZ_ASSERT(Style()->GetPseudoType() == PseudoStyleType::buttonContent ||
|
|
Style()->GetPseudoType() == PseudoStyleType::scrolledContent,
|
|
"The only way a nsFlexContainerFrame can have 'display:block' "
|
|
"should be if it's the inner part of a scrollable or button "
|
|
"element");
|
|
displayInside = GetParent()->StyleDisplay()->DisplayInside();
|
|
}
|
|
|
|
// Figure out if we should set a frame state bit to indicate that this frame
|
|
// represents a legacy -moz-{inline-}box or -webkit-{inline-}box container.
|
|
if (displayInside == StyleDisplayInside::WebkitBox) {
|
|
AddStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_FRAME_DUMP
|
|
nsresult nsFlexContainerFrame::GetFrameName(nsAString& aResult) const {
|
|
return MakeFrameName(u"FlexContainer"_ns, aResult);
|
|
}
|
|
#endif
|
|
|
|
void nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
|
|
const nsDisplayListSet& aLists) {
|
|
nsDisplayListCollection tempLists(aBuilder);
|
|
|
|
DisplayBorderBackgroundOutline(aBuilder, tempLists);
|
|
if (GetPrevInFlow()) {
|
|
DisplayOverflowContainers(aBuilder, tempLists);
|
|
}
|
|
|
|
// Our children are all block-level, so their borders/backgrounds all go on
|
|
// the BlockBorderBackgrounds list.
|
|
nsDisplayListSet childLists(tempLists, tempLists.BlockBorderBackgrounds());
|
|
|
|
CSSOrderAwareFrameIterator iter(
|
|
this, FrameChildListID::Principal,
|
|
CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
|
|
OrderStateForIter(this), OrderingPropertyForIter(this));
|
|
|
|
const auto flags = DisplayFlagsForFlexOrGridItem();
|
|
for (; !iter.AtEnd(); iter.Next()) {
|
|
nsIFrame* childFrame = *iter;
|
|
BuildDisplayListForChild(aBuilder, childFrame, childLists, flags);
|
|
}
|
|
|
|
tempLists.MoveTo(aLists);
|
|
}
|
|
|
|
void FlexLine::FreezeItemsEarly(bool aIsUsingFlexGrow,
|
|
ComputedFlexLineInfo* aLineInfo) {
|
|
// After we've established the type of flexing we're doing (growing vs.
|
|
// shrinking), and before we try to flex any items, we freeze items that
|
|
// obviously *can't* flex.
|
|
//
|
|
// Quoting the spec:
|
|
// # Freeze, setting its target main size to its hypothetical main size...
|
|
// # - any item that has a flex factor of zero
|
|
// # - if using the flex grow factor: any item that has a flex base size
|
|
// # greater than its hypothetical main size
|
|
// # - if using the flex shrink factor: any item that has a flex base size
|
|
// # smaller than its hypothetical main size
|
|
// https://drafts.csswg.org/css-flexbox/#resolve-flexible-lengths
|
|
//
|
|
// (NOTE: At this point, item->MainSize() *is* the item's hypothetical
|
|
// main size, since SetFlexBaseSizeAndMainSize() sets it up that way, and the
|
|
// item hasn't had a chance to flex away from that yet.)
|
|
|
|
// Since this loop only operates on unfrozen flex items, we can break as
|
|
// soon as we have seen all of them.
|
|
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
|
|
for (FlexItem& item : Items()) {
|
|
if (numUnfrozenItemsToBeSeen == 0) {
|
|
break;
|
|
}
|
|
|
|
if (!item.IsFrozen()) {
|
|
numUnfrozenItemsToBeSeen--;
|
|
bool shouldFreeze = (0.0f == item.GetFlexFactor(aIsUsingFlexGrow));
|
|
if (!shouldFreeze) {
|
|
if (aIsUsingFlexGrow) {
|
|
if (item.FlexBaseSize() > item.MainSize()) {
|
|
shouldFreeze = true;
|
|
}
|
|
} else { // using flex-shrink
|
|
if (item.FlexBaseSize() < item.MainSize()) {
|
|
shouldFreeze = true;
|
|
}
|
|
}
|
|
}
|
|
if (shouldFreeze) {
|
|
// Freeze item! (at its hypothetical main size)
|
|
item.Freeze();
|
|
if (item.FlexBaseSize() < item.MainSize()) {
|
|
item.SetWasMinClamped();
|
|
} else if (item.FlexBaseSize() > item.MainSize()) {
|
|
item.SetWasMaxClamped();
|
|
}
|
|
mNumFrozenItems++;
|
|
}
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
|
|
}
|
|
|
|
// Based on the sign of aTotalViolation, this function freezes a subset of our
|
|
// flexible sizes, and restores the remaining ones to their initial pref sizes.
|
|
void FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
|
|
bool aIsFinalIteration) {
|
|
enum FreezeType {
|
|
eFreezeEverything,
|
|
eFreezeMinViolations,
|
|
eFreezeMaxViolations
|
|
};
|
|
|
|
FreezeType freezeType;
|
|
if (aTotalViolation == 0) {
|
|
freezeType = eFreezeEverything;
|
|
} else if (aTotalViolation > 0) {
|
|
freezeType = eFreezeMinViolations;
|
|
} else { // aTotalViolation < 0
|
|
freezeType = eFreezeMaxViolations;
|
|
}
|
|
|
|
// Since this loop only operates on unfrozen flex items, we can break as
|
|
// soon as we have seen all of them.
|
|
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
|
|
for (FlexItem& item : Items()) {
|
|
if (numUnfrozenItemsToBeSeen == 0) {
|
|
break;
|
|
}
|
|
|
|
if (!item.IsFrozen()) {
|
|
numUnfrozenItemsToBeSeen--;
|
|
|
|
MOZ_ASSERT(!item.HadMinViolation() || !item.HadMaxViolation(),
|
|
"Can have either min or max violation, but not both");
|
|
|
|
bool hadMinViolation = item.HadMinViolation();
|
|
bool hadMaxViolation = item.HadMaxViolation();
|
|
if (eFreezeEverything == freezeType ||
|
|
(eFreezeMinViolations == freezeType && hadMinViolation) ||
|
|
(eFreezeMaxViolations == freezeType && hadMaxViolation)) {
|
|
MOZ_ASSERT(item.MainSize() >= item.MainMinSize(),
|
|
"Freezing item at a size below its minimum");
|
|
MOZ_ASSERT(item.MainSize() <= item.MainMaxSize(),
|
|
"Freezing item at a size above its maximum");
|
|
|
|
item.Freeze();
|
|
if (hadMinViolation) {
|
|
item.SetWasMinClamped();
|
|
} else if (hadMaxViolation) {
|
|
item.SetWasMaxClamped();
|
|
}
|
|
mNumFrozenItems++;
|
|
} else if (MOZ_UNLIKELY(aIsFinalIteration)) {
|
|
// XXXdholbert If & when bug 765861 is fixed, we should upgrade this
|
|
// assertion to be fatal except in documents with enormous lengths.
|
|
NS_ERROR(
|
|
"Final iteration still has unfrozen items, this shouldn't"
|
|
" happen unless there was nscoord under/overflow.");
|
|
item.Freeze();
|
|
mNumFrozenItems++;
|
|
} // else, we'll reset this item's main size to its flex base size on the
|
|
// next iteration of this algorithm.
|
|
|
|
if (!item.IsFrozen()) {
|
|
// Clear this item's violation(s), now that we've dealt with them
|
|
item.ClearViolationFlags();
|
|
}
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
|
|
}
|
|
|
|
void FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
|
|
ComputedFlexLineInfo* aLineInfo) {
|
|
// In this function, we use 64-bit coord type to avoid integer overflow in
|
|
// case several of the individual items have huge hypothetical main sizes,
|
|
// which can happen with percent-width table-layout:fixed descendants. Here we
|
|
// promote the container's main size to 64-bit to make the arithmetic
|
|
// convenient.
|
|
AuCoord64 flexContainerMainSize(aFlexContainerMainSize);
|
|
|
|
// Before we start resolving sizes: if we have an aLineInfo structure to fill
|
|
// out, we inform it of each item's base size, and we initialize the "delta"
|
|
// for each item to 0. (And if the flex algorithm wants to grow or shrink the
|
|
// item, we'll update this delta further down.)
|
|
if (aLineInfo) {
|
|
uint32_t itemIndex = 0;
|
|
for (FlexItem& item : Items()) {
|
|
aLineInfo->mItems[itemIndex].mMainBaseSize = item.FlexBaseSize();
|
|
aLineInfo->mItems[itemIndex].mMainDeltaSize = 0;
|
|
++itemIndex;
|
|
}
|
|
}
|
|
|
|
// Determine whether we're going to be growing or shrinking items.
|
|
const bool isUsingFlexGrow =
|
|
(mTotalOuterHypotheticalMainSize < flexContainerMainSize);
|
|
|
|
if (aLineInfo) {
|
|
aLineInfo->mGrowthState =
|
|
isUsingFlexGrow ? mozilla::dom::FlexLineGrowthState::Growing
|
|
: mozilla::dom::FlexLineGrowthState::Shrinking;
|
|
}
|
|
|
|
// Do an "early freeze" for flex items that obviously can't flex in the
|
|
// direction we've chosen:
|
|
FreezeItemsEarly(isUsingFlexGrow, aLineInfo);
|
|
|
|
if ((mNumFrozenItems == NumItems()) && !aLineInfo) {
|
|
// All our items are frozen, so we have no flexible lengths to resolve,
|
|
// and we aren't being asked to generate computed line info.
|
|
FLEX_LOG("No flexible length to resolve");
|
|
return;
|
|
}
|
|
MOZ_ASSERT(!IsEmpty() || aLineInfo,
|
|
"empty lines should take the early-return above");
|
|
|
|
FLEX_LOG("Resolving flexible lengths for items");
|
|
|
|
// Subtract space occupied by our items' margins/borders/padding/gaps, so
|
|
// we can just be dealing with the space available for our flex items' content
|
|
// boxes.
|
|
const AuCoord64 totalItemMBPAndGaps = mTotalItemMBP + SumOfGaps();
|
|
const AuCoord64 spaceAvailableForFlexItemsContentBoxes =
|
|
flexContainerMainSize - totalItemMBPAndGaps;
|
|
|
|
Maybe<AuCoord64> origAvailableFreeSpace;
|
|
|
|
// NOTE: I claim that this chunk of the algorithm (the looping part) needs to
|
|
// run the loop at MOST NumItems() times. This claim should hold up
|
|
// because we'll freeze at least one item on each loop iteration, and once
|
|
// we've run out of items to freeze, there's nothing left to do. However,
|
|
// in most cases, we'll break out of this loop long before we hit that many
|
|
// iterations.
|
|
for (uint32_t iterationCounter = 0; iterationCounter < NumItems();
|
|
iterationCounter++) {
|
|
// Set every not-yet-frozen item's used main size to its
|
|
// flex base size, and subtract all the used main sizes from our
|
|
// total amount of space to determine the 'available free space'
|
|
// (positive or negative) to be distributed among our flexible items.
|
|
AuCoord64 availableFreeSpace = spaceAvailableForFlexItemsContentBoxes;
|
|
for (FlexItem& item : Items()) {
|
|
if (!item.IsFrozen()) {
|
|
item.SetMainSize(item.FlexBaseSize());
|
|
}
|
|
availableFreeSpace -= item.MainSize();
|
|
}
|
|
|
|
FLEX_LOG(" available free space: %" PRId64 "; flex items should \"%s\"",
|
|
availableFreeSpace.value, isUsingFlexGrow ? "grow" : "shrink");
|
|
|
|
// The sign of our free space should agree with the type of flexing
|
|
// (grow/shrink) that we're doing. Any disagreement should've made us use
|
|
// the other type of flexing, or should've been resolved in
|
|
// FreezeItemsEarly.
|
|
//
|
|
// Note: it's possible that an individual flex item has huge
|
|
// margin/border/padding that makes either its
|
|
// MarginBorderPaddingSizeInMainAxis() or OuterMainSize() negative due to
|
|
// integer overflow. If that happens, the accumulated
|
|
// mTotalOuterHypotheticalMainSize or mTotalItemMBP could be negative due to
|
|
// that one item's negative (overflowed) size. Likewise, a huge main gap
|
|
// size between flex items can also make our accumulated SumOfGaps()
|
|
// negative. In these case, we throw up our hands and don't require
|
|
// isUsingFlexGrow to agree with availableFreeSpace. Luckily, we won't get
|
|
// stuck in the algorithm below, and just distribute the wrong
|
|
// availableFreeSpace with the wrong grow/shrink factors.
|
|
MOZ_ASSERT(!(mTotalOuterHypotheticalMainSize >= 0 && mTotalItemMBP >= 0 &&
|
|
totalItemMBPAndGaps >= 0) ||
|
|
(isUsingFlexGrow && availableFreeSpace >= 0) ||
|
|
(!isUsingFlexGrow && availableFreeSpace <= 0),
|
|
"availableFreeSpace's sign should match isUsingFlexGrow");
|
|
|
|
// If we have any free space available, give each flexible item a portion
|
|
// of availableFreeSpace.
|
|
if (availableFreeSpace != AuCoord64(0)) {
|
|
// The first time we do this, we initialize origAvailableFreeSpace.
|
|
if (!origAvailableFreeSpace) {
|
|
origAvailableFreeSpace.emplace(availableFreeSpace);
|
|
}
|
|
|
|
// STRATEGY: On each item, we compute & store its "share" of the total
|
|
// weight that we've seen so far:
|
|
// curWeight / weightSum
|
|
//
|
|
// Then, when we go to actually distribute the space (in the next loop),
|
|
// we can simply walk backwards through the elements and give each item
|
|
// its "share" multiplied by the remaining available space.
|
|
//
|
|
// SPECIAL CASE: If the sum of the weights is larger than the
|
|
// maximum representable double (overflowing to infinity), then we can't
|
|
// sensibly divide out proportional shares anymore. In that case, we
|
|
// simply treat the flex item(s) with the largest weights as if
|
|
// their weights were infinite (dwarfing all the others), and we
|
|
// distribute all of the available space among them.
|
|
double weightSum = 0.0;
|
|
double flexFactorSum = 0.0;
|
|
double largestWeight = 0.0;
|
|
uint32_t numItemsWithLargestWeight = 0;
|
|
|
|
// Since this loop only operates on unfrozen flex items, we can break as
|
|
// soon as we have seen all of them.
|
|
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
|
|
for (FlexItem& item : Items()) {
|
|
if (numUnfrozenItemsToBeSeen == 0) {
|
|
break;
|
|
}
|
|
|
|
if (!item.IsFrozen()) {
|
|
numUnfrozenItemsToBeSeen--;
|
|
|
|
const double curWeight = item.GetWeight(isUsingFlexGrow);
|
|
const double curFlexFactor = item.GetFlexFactor(isUsingFlexGrow);
|
|
MOZ_ASSERT(curWeight >= 0.0, "weights are non-negative");
|
|
MOZ_ASSERT(curFlexFactor >= 0.0, "flex factors are non-negative");
|
|
|
|
weightSum += curWeight;
|
|
flexFactorSum += curFlexFactor;
|
|
|
|
if (std::isfinite(weightSum)) {
|
|
if (curWeight == 0.0) {
|
|
item.SetShareOfWeightSoFar(0.0);
|
|
} else {
|
|
item.SetShareOfWeightSoFar(curWeight / weightSum);
|
|
}
|
|
} // else, the sum of weights overflows to infinity, in which
|
|
// case we don't bother with "SetShareOfWeightSoFar" since
|
|
// we know we won't use it. (instead, we'll just give every
|
|
// item with the largest weight an equal share of space.)
|
|
|
|
// Update our largest-weight tracking vars
|
|
if (curWeight > largestWeight) {
|
|
largestWeight = curWeight;
|
|
numItemsWithLargestWeight = 1;
|
|
} else if (curWeight == largestWeight) {
|
|
numItemsWithLargestWeight++;
|
|
}
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
|
|
|
|
if (weightSum != 0.0) {
|
|
MOZ_ASSERT(flexFactorSum != 0.0,
|
|
"flex factor sum can't be 0, if a weighted sum "
|
|
"of its components (weightSum) is nonzero");
|
|
if (flexFactorSum < 1.0) {
|
|
// Our unfrozen flex items don't want all of the original free space!
|
|
// (Their flex factors add up to something less than 1.)
|
|
// Hence, make sure we don't distribute any more than the portion of
|
|
// our original free space that these items actually want.
|
|
auto totalDesiredPortionOfOrigFreeSpace =
|
|
AuCoord64::FromRound(*origAvailableFreeSpace * flexFactorSum);
|
|
|
|
// Clamp availableFreeSpace to be no larger than that ^^.
|
|
// (using min or max, depending on sign).
|
|
// This should not change the sign of availableFreeSpace (except
|
|
// possibly by setting it to 0), as enforced by this assertion:
|
|
NS_ASSERTION(totalDesiredPortionOfOrigFreeSpace == AuCoord64(0) ||
|
|
((totalDesiredPortionOfOrigFreeSpace > 0) ==
|
|
(availableFreeSpace > 0)),
|
|
"When we reduce available free space for flex "
|
|
"factors < 1, we shouldn't change the sign of the "
|
|
"free space...");
|
|
|
|
if (availableFreeSpace > 0) {
|
|
availableFreeSpace = std::min(availableFreeSpace,
|
|
totalDesiredPortionOfOrigFreeSpace);
|
|
} else {
|
|
availableFreeSpace = std::max(availableFreeSpace,
|
|
totalDesiredPortionOfOrigFreeSpace);
|
|
}
|
|
}
|
|
|
|
FLEX_LOG(" Distributing available space:");
|
|
// Since this loop only operates on unfrozen flex items, we can break as
|
|
// soon as we have seen all of them.
|
|
numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
|
|
|
|
// NOTE: It's important that we traverse our items in *reverse* order
|
|
// here, for correct width distribution according to the items'
|
|
// "ShareOfWeightSoFar" progressively-calculated values.
|
|
for (FlexItem& item : Reversed(Items())) {
|
|
if (numUnfrozenItemsToBeSeen == 0) {
|
|
break;
|
|
}
|
|
|
|
if (!item.IsFrozen()) {
|
|
numUnfrozenItemsToBeSeen--;
|
|
|
|
// To avoid rounding issues, we compute the change in size for this
|
|
// item, and then subtract it from the remaining available space.
|
|
AuCoord64 sizeDelta = 0;
|
|
if (std::isfinite(weightSum)) {
|
|
double myShareOfRemainingSpace = item.ShareOfWeightSoFar();
|
|
|
|
MOZ_ASSERT(myShareOfRemainingSpace >= 0.0 &&
|
|
myShareOfRemainingSpace <= 1.0,
|
|
"my share should be nonnegative fractional amount");
|
|
|
|
if (myShareOfRemainingSpace == 1.0) {
|
|
// (We special-case 1.0 to avoid float error from converting
|
|
// availableFreeSpace from integer*1.0 --> double --> integer)
|
|
sizeDelta = availableFreeSpace;
|
|
} else if (myShareOfRemainingSpace > 0.0) {
|
|
sizeDelta = AuCoord64::FromRound(availableFreeSpace *
|
|
myShareOfRemainingSpace);
|
|
}
|
|
} else if (item.GetWeight(isUsingFlexGrow) == largestWeight) {
|
|
// Total flexibility is infinite, so we're just distributing
|
|
// the available space equally among the items that are tied for
|
|
// having the largest weight (and this is one of those items).
|
|
sizeDelta = AuCoord64::FromRound(
|
|
availableFreeSpace / double(numItemsWithLargestWeight));
|
|
numItemsWithLargestWeight--;
|
|
}
|
|
|
|
availableFreeSpace -= sizeDelta;
|
|
|
|
item.SetMainSize(item.MainSize() +
|
|
nscoord(sizeDelta.ToMinMaxClamped()));
|
|
FLEX_LOG(" flex item %p receives %" PRId64 ", for a total of %d",
|
|
item.Frame(), sizeDelta.value, item.MainSize());
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
|
|
|
|
// If we have an aLineInfo structure to fill out, capture any
|
|
// size changes that may have occurred in the previous loop.
|
|
// We don't do this inside the previous loop, because we don't
|
|
// want to burden layout when aLineInfo is null.
|
|
if (aLineInfo) {
|
|
uint32_t itemIndex = 0;
|
|
for (FlexItem& item : Items()) {
|
|
if (!item.IsFrozen()) {
|
|
// Calculate a deltaSize that represents how much the flex sizing
|
|
// algorithm "wants" to stretch or shrink this item during this
|
|
// pass through the algorithm. Later passes through the algorithm
|
|
// may overwrite this, until this item is frozen. Note that this
|
|
// value may not reflect how much the size of the item is
|
|
// actually changed, since the size of the item will be clamped
|
|
// to min and max values later in this pass. That's intentional,
|
|
// since we want to report the value that the sizing algorithm
|
|
// tried to stretch or shrink the item.
|
|
nscoord deltaSize =
|
|
item.MainSize() - aLineInfo->mItems[itemIndex].mMainBaseSize;
|
|
|
|
aLineInfo->mItems[itemIndex].mMainDeltaSize = deltaSize;
|
|
}
|
|
++itemIndex;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fix min/max violations:
|
|
nscoord totalViolation = 0; // keeps track of adjustments for min/max
|
|
FLEX_LOG(" Checking for violations:");
|
|
|
|
// Since this loop only operates on unfrozen flex items, we can break as
|
|
// soon as we have seen all of them.
|
|
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
|
|
for (FlexItem& item : Items()) {
|
|
if (numUnfrozenItemsToBeSeen == 0) {
|
|
break;
|
|
}
|
|
|
|
if (!item.IsFrozen()) {
|
|
numUnfrozenItemsToBeSeen--;
|
|
|
|
if (item.MainSize() < item.MainMinSize()) {
|
|
// min violation
|
|
totalViolation += item.MainMinSize() - item.MainSize();
|
|
item.SetMainSize(item.MainMinSize());
|
|
item.SetHadMinViolation();
|
|
} else if (item.MainSize() > item.MainMaxSize()) {
|
|
// max violation
|
|
totalViolation += item.MainMaxSize() - item.MainSize();
|
|
item.SetMainSize(item.MainMaxSize());
|
|
item.SetHadMaxViolation();
|
|
}
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
|
|
|
|
FreezeOrRestoreEachFlexibleSize(totalViolation,
|
|
iterationCounter + 1 == NumItems());
|
|
|
|
FLEX_LOG(" Total violation: %d", totalViolation);
|
|
|
|
if (mNumFrozenItems == NumItems()) {
|
|
break;
|
|
}
|
|
|
|
MOZ_ASSERT(totalViolation != 0,
|
|
"Zero violation should've made us freeze all items & break");
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
// Post-condition: all items should've been frozen.
|
|
// Make sure the counts match:
|
|
MOZ_ASSERT(mNumFrozenItems == NumItems(), "All items should be frozen");
|
|
|
|
// For good measure, check each item directly, in case our counts are busted:
|
|
for (const FlexItem& item : Items()) {
|
|
MOZ_ASSERT(item.IsFrozen(), "All items should be frozen");
|
|
}
|
|
#endif // DEBUG
|
|
}
|
|
|
|
MainAxisPositionTracker::MainAxisPositionTracker(
|
|
const FlexboxAxisTracker& aAxisTracker, const FlexLine* aLine,
|
|
const StyleContentDistribution& aJustifyContent,
|
|
nscoord aContentBoxMainSize)
|
|
: PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.MainAxis(),
|
|
aAxisTracker.IsMainAxisReversed()),
|
|
// we chip away at this below
|
|
mPackingSpaceRemaining(aContentBoxMainSize),
|
|
mJustifyContent(aJustifyContent) {
|
|
// Extract the flag portion of mJustifyContent and strip off the flag bits
|
|
// NOTE: This must happen before any assignment to mJustifyContent to
|
|
// avoid overwriting the flag bits.
|
|
StyleAlignFlags justifyContentFlags =
|
|
mJustifyContent.primary & StyleAlignFlags::FLAG_BITS;
|
|
mJustifyContent.primary &= ~StyleAlignFlags::FLAG_BITS;
|
|
|
|
// 'normal' behaves as 'stretch', and 'stretch' behaves as 'flex-start',
|
|
// in the main axis
|
|
// https://drafts.csswg.org/css-align-3/#propdef-justify-content
|
|
if (mJustifyContent.primary == StyleAlignFlags::NORMAL ||
|
|
mJustifyContent.primary == StyleAlignFlags::STRETCH) {
|
|
mJustifyContent.primary = StyleAlignFlags::FLEX_START;
|
|
}
|
|
|
|
// mPackingSpaceRemaining is initialized to the container's main size. Now
|
|
// we'll subtract out the main sizes of our flex items, so that it ends up
|
|
// with the *actual* amount of packing space.
|
|
for (const FlexItem& item : aLine->Items()) {
|
|
mPackingSpaceRemaining -= item.OuterMainSize();
|
|
mNumAutoMarginsInMainAxis += item.NumAutoMarginsInMainAxis();
|
|
}
|
|
|
|
// Subtract space required for row/col gap from the remaining packing space
|
|
mPackingSpaceRemaining -= aLine->SumOfGaps();
|
|
|
|
if (mPackingSpaceRemaining <= 0) {
|
|
// No available packing space to use for resolving auto margins.
|
|
mNumAutoMarginsInMainAxis = 0;
|
|
// If packing space is negative and <overflow-position> is set to 'safe'
|
|
// all justify options fall back to 'start'
|
|
if (justifyContentFlags & StyleAlignFlags::SAFE) {
|
|
mJustifyContent.primary = StyleAlignFlags::START;
|
|
}
|
|
}
|
|
|
|
// If packing space is negative or we only have one item, 'space-between'
|
|
// falls back to 'flex-start', and 'space-around' & 'space-evenly' fall back
|
|
// to 'center'. In those cases, it's simplest to just pretend we have a
|
|
// different 'justify-content' value and share code.
|
|
if (mPackingSpaceRemaining < 0 || aLine->NumItems() == 1) {
|
|
if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN) {
|
|
mJustifyContent.primary = StyleAlignFlags::FLEX_START;
|
|
} else if (mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
|
|
mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) {
|
|
mJustifyContent.primary = StyleAlignFlags::CENTER;
|
|
}
|
|
}
|
|
|
|
// Map 'left'/'right' to 'start'/'end'
|
|
if (mJustifyContent.primary == StyleAlignFlags::LEFT ||
|
|
mJustifyContent.primary == StyleAlignFlags::RIGHT) {
|
|
mJustifyContent.primary =
|
|
aAxisTracker.ResolveJustifyLeftRight(mJustifyContent.primary);
|
|
}
|
|
|
|
// Map 'start'/'end' to 'flex-start'/'flex-end'.
|
|
if (mJustifyContent.primary == StyleAlignFlags::START) {
|
|
mJustifyContent.primary = aAxisTracker.IsMainAxisReversed()
|
|
? StyleAlignFlags::FLEX_END
|
|
: StyleAlignFlags::FLEX_START;
|
|
} else if (mJustifyContent.primary == StyleAlignFlags::END) {
|
|
mJustifyContent.primary = aAxisTracker.IsMainAxisReversed()
|
|
? StyleAlignFlags::FLEX_START
|
|
: StyleAlignFlags::FLEX_END;
|
|
}
|
|
|
|
// Figure out how much space we'll set aside for auto margins or
|
|
// packing spaces, and advance past any leading packing-space.
|
|
if (mNumAutoMarginsInMainAxis == 0 && mPackingSpaceRemaining != 0 &&
|
|
!aLine->IsEmpty()) {
|
|
if (mJustifyContent.primary == StyleAlignFlags::FLEX_START) {
|
|
// All packing space should go at the end --> nothing to do here.
|
|
} else if (mJustifyContent.primary == StyleAlignFlags::FLEX_END) {
|
|
// All packing space goes at the beginning
|
|
mPosition += mPackingSpaceRemaining;
|
|
} else if (mJustifyContent.primary == StyleAlignFlags::CENTER) {
|
|
// Half the packing space goes at the beginning
|
|
mPosition += mPackingSpaceRemaining / 2;
|
|
} else if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
|
|
mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
|
|
mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) {
|
|
nsFlexContainerFrame::CalculatePackingSpace(
|
|
aLine->NumItems(), mJustifyContent, &mPosition,
|
|
&mNumPackingSpacesRemaining, &mPackingSpaceRemaining);
|
|
} else {
|
|
MOZ_ASSERT_UNREACHABLE("Unexpected justify-content value");
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || mNumAutoMarginsInMainAxis == 0,
|
|
"extra space should either go to packing space or to "
|
|
"auto margins, but not to both");
|
|
}
|
|
|
|
void MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) {
|
|
if (mNumAutoMarginsInMainAxis) {
|
|
const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
|
|
for (const auto side : {StartSide(), EndSide()}) {
|
|
if (styleMargin.Get(mWM, side).IsAuto()) {
|
|
// NOTE: This integer math will skew the distribution of remainder
|
|
// app-units towards the end, which is fine.
|
|
nscoord curAutoMarginSize =
|
|
mPackingSpaceRemaining / mNumAutoMarginsInMainAxis;
|
|
|
|
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
|
|
"Expecting auto margins to have value '0' before we "
|
|
"resolve them");
|
|
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
|
|
|
|
mNumAutoMarginsInMainAxis--;
|
|
mPackingSpaceRemaining -= curAutoMarginSize;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MainAxisPositionTracker::TraversePackingSpace() {
|
|
if (mNumPackingSpacesRemaining) {
|
|
MOZ_ASSERT(mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
|
|
mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
|
|
mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY,
|
|
"mNumPackingSpacesRemaining only applies for "
|
|
"space-between/space-around/space-evenly");
|
|
|
|
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
|
|
"ran out of packing space earlier than we expected");
|
|
|
|
// NOTE: This integer math will skew the distribution of remainder
|
|
// app-units towards the end, which is fine.
|
|
nscoord curPackingSpace =
|
|
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
|
|
|
|
mPosition += curPackingSpace;
|
|
mNumPackingSpacesRemaining--;
|
|
mPackingSpaceRemaining -= curPackingSpace;
|
|
}
|
|
}
|
|
|
|
CrossAxisPositionTracker::CrossAxisPositionTracker(
|
|
nsTArray<FlexLine>& aLines, const ReflowInput& aReflowInput,
|
|
nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite,
|
|
const FlexboxAxisTracker& aAxisTracker, const nscoord aCrossGapSize)
|
|
: PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(),
|
|
aAxisTracker.IsCrossAxisReversed()),
|
|
mAlignContent(aReflowInput.mStylePosition->mAlignContent),
|
|
mCrossGapSize(aCrossGapSize) {
|
|
// Extract and strip the flag bits from alignContent
|
|
StyleAlignFlags alignContentFlags =
|
|
mAlignContent.primary & StyleAlignFlags::FLAG_BITS;
|
|
mAlignContent.primary &= ~StyleAlignFlags::FLAG_BITS;
|
|
|
|
// 'normal' behaves as 'stretch'
|
|
if (mAlignContent.primary == StyleAlignFlags::NORMAL) {
|
|
mAlignContent.primary = StyleAlignFlags::STRETCH;
|
|
}
|
|
|
|
const bool isSingleLine =
|
|
StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
|
|
if (isSingleLine) {
|
|
MOZ_ASSERT(aLines.Length() == 1,
|
|
"If we're styled as single-line, we should only have 1 line");
|
|
// "If the flex container is single-line and has a definite cross size, the
|
|
// cross size of the flex line is the flex container's inner cross size."
|
|
//
|
|
// SOURCE: https://drafts.csswg.org/css-flexbox/#algo-cross-line
|
|
// NOTE: This means (by definition) that there's no packing space, which
|
|
// means we don't need to be concerned with "align-content" at all and we
|
|
// can return early. This is handy, because this is the usual case (for
|
|
// single-line flexbox).
|
|
if (aIsCrossSizeDefinite) {
|
|
aLines[0].SetLineCrossSize(aContentBoxCrossSize);
|
|
return;
|
|
}
|
|
|
|
// "If the flex container is single-line, then clamp the line's
|
|
// cross-size to be within the container's computed min and max cross-size
|
|
// properties."
|
|
aLines[0].SetLineCrossSize(NS_CSS_MINMAX(aLines[0].LineCrossSize(),
|
|
aReflowInput.ComputedMinBSize(),
|
|
aReflowInput.ComputedMaxBSize()));
|
|
}
|
|
|
|
// NOTE: The rest of this function should essentially match
|
|
// MainAxisPositionTracker's constructor, though with FlexLines instead of
|
|
// FlexItems, and with the additional value "stretch" (and of course with
|
|
// cross sizes instead of main sizes.)
|
|
|
|
// Figure out how much packing space we have (container's cross size minus
|
|
// all the lines' cross sizes). Also, share this loop to count how many
|
|
// lines we have. (We need that count in some cases below.)
|
|
mPackingSpaceRemaining = aContentBoxCrossSize;
|
|
uint32_t numLines = 0;
|
|
for (FlexLine& line : aLines) {
|
|
mPackingSpaceRemaining -= line.LineCrossSize();
|
|
numLines++;
|
|
}
|
|
|
|
// Subtract space required for row/col gap from the remaining packing space
|
|
MOZ_ASSERT(numLines >= 1,
|
|
"GenerateFlexLines should've produced at least 1 line");
|
|
mPackingSpaceRemaining -= aCrossGapSize * (numLines - 1);
|
|
|
|
// If <overflow-position> is 'safe' and packing space is negative
|
|
// all align options fall back to 'start'
|
|
if ((alignContentFlags & StyleAlignFlags::SAFE) &&
|
|
mPackingSpaceRemaining < 0) {
|
|
mAlignContent.primary = StyleAlignFlags::START;
|
|
}
|
|
|
|
// If packing space is negative, 'space-between' and 'stretch' behave like
|
|
// 'flex-start', and 'space-around' and 'space-evenly' behave like 'center'.
|
|
// In those cases, it's simplest to just pretend we have a different
|
|
// 'align-content' value and share code. (If we only have one line, all of
|
|
// the 'space-*' keywords fall back as well, but 'stretch' doesn't because
|
|
// even a single line can still stretch.)
|
|
if (mPackingSpaceRemaining < 0 &&
|
|
mAlignContent.primary == StyleAlignFlags::STRETCH) {
|
|
mAlignContent.primary = StyleAlignFlags::FLEX_START;
|
|
} else if (mPackingSpaceRemaining < 0 || numLines == 1) {
|
|
if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN) {
|
|
mAlignContent.primary = StyleAlignFlags::FLEX_START;
|
|
} else if (mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
|
|
mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) {
|
|
mAlignContent.primary = StyleAlignFlags::CENTER;
|
|
}
|
|
}
|
|
|
|
// Map 'start'/'end' to 'flex-start'/'flex-end'.
|
|
if (mAlignContent.primary == StyleAlignFlags::START) {
|
|
mAlignContent.primary = aAxisTracker.IsCrossAxisReversed()
|
|
? StyleAlignFlags::FLEX_END
|
|
: StyleAlignFlags::FLEX_START;
|
|
} else if (mAlignContent.primary == StyleAlignFlags::END) {
|
|
mAlignContent.primary = aAxisTracker.IsCrossAxisReversed()
|
|
? StyleAlignFlags::FLEX_START
|
|
: StyleAlignFlags::FLEX_END;
|
|
}
|
|
|
|
// Figure out how much space we'll set aside for packing spaces, and advance
|
|
// past any leading packing-space.
|
|
if (mPackingSpaceRemaining != 0) {
|
|
if (mAlignContent.primary == StyleAlignFlags::BASELINE ||
|
|
mAlignContent.primary == StyleAlignFlags::LAST_BASELINE) {
|
|
// TODO: Bug 1480850 will implement 'align-content: [first/last] baseline'
|
|
// for flexbox. Until then, behaves as if align-content is 'flex-start' by
|
|
// doing nothing.
|
|
} else if (mAlignContent.primary == StyleAlignFlags::FLEX_START) {
|
|
// All packing space should go at the end --> nothing to do here.
|
|
} else if (mAlignContent.primary == StyleAlignFlags::FLEX_END) {
|
|
// All packing space goes at the beginning
|
|
mPosition += mPackingSpaceRemaining;
|
|
} else if (mAlignContent.primary == StyleAlignFlags::CENTER) {
|
|
// Half the packing space goes at the beginning
|
|
mPosition += mPackingSpaceRemaining / 2;
|
|
} else if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
|
|
mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
|
|
mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) {
|
|
nsFlexContainerFrame::CalculatePackingSpace(
|
|
numLines, mAlignContent, &mPosition, &mNumPackingSpacesRemaining,
|
|
&mPackingSpaceRemaining);
|
|
} else if (mAlignContent.primary == StyleAlignFlags::STRETCH) {
|
|
// Split space equally between the lines:
|
|
MOZ_ASSERT(mPackingSpaceRemaining > 0,
|
|
"negative packing space should make us use 'flex-start' "
|
|
"instead of 'stretch' (and we shouldn't bother with this "
|
|
"code if we have 0 packing space)");
|
|
|
|
uint32_t numLinesLeft = numLines;
|
|
for (FlexLine& line : aLines) {
|
|
// Our share is the amount of space remaining, divided by the number
|
|
// of lines remainig.
|
|
MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines");
|
|
nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft;
|
|
nscoord newSize = line.LineCrossSize() + shareOfExtraSpace;
|
|
line.SetLineCrossSize(newSize);
|
|
|
|
mPackingSpaceRemaining -= shareOfExtraSpace;
|
|
numLinesLeft--;
|
|
}
|
|
MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines");
|
|
} else {
|
|
MOZ_ASSERT_UNREACHABLE("Unexpected align-content value");
|
|
}
|
|
}
|
|
}
|
|
|
|
void CrossAxisPositionTracker::TraversePackingSpace() {
|
|
if (mNumPackingSpacesRemaining) {
|
|
MOZ_ASSERT(mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
|
|
mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
|
|
mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY,
|
|
"mNumPackingSpacesRemaining only applies for "
|
|
"space-between/space-around/space-evenly");
|
|
|
|
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
|
|
"ran out of packing space earlier than we expected");
|
|
|
|
// NOTE: This integer math will skew the distribution of remainder
|
|
// app-units towards the end, which is fine.
|
|
nscoord curPackingSpace =
|
|
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
|
|
|
|
mPosition += curPackingSpace;
|
|
mNumPackingSpacesRemaining--;
|
|
mPackingSpaceRemaining -= curPackingSpace;
|
|
}
|
|
}
|
|
|
|
SingleLineCrossAxisPositionTracker::SingleLineCrossAxisPositionTracker(
|
|
const FlexboxAxisTracker& aAxisTracker)
|
|
: PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(),
|
|
aAxisTracker.IsCrossAxisReversed()) {}
|
|
|
|
void FlexLine::ComputeCrossSizeAndBaseline(
|
|
const FlexboxAxisTracker& aAxisTracker) {
|
|
// NOTE: in these "cross{Start,End}ToFurthest{First,Last}Baseline" variables,
|
|
// the "first/last" term is referring to the flex *line's* baseline-sharing
|
|
// groups, which may or may not match any flex *item's* exact align-self
|
|
// value. See the code that sets FlexItem::mBaselineSharingGroup for more
|
|
// details.
|
|
nscoord crossStartToFurthestFirstBaseline = nscoord_MIN;
|
|
nscoord crossEndToFurthestFirstBaseline = nscoord_MIN;
|
|
nscoord crossStartToFurthestLastBaseline = nscoord_MIN;
|
|
nscoord crossEndToFurthestLastBaseline = nscoord_MIN;
|
|
|
|
nscoord largestOuterCrossSize = 0;
|
|
for (const FlexItem& item : Items()) {
|
|
nscoord curOuterCrossSize = item.OuterCrossSize();
|
|
|
|
if ((item.AlignSelf()._0 == StyleAlignFlags::BASELINE ||
|
|
item.AlignSelf()._0 == StyleAlignFlags::LAST_BASELINE) &&
|
|
item.NumAutoMarginsInCrossAxis() == 0) {
|
|
const bool usingItemFirstBaseline =
|
|
(item.AlignSelf()._0 == StyleAlignFlags::BASELINE);
|
|
|
|
// Find distance from our item's cross-start and cross-end margin-box
|
|
// edges to its baseline.
|
|
//
|
|
// Here's a diagram of a flex-item that we might be doing this on.
|
|
// "mmm" is the margin-box, "bbb" is the border-box. The bottom of
|
|
// the text "BASE" is the baseline.
|
|
//
|
|
// ---(cross-start)---
|
|
// ___ ___ ___
|
|
// mmmmmmmmmmmm | |margin-start |
|
|
// m m | _|_ ___ |
|
|
// m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline
|
|
// m b b m | |ascent |
|
|
// m b BASE b m | _|_ _|_
|
|
// m b b m | |
|
|
// m bbbbbbbb m | |crossEndToBaseline
|
|
// m m | |
|
|
// mmmmmmmmmmmm _|_ _|_
|
|
//
|
|
// ---(cross-end)---
|
|
//
|
|
// We already have the curOuterCrossSize, margin-start, and the ascent.
|
|
// * We can get crossStartToBaseline by adding margin-start + ascent.
|
|
// * If we subtract that from the curOuterCrossSize, we get
|
|
// crossEndToBaseline.
|
|
|
|
nscoord crossStartToBaseline = item.BaselineOffsetFromOuterCrossEdge(
|
|
aAxisTracker.CrossAxisPhysicalStartSide(), usingItemFirstBaseline);
|
|
nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline;
|
|
|
|
// Now, update our "largest" values for these (across all the flex items
|
|
// in this flex line), so we can use them in computing the line's cross
|
|
// size below:
|
|
if (item.ItemBaselineSharingGroup() == BaselineSharingGroup::First) {
|
|
crossStartToFurthestFirstBaseline =
|
|
std::max(crossStartToFurthestFirstBaseline, crossStartToBaseline);
|
|
crossEndToFurthestFirstBaseline =
|
|
std::max(crossEndToFurthestFirstBaseline, crossEndToBaseline);
|
|
} else {
|
|
crossStartToFurthestLastBaseline =
|
|
std::max(crossStartToFurthestLastBaseline, crossStartToBaseline);
|
|
crossEndToFurthestLastBaseline =
|
|
std::max(crossEndToFurthestLastBaseline, crossEndToBaseline);
|
|
}
|
|
} else {
|
|
largestOuterCrossSize =
|
|
std::max(largestOuterCrossSize, curOuterCrossSize);
|
|
}
|
|
}
|
|
|
|
// The line's baseline offset is the distance from the line's edge to the
|
|
// furthest item-baseline. The item(s) with that baseline will be exactly
|
|
// aligned with the line's edge.
|
|
mFirstBaselineOffset = crossStartToFurthestFirstBaseline;
|
|
mLastBaselineOffset = crossEndToFurthestLastBaseline;
|
|
|
|
// The line's cross-size is the larger of:
|
|
// (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
|
|
// all baseline-aligned items with no cross-axis auto margins...
|
|
// and
|
|
// (b) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
|
|
// all last baseline-aligned items with no cross-axis auto margins...
|
|
// and
|
|
// (c) largest cross-size of all other children.
|
|
mLineCrossSize = std::max(
|
|
std::max(
|
|
crossStartToFurthestFirstBaseline + crossEndToFurthestFirstBaseline,
|
|
crossStartToFurthestLastBaseline + crossEndToFurthestLastBaseline),
|
|
largestOuterCrossSize);
|
|
}
|
|
|
|
nscoord FlexLine::ExtractBaselineOffset(
|
|
BaselineSharingGroup aBaselineGroup) const {
|
|
auto LastBaselineOffsetFromStartEdge = [this]() {
|
|
// Convert the distance to be relative from the line's cross-start edge.
|
|
const nscoord offset = LastBaselineOffset();
|
|
return offset != nscoord_MIN ? LineCrossSize() - offset : offset;
|
|
};
|
|
|
|
auto PrimaryBaseline = [=]() {
|
|
return aBaselineGroup == BaselineSharingGroup::First
|
|
? FirstBaselineOffset()
|
|
: LastBaselineOffsetFromStartEdge();
|
|
};
|
|
auto SecondaryBaseline = [=]() {
|
|
return aBaselineGroup == BaselineSharingGroup::First
|
|
? LastBaselineOffsetFromStartEdge()
|
|
: FirstBaselineOffset();
|
|
};
|
|
|
|
const nscoord primaryBaseline = PrimaryBaseline();
|
|
if (primaryBaseline != nscoord_MIN) {
|
|
return primaryBaseline;
|
|
}
|
|
return SecondaryBaseline();
|
|
}
|
|
|
|
void FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize) {
|
|
// We stretch IFF we are align-self:stretch, have no auto margins in
|
|
// cross axis, and have cross-axis size property == "auto". If any of those
|
|
// conditions don't hold up, we won't stretch.
|
|
if (mAlignSelf._0 != StyleAlignFlags::STRETCH ||
|
|
NumAutoMarginsInCrossAxis() != 0 || !IsCrossSizeAuto()) {
|
|
return;
|
|
}
|
|
|
|
// If we've already been stretched, we can bail out early, too.
|
|
// No need to redo the calculation.
|
|
if (mIsStretched) {
|
|
return;
|
|
}
|
|
|
|
// Reserve space for margins & border & padding, and then use whatever
|
|
// remains as our item's cross-size (clamped to its min/max range).
|
|
nscoord stretchedSize = aLineCrossSize - MarginBorderPaddingSizeInCrossAxis();
|
|
|
|
stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize);
|
|
|
|
// Update the cross-size & make a note that it's stretched, so we know to
|
|
// override the reflow input's computed cross-size in our final reflow.
|
|
SetCrossSize(stretchedSize);
|
|
mIsStretched = true;
|
|
}
|
|
|
|
static nsBlockFrame* FindFlexItemBlockFrame(nsIFrame* aFrame) {
|
|
if (nsBlockFrame* block = do_QueryFrame(aFrame)) {
|
|
return block;
|
|
}
|
|
for (nsIFrame* f : aFrame->PrincipalChildList()) {
|
|
if (nsBlockFrame* block = FindFlexItemBlockFrame(f)) {
|
|
return block;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
nsBlockFrame* FlexItem::BlockFrame() const {
|
|
return FindFlexItemBlockFrame(Frame());
|
|
}
|
|
|
|
void SingleLineCrossAxisPositionTracker::ResolveAutoMarginsInCrossAxis(
|
|
const FlexLine& aLine, FlexItem& aItem) {
|
|
// Subtract the space that our item is already occupying, to see how much
|
|
// space (if any) is available for its auto margins.
|
|
nscoord spaceForAutoMargins = aLine.LineCrossSize() - aItem.OuterCrossSize();
|
|
|
|
if (spaceForAutoMargins <= 0) {
|
|
return; // No available space --> nothing to do
|
|
}
|
|
|
|
uint32_t numAutoMargins = aItem.NumAutoMarginsInCrossAxis();
|
|
if (numAutoMargins == 0) {
|
|
return; // No auto margins --> nothing to do.
|
|
}
|
|
|
|
// OK, we have at least one auto margin and we have some available space.
|
|
// Give each auto margin a share of the space.
|
|
const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
|
|
for (const auto side : {StartSide(), EndSide()}) {
|
|
if (styleMargin.Get(mWM, side).IsAuto()) {
|
|
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
|
|
"Expecting auto margins to have value '0' before we "
|
|
"update them");
|
|
|
|
// NOTE: integer divison is fine here; numAutoMargins is either 1 or 2.
|
|
// If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half.
|
|
nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins;
|
|
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
|
|
numAutoMargins--;
|
|
spaceForAutoMargins -= curAutoMarginSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SingleLineCrossAxisPositionTracker::EnterAlignPackingSpace(
|
|
const FlexLine& aLine, const FlexItem& aItem,
|
|
const FlexboxAxisTracker& aAxisTracker) {
|
|
// We don't do align-self alignment on items that have auto margins
|
|
// in the cross axis.
|
|
if (aItem.NumAutoMarginsInCrossAxis()) {
|
|
return;
|
|
}
|
|
|
|
StyleAlignFlags alignSelf = aItem.AlignSelf()._0;
|
|
// NOTE: 'stretch' behaves like 'flex-start' once we've stretched any
|
|
// auto-sized items (which we've already done).
|
|
if (alignSelf == StyleAlignFlags::STRETCH) {
|
|
alignSelf = StyleAlignFlags::FLEX_START;
|
|
}
|
|
|
|
// Map 'self-start'/'self-end' to 'start'/'end'
|
|
if (alignSelf == StyleAlignFlags::SELF_START ||
|
|
alignSelf == StyleAlignFlags::SELF_END) {
|
|
const LogicalAxis logCrossAxis =
|
|
aAxisTracker.IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline;
|
|
const WritingMode cWM = aAxisTracker.GetWritingMode();
|
|
const bool sameStart =
|
|
cWM.ParallelAxisStartsOnSameSide(logCrossAxis, aItem.GetWritingMode());
|
|
alignSelf = sameStart == (alignSelf == StyleAlignFlags::SELF_START)
|
|
? StyleAlignFlags::START
|
|
: StyleAlignFlags::END;
|
|
}
|
|
|
|
// Map 'start'/'end' to 'flex-start'/'flex-end'.
|
|
if (alignSelf == StyleAlignFlags::START) {
|
|
alignSelf = aAxisTracker.IsCrossAxisReversed()
|
|
? StyleAlignFlags::FLEX_END
|
|
: StyleAlignFlags::FLEX_START;
|
|
} else if (alignSelf == StyleAlignFlags::END) {
|
|
alignSelf = aAxisTracker.IsCrossAxisReversed() ? StyleAlignFlags::FLEX_START
|
|
: StyleAlignFlags::FLEX_END;
|
|
}
|
|
|
|
// 'align-self' falls back to 'flex-start' if it is 'center'/'flex-end' and we
|
|
// have cross axis overflow
|
|
// XXX we should really be falling back to 'start' as of bug 1472843
|
|
if (aLine.LineCrossSize() < aItem.OuterCrossSize() &&
|
|
(aItem.AlignSelfFlags() & StyleAlignFlags::SAFE)) {
|
|
alignSelf = StyleAlignFlags::FLEX_START;
|
|
}
|
|
|
|
if (alignSelf == StyleAlignFlags::FLEX_START) {
|
|
// No space to skip over -- we're done.
|
|
} else if (alignSelf == StyleAlignFlags::FLEX_END) {
|
|
mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize();
|
|
} else if (alignSelf == StyleAlignFlags::CENTER) {
|
|
// Note: If cross-size is odd, the "after" space will get the extra unit.
|
|
mPosition += (aLine.LineCrossSize() - aItem.OuterCrossSize()) / 2;
|
|
} else if (alignSelf == StyleAlignFlags::BASELINE ||
|
|
alignSelf == StyleAlignFlags::LAST_BASELINE) {
|
|
const bool usingItemFirstBaseline =
|
|
(alignSelf == StyleAlignFlags::BASELINE);
|
|
|
|
// The first-baseline sharing group gets (collectively) aligned to the
|
|
// FlexLine's cross-start side, and similarly the last-baseline sharing
|
|
// group gets snapped to the cross-end side.
|
|
const bool isFirstBaselineSharingGroup =
|
|
aItem.ItemBaselineSharingGroup() == BaselineSharingGroup::First;
|
|
const mozilla::Side alignSide =
|
|
isFirstBaselineSharingGroup ? aAxisTracker.CrossAxisPhysicalStartSide()
|
|
: aAxisTracker.CrossAxisPhysicalEndSide();
|
|
|
|
// To compute the aligned position for our flex item, we determine:
|
|
// (1) The distance from the item's alignSide edge to the item's relevant
|
|
// baseline.
|
|
nscoord itemBaselineOffset = aItem.BaselineOffsetFromOuterCrossEdge(
|
|
alignSide, usingItemFirstBaseline);
|
|
|
|
// (2) The distance between the FlexLine's alignSide edge and the relevant
|
|
// baseline-sharing-group's baseline position.
|
|
nscoord lineBaselineOffset = isFirstBaselineSharingGroup
|
|
? aLine.FirstBaselineOffset()
|
|
: aLine.LastBaselineOffset();
|
|
|
|
NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset,
|
|
"failed at finding largest baseline offset");
|
|
|
|
// (3) The difference between the above offsets, which tells us how far we
|
|
// need to shift the item away from the FlexLine's alignSide edge so
|
|
// that its baseline is at the proper position for its group.
|
|
nscoord itemOffsetFromLineEdge = lineBaselineOffset - itemBaselineOffset;
|
|
|
|
if (isFirstBaselineSharingGroup) {
|
|
// alignSide is the line's cross-start edge. mPosition is already there.
|
|
// From there, we step *forward* by the baseline adjustment:
|
|
mPosition += itemOffsetFromLineEdge;
|
|
} else {
|
|
// alignSide is the line's cross-end edge. Advance mPosition to align
|
|
// item with that edge (as in FLEX_END case)...
|
|
mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize();
|
|
// ...and step *back* by the baseline adjustment:
|
|
mPosition -= itemOffsetFromLineEdge;
|
|
}
|
|
} else {
|
|
MOZ_ASSERT_UNREACHABLE("Unexpected align-self value");
|
|
}
|
|
}
|
|
|
|
FlexboxAxisInfo::FlexboxAxisInfo(const nsIFrame* aFlexContainer) {
|
|
MOZ_ASSERT(aFlexContainer && aFlexContainer->IsFlexContainerFrame(),
|
|
"Only flex containers may be passed to this constructor!");
|
|
if (IsLegacyBox(aFlexContainer)) {
|
|
InitAxesFromLegacyProps(aFlexContainer);
|
|
} else {
|
|
InitAxesFromModernProps(aFlexContainer);
|
|
}
|
|
}
|
|
|
|
void FlexboxAxisInfo::InitAxesFromLegacyProps(const nsIFrame* aFlexContainer) {
|
|
const nsStyleXUL* styleXUL = aFlexContainer->StyleXUL();
|
|
|
|
const bool boxOrientIsVertical =
|
|
styleXUL->mBoxOrient == StyleBoxOrient::Vertical;
|
|
const bool wmIsVertical = aFlexContainer->GetWritingMode().IsVertical();
|
|
|
|
// If box-orient agrees with our writing-mode, then we're "row-oriented"
|
|
// (i.e. the flexbox main axis is the same as our writing mode's inline
|
|
// direction). Otherwise, we're column-oriented (i.e. the flexbox's main
|
|
// axis is perpendicular to the writing-mode's inline direction).
|
|
mIsRowOriented = (boxOrientIsVertical == wmIsVertical);
|
|
|
|
// Legacy flexbox can use "-webkit-box-direction: reverse" to reverse the
|
|
// main axis (so it runs in the reverse direction of the inline axis):
|
|
mIsMainAxisReversed = styleXUL->mBoxDirection == StyleBoxDirection::Reverse;
|
|
|
|
// Legacy flexbox does not support reversing the cross axis -- it has no
|
|
// equivalent of modern flexbox's "flex-wrap: wrap-reverse".
|
|
mIsCrossAxisReversed = false;
|
|
}
|
|
|
|
void FlexboxAxisInfo::InitAxesFromModernProps(const nsIFrame* aFlexContainer) {
|
|
const nsStylePosition* stylePos = aFlexContainer->StylePosition();
|
|
StyleFlexDirection flexDirection = stylePos->mFlexDirection;
|
|
|
|
// Determine main axis:
|
|
switch (flexDirection) {
|
|
case StyleFlexDirection::Row:
|
|
mIsRowOriented = true;
|
|
mIsMainAxisReversed = false;
|
|
break;
|
|
case StyleFlexDirection::RowReverse:
|
|
mIsRowOriented = true;
|
|
mIsMainAxisReversed = true;
|
|
break;
|
|
case StyleFlexDirection::Column:
|
|
mIsRowOriented = false;
|
|
mIsMainAxisReversed = false;
|
|
break;
|
|
case StyleFlexDirection::ColumnReverse:
|
|
mIsRowOriented = false;
|
|
mIsMainAxisReversed = true;
|
|
break;
|
|
}
|
|
|
|
// "flex-wrap: wrap-reverse" reverses our cross axis.
|
|
mIsCrossAxisReversed = stylePos->mFlexWrap == StyleFlexWrap::WrapReverse;
|
|
}
|
|
|
|
FlexboxAxisTracker::FlexboxAxisTracker(
|
|
const nsFlexContainerFrame* aFlexContainer)
|
|
: mWM(aFlexContainer->GetWritingMode()), mAxisInfo(aFlexContainer) {}
|
|
|
|
LogicalSide FlexboxAxisTracker::MainAxisStartSide() const {
|
|
return MakeLogicalSide(
|
|
MainAxis(), IsMainAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart);
|
|
}
|
|
|
|
LogicalSide FlexboxAxisTracker::CrossAxisStartSide() const {
|
|
return MakeLogicalSide(
|
|
CrossAxis(), IsCrossAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart);
|
|
}
|
|
|
|
void nsFlexContainerFrame::GenerateFlexLines(
|
|
const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize,
|
|
const nscoord aTentativeContentBoxCrossSize,
|
|
const nsTArray<StrutInfo>& aStruts, const FlexboxAxisTracker& aAxisTracker,
|
|
nscoord aMainGapSize, nsTArray<nsIFrame*>& aPlaceholders,
|
|
nsTArray<FlexLine>& aLines, bool& aHasCollapsedItems) {
|
|
MOZ_ASSERT(aLines.IsEmpty(), "Expecting outparam to start out empty");
|
|
|
|
auto ConstructNewFlexLine = [&aLines, aMainGapSize]() {
|
|
return aLines.EmplaceBack(aMainGapSize);
|
|
};
|
|
|
|
const bool isSingleLine =
|
|
StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
|
|
|
|
// We have at least one FlexLine. Even an empty flex container has a single
|
|
// (empty) flex line.
|
|
FlexLine* curLine = ConstructNewFlexLine();
|
|
|
|
nscoord wrapThreshold;
|
|
if (isSingleLine) {
|
|
// Not wrapping. Set threshold to sentinel value that tells us not to wrap.
|
|
wrapThreshold = NS_UNCONSTRAINEDSIZE;
|
|
} else {
|
|
// Wrapping! Set wrap threshold to flex container's content-box main-size.
|
|
wrapThreshold = aTentativeContentBoxMainSize;
|
|
|
|
// If the flex container doesn't have a definite content-box main-size
|
|
// (e.g. if main axis is vertical & 'height' is 'auto'), make sure we at
|
|
// least wrap when we hit its max main-size.
|
|
if (wrapThreshold == NS_UNCONSTRAINEDSIZE) {
|
|
const nscoord flexContainerMaxMainSize =
|
|
aAxisTracker.MainComponent(aReflowInput.ComputedMaxSize());
|
|
wrapThreshold = flexContainerMaxMainSize;
|
|
}
|
|
}
|
|
|
|
// Tracks the index of the next strut, in aStruts (and when this hits
|
|
// aStruts.Length(), that means there are no more struts):
|
|
uint32_t nextStrutIdx = 0;
|
|
|
|
// Overall index of the current flex item in the flex container. (This gets
|
|
// checked against entries in aStruts.)
|
|
uint32_t itemIdxInContainer = 0;
|
|
|
|
CSSOrderAwareFrameIterator iter(
|
|
this, FrameChildListID::Principal,
|
|
CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
|
|
CSSOrderAwareFrameIterator::OrderState::Unknown,
|
|
OrderingPropertyForIter(this));
|
|
|
|
AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER,
|
|
iter.ItemsAreAlreadyInOrder());
|
|
|
|
const bool useMozBoxCollapseBehavior =
|
|
StyleVisibility()->UseLegacyCollapseBehavior();
|
|
|
|
for (; !iter.AtEnd(); iter.Next()) {
|
|
nsIFrame* childFrame = *iter;
|
|
// Don't create flex items / lines for placeholder frames:
|
|
if (childFrame->IsPlaceholderFrame()) {
|
|
aPlaceholders.AppendElement(childFrame);
|
|
continue;
|
|
}
|
|
|
|
const bool collapsed = childFrame->StyleVisibility()->IsCollapse();
|
|
aHasCollapsedItems = aHasCollapsedItems || collapsed;
|
|
|
|
if (useMozBoxCollapseBehavior && collapsed) {
|
|
// Legacy visibility:collapse behavior: make a 0-sized strut. (No need to
|
|
// bother with aStruts and remembering cross size.)
|
|
curLine->Items().EmplaceBack(childFrame, 0, aReflowInput.GetWritingMode(),
|
|
aAxisTracker);
|
|
} else if (nextStrutIdx < aStruts.Length() &&
|
|
aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) {
|
|
// Use the simplified "strut" FlexItem constructor:
|
|
curLine->Items().EmplaceBack(childFrame,
|
|
aStruts[nextStrutIdx].mStrutCrossSize,
|
|
aReflowInput.GetWritingMode(), aAxisTracker);
|
|
nextStrutIdx++;
|
|
} else {
|
|
GenerateFlexItemForChild(*curLine, childFrame, aReflowInput, aAxisTracker,
|
|
aTentativeContentBoxCrossSize);
|
|
}
|
|
|
|
// Check if we need to wrap the newly appended item to a new line, i.e. if
|
|
// its outer hypothetical main size pushes our line over the threshold.
|
|
// But we don't wrap if the line-length is unconstrained, nor do we wrap if
|
|
// this was the first item on the line.
|
|
if (wrapThreshold != NS_UNCONSTRAINEDSIZE &&
|
|
curLine->Items().Length() > 1) {
|
|
// If the line will be longer than wrapThreshold or at least as long as
|
|
// nscoord_MAX because of the newly appended item, then wrap and move the
|
|
// item to a new line.
|
|
auto newOuterSize = curLine->TotalOuterHypotheticalMainSize();
|
|
newOuterSize += curLine->Items().LastElement().OuterMainSize();
|
|
|
|
// Account for gap between this line's previous item and this item.
|
|
newOuterSize += aMainGapSize;
|
|
|
|
if (newOuterSize >= nscoord_MAX || newOuterSize > wrapThreshold) {
|
|
curLine = ConstructNewFlexLine();
|
|
|
|
// Get the previous line after adding a new line because the address can
|
|
// change if nsTArray needs to reallocate a new space for the new line.
|
|
FlexLine& prevLine = aLines[aLines.Length() - 2];
|
|
|
|
// Move the item from the end of prevLine to the end of curLine.
|
|
curLine->Items().AppendElement(prevLine.Items().PopLastElement());
|
|
}
|
|
}
|
|
|
|
// Update the line's bookkeeping about how large its items collectively are.
|
|
curLine->AddLastItemToMainSizeTotals();
|
|
itemIdxInContainer++;
|
|
}
|
|
}
|
|
|
|
nsFlexContainerFrame::FlexLayoutResult
|
|
nsFlexContainerFrame::GenerateFlexLayoutResult() {
|
|
MOZ_ASSERT(GetPrevInFlow(), "This should be called by non-first-in-flows!");
|
|
|
|
auto* data = FirstInFlow()->GetProperty(SharedFlexData::Prop());
|
|
MOZ_ASSERT(data, "SharedFlexData should be set by our first-in-flow!");
|
|
|
|
FlexLayoutResult flr;
|
|
|
|
// The order state of the children is consistent across entire continuation
|
|
// chain due to calling nsContainerFrame::NormalizeChildLists() at the
|
|
// beginning of Reflow(), so we can align our state bit with our
|
|
// prev-in-flow's state. Setup here before calling OrderStateForIter() below.
|
|
AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER,
|
|
GetPrevInFlow()->HasAnyStateBits(
|
|
NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER));
|
|
|
|
// Construct flex items for this flex container fragment from existing flex
|
|
// items in SharedFlexData.
|
|
CSSOrderAwareFrameIterator iter(
|
|
this, FrameChildListID::Principal,
|
|
CSSOrderAwareFrameIterator::ChildFilter::SkipPlaceholders,
|
|
OrderStateForIter(this), OrderingPropertyForIter(this));
|
|
|
|
auto ConstructNewFlexLine = [&flr]() {
|
|
// Use zero main gap size since it doesn't matter in flex container's
|
|
// next-in-flows. We've computed flex items' positions in first-in-flow.
|
|
return flr.mLines.EmplaceBack(0);
|
|
};
|
|
|
|
// We have at least one FlexLine. Even an empty flex container has a single
|
|
// (empty) flex line.
|
|
FlexLine* currentLine = ConstructNewFlexLine();
|
|
|
|
if (!iter.AtEnd()) {
|
|
nsIFrame* child = *iter;
|
|
nsIFrame* childFirstInFlow = child->FirstInFlow();
|
|
|
|
// We are iterating nested for-loops over the FlexLines and FlexItems
|
|
// generated by GenerateFlexLines() and cached in flex container's
|
|
// first-in-flow. For each flex item, check if its frame (must be a
|
|
// first-in-flow) is the first-in-flow of the first child frame in this flex
|
|
// container continuation. If so, clone the data from that FlexItem into a
|
|
// FlexLine. When we find a match for the item, we know that the next child
|
|
// frame might have its first-in-flow as the next item in the same original
|
|
// line. In this case, we'll put the cloned data in the same line here as
|
|
// well.
|
|
for (const FlexLine& line : data->mLines) {
|
|
// If currentLine is empty, either it is the first line, or all the items
|
|
// in the previous line have been placed in our prev-in-flows. No need to
|
|
// construct a new line.
|
|
if (!currentLine->IsEmpty()) {
|
|
currentLine = ConstructNewFlexLine();
|
|
}
|
|
for (const FlexItem& item : line.Items()) {
|
|
if (item.Frame() == childFirstInFlow) {
|
|
currentLine->Items().AppendElement(item.CloneFor(child));
|
|
iter.Next();
|
|
if (iter.AtEnd()) {
|
|
// We've constructed flex items for all children. No need to check
|
|
// rest of the items.
|
|
child = childFirstInFlow = nullptr;
|
|
break;
|
|
}
|
|
child = *iter;
|
|
childFirstInFlow = child->FirstInFlow();
|
|
}
|
|
}
|
|
if (iter.AtEnd()) {
|
|
// We've constructed flex items for all children. No need to check
|
|
// rest of the lines.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
flr.mContentBoxMainSize = data->mContentBoxMainSize;
|
|
flr.mContentBoxCrossSize = data->mContentBoxCrossSize;
|
|
|
|
return flr;
|
|
}
|
|
|
|
// Returns the largest outer hypothetical main-size of any line in |aLines|.
|
|
// (i.e. the hypothetical main-size of the largest line)
|
|
static AuCoord64 GetLargestLineMainSize(nsTArray<FlexLine>& aLines) {
|
|
AuCoord64 largestLineOuterSize = 0;
|
|
for (const FlexLine& line : aLines) {
|
|
largestLineOuterSize =
|
|
std::max(largestLineOuterSize, line.TotalOuterHypotheticalMainSize());
|
|
}
|
|
return largestLineOuterSize;
|
|
}
|
|
|
|
nscoord nsFlexContainerFrame::ComputeMainSize(
|
|
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
|
|
const nscoord aTentativeContentBoxMainSize,
|
|
nsTArray<FlexLine>& aLines) const {
|
|
if (aAxisTracker.IsRowOriented()) {
|
|
// Row-oriented --> our main axis is the inline axis, so our main size
|
|
// is our inline size (which should already be resolved).
|
|
return aTentativeContentBoxMainSize;
|
|
}
|
|
|
|
const bool shouldApplyAutomaticMinimumOnBlockAxis =
|
|
aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis();
|
|
if (aTentativeContentBoxMainSize != NS_UNCONSTRAINEDSIZE &&
|
|
!shouldApplyAutomaticMinimumOnBlockAxis) {
|
|
// Column-oriented case, with fixed BSize:
|
|
// Just use our fixed block-size because we always assume the available
|
|
// block-size is unconstrained, and the reflow input has already done the
|
|
// appropriate min/max-BSize clamping.
|
|
return aTentativeContentBoxMainSize;
|
|
}
|
|
|
|
// Column-oriented case, with size-containment in block axis:
|
|
// Behave as if we had no content and just use our MinBSize.
|
|
if (Maybe<nscoord> containBSize =
|
|
aReflowInput.mFrame->ContainIntrinsicBSize()) {
|
|
return NS_CSS_MINMAX(*containBSize, aReflowInput.ComputedMinBSize(),
|
|
aReflowInput.ComputedMaxBSize());
|
|
}
|
|
|
|
const AuCoord64 largestLineMainSize = GetLargestLineMainSize(aLines);
|
|
const nscoord contentBSize = NS_CSS_MINMAX(
|
|
nscoord(largestLineMainSize.ToMinMaxClamped()),
|
|
aReflowInput.ComputedMinBSize(), aReflowInput.ComputedMaxBSize());
|
|
// If the clamped largest FlexLine length is larger than the tentative main
|
|
// size (which is resolved by aspect-ratio), we extend it to contain the
|
|
// entire FlexLine.
|
|
// https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum
|
|
if (shouldApplyAutomaticMinimumOnBlockAxis) {
|
|
// Column-oriented case, with auto BSize which is resolved by
|
|
// aspect-ratio.
|
|
return std::max(contentBSize, aTentativeContentBoxMainSize);
|
|
}
|
|
|
|
// Column-oriented case, with auto BSize:
|
|
// Resolve auto BSize to the largest FlexLine length, clamped to our
|
|
// computed min/max main-size properties.
|
|
return contentBSize;
|
|
}
|
|
|
|
nscoord nsFlexContainerFrame::ComputeCrossSize(
|
|
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
|
|
const nscoord aTentativeContentBoxCrossSize, nscoord aSumLineCrossSizes,
|
|
bool* aIsDefinite) const {
|
|
MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null");
|
|
|
|
if (aAxisTracker.IsColumnOriented()) {
|
|
// Column-oriented --> our cross axis is the inline axis, so our cross size
|
|
// is our inline size (which should already be resolved).
|
|
*aIsDefinite = true;
|
|
// FIXME: Bug 1661847 - there are cases where aTentativeContentBoxCrossSize
|
|
// (i.e. aReflowInput.ComputedISize()) might not be the right thing to
|
|
// return here. Specifically: if our cross size is an intrinsic size, and we
|
|
// have flex items that are flexible and have aspect ratios, then we may
|
|
// need to take their post-flexing main sizes into account (multiplied
|
|
// through their aspect ratios to get their cross sizes), in order to
|
|
// determine their flex line's size & the flex container's cross size (e.g.
|
|
// as `aSumLineCrossSizes`).
|
|
return aTentativeContentBoxCrossSize;
|
|
}
|
|
|
|
const bool shouldApplyAutomaticMinimumOnBlockAxis =
|
|
aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis();
|
|
const nscoord computedBSize = aReflowInput.ComputedBSize();
|
|
if (computedBSize != NS_UNCONSTRAINEDSIZE &&
|
|
!shouldApplyAutomaticMinimumOnBlockAxis) {
|
|
// Row-oriented case (cross axis is block-axis), with fixed BSize:
|
|
*aIsDefinite = true;
|
|
|
|
// Just use our fixed block-size because we always assume the available
|
|
// block-size is unconstrained, and the reflow input has already done the
|
|
// appropriate min/max-BSize clamping.
|
|
return computedBSize;
|
|
}
|
|
|
|
// Row-oriented case, with size-containment in block axis:
|
|
// Behave as if we had no content and just use our MinBSize.
|
|
if (Maybe<nscoord> containBSize =
|
|
aReflowInput.mFrame->ContainIntrinsicBSize()) {
|
|
*aIsDefinite = true;
|
|
return NS_CSS_MINMAX(*containBSize, aReflowInput.ComputedMinBSize(),
|
|
aReflowInput.ComputedMaxBSize());
|
|
}
|
|
|
|
// The cross size must not be definite in the following cases.
|
|
*aIsDefinite = false;
|
|
|
|
const nscoord contentBSize =
|
|
NS_CSS_MINMAX(aSumLineCrossSizes, aReflowInput.ComputedMinBSize(),
|
|
aReflowInput.ComputedMaxBSize());
|
|
// If the content block-size is larger than the effective computed
|
|
// block-size, we extend the block-size to contain all the content.
|
|
// https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum
|
|
if (shouldApplyAutomaticMinimumOnBlockAxis) {
|
|
// Row-oriented case (cross axis is block-axis), with auto BSize which is
|
|
// resolved by aspect-ratio or content size.
|
|
return std::max(contentBSize, computedBSize);
|
|
}
|
|
|
|
// Row-oriented case (cross axis is block axis), with auto BSize:
|
|
// Shrink-wrap our line(s), subject to our min-size / max-size
|
|
// constraints in that (block) axis.
|
|
return contentBSize;
|
|
}
|
|
|
|
LogicalSize nsFlexContainerFrame::ComputeAvailableSizeForItems(
|
|
const ReflowInput& aReflowInput,
|
|
const mozilla::LogicalMargin& aBorderPadding) const {
|
|
const WritingMode wm = GetWritingMode();
|
|
nscoord availableBSize = aReflowInput.AvailableBSize();
|
|
|
|
if (availableBSize != NS_UNCONSTRAINEDSIZE) {
|
|
// Available block-size is constrained. Subtract block-start border and
|
|
// padding from it.
|
|
availableBSize -= aBorderPadding.BStart(wm);
|
|
|
|
if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
|
|
StyleBoxDecorationBreak::Clone) {
|
|
// We have box-decoration-break:clone. Subtract block-end border and
|
|
// padding from the available block-size as well.
|
|
availableBSize -= aBorderPadding.BEnd(wm);
|
|
}
|
|
|
|
// Available block-size can became negative after subtracting block-axis
|
|
// border and padding. Per spec, to guarantee progress, fragmentainers are
|
|
// assumed to have a minimum block size of 1px regardless of their used
|
|
// size. https://drafts.csswg.org/css-break/#breaking-rules
|
|
availableBSize =
|
|
std::max(nsPresContext::CSSPixelsToAppUnits(1), availableBSize);
|
|
}
|
|
|
|
return LogicalSize(wm, aReflowInput.ComputedISize(), availableBSize);
|
|
}
|
|
|
|
void FlexLine::PositionItemsInMainAxis(
|
|
const StyleContentDistribution& aJustifyContent,
|
|
nscoord aContentBoxMainSize, const FlexboxAxisTracker& aAxisTracker) {
|
|
MainAxisPositionTracker mainAxisPosnTracker(
|
|
aAxisTracker, this, aJustifyContent, aContentBoxMainSize);
|
|
for (FlexItem& item : Items()) {
|
|
nscoord itemMainBorderBoxSize =
|
|
item.MainSize() + item.BorderPaddingSizeInMainAxis();
|
|
|
|
// Resolve any main-axis 'auto' margins on aChild to an actual value.
|
|
mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(item);
|
|
|
|
// Advance our position tracker to child's upper-left content-box corner,
|
|
// and use that as its position in the main axis.
|
|
mainAxisPosnTracker.EnterMargin(item.Margin());
|
|
mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize);
|
|
|
|
item.SetMainPosition(mainAxisPosnTracker.Position());
|
|
|
|
mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize);
|
|
mainAxisPosnTracker.ExitMargin(item.Margin());
|
|
mainAxisPosnTracker.TraversePackingSpace();
|
|
if (&item != &Items().LastElement()) {
|
|
mainAxisPosnTracker.TraverseGap(mMainGapSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
void nsFlexContainerFrame::SizeItemInCrossAxis(ReflowInput& aChildReflowInput,
|
|
FlexItem& aItem) {
|
|
// If cross axis is the item's inline axis, just use ISize from reflow input,
|
|
// and don't bother with a full reflow.
|
|
if (aItem.IsInlineAxisCrossAxis()) {
|
|
aItem.SetCrossSize(aChildReflowInput.ComputedISize());
|
|
return;
|
|
}
|
|
|
|
MOZ_ASSERT(!aItem.HadMeasuringReflow(),
|
|
"We shouldn't need more than one measuring reflow");
|
|
|
|
if (aItem.AlignSelf()._0 == StyleAlignFlags::STRETCH) {
|
|
// This item's got "align-self: stretch", so we probably imposed a
|
|
// stretched computed cross-size on it during its previous
|
|
// reflow. We're not imposing that BSize for *this* "measuring" reflow, so
|
|
// we need to tell it to treat this reflow as a resize in its block axis
|
|
// (regardless of whether any of its ancestors are actually being resized).
|
|
// (Note: we know that the cross axis is the item's *block* axis -- if it
|
|
// weren't, then we would've taken the early-return above.)
|
|
aChildReflowInput.SetBResize(true);
|
|
// Not 100% sure this is needed, but be conservative for now:
|
|
aChildReflowInput.mFlags.mIsBResizeForPercentages = true;
|
|
}
|
|
|
|
// Potentially reflow the item, and get the sizing info.
|
|
const CachedBAxisMeasurement& measurement =
|
|
MeasureBSizeForFlexItem(aItem, aChildReflowInput);
|
|
|
|
// Save the sizing info that we learned from this reflow
|
|
// -----------------------------------------------------
|
|
|
|
// Tentatively store the child's desired content-box cross-size.
|
|
aItem.SetCrossSize(measurement.BSize());
|
|
}
|
|
|
|
void FlexLine::PositionItemsInCrossAxis(
|
|
nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker) {
|
|
SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker);
|
|
|
|
for (FlexItem& item : Items()) {
|
|
// First, stretch the item's cross size (if appropriate), and resolve any
|
|
// auto margins in this axis.
|
|
item.ResolveStretchedCrossSize(mLineCrossSize);
|
|
lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, item);
|
|
|
|
// Compute the cross-axis position of this item
|
|
nscoord itemCrossBorderBoxSize =
|
|
item.CrossSize() + item.BorderPaddingSizeInCrossAxis();
|
|
lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, item, aAxisTracker);
|
|
lineCrossAxisPosnTracker.EnterMargin(item.Margin());
|
|
lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize);
|
|
|
|
item.SetCrossPosition(aLineStartPosition +
|
|
lineCrossAxisPosnTracker.Position());
|
|
|
|
// Back out to cross-axis edge of the line.
|
|
lineCrossAxisPosnTracker.ResetPosition();
|
|
}
|
|
}
|
|
|
|
void nsFlexContainerFrame::Reflow(nsPresContext* aPresContext,
|
|
ReflowOutput& aReflowOutput,
|
|
const ReflowInput& aReflowInput,
|
|
nsReflowStatus& aStatus) {
|
|
if (IsHiddenByContentVisibilityOfInFlowParentForLayout()) {
|
|
return;
|
|
}
|
|
|
|
MarkInReflow();
|
|
DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame");
|
|
DISPLAY_REFLOW(aPresContext, this, aReflowInput, aReflowOutput, aStatus);
|
|
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
|
|
MOZ_ASSERT(aPresContext == PresContext());
|
|
NS_WARNING_ASSERTION(
|
|
aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
|
|
"Unconstrained inline size; this should only result from huge sizes "
|
|
"(not intrinsic sizing w/ orthogonal flows)");
|
|
|
|
FLEX_LOG("Reflow() for nsFlexContainerFrame %p", this);
|
|
|
|
if (IsFrameTreeTooDeep(aReflowInput, aReflowOutput, aStatus)) {
|
|
return;
|
|
}
|
|
|
|
NormalizeChildLists();
|
|
|
|
#ifdef DEBUG
|
|
mDidPushItemsBitMayLie = false;
|
|
SanityCheckChildListsBeforeReflow();
|
|
#endif // DEBUG
|
|
|
|
// We (and our children) can only depend on our ancestor's bsize if we have
|
|
// a percent-bsize, or if we're positioned and we have "block-start" and
|
|
// "block-end" set and have block-size:auto. (There are actually other cases,
|
|
// too -- e.g. if our parent is itself a block-dir flex container and we're
|
|
// flexible -- but we'll let our ancestors handle those sorts of cases.)
|
|
//
|
|
// TODO(emilio): the !bsize.IsLengthPercentage() preserves behavior, but it's
|
|
// too conservative. min/max-content don't really depend on the container.
|
|
WritingMode wm = aReflowInput.GetWritingMode();
|
|
const nsStylePosition* stylePos = StylePosition();
|
|
const auto& bsize = stylePos->BSize(wm);
|
|
if (bsize.HasPercent() || (StyleDisplay()->IsAbsolutelyPositionedStyle() &&
|
|
(bsize.IsAuto() || !bsize.IsLengthPercentage()) &&
|
|
!stylePos->mOffset.GetBStart(wm).IsAuto() &&
|
|
!stylePos->mOffset.GetBEnd(wm).IsAuto())) {
|
|
AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
|
|
}
|
|
|
|
const FlexboxAxisTracker axisTracker(this);
|
|
|
|
// Check to see if we need to create a computed info structure, to
|
|
// be filled out for use by devtools.
|
|
ComputedFlexContainerInfo* containerInfo = CreateOrClearFlexContainerInfo();
|
|
|
|
FlexLayoutResult flr;
|
|
PerFragmentFlexData fragmentData;
|
|
const nsIFrame* prevInFlow = GetPrevInFlow();
|
|
if (!prevInFlow) {
|
|
const LogicalSize tentativeContentBoxSize = aReflowInput.ComputedSize();
|
|
const nscoord tentativeContentBoxMainSize =
|
|
axisTracker.MainComponent(tentativeContentBoxSize);
|
|
const nscoord tentativeContentBoxCrossSize =
|
|
axisTracker.CrossComponent(tentativeContentBoxSize);
|
|
|
|
// Calculate gap sizes for main and cross axis. We only need them in
|
|
// DoFlexLayout in the first-in-flow, so no need to worry about consumed
|
|
// block-size.
|
|
const auto& mainGapStyle =
|
|
axisTracker.IsRowOriented() ? stylePos->mColumnGap : stylePos->mRowGap;
|
|
const auto& crossGapStyle =
|
|
axisTracker.IsRowOriented() ? stylePos->mRowGap : stylePos->mColumnGap;
|
|
const nscoord mainGapSize = nsLayoutUtils::ResolveGapToLength(
|
|
mainGapStyle, tentativeContentBoxMainSize);
|
|
const nscoord crossGapSize = nsLayoutUtils::ResolveGapToLength(
|
|
crossGapStyle, tentativeContentBoxCrossSize);
|
|
|
|
// When fragmenting a flex container, we run the flex algorithm without
|
|
// regards to pagination in order to compute the flex container's desired
|
|
// content-box size. https://drafts.csswg.org/css-flexbox-1/#pagination-algo
|
|
//
|
|
// Note: For a multi-line column-oriented flex container, the sample
|
|
// algorithm suggests we wrap the flex line at the block-end edge of a
|
|
// column/page, but we do not implement it intentionally. This brings the
|
|
// layout result closer to the one as if there's no fragmentation.
|
|
AutoTArray<StrutInfo, 1> struts;
|
|
flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize,
|
|
tentativeContentBoxCrossSize, axisTracker, mainGapSize,
|
|
crossGapSize, struts, containerInfo);
|
|
|
|
if (!struts.IsEmpty()) {
|
|
// We're restarting flex layout, with new knowledge of collapsed items.
|
|
flr.mLines.Clear();
|
|
flr.mPlaceholders.Clear();
|
|
flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize,
|
|
tentativeContentBoxCrossSize, axisTracker, mainGapSize,
|
|
crossGapSize, struts, containerInfo);
|
|
}
|
|
} else {
|
|
flr = GenerateFlexLayoutResult();
|
|
auto* fragmentDataProp =
|
|
prevInFlow->GetProperty(PerFragmentFlexData::Prop());
|
|
MOZ_ASSERT(fragmentDataProp,
|
|
"PerFragmentFlexData should be set in our prev-in-flow!");
|
|
fragmentData = *fragmentDataProp;
|
|
}
|
|
|
|
LogicalSize contentBoxSize = axisTracker.LogicalSizeFromFlexRelativeSizes(
|
|
flr.mContentBoxMainSize, flr.mContentBoxCrossSize);
|
|
|
|
const nscoord consumedBSize = CalcAndCacheConsumedBSize();
|
|
const nscoord effectiveContentBSize =
|
|
contentBoxSize.BSize(wm) - consumedBSize;
|
|
LogicalMargin borderPadding = aReflowInput.ComputedLogicalBorderPadding(wm);
|
|
if (MOZ_UNLIKELY(aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE)) {
|
|
// We assume we are the last fragment by using
|
|
// PreReflowBlockLevelLogicalSkipSides(), and skip block-end border and
|
|
// padding if needed.
|
|
borderPadding.ApplySkipSides(PreReflowBlockLevelLogicalSkipSides());
|
|
}
|
|
|
|
// Determine this frame's tentative border-box size. This is used for logical
|
|
// to physical coordinate conversion when positioning children.
|
|
//
|
|
// Note that vertical-rl writing-mode is the only case where the block flow
|
|
// direction progresses in a negative physical direction, and therefore block
|
|
// direction coordinate conversion depends on knowing the width of the
|
|
// coordinate space in order to translate between the logical and physical
|
|
// origins. As a result, if our final border-box block-size is different from
|
|
// this tentative one, and we are in vertical-rl writing mode, we need to
|
|
// adjust our children's position after reflowing them.
|
|
const LogicalSize tentativeBorderBoxSize(
|
|
wm, contentBoxSize.ISize(wm) + borderPadding.IStartEnd(wm),
|
|
std::min(effectiveContentBSize + borderPadding.BStartEnd(wm),
|
|
aReflowInput.AvailableBSize()));
|
|
const nsSize containerSize = tentativeBorderBoxSize.GetPhysicalSize(wm);
|
|
|
|
OverflowAreas ocBounds;
|
|
nsReflowStatus ocStatus;
|
|
if (prevInFlow) {
|
|
ReflowOverflowContainerChildren(
|
|
aPresContext, aReflowInput, ocBounds, ReflowChildFlags::Default,
|
|
ocStatus, MergeSortedFrameListsFor, Some(containerSize));
|
|
}
|
|
|
|
const LogicalSize availableSizeForItems =
|
|
ComputeAvailableSizeForItems(aReflowInput, borderPadding);
|
|
const auto [maxBlockEndEdgeOfChildren, anyChildIncomplete] =
|
|
ReflowChildren(aReflowInput, containerSize, availableSizeForItems,
|
|
borderPadding, axisTracker, flr, fragmentData);
|
|
|
|
bool mayNeedNextInFlow = false;
|
|
if (aReflowInput.IsInFragmentedContext()) {
|
|
// maxBlockEndEdgeOfChildren is relative to border-box, so we need to
|
|
// subtract block-start border and padding to make it relative to our
|
|
// content-box. Note that if there is a packing space in between the last
|
|
// flex item's block-end edge and the available space's block-end edge, we
|
|
// want to record the available size of item to consume part of the packing
|
|
// space.
|
|
fragmentData.mCumulativeContentBoxBSize +=
|
|
std::max(maxBlockEndEdgeOfChildren - borderPadding.BStart(wm),
|
|
availableSizeForItems.BSize(wm));
|
|
|
|
// mCumulativeBEndEdgeShift was updated in ReflowChildren(). If our
|
|
// block-size in unconstrained, use that to grow our block-size, subject to
|
|
// min/max constraints.
|
|
if (aReflowInput.ComputedBSize() == NS_UNCONSTRAINEDSIZE) {
|
|
contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(
|
|
contentBoxSize.BSize(wm) + fragmentData.mCumulativeBEndEdgeShift);
|
|
}
|
|
|
|
// Check if we may need a next-in-flow. If so, we'll need to skip block-end
|
|
// border and padding.
|
|
mayNeedNextInFlow = contentBoxSize.BSize(wm) - consumedBSize >
|
|
availableSizeForItems.BSize(wm);
|
|
if (mayNeedNextInFlow && aReflowInput.mStyleBorder->mBoxDecorationBreak ==
|
|
StyleBoxDecorationBreak::Slice) {
|
|
borderPadding.BEnd(wm) = 0;
|
|
}
|
|
}
|
|
|
|
PopulateReflowOutput(aReflowOutput, aReflowInput, aStatus, contentBoxSize,
|
|
borderPadding, consumedBSize, mayNeedNextInFlow,
|
|
maxBlockEndEdgeOfChildren, anyChildIncomplete,
|
|
axisTracker, flr);
|
|
|
|
if (wm.IsVerticalRL()) {
|
|
// If the final border-box block-size is different from the tentative one,
|
|
// adjust our children's position.
|
|
const nscoord deltaBCoord =
|
|
tentativeBorderBoxSize.BSize(wm) - aReflowOutput.Size(wm).BSize(wm);
|
|
if (deltaBCoord != 0) {
|
|
const LogicalPoint delta(wm, 0, deltaBCoord);
|
|
for (const FlexLine& line : flr.mLines) {
|
|
for (const FlexItem& item : line.Items()) {
|
|
item.Frame()->MovePositionBy(wm, delta);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Overflow area = union(my overflow area, children's overflow areas)
|
|
aReflowOutput.SetOverflowAreasToDesiredBounds();
|
|
UnionInFlowChildOverflow(aReflowOutput.mOverflowAreas);
|
|
|
|
// Merge overflow container bounds and status.
|
|
aReflowOutput.mOverflowAreas.UnionWith(ocBounds);
|
|
aStatus.MergeCompletionStatusFrom(ocStatus);
|
|
|
|
FinishReflowWithAbsoluteFrames(PresContext(), aReflowOutput, aReflowInput,
|
|
aStatus);
|
|
|
|
// Finally update our line and item measurements in our containerInfo.
|
|
if (MOZ_UNLIKELY(containerInfo)) {
|
|
UpdateFlexLineAndItemInfo(*containerInfo, flr.mLines);
|
|
}
|
|
|
|
// If we are the first-in-flow, we want to store data for our next-in-flows,
|
|
// or clear the existing data if it is not needed.
|
|
if (!prevInFlow) {
|
|
SharedFlexData* sharedData = GetProperty(SharedFlexData::Prop());
|
|
if (!aStatus.IsFullyComplete()) {
|
|
if (!sharedData) {
|
|
sharedData = new SharedFlexData;
|
|
SetProperty(SharedFlexData::Prop(), sharedData);
|
|
}
|
|
sharedData->Update(std::move(flr));
|
|
} else if (sharedData && !GetNextInFlow()) {
|
|
// We are fully-complete, so no next-in-flow is needed. However, if we
|
|
// report SetInlineLineBreakBeforeAndReset() in an incremental reflow, our
|
|
// next-in-flow might still exist. It can be reflowed again before us if
|
|
// it is an overflow container. Delete the existing data only if we don't
|
|
// have a next-in-flow.
|
|
RemoveProperty(SharedFlexData::Prop());
|
|
}
|
|
}
|
|
|
|
PerFragmentFlexData* fragmentDataProp =
|
|
GetProperty(PerFragmentFlexData::Prop());
|
|
if (!aStatus.IsFullyComplete()) {
|
|
if (!fragmentDataProp) {
|
|
fragmentDataProp = new PerFragmentFlexData;
|
|
SetProperty(PerFragmentFlexData::Prop(), fragmentDataProp);
|
|
}
|
|
*fragmentDataProp = fragmentData;
|
|
} else if (fragmentDataProp && !GetNextInFlow()) {
|
|
// Similar to the condition to remove SharedFlexData, delete the
|
|
// existing data only if we don't have a next-in-flow.
|
|
RemoveProperty(PerFragmentFlexData::Prop());
|
|
}
|
|
}
|
|
|
|
Maybe<nscoord> nsFlexContainerFrame::GetNaturalBaselineBOffset(
|
|
WritingMode aWM, BaselineSharingGroup aBaselineGroup,
|
|
BaselineExportContext) const {
|
|
if (StyleDisplay()->IsContainLayout() ||
|
|
HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
|
|
return Nothing{};
|
|
}
|
|
return Some(aBaselineGroup == BaselineSharingGroup::First ? mFirstBaseline
|
|
: mLastBaseline);
|
|
}
|
|
|
|
void nsFlexContainerFrame::UnionInFlowChildOverflow(
|
|
OverflowAreas& aOverflowAreas) {
|
|
// The CSS Overflow spec [1] requires that a scrollable container's
|
|
// scrollable overflow should include the following areas.
|
|
//
|
|
// a) "the box's own content and padding areas": we treat the *content* as
|
|
// the scrolled inner frame's theoretical content-box that's intrinsically
|
|
// sized to the union of all the flex items' margin boxes, _without_
|
|
// relative positioning applied. The *padding areas* is just inflation on
|
|
// top of the theoretical content-box by the flex container's padding.
|
|
//
|
|
// b) "the margin areas of grid item and flex item boxes for which the box
|
|
// establishes a containing block": a) already includes the flex items'
|
|
// normal-positioned margin boxes into the scrollable overflow, but their
|
|
// relative-positioned margin boxes should also be included because relpos
|
|
// children are still flex items.
|
|
//
|
|
// [1] https://drafts.csswg.org/css-overflow-3/#scrollable.
|
|
const bool isScrolledContent =
|
|
Style()->GetPseudoType() == PseudoStyleType::scrolledContent;
|
|
bool anyScrolledContentItem = false;
|
|
// Union of normal-positioned margin boxes for all the items.
|
|
nsRect itemMarginBoxes;
|
|
// Union of relative-positioned margin boxes for the relpos items only.
|
|
nsRect relPosItemMarginBoxes;
|
|
const bool useMozBoxCollapseBehavior =
|
|
StyleVisibility()->UseLegacyCollapseBehavior();
|
|
for (nsIFrame* f : mFrames) {
|
|
if (useMozBoxCollapseBehavior && f->StyleVisibility()->IsCollapse()) {
|
|
continue;
|
|
}
|
|
ConsiderChildOverflow(aOverflowAreas, f);
|
|
if (!isScrolledContent) {
|
|
continue;
|
|
}
|
|
if (f->IsPlaceholderFrame()) {
|
|
continue;
|
|
}
|
|
anyScrolledContentItem = true;
|
|
if (MOZ_UNLIKELY(f->IsRelativelyOrStickyPositioned())) {
|
|
const nsRect marginRect = f->GetMarginRectRelativeToSelf();
|
|
itemMarginBoxes =
|
|
itemMarginBoxes.Union(marginRect + f->GetNormalPosition());
|
|
relPosItemMarginBoxes =
|
|
relPosItemMarginBoxes.Union(marginRect + f->GetPosition());
|
|
} else {
|
|
itemMarginBoxes = itemMarginBoxes.Union(f->GetMarginRect());
|
|
}
|
|
}
|
|
|
|
if (anyScrolledContentItem) {
|
|
itemMarginBoxes.Inflate(GetUsedPadding());
|
|
aOverflowAreas.UnionAllWith(itemMarginBoxes);
|
|
aOverflowAreas.UnionAllWith(relPosItemMarginBoxes);
|
|
}
|
|
}
|
|
|
|
void nsFlexContainerFrame::UnionChildOverflow(OverflowAreas& aOverflowAreas) {
|
|
UnionInFlowChildOverflow(aOverflowAreas);
|
|
// Union with child frames, skipping the principal list since we already
|
|
// handled those above.
|
|
nsLayoutUtils::UnionChildOverflow(this, aOverflowAreas,
|
|
{FrameChildListID::Principal});
|
|
}
|
|
|
|
void nsFlexContainerFrame::CalculatePackingSpace(
|
|
uint32_t aNumThingsToPack, const StyleContentDistribution& aAlignVal,
|
|
nscoord* aFirstSubjectOffset, uint32_t* aNumPackingSpacesRemaining,
|
|
nscoord* aPackingSpaceRemaining) {
|
|
StyleAlignFlags val = aAlignVal.primary;
|
|
MOZ_ASSERT(val == StyleAlignFlags::SPACE_BETWEEN ||
|
|
val == StyleAlignFlags::SPACE_AROUND ||
|
|
val == StyleAlignFlags::SPACE_EVENLY,
|
|
"Unexpected alignment value");
|
|
|
|
MOZ_ASSERT(*aPackingSpaceRemaining >= 0,
|
|
"Should not be called with negative packing space");
|
|
|
|
// Note: In the aNumThingsToPack==1 case, the fallback behavior for
|
|
// 'space-between' depends on precise information about the axes that we
|
|
// don't have here. So, for that case, we just depend on the caller to
|
|
// explicitly convert 'space-{between,around,evenly}' keywords to the
|
|
// appropriate fallback alignment and skip this function.
|
|
MOZ_ASSERT(aNumThingsToPack > 1,
|
|
"Should not be called unless there's more than 1 thing to pack");
|
|
|
|
// Packing spaces between items:
|
|
*aNumPackingSpacesRemaining = aNumThingsToPack - 1;
|
|
|
|
if (val == StyleAlignFlags::SPACE_BETWEEN) {
|
|
// No need to reserve space at beginning/end, so we're done.
|
|
return;
|
|
}
|
|
|
|
// We need to add 1 or 2 packing spaces, split between beginning/end, for
|
|
// space-around / space-evenly:
|
|
size_t numPackingSpacesForEdges =
|
|
val == StyleAlignFlags::SPACE_AROUND ? 1 : 2;
|
|
|
|
// How big will each "full" packing space be:
|
|
nscoord packingSpaceSize =
|
|
*aPackingSpaceRemaining /
|
|
(*aNumPackingSpacesRemaining + numPackingSpacesForEdges);
|
|
// How much packing-space are we allocating to the edges:
|
|
nscoord totalEdgePackingSpace = numPackingSpacesForEdges * packingSpaceSize;
|
|
|
|
// Use half of that edge packing space right now:
|
|
*aFirstSubjectOffset += totalEdgePackingSpace / 2;
|
|
// ...but we need to subtract all of it right away, so that we won't
|
|
// hand out any of it to intermediate packing spaces.
|
|
*aPackingSpaceRemaining -= totalEdgePackingSpace;
|
|
}
|
|
|
|
ComputedFlexContainerInfo*
|
|
nsFlexContainerFrame::CreateOrClearFlexContainerInfo() {
|
|
if (!ShouldGenerateComputedInfo()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// The flag that sets ShouldGenerateComputedInfo() will never be cleared.
|
|
// That's acceptable because it's only set in a Chrome API invoked by
|
|
// devtools, and won't impact normal browsing.
|
|
|
|
// Re-use the ComputedFlexContainerInfo, if it exists.
|
|
ComputedFlexContainerInfo* info = GetProperty(FlexContainerInfo());
|
|
if (info) {
|
|
// We can reuse, as long as we clear out old data.
|
|
info->mLines.Clear();
|
|
} else {
|
|
info = new ComputedFlexContainerInfo();
|
|
SetProperty(FlexContainerInfo(), info);
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
void nsFlexContainerFrame::CreateFlexLineAndFlexItemInfo(
|
|
ComputedFlexContainerInfo& aContainerInfo,
|
|
const nsTArray<FlexLine>& aLines) {
|
|
for (const FlexLine& line : aLines) {
|
|
ComputedFlexLineInfo* lineInfo = aContainerInfo.mLines.AppendElement();
|
|
// Most of the remaining lineInfo properties will be filled out in
|
|
// UpdateFlexLineAndItemInfo (some will be provided by other functions),
|
|
// when we have real values. But we still add all the items here, so
|
|
// we can capture computed data for each item as we proceed.
|
|
for (const FlexItem& item : line.Items()) {
|
|
nsIFrame* frame = item.Frame();
|
|
|
|
// The frame may be for an element, or it may be for an
|
|
// anonymous flex item, e.g. wrapping one or more text nodes.
|
|
// DevTools wants the content node for the actual child in
|
|
// the DOM tree, so we descend through anonymous boxes.
|
|
nsIFrame* targetFrame = GetFirstNonAnonBoxInSubtree(frame);
|
|
nsIContent* content = targetFrame->GetContent();
|
|
|
|
// Skip over content that is only whitespace, which might
|
|
// have been broken off from a text node which is our real
|
|
// target.
|
|
while (content && content->TextIsOnlyWhitespace()) {
|
|
// If content is only whitespace, try the frame sibling.
|
|
targetFrame = targetFrame->GetNextSibling();
|
|
if (targetFrame) {
|
|
content = targetFrame->GetContent();
|
|
} else {
|
|
content = nullptr;
|
|
}
|
|
}
|
|
|
|
ComputedFlexItemInfo* itemInfo = lineInfo->mItems.AppendElement();
|
|
|
|
itemInfo->mNode = content;
|
|
|
|
// itemInfo->mMainBaseSize and mMainDeltaSize will be filled out
|
|
// in ResolveFlexibleLengths(). Other measurements will be captured in
|
|
// UpdateFlexLineAndItemInfo.
|
|
}
|
|
}
|
|
}
|
|
|
|
void nsFlexContainerFrame::ComputeFlexDirections(
|
|
ComputedFlexContainerInfo& aContainerInfo,
|
|
const FlexboxAxisTracker& aAxisTracker) {
|
|
auto ConvertPhysicalStartSideToFlexPhysicalDirection =
|
|
[](mozilla::Side aStartSide) {
|
|
switch (aStartSide) {
|
|
case eSideLeft:
|
|
return dom::FlexPhysicalDirection::Horizontal_lr;
|
|
case eSideRight:
|
|
return dom::FlexPhysicalDirection::Horizontal_rl;
|
|
case eSideTop:
|
|
return dom::FlexPhysicalDirection::Vertical_tb;
|
|
case eSideBottom:
|
|
return dom::FlexPhysicalDirection::Vertical_bt;
|
|
}
|
|
|
|
MOZ_ASSERT_UNREACHABLE("We should handle all sides!");
|
|
return dom::FlexPhysicalDirection::Horizontal_lr;
|
|
};
|
|
|
|
aContainerInfo.mMainAxisDirection =
|
|
ConvertPhysicalStartSideToFlexPhysicalDirection(
|
|
aAxisTracker.MainAxisPhysicalStartSide());
|
|
aContainerInfo.mCrossAxisDirection =
|
|
ConvertPhysicalStartSideToFlexPhysicalDirection(
|
|
aAxisTracker.CrossAxisPhysicalStartSide());
|
|
}
|
|
|
|
void nsFlexContainerFrame::UpdateFlexLineAndItemInfo(
|
|
ComputedFlexContainerInfo& aContainerInfo,
|
|
const nsTArray<FlexLine>& aLines) {
|
|
uint32_t lineIndex = 0;
|
|
for (const FlexLine& line : aLines) {
|
|
ComputedFlexLineInfo& lineInfo = aContainerInfo.mLines[lineIndex];
|
|
|
|
lineInfo.mCrossSize = line.LineCrossSize();
|
|
lineInfo.mFirstBaselineOffset = line.FirstBaselineOffset();
|
|
lineInfo.mLastBaselineOffset = line.LastBaselineOffset();
|
|
|
|
uint32_t itemIndex = 0;
|
|
for (const FlexItem& item : line.Items()) {
|
|
ComputedFlexItemInfo& itemInfo = lineInfo.mItems[itemIndex];
|
|
itemInfo.mFrameRect = item.Frame()->GetRect();
|
|
itemInfo.mMainMinSize = item.MainMinSize();
|
|
itemInfo.mMainMaxSize = item.MainMaxSize();
|
|
itemInfo.mCrossMinSize = item.CrossMinSize();
|
|
itemInfo.mCrossMaxSize = item.CrossMaxSize();
|
|
itemInfo.mClampState =
|
|
item.WasMinClamped()
|
|
? mozilla::dom::FlexItemClampState::Clamped_to_min
|
|
: (item.WasMaxClamped()
|
|
? mozilla::dom::FlexItemClampState::Clamped_to_max
|
|
: mozilla::dom::FlexItemClampState::Unclamped);
|
|
++itemIndex;
|
|
}
|
|
++lineIndex;
|
|
}
|
|
}
|
|
|
|
nsFlexContainerFrame* nsFlexContainerFrame::GetFlexFrameWithComputedInfo(
|
|
nsIFrame* aFrame) {
|
|
// Prepare a lambda function that we may need to call multiple times.
|
|
auto GetFlexContainerFrame = [](nsIFrame* aFrame) {
|
|
// Return the aFrame's content insertion frame, iff it is
|
|
// a flex container frame.
|
|
nsFlexContainerFrame* flexFrame = nullptr;
|
|
|
|
if (aFrame) {
|
|
nsIFrame* inner = aFrame;
|
|
if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) {
|
|
inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner();
|
|
}
|
|
// Since "Get" methods like GetInner and GetContentInsertionFrame can
|
|
// return null, we check the return values before dereferencing. Our
|
|
// calling pattern makes this unlikely, but we're being careful.
|
|
nsIFrame* insertionFrame =
|
|
inner ? inner->GetContentInsertionFrame() : nullptr;
|
|
nsIFrame* possibleFlexFrame = insertionFrame ? insertionFrame : aFrame;
|
|
flexFrame = possibleFlexFrame->IsFlexContainerFrame()
|
|
? static_cast<nsFlexContainerFrame*>(possibleFlexFrame)
|
|
: nullptr;
|
|
}
|
|
return flexFrame;
|
|
};
|
|
|
|
nsFlexContainerFrame* flexFrame = GetFlexContainerFrame(aFrame);
|
|
if (flexFrame) {
|
|
// Generate the FlexContainerInfo data, if it's not already there.
|
|
bool reflowNeeded = !flexFrame->HasProperty(FlexContainerInfo());
|
|
|
|
if (reflowNeeded) {
|
|
// Trigger a reflow that generates additional flex property data.
|
|
// Hold onto aFrame while we do this, in case reflow destroys it.
|
|
AutoWeakFrame weakFrameRef(aFrame);
|
|
|
|
RefPtr<mozilla::PresShell> presShell = flexFrame->PresShell();
|
|
flexFrame->SetShouldGenerateComputedInfo(true);
|
|
presShell->FrameNeedsReflow(flexFrame, IntrinsicDirty::None,
|
|
NS_FRAME_IS_DIRTY);
|
|
presShell->FlushPendingNotifications(FlushType::Layout);
|
|
|
|
// Since the reflow may have side effects, get the flex frame
|
|
// again. But if the weakFrameRef is no longer valid, then we
|
|
// must bail out.
|
|
if (!weakFrameRef.IsAlive()) {
|
|
return nullptr;
|
|
}
|
|
|
|
flexFrame = GetFlexContainerFrame(weakFrameRef.GetFrame());
|
|
|
|
NS_WARNING_ASSERTION(
|
|
!flexFrame || flexFrame->HasProperty(FlexContainerInfo()),
|
|
"The state bit should've made our forced-reflow "
|
|
"generate a FlexContainerInfo object");
|
|
}
|
|
}
|
|
return flexFrame;
|
|
}
|
|
|
|
/* static */
|
|
bool nsFlexContainerFrame::IsItemInlineAxisMainAxis(nsIFrame* aFrame) {
|
|
MOZ_ASSERT(aFrame && aFrame->IsFlexItem(), "expecting arg to be a flex item");
|
|
const WritingMode flexItemWM = aFrame->GetWritingMode();
|
|
const nsIFrame* flexContainer = aFrame->GetParent();
|
|
|
|
if (IsLegacyBox(flexContainer)) {
|
|
// For legacy boxes, the main axis is determined by "box-orient", and we can
|
|
// just directly check if that's vertical, and compare that to whether the
|
|
// item's WM is also vertical:
|
|
bool boxOrientIsVertical =
|
|
flexContainer->StyleXUL()->mBoxOrient == StyleBoxOrient::Vertical;
|
|
return flexItemWM.IsVertical() == boxOrientIsVertical;
|
|
}
|
|
|
|
// For modern CSS flexbox, we get our return value by asking two questions
|
|
// and comparing their answers.
|
|
// Question 1: does aFrame have the same inline axis as its flex container?
|
|
bool itemInlineAxisIsParallelToParent =
|
|
!flexItemWM.IsOrthogonalTo(flexContainer->GetWritingMode());
|
|
|
|
// Question 2: is aFrame's flex container row-oriented? (This tells us
|
|
// whether the flex container's main axis is its inline axis.)
|
|
auto flexDirection = flexContainer->StylePosition()->mFlexDirection;
|
|
bool flexContainerIsRowOriented =
|
|
flexDirection == StyleFlexDirection::Row ||
|
|
flexDirection == StyleFlexDirection::RowReverse;
|
|
|
|
// aFrame's inline axis is its flex container's main axis IFF the above
|
|
// questions have the same answer.
|
|
return flexContainerIsRowOriented == itemInlineAxisIsParallelToParent;
|
|
}
|
|
|
|
/* static */
|
|
bool nsFlexContainerFrame::IsUsedFlexBasisContent(
|
|
const StyleFlexBasis& aFlexBasis, const StyleSize& aMainSize) {
|
|
// We have a used flex-basis of 'content' if flex-basis explicitly has that
|
|
// value, OR if flex-basis is 'auto' (deferring to the main-size property)
|
|
// and the main-size property is also 'auto'.
|
|
// See https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto
|
|
if (aFlexBasis.IsContent()) {
|
|
return true;
|
|
}
|
|
return aFlexBasis.IsAuto() && aMainSize.IsAuto();
|
|
}
|
|
|
|
nsFlexContainerFrame::FlexLayoutResult nsFlexContainerFrame::DoFlexLayout(
|
|
const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize,
|
|
const nscoord aTentativeContentBoxCrossSize,
|
|
const FlexboxAxisTracker& aAxisTracker, nscoord aMainGapSize,
|
|
nscoord aCrossGapSize, nsTArray<StrutInfo>& aStruts,
|
|
ComputedFlexContainerInfo* const aContainerInfo) {
|
|
FlexLayoutResult flr;
|
|
|
|
GenerateFlexLines(aReflowInput, aTentativeContentBoxMainSize,
|
|
aTentativeContentBoxCrossSize, aStruts, aAxisTracker,
|
|
aMainGapSize, flr.mPlaceholders, flr.mLines,
|
|
flr.mHasCollapsedItems);
|
|
|
|
if ((flr.mLines.Length() == 1 && flr.mLines[0].IsEmpty()) ||
|
|
aReflowInput.mStyleDisplay->IsContainLayout()) {
|
|
// We have no flex items, or we're layout-contained. So, we have no
|
|
// baseline, and our parent should synthesize a baseline if needed.
|
|
AddStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
|
|
} else {
|
|
RemoveStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
|
|
}
|
|
|
|
// Construct our computed info if we've been asked to do so. This is
|
|
// necessary to do now so we can capture some computed values for
|
|
// FlexItems during layout that would not otherwise be saved (like
|
|
// size adjustments). We'll later fix up the line properties,
|
|
// because the correct values aren't available yet.
|
|
if (aContainerInfo) {
|
|
MOZ_ASSERT(ShouldGenerateComputedInfo(),
|
|
"We should only have the info struct if "
|
|
"ShouldGenerateComputedInfo() is true!");
|
|
|
|
if (!aStruts.IsEmpty()) {
|
|
// We restarted DoFlexLayout, and may have stale mLines to clear:
|
|
aContainerInfo->mLines.Clear();
|
|
} else {
|
|
MOZ_ASSERT(aContainerInfo->mLines.IsEmpty(), "Shouldn't have lines yet.");
|
|
}
|
|
|
|
CreateFlexLineAndFlexItemInfo(*aContainerInfo, flr.mLines);
|
|
ComputeFlexDirections(*aContainerInfo, aAxisTracker);
|
|
}
|
|
|
|
flr.mContentBoxMainSize = ComputeMainSize(
|
|
aReflowInput, aAxisTracker, aTentativeContentBoxMainSize, flr.mLines);
|
|
|
|
uint32_t lineIndex = 0;
|
|
for (FlexLine& line : flr.mLines) {
|
|
ComputedFlexLineInfo* lineInfo =
|
|
aContainerInfo ? &aContainerInfo->mLines[lineIndex] : nullptr;
|
|
line.ResolveFlexibleLengths(flr.mContentBoxMainSize, lineInfo);
|
|
++lineIndex;
|
|
}
|
|
|
|
// Cross Size Determination - Flexbox spec section 9.4
|
|
// https://drafts.csswg.org/css-flexbox-1/#cross-sizing
|
|
// ===================================================
|
|
// Calculate the hypothetical cross size of each item:
|
|
|
|
// 'sumLineCrossSizes' includes the size of all gaps between lines. We
|
|
// initialize it with the sum of all the gaps, and add each line's cross size
|
|
// at the end of the following for-loop.
|
|
nscoord sumLineCrossSizes = aCrossGapSize * (flr.mLines.Length() - 1);
|
|
for (FlexLine& line : flr.mLines) {
|
|
for (FlexItem& item : line.Items()) {
|
|
// The item may already have the correct cross-size; only recalculate
|
|
// if the item's main size resolution (flexing) could have influenced it:
|
|
if (item.CanMainSizeInfluenceCrossSize()) {
|
|
StyleSizeOverrides sizeOverrides;
|
|
if (item.IsInlineAxisMainAxis()) {
|
|
sizeOverrides.mStyleISize.emplace(item.StyleMainSize());
|
|
} else {
|
|
sizeOverrides.mStyleBSize.emplace(item.StyleMainSize());
|
|
}
|
|
FLEX_LOG("Sizing flex item %p in cross axis", item.Frame());
|
|
FLEX_LOGV(" Main size override: %d", item.MainSize());
|
|
|
|
const WritingMode wm = item.GetWritingMode();
|
|
LogicalSize availSize = aReflowInput.ComputedSize(wm);
|
|
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
|
|
ReflowInput childReflowInput(PresContext(), aReflowInput, item.Frame(),
|
|
availSize, Nothing(), {}, sizeOverrides);
|
|
if (item.IsBlockAxisMainAxis() && item.TreatBSizeAsIndefinite()) {
|
|
childReflowInput.mFlags.mTreatBSizeAsIndefinite = true;
|
|
}
|
|
|
|
SizeItemInCrossAxis(childReflowInput, item);
|
|
}
|
|
}
|
|
// Now that we've finished with this line's items, size the line itself:
|
|
line.ComputeCrossSizeAndBaseline(aAxisTracker);
|
|
sumLineCrossSizes += line.LineCrossSize();
|
|
}
|
|
|
|
bool isCrossSizeDefinite;
|
|
flr.mContentBoxCrossSize = ComputeCrossSize(
|
|
aReflowInput, aAxisTracker, aTentativeContentBoxCrossSize,
|
|
sumLineCrossSizes, &isCrossSizeDefinite);
|
|
|
|
// Set up state for cross-axis alignment, at a high level (outside the
|
|
// scope of a particular flex line)
|
|
CrossAxisPositionTracker crossAxisPosnTracker(
|
|
flr.mLines, aReflowInput, flr.mContentBoxCrossSize, isCrossSizeDefinite,
|
|
aAxisTracker, aCrossGapSize);
|
|
|
|
// Now that we know the cross size of each line (including
|
|
// "align-content:stretch" adjustments, from the CrossAxisPositionTracker
|
|
// constructor), we can create struts for any flex items with
|
|
// "visibility: collapse" (and restart flex layout).
|
|
// Make sure to only do this if we had no struts.
|
|
if (aStruts.IsEmpty() && flr.mHasCollapsedItems &&
|
|
!StyleVisibility()->UseLegacyCollapseBehavior()) {
|
|
BuildStrutInfoFromCollapsedItems(flr.mLines, aStruts);
|
|
if (!aStruts.IsEmpty()) {
|
|
// Restart flex layout, using our struts.
|
|
return flr;
|
|
}
|
|
}
|
|
|
|
// If the flex container is row-oriented, it should derive its first/last
|
|
// baseline from the WM-relative startmost/endmost FlexLine if any items in
|
|
// the line participate in baseline alignment.
|
|
// https://drafts.csswg.org/css-flexbox-1/#flex-baselines
|
|
//
|
|
// Initialize the relevant variables here so that we can establish baselines
|
|
// while iterating FlexLine later (while crossAxisPosnTracker is conveniently
|
|
// pointing at the cross-start edge of that line, which the line's baseline
|
|
// offset is measured from).
|
|
const FlexLine* lineForFirstBaseline = nullptr;
|
|
const FlexLine* lineForLastBaseline = nullptr;
|
|
if (aAxisTracker.IsRowOriented()) {
|
|
lineForFirstBaseline = &StartmostLine(flr.mLines, aAxisTracker);
|
|
lineForLastBaseline = &EndmostLine(flr.mLines, aAxisTracker);
|
|
} else {
|
|
// For column-oriented flex container, use sentinel value to prompt us to
|
|
// get baselines from the startmost/endmost items.
|
|
flr.mAscent = nscoord_MIN;
|
|
flr.mAscentForLast = nscoord_MIN;
|
|
}
|
|
|
|
const auto justifyContent =
|
|
IsLegacyBox(aReflowInput.mFrame)
|
|
? ConvertLegacyStyleToJustifyContent(StyleXUL())
|
|
: aReflowInput.mStylePosition->mJustifyContent;
|
|
|
|
lineIndex = 0;
|
|
for (FlexLine& line : flr.mLines) {
|
|
// Main-Axis Alignment - Flexbox spec section 9.5
|
|
// https://drafts.csswg.org/css-flexbox-1/#main-alignment
|
|
// ==============================================
|
|
line.PositionItemsInMainAxis(justifyContent, flr.mContentBoxMainSize,
|
|
aAxisTracker);
|
|
|
|
// See if we need to extract some computed info for this line.
|
|
if (MOZ_UNLIKELY(aContainerInfo)) {
|
|
ComputedFlexLineInfo& lineInfo = aContainerInfo->mLines[lineIndex];
|
|
lineInfo.mCrossStart = crossAxisPosnTracker.Position();
|
|
}
|
|
|
|
// Cross-Axis Alignment - Flexbox spec section 9.6
|
|
// https://drafts.csswg.org/css-flexbox-1/#cross-alignment
|
|
// ===============================================
|
|
line.PositionItemsInCrossAxis(crossAxisPosnTracker.Position(),
|
|
aAxisTracker);
|
|
|
|
// Flex Container Baselines - Flexbox spec section 8.5
|
|
// https://drafts.csswg.org/css-flexbox-1/#flex-baselines
|
|
auto ComputeAscentFromLine = [&](const FlexLine& aLine,
|
|
BaselineSharingGroup aBaselineGroup) {
|
|
MOZ_ASSERT(aAxisTracker.IsRowOriented(),
|
|
"This makes sense only if we are row-oriented!");
|
|
|
|
// baselineOffsetInLine is a distance from the line's cross-start edge.
|
|
const nscoord baselineOffsetInLine =
|
|
aLine.ExtractBaselineOffset(aBaselineGroup);
|
|
|
|
if (baselineOffsetInLine == nscoord_MIN) {
|
|
// No "first baseline"-aligned or "last baseline"-aligned items in
|
|
// aLine. Return a sentinel value to prompt us to get baseline from the
|
|
// startmost or endmost FlexItem after we've reflowed it.
|
|
return nscoord_MIN;
|
|
}
|
|
|
|
// This "ascent" variable is a distance from the flex container's
|
|
// content-box block-start edge.
|
|
const nscoord ascent = aAxisTracker.LogicalAscentFromFlexRelativeAscent(
|
|
crossAxisPosnTracker.Position() + baselineOffsetInLine,
|
|
flr.mContentBoxCrossSize);
|
|
|
|
// Convert "ascent" variable to a distance from border-box start or end
|
|
// edge, per documentation for FlexLayoutResult ascent members.
|
|
const auto wm = aAxisTracker.GetWritingMode();
|
|
if (aBaselineGroup == BaselineSharingGroup::First) {
|
|
return ascent +
|
|
aReflowInput.ComputedLogicalBorderPadding(wm).BStart(wm);
|
|
}
|
|
return flr.mContentBoxCrossSize - ascent +
|
|
aReflowInput.ComputedLogicalBorderPadding(wm).BEnd(wm);
|
|
};
|
|
|
|
if (lineForFirstBaseline && lineForFirstBaseline == &line) {
|
|
flr.mAscent = ComputeAscentFromLine(line, BaselineSharingGroup::First);
|
|
}
|
|
if (lineForLastBaseline && lineForLastBaseline == &line) {
|
|
flr.mAscentForLast =
|
|
ComputeAscentFromLine(line, BaselineSharingGroup::Last);
|
|
}
|
|
|
|
crossAxisPosnTracker.TraverseLine(line);
|
|
crossAxisPosnTracker.TraversePackingSpace();
|
|
|
|
if (&line != &flr.mLines.LastElement()) {
|
|
crossAxisPosnTracker.TraverseGap();
|
|
}
|
|
++lineIndex;
|
|
}
|
|
|
|
return flr;
|
|
}
|
|
|
|
// This data structure is used in fragmentation, storing the block coordinate
|
|
// metrics when reflowing 1) the BStart-most line in each fragment of a
|
|
// row-oriented flex container or, 2) the BStart-most item in each fragment of a
|
|
// single-line column-oriented flex container.
|
|
//
|
|
// When we lay out a row-oriented flex container fragment, its first line might
|
|
// contain one or more monolithic items that were pushed from the previous
|
|
// fragment specifically to avoid having those monolithic items overlap the
|
|
// page/column break. The situation is similar for single-row column-oriented
|
|
// flex container fragments, but a bit simpler; only their first item might have
|
|
// been pushed to avoid overlapping a page/column break.
|
|
//
|
|
// We'll have to place any such pushed items at the block-start edge of the
|
|
// current fragment's content-box, which is as close as we can get them to their
|
|
// theoretical/unfragmented position (without slicing them); but it does
|
|
// represent a shift away from their theoretical/unfragmented position (which
|
|
// was somewhere in the previous fragment).
|
|
//
|
|
// When that happens, we need to record the maximum such shift that we had to
|
|
// perform so that we can apply the same block-endwards shift to "downstream"
|
|
// items (items towards the block-end edge) that we could otherwise collide
|
|
// with. We also potentially apply the same shift when computing the block-end
|
|
// edge of this flex container fragment's content-box so that we don't
|
|
// inadvertently shift the last item (or line-of-items) to overlap the flex
|
|
// container's border, or content beyond the flex container.
|
|
//
|
|
// We use this structure to keep track of several metrics, in service of this
|
|
// goal. This structure is also necessary to adjust PerFragmentFlexData at the
|
|
// end of ReflowChildren().
|
|
//
|
|
// Note: "First" in the struct name means "BStart-most", not the order in the
|
|
// flex line array or flex item array.
|
|
struct FirstLineOrFirstItemBAxisMetrics final {
|
|
// This value stores the block-end edge shift for 1) the BStart-most line in
|
|
// the current fragment of a row-oriented flex container, or 2) the
|
|
// BStart-most item in the current fragment of a single-line column-oriented
|
|
// flex container. This number is non-negative.
|
|
//
|
|
// This value may become positive when any item is a first-in-flow and also
|
|
// satisfies either the above condition 1) or 2), since that's a hint that it
|
|
// could be monolithic or have a monolithic first descendant, and therefore an
|
|
// item that might incur a page/column-break-dodging position-shift that this
|
|
// variable needs to track.
|
|
nscoord mBEndEdgeShift = 0;
|
|
|
|
// The first and second value in the pair store the max block-end edges for
|
|
// items before and after applying the per-item position-shift in the block
|
|
// axis. We only record the block-end edges for items with first-in-flow
|
|
// frames placed in the current flex container fragment. This is used only by
|
|
// row-oriented flex containers.
|
|
Maybe<std::pair<nscoord, nscoord>> mMaxBEndEdge;
|
|
};
|
|
|
|
std::tuple<nscoord, bool> nsFlexContainerFrame::ReflowChildren(
|
|
const ReflowInput& aReflowInput, const nsSize& aContainerSize,
|
|
const LogicalSize& aAvailableSizeForItems,
|
|
const LogicalMargin& aBorderPadding, const FlexboxAxisTracker& aAxisTracker,
|
|
FlexLayoutResult& aFlr, PerFragmentFlexData& aFragmentData) {
|
|
if (HidesContentForLayout()) {
|
|
return {0, false};
|
|
}
|
|
|
|
// Before giving each child a final reflow, calculate the origin of the
|
|
// flex container's content box (with respect to its border-box), so that
|
|
// we can compute our flex item's final positions.
|
|
WritingMode flexWM = aReflowInput.GetWritingMode();
|
|
const LogicalPoint containerContentBoxOrigin =
|
|
aBorderPadding.StartOffset(flexWM);
|
|
|
|
// The block-end of children is relative to the flex container's border-box.
|
|
nscoord maxBlockEndEdgeOfChildren = containerContentBoxOrigin.B(flexWM);
|
|
|
|
FirstLineOrFirstItemBAxisMetrics bAxisMetrics;
|
|
FrameHashtable pushedItems;
|
|
FrameHashtable incompleteItems;
|
|
FrameHashtable overflowIncompleteItems;
|
|
|
|
const bool isSingleLine =
|
|
StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
|
|
|
|
// FINAL REFLOW: Give each child frame another chance to reflow, now that
|
|
// we know its final size and position.
|
|
const FlexLine& startmostLine = StartmostLine(aFlr.mLines, aAxisTracker);
|
|
const FlexItem* startmostItem =
|
|
startmostLine.IsEmpty() ? nullptr
|
|
: &startmostLine.StartmostItem(aAxisTracker);
|
|
|
|
const size_t numLines = aFlr.mLines.Length();
|
|
for (size_t lineIdx = 0; lineIdx < numLines; ++lineIdx) {
|
|
// Iterate flex lines from the startmost to endmost (relative to flex
|
|
// container's writing-mode).
|
|
const auto& line =
|
|
aFlr.mLines[aAxisTracker.IsCrossAxisReversed() ? numLines - lineIdx - 1
|
|
: lineIdx];
|
|
MOZ_ASSERT(lineIdx != 0 || &line == &startmostLine,
|
|
"Logic for finding startmost line should be consistent!");
|
|
|
|
const size_t numItems = line.Items().Length();
|
|
for (size_t itemIdx = 0; itemIdx < numItems; ++itemIdx) {
|
|
// Iterate flex items from the startmost to endmost (relative to flex
|
|
// container's writing-mode).
|
|
const FlexItem& item = line.Items()[aAxisTracker.IsMainAxisReversed()
|
|
? numItems - itemIdx - 1
|
|
: itemIdx];
|
|
MOZ_ASSERT(lineIdx != 0 || itemIdx != 0 || &item == startmostItem,
|
|
"Logic for finding startmost item should be consistent!");
|
|
|
|
LogicalPoint framePos = aAxisTracker.LogicalPointFromFlexRelativePoint(
|
|
item.MainPosition(), item.CrossPosition(), aFlr.mContentBoxMainSize,
|
|
aFlr.mContentBoxCrossSize);
|
|
// This variable records the item's block-end edge before we give it a
|
|
// per-item-position-shift, if the item is a first-in-flow in the
|
|
// startmost line of a row-oriented flex container fragment. It is used to
|
|
// determine the block-end edge shift for the startmost line at the end of
|
|
// the outer loop.
|
|
Maybe<nscoord> frameBPosBeforePerItemShift;
|
|
|
|
if (item.Frame()->GetPrevInFlow()) {
|
|
// The item is a continuation. Lay it out at the beginning of the
|
|
// available space.
|
|
framePos.B(flexWM) = 0;
|
|
} else if (GetPrevInFlow()) {
|
|
// The item we're placing is not a continuation; though we're placing it
|
|
// into a flex container fragment which *is* a continuation. To compute
|
|
// the item's correct position in this fragment, we adjust the item's
|
|
// theoretical/unfragmented block-direction position by subtracting the
|
|
// cumulative content-box block-size for all the previous fragments and
|
|
// adding the cumulative block-end edge shift.
|
|
//
|
|
// Note that the item's position in this fragment has not been finalized
|
|
// yet. At this point, we've adjusted the item's
|
|
// theoretical/unfragmented position to be relative to the block-end
|
|
// edge of the previous container fragment's content-box. Later, we'll
|
|
// compute per-item position-shift to finalize its position.
|
|
framePos.B(flexWM) -= aFragmentData.mCumulativeContentBoxBSize;
|
|
framePos.B(flexWM) += aFragmentData.mCumulativeBEndEdgeShift;
|
|
|
|
// This helper gets the per-item position-shift in the block-axis.
|
|
auto GetPerItemPositionShiftToBEnd = [&]() {
|
|
if (framePos.B(flexWM) >= 0) {
|
|
// The item final position might be in current flex container
|
|
// fragment or in any of the later fragments. No adjustment needed.
|
|
return 0;
|
|
}
|
|
|
|
// The item's block position is negative, but we want to place it at
|
|
// the content-box block-start edge of this container fragment. To
|
|
// achieve this, return a negated (positive) value to make the final
|
|
// block position zero.
|
|
//
|
|
// This scenario occurs when fragmenting a row-oriented flex container
|
|
// where this item is pushed to this container fragment.
|
|
return -framePos.B(flexWM);
|
|
};
|
|
|
|
if (aAxisTracker.IsRowOriented()) {
|
|
if (&line == &startmostLine) {
|
|
frameBPosBeforePerItemShift.emplace(framePos.B(flexWM));
|
|
framePos.B(flexWM) += GetPerItemPositionShiftToBEnd();
|
|
} else {
|
|
// We've computed how far the block-end edge of the startmost line
|
|
// had to shift at the end of outer loop. Here, we just shift all
|
|
// items in rest of the lines by the same amount.
|
|
framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift;
|
|
}
|
|
} else {
|
|
MOZ_ASSERT(aAxisTracker.IsColumnOriented());
|
|
if (isSingleLine) {
|
|
if (&item == startmostItem) {
|
|
bAxisMetrics.mBEndEdgeShift = GetPerItemPositionShiftToBEnd();
|
|
}
|
|
framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift;
|
|
} else {
|
|
// Bug 1806717: We need a more sophisticated solution for multi-line
|
|
// column-oriented flex container when each line has a different
|
|
// position-shift value. For now, we don't shift them.
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adjust available block-size for the item. (We compute it here because
|
|
// framePos is still relative to the container's content-box.)
|
|
//
|
|
// Note: The available block-size can become negative if item's
|
|
// block-direction position is below available space's block-end.
|
|
const nscoord availableBSizeForItem =
|
|
aAvailableSizeForItems.BSize(flexWM) == NS_UNCONSTRAINEDSIZE
|
|
? NS_UNCONSTRAINEDSIZE
|
|
: aAvailableSizeForItems.BSize(flexWM) - framePos.B(flexWM);
|
|
|
|
// Adjust framePos to be relative to the container's border-box
|
|
// (i.e. its frame rect), instead of the container's content-box:
|
|
framePos += containerContentBoxOrigin;
|
|
|
|
// Check if we actually need to reflow the item -- if the item's position
|
|
// is below the available space's block-end, push it to our next-in-flow;
|
|
// if it does need a reflow, and we already reflowed it with the right
|
|
// content-box size.
|
|
const bool childBPosExceedAvailableSpaceBEnd =
|
|
availableBSizeForItem != NS_UNCONSTRAINEDSIZE &&
|
|
availableBSizeForItem <= 0;
|
|
bool itemInPushedItems = false;
|
|
if (childBPosExceedAvailableSpaceBEnd) {
|
|
// Note: Even if all of our items are beyond the available space & get
|
|
// pushed here, we'll be guaranteed to place at least one of them (and
|
|
// make progress) in one of the flex container's *next* fragment. It's
|
|
// because ComputeAvailableSizeForItems() always reserves at least 1px
|
|
// available block-size for its children, and we consume all available
|
|
// block-size and add it to
|
|
// PerFragmentFlexData::mCumulativeContentBoxBSize even if we are not
|
|
// laying out any child.
|
|
FLEX_LOG(
|
|
"[frag] Flex item %p needed to be pushed to container's "
|
|
"next-in-flow due to position below available space's block-end",
|
|
item.Frame());
|
|
pushedItems.Insert(item.Frame());
|
|
itemInPushedItems = true;
|
|
} else if (item.NeedsFinalReflow(aReflowInput)) {
|
|
// The available size must be in item's writing-mode.
|
|
const WritingMode itemWM = item.GetWritingMode();
|
|
const auto availableSize =
|
|
LogicalSize(flexWM, aAvailableSizeForItems.ISize(flexWM),
|
|
availableBSizeForItem)
|
|
.ConvertTo(itemWM, flexWM);
|
|
|
|
const nsReflowStatus childReflowStatus =
|
|
ReflowFlexItem(aAxisTracker, aReflowInput, item, framePos,
|
|
availableSize, aContainerSize);
|
|
|
|
const bool shouldPushItem = [&]() {
|
|
if (availableBSizeForItem == NS_UNCONSTRAINEDSIZE) {
|
|
// If the available block-size is unconstrained, then we're not
|
|
// fragmenting and we don't want to push the item.
|
|
return false;
|
|
}
|
|
if (framePos.B(flexWM) == containerContentBoxOrigin.B(flexWM)) {
|
|
// The flex item is adjacent with block-start of the container's
|
|
// content-box. Don't push it, or we'll trap in an infinite loop.
|
|
return false;
|
|
}
|
|
if (item.Frame()->BSize() <= availableBSizeForItem) {
|
|
return false;
|
|
}
|
|
if (aAxisTracker.IsColumnOriented() &&
|
|
item.Frame()->StyleDisplay()->mBreakBefore ==
|
|
StyleBreakBetween::Avoid) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}();
|
|
if (shouldPushItem) {
|
|
FLEX_LOG(
|
|
"[frag] Flex item %p needed to be pushed to container's "
|
|
"next-in-flow because its block-size is larger than the "
|
|
"available space",
|
|
item.Frame());
|
|
pushedItems.Insert(item.Frame());
|
|
itemInPushedItems = true;
|
|
} else if (childReflowStatus.IsIncomplete()) {
|
|
incompleteItems.Insert(item.Frame());
|
|
} else if (childReflowStatus.IsOverflowIncomplete()) {
|
|
overflowIncompleteItems.Insert(item.Frame());
|
|
}
|
|
} else {
|
|
MoveFlexItemToFinalPosition(item, framePos, aContainerSize);
|
|
}
|
|
|
|
if (!itemInPushedItems) {
|
|
const nscoord itemBSize = item.Frame()->BSize(flexWM);
|
|
const nscoord bEndEdgeAfterPerItemShift =
|
|
framePos.B(flexWM) + itemBSize;
|
|
|
|
// The item (or a fragment thereof) was placed in this flex container
|
|
// fragment. Update the max block-end edge with the item's block-end
|
|
// edge.
|
|
maxBlockEndEdgeOfChildren =
|
|
std::max(maxBlockEndEdgeOfChildren, bEndEdgeAfterPerItemShift);
|
|
|
|
if (frameBPosBeforePerItemShift) {
|
|
// Make the block-end edge relative to flex container's border-box
|
|
// because bEndEdgeAfterPerItemShift is relative to the border-box.
|
|
const nscoord bEndEdgeBeforePerItemShift =
|
|
containerContentBoxOrigin.B(flexWM) +
|
|
*frameBPosBeforePerItemShift + itemBSize;
|
|
|
|
if (bAxisMetrics.mMaxBEndEdge) {
|
|
auto& [before, after] = *bAxisMetrics.mMaxBEndEdge;
|
|
before = std::max(before, bEndEdgeBeforePerItemShift);
|
|
after = std::max(after, bEndEdgeAfterPerItemShift);
|
|
} else {
|
|
bAxisMetrics.mMaxBEndEdge.emplace(bEndEdgeBeforePerItemShift,
|
|
bEndEdgeAfterPerItemShift);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the item has auto margins, and we were tracking the UsedMargin
|
|
// property, set the property to the computed margin values.
|
|
if (item.HasAnyAutoMargin()) {
|
|
nsMargin* propValue =
|
|
item.Frame()->GetProperty(nsIFrame::UsedMarginProperty());
|
|
if (propValue) {
|
|
*propValue = item.PhysicalMargin();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we've finished processing all the items in the startmost line.
|
|
// Determine the amount by which the startmost line's block-end edge has
|
|
// shifted, so we can apply the same shift for the remaining lines.
|
|
if (GetPrevInFlow() && aAxisTracker.IsRowOriented() &&
|
|
&line == &startmostLine && bAxisMetrics.mMaxBEndEdge) {
|
|
auto& [before, after] = *bAxisMetrics.mMaxBEndEdge;
|
|
bAxisMetrics.mBEndEdgeShift = after - before;
|
|
}
|
|
}
|
|
|
|
if (!aFlr.mPlaceholders.IsEmpty()) {
|
|
ReflowPlaceholders(aReflowInput, aFlr.mPlaceholders,
|
|
containerContentBoxOrigin, aContainerSize);
|
|
}
|
|
|
|
const bool anyChildIncomplete = PushIncompleteChildren(
|
|
pushedItems, incompleteItems, overflowIncompleteItems);
|
|
|
|
// TODO: Try making this a fatal assertion after we fix bug 1751260.
|
|
NS_ASSERTION(!anyChildIncomplete ||
|
|
aAvailableSizeForItems.BSize(flexWM) != NS_UNCONSTRAINEDSIZE,
|
|
"We shouldn't have any incomplete children if the available "
|
|
"block-size is unconstrained!");
|
|
|
|
if (!pushedItems.IsEmpty()) {
|
|
AddStateBits(NS_STATE_FLEX_DID_PUSH_ITEMS);
|
|
}
|
|
|
|
if (GetPrevInFlow()) {
|
|
aFragmentData.mCumulativeBEndEdgeShift += bAxisMetrics.mBEndEdgeShift;
|
|
}
|
|
|
|
return {maxBlockEndEdgeOfChildren, anyChildIncomplete};
|
|
}
|
|
|
|
void nsFlexContainerFrame::PopulateReflowOutput(
|
|
ReflowOutput& aReflowOutput, const ReflowInput& aReflowInput,
|
|
nsReflowStatus& aStatus, const LogicalSize& aContentBoxSize,
|
|
const LogicalMargin& aBorderPadding, const nscoord aConsumedBSize,
|
|
const bool aMayNeedNextInFlow, const nscoord aMaxBlockEndEdgeOfChildren,
|
|
const bool aAnyChildIncomplete, const FlexboxAxisTracker& aAxisTracker,
|
|
FlexLayoutResult& aFlr) {
|
|
const WritingMode flexWM = aReflowInput.GetWritingMode();
|
|
|
|
// Compute flex container's desired size (in its own writing-mode).
|
|
LogicalSize desiredSizeInFlexWM(flexWM);
|
|
desiredSizeInFlexWM.ISize(flexWM) =
|
|
aContentBoxSize.ISize(flexWM) + aBorderPadding.IStartEnd(flexWM);
|
|
|
|
// Unconditionally skip adding block-end border and padding for now. We add it
|
|
// lower down, after we've established baseline and decided whether bottom
|
|
// border-padding fits (if we're fragmented).
|
|
const nscoord effectiveContentBSizeWithBStartBP =
|
|
aContentBoxSize.BSize(flexWM) - aConsumedBSize +
|
|
aBorderPadding.BStart(flexWM);
|
|
nscoord blockEndContainerBP = aBorderPadding.BEnd(flexWM);
|
|
|
|
if (aMayNeedNextInFlow) {
|
|
// We assume our status should be reported as incomplete because we may need
|
|
// a next-in-flow.
|
|
bool isStatusIncomplete = true;
|
|
|
|
const nscoord availableBSizeMinusBEndBP =
|
|
aReflowInput.AvailableBSize() - aBorderPadding.BEnd(flexWM);
|
|
|
|
if (aMaxBlockEndEdgeOfChildren <= availableBSizeMinusBEndBP) {
|
|
// Consume all the available block-size.
|
|
desiredSizeInFlexWM.BSize(flexWM) = availableBSizeMinusBEndBP;
|
|
} else {
|
|
// This case happens if we have some tall unbreakable children exceeding
|
|
// the available block-size.
|
|
desiredSizeInFlexWM.BSize(flexWM) = std::min(
|
|
effectiveContentBSizeWithBStartBP, aMaxBlockEndEdgeOfChildren);
|
|
|
|
if ((aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE ||
|
|
!aAnyChildIncomplete) &&
|
|
aMaxBlockEndEdgeOfChildren >= effectiveContentBSizeWithBStartBP) {
|
|
// We have some tall unbreakable child that's sticking off the end of
|
|
// our fragment, *and* forcing us to consume all of our remaining
|
|
// content block-size and call ourselves complete.
|
|
//
|
|
// - If we have a definite block-size: we get here if the tall child
|
|
// makes us reach that block-size.
|
|
// - If we have a content-based block-size: we get here if the tall
|
|
// child makes us reach the content-based block-size from a
|
|
// theoretical unfragmented layout, *and* all our children are
|
|
// complete. (Note that if we have some incomplete child, then we
|
|
// instead prefer to return an incomplete status, so we can get a
|
|
// next-in-flow to include that child's requested next-in-flow, in the
|
|
// spirit of having a block-size that fits the content.)
|
|
//
|
|
// TODO: the auto-height case might need more subtlety; see bug 1828977.
|
|
isStatusIncomplete = false;
|
|
|
|
// We also potentially need to get the unskipped block-end border and
|
|
// padding (if we assumed it'd be skipped as part of our tentative
|
|
// assumption that we'd be incomplete).
|
|
if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
|
|
StyleBoxDecorationBreak::Slice) {
|
|
blockEndContainerBP =
|
|
aReflowInput.ComputedLogicalBorderPadding(flexWM).BEnd(flexWM);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isStatusIncomplete) {
|
|
aStatus.SetIncomplete();
|
|
}
|
|
} else {
|
|
// Our own effective content-box block-size can fit within the available
|
|
// block-size.
|
|
desiredSizeInFlexWM.BSize(flexWM) = effectiveContentBSizeWithBStartBP;
|
|
}
|
|
|
|
// Now, we account for how the block-end border and padding (if any) impacts
|
|
// our desired size. If adding it pushes us over the available block-size,
|
|
// then we become incomplete (unless we already weren't asking for any
|
|
// block-size, in which case we stay complete to avoid looping forever).
|
|
//
|
|
// NOTE: If we have auto block-size, we allow our block-end border and padding
|
|
// to push us over the available block-size without requesting a continuation,
|
|
// for consistency with the behavior of "display:block" elements.
|
|
const nscoord effectiveContentBSizeWithBStartEndBP =
|
|
desiredSizeInFlexWM.BSize(flexWM) + blockEndContainerBP;
|
|
|
|
if (aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE &&
|
|
effectiveContentBSizeWithBStartEndBP > aReflowInput.AvailableBSize() &&
|
|
desiredSizeInFlexWM.BSize(flexWM) != 0 &&
|
|
aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
|
|
// We couldn't fit with the block-end border and padding included, so we'll
|
|
// need a continuation.
|
|
aStatus.SetIncomplete();
|
|
|
|
if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
|
|
StyleBoxDecorationBreak::Slice) {
|
|
blockEndContainerBP = 0;
|
|
}
|
|
}
|
|
|
|
// The variable "blockEndContainerBP" now accurately reflects how much (if
|
|
// any) block-end border and padding we want for this frame, so we can proceed
|
|
// to add it in.
|
|
desiredSizeInFlexWM.BSize(flexWM) += blockEndContainerBP;
|
|
|
|
if (aStatus.IsComplete() && aAnyChildIncomplete) {
|
|
aStatus.SetOverflowIncomplete();
|
|
aStatus.SetNextInFlowNeedsReflow();
|
|
}
|
|
|
|
// If we are the first-in-flow and not fully complete (either our block-size
|
|
// or any of our flex items cannot fit in the available block-size), and the
|
|
// style requires us to avoid breaking inside, set the status to prompt our
|
|
// parent to push us to the next page/column.
|
|
if (!GetPrevInFlow() && !aStatus.IsFullyComplete() &&
|
|
ShouldAvoidBreakInside(aReflowInput)) {
|
|
aStatus.SetInlineLineBreakBeforeAndReset();
|
|
return;
|
|
}
|
|
|
|
// If we haven't established a baseline for the container yet, i.e. if we
|
|
// don't have any flex item in the startmost flex line that participates in
|
|
// baseline alignment, then use the startmost flex item to derive the
|
|
// container's baseline.
|
|
if (const FlexLine& line = StartmostLine(aFlr.mLines, aAxisTracker);
|
|
aFlr.mAscent == nscoord_MIN && !line.IsEmpty()) {
|
|
const FlexItem& item = line.StartmostItem(aAxisTracker);
|
|
aFlr.mAscent = item.Frame()
|
|
->GetLogicalPosition(
|
|
flexWM, desiredSizeInFlexWM.GetPhysicalSize(flexWM))
|
|
.B(flexWM) +
|
|
item.ResolvedAscent(true);
|
|
}
|
|
|
|
// Likewise, if we don't have any flex item in the endmost flex line that
|
|
// participates in last baseline alignment, then use the endmost flex item to
|
|
// derived the container's last baseline.
|
|
if (const FlexLine& line = EndmostLine(aFlr.mLines, aAxisTracker);
|
|
aFlr.mAscentForLast == nscoord_MIN && !line.IsEmpty()) {
|
|
const FlexItem& item = line.EndmostItem(aAxisTracker);
|
|
const nscoord lastAscent =
|
|
item.Frame()
|
|
->GetLogicalPosition(flexWM,
|
|
desiredSizeInFlexWM.GetPhysicalSize(flexWM))
|
|
.B(flexWM) +
|
|
item.ResolvedAscent(false);
|
|
|
|
aFlr.mAscentForLast = desiredSizeInFlexWM.BSize(flexWM) - lastAscent;
|
|
}
|
|
|
|
if (aFlr.mAscent == nscoord_MIN) {
|
|
// Still don't have our baseline set -- this happens if we have no
|
|
// children, if our children are huge enough that they have nscoord_MIN
|
|
// as their baseline, or our content is hidden in which case, we'll use the
|
|
// wrong baseline (but no big deal).
|
|
NS_WARNING_ASSERTION(
|
|
HidesContentForLayout() || aFlr.mLines[0].IsEmpty(),
|
|
"Have flex items but didn't get an ascent - that's odd (or there are "
|
|
"just gigantic sizes involved)");
|
|
// Per spec, synthesize baseline from the flex container's content box
|
|
// (i.e. use block-end side of content-box)
|
|
// XXXdholbert This only makes sense if parent's writing mode is
|
|
// horizontal (& even then, really we should be using the BSize in terms
|
|
// of the parent's writing mode, not ours). Clean up in bug 1155322.
|
|
aFlr.mAscent = effectiveContentBSizeWithBStartBP;
|
|
}
|
|
|
|
if (aFlr.mAscentForLast == nscoord_MIN) {
|
|
// Still don't have our last baseline set -- this happens if we have no
|
|
// children, if our children are huge enough that they have nscoord_MIN
|
|
// as their baseline, or our content is hidden in which case, we'll use the
|
|
// wrong baseline (but no big deal).
|
|
NS_WARNING_ASSERTION(
|
|
HidesContentForLayout() || aFlr.mLines[0].IsEmpty(),
|
|
"Have flex items but didn't get an ascent - that's odd (or there are "
|
|
"just gigantic sizes involved)");
|
|
// Per spec, synthesize baseline from the flex container's content box
|
|
// (i.e. use block-end side of content-box)
|
|
// XXXdholbert This only makes sense if parent's writing mode is
|
|
// horizontal (& even then, really we should be using the BSize in terms
|
|
// of the parent's writing mode, not ours). Clean up in bug 1155322.
|
|
aFlr.mAscentForLast = blockEndContainerBP;
|
|
}
|
|
|
|
if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
|
|
// This will force our parent to call GetLogicalBaseline, which will
|
|
// synthesize a margin-box baseline.
|
|
aReflowOutput.SetBlockStartAscent(ReflowOutput::ASK_FOR_BASELINE);
|
|
} else {
|
|
// XXXdholbert aFlr.mAscent needs to be in terms of our parent's
|
|
// writing-mode here. See bug 1155322.
|
|
aReflowOutput.SetBlockStartAscent(aFlr.mAscent);
|
|
}
|
|
|
|
// Cache the container baselines so that our parent can baseline-align us.
|
|
mFirstBaseline = aFlr.mAscent;
|
|
mLastBaseline = aFlr.mAscentForLast;
|
|
|
|
// Convert flex container's final desired size to parent's WM, for outparam.
|
|
aReflowOutput.SetSize(flexWM, desiredSizeInFlexWM);
|
|
}
|
|
|
|
void nsFlexContainerFrame::MoveFlexItemToFinalPosition(
|
|
const FlexItem& aItem, const LogicalPoint& aFramePos,
|
|
const nsSize& aContainerSize) {
|
|
const WritingMode outerWM = aItem.ContainingBlockWM();
|
|
const nsStyleDisplay* display = aItem.Frame()->StyleDisplay();
|
|
LogicalPoint pos(aFramePos);
|
|
if (display->IsRelativelyOrStickyPositionedStyle()) {
|
|
// If the item is relatively positioned, look up its offsets (cached from
|
|
// previous reflow). A sticky positioned item can pass a dummy
|
|
// logicalOffsets into ApplyRelativePositioning().
|
|
LogicalMargin logicalOffsets(outerWM);
|
|
if (display->IsRelativelyPositionedStyle()) {
|
|
nsMargin* cachedOffsets =
|
|
aItem.Frame()->GetProperty(nsIFrame::ComputedOffsetProperty());
|
|
MOZ_ASSERT(
|
|
cachedOffsets,
|
|
"relpos previously-reflowed frame should've cached its offsets");
|
|
logicalOffsets = LogicalMargin(outerWM, *cachedOffsets);
|
|
}
|
|
ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM,
|
|
logicalOffsets, &pos, aContainerSize);
|
|
}
|
|
|
|
FLEX_LOG("Moving flex item %p to its desired position %s", aItem.Frame(),
|
|
ToString(pos).c_str());
|
|
aItem.Frame()->SetPosition(outerWM, pos, aContainerSize);
|
|
PositionFrameView(aItem.Frame());
|
|
PositionChildViews(aItem.Frame());
|
|
}
|
|
|
|
nsReflowStatus nsFlexContainerFrame::ReflowFlexItem(
|
|
const FlexboxAxisTracker& aAxisTracker, const ReflowInput& aReflowInput,
|
|
const FlexItem& aItem, const LogicalPoint& aFramePos,
|
|
const LogicalSize& aAvailableSize, const nsSize& aContainerSize) {
|
|
FLEX_LOG("Doing final reflow for flex item %p", aItem.Frame());
|
|
|
|
WritingMode outerWM = aReflowInput.GetWritingMode();
|
|
|
|
StyleSizeOverrides sizeOverrides;
|
|
// Override flex item's main size.
|
|
if (aItem.IsInlineAxisMainAxis()) {
|
|
sizeOverrides.mStyleISize.emplace(aItem.StyleMainSize());
|
|
FLEX_LOGV(" Main size (inline-size) override: %d", aItem.MainSize());
|
|
} else {
|
|
sizeOverrides.mStyleBSize.emplace(aItem.StyleMainSize());
|
|
FLEX_LOGV(" Main size (block-size) override: %d", aItem.MainSize());
|
|
}
|
|
|
|
// Override flex item's cross size if it was stretched in the cross axis (in
|
|
// which case we're imposing a cross size).
|
|
if (aItem.IsStretched()) {
|
|
if (aItem.IsInlineAxisCrossAxis()) {
|
|
sizeOverrides.mStyleISize.emplace(aItem.StyleCrossSize());
|
|
FLEX_LOGV(" Cross size (inline-size) override: %d", aItem.CrossSize());
|
|
} else {
|
|
sizeOverrides.mStyleBSize.emplace(aItem.StyleCrossSize());
|
|
FLEX_LOGV(" Cross size (block-size) override: %d", aItem.CrossSize());
|
|
}
|
|
}
|
|
if (sizeOverrides.mStyleBSize) {
|
|
// We are overriding the block-size. For robustness, we always assume that
|
|
// this represents a block-axis resize for the frame. This may be
|
|
// conservative, but we do capture all the conditions in the block-axis
|
|
// (checked in NeedsFinalReflow()) that make this item require a final
|
|
// reflow. This sets relevant flags in ReflowInput::InitResizeFlags().
|
|
aItem.Frame()->SetHasBSizeChange(true);
|
|
}
|
|
|
|
ReflowInput childReflowInput(PresContext(), aReflowInput, aItem.Frame(),
|
|
aAvailableSize, Nothing(), {}, sizeOverrides);
|
|
|
|
if (aItem.TreatBSizeAsIndefinite() && aItem.IsBlockAxisMainAxis()) {
|
|
childReflowInput.mFlags.mTreatBSizeAsIndefinite = true;
|
|
}
|
|
|
|
if (aItem.IsStretched() && aItem.IsBlockAxisCrossAxis()) {
|
|
// This item is stretched (in the cross axis), and that axis is its block
|
|
// axis. That stretching effectively gives it a relative BSize.
|
|
// XXXdholbert This flag only makes a difference if we use the flex items'
|
|
// frame-state when deciding whether to reflow them -- and we don't, as of
|
|
// the changes in bug 851607. So this has no effect right now, but it might
|
|
// make a difference if we optimize to use dirty bits in the
|
|
// future. (Reftests flexbox-resizeviewport-1.xhtml and -2.xhtml are
|
|
// intended to catch any regressions here, if we end up relying on this bit
|
|
// & neglecting to set it.)
|
|
aItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
|
|
}
|
|
|
|
// NOTE: Be very careful about doing anything else with childReflowInput
|
|
// after this point, because some of its methods (e.g. SetComputedWidth)
|
|
// internally call InitResizeFlags and stomp on mVResize & mHResize.
|
|
|
|
FLEX_LOG("Reflowing flex item %p at its desired position %s", aItem.Frame(),
|
|
ToString(aFramePos).c_str());
|
|
|
|
// CachedFlexItemData is stored in item's writing mode, so we pass
|
|
// aChildReflowInput into ReflowOutput's constructor.
|
|
ReflowOutput childReflowOutput(childReflowInput);
|
|
nsReflowStatus childReflowStatus;
|
|
ReflowChild(aItem.Frame(), PresContext(), childReflowOutput, childReflowInput,
|
|
outerWM, aFramePos, aContainerSize, ReflowChildFlags::Default,
|
|
childReflowStatus);
|
|
|
|
// XXXdholbert Perhaps we should call CheckForInterrupt here; see bug 1495532.
|
|
|
|
FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
|
|
&childReflowInput, outerWM, aFramePos, aContainerSize,
|
|
ReflowChildFlags::ApplyRelativePositioning);
|
|
|
|
aItem.SetAscent(childReflowOutput.BlockStartAscent());
|
|
|
|
// Update our cached flex item info:
|
|
if (auto* cached = aItem.Frame()->GetProperty(CachedFlexItemData::Prop())) {
|
|
cached->Update(childReflowInput, childReflowOutput,
|
|
FlexItemReflowType::Final);
|
|
} else {
|
|
cached = new CachedFlexItemData(childReflowInput, childReflowOutput,
|
|
FlexItemReflowType::Final);
|
|
aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cached);
|
|
}
|
|
|
|
return childReflowStatus;
|
|
}
|
|
|
|
void nsFlexContainerFrame::ReflowPlaceholders(
|
|
const ReflowInput& aReflowInput, nsTArray<nsIFrame*>& aPlaceholders,
|
|
const LogicalPoint& aContentBoxOrigin, const nsSize& aContainerSize) {
|
|
WritingMode outerWM = aReflowInput.GetWritingMode();
|
|
|
|
// As noted in this method's documentation, we'll reflow every entry in
|
|
// |aPlaceholders| at the container's content-box origin.
|
|
for (nsIFrame* placeholder : aPlaceholders) {
|
|
MOZ_ASSERT(placeholder->IsPlaceholderFrame(),
|
|
"placeholders array should only contain placeholder frames");
|
|
WritingMode wm = placeholder->GetWritingMode();
|
|
LogicalSize availSize = aReflowInput.ComputedSize(wm);
|
|
ReflowInput childReflowInput(PresContext(), aReflowInput, placeholder,
|
|
availSize);
|
|
// No need to set the -webkit-line-clamp related flags when reflowing
|
|
// a placeholder.
|
|
ReflowOutput childReflowOutput(outerWM);
|
|
nsReflowStatus childReflowStatus;
|
|
ReflowChild(placeholder, PresContext(), childReflowOutput, childReflowInput,
|
|
outerWM, aContentBoxOrigin, aContainerSize,
|
|
ReflowChildFlags::Default, childReflowStatus);
|
|
|
|
FinishReflowChild(placeholder, PresContext(), childReflowOutput,
|
|
&childReflowInput, outerWM, aContentBoxOrigin,
|
|
aContainerSize, ReflowChildFlags::Default);
|
|
|
|
// Mark the placeholder frame to indicate that it's not actually at the
|
|
// element's static position, because we need to apply CSS Alignment after
|
|
// we determine the OOF's size:
|
|
placeholder->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
|
|
}
|
|
}
|
|
|
|
nscoord nsFlexContainerFrame::IntrinsicISize(gfxContext* aRenderingContext,
|
|
IntrinsicISizeType aType) {
|
|
nscoord containerISize = 0;
|
|
const nsStylePosition* stylePos = StylePosition();
|
|
const FlexboxAxisTracker axisTracker(this);
|
|
|
|
nscoord mainGapSize;
|
|
if (axisTracker.IsRowOriented()) {
|
|
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
|
|
NS_UNCONSTRAINEDSIZE);
|
|
} else {
|
|
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
|
|
NS_UNCONSTRAINEDSIZE);
|
|
}
|
|
|
|
const bool useMozBoxCollapseBehavior =
|
|
StyleVisibility()->UseLegacyCollapseBehavior();
|
|
|
|
// The loop below sets aside space for a gap before each item besides the
|
|
// first. This bool helps us handle that special-case.
|
|
bool onFirstChild = true;
|
|
|
|
for (nsIFrame* childFrame : mFrames) {
|
|
// Skip out-of-flow children because they don't participate in flex layout.
|
|
if (childFrame->IsPlaceholderFrame()) {
|
|
continue;
|
|
}
|
|
|
|
if (useMozBoxCollapseBehavior &&
|
|
childFrame->StyleVisibility()->IsCollapse()) {
|
|
// If we're using legacy "visibility:collapse" behavior, then we don't
|
|
// care about the sizes of any collapsed children.
|
|
continue;
|
|
}
|
|
|
|
nscoord childISize = nsLayoutUtils::IntrinsicForContainer(
|
|
aRenderingContext, childFrame, aType);
|
|
|
|
// * For a row-oriented single-line flex container, the intrinsic
|
|
// {min/pref}-isize is the sum of its items' {min/pref}-isizes and
|
|
// (n-1) column gaps.
|
|
// * For a column-oriented flex container, the intrinsic min isize
|
|
// is the max of its items' min isizes.
|
|
// * For a row-oriented multi-line flex container, the intrinsic
|
|
// pref isize is former (sum), and its min isize is the latter (max).
|
|
bool isSingleLine = (StyleFlexWrap::Nowrap == stylePos->mFlexWrap);
|
|
if (axisTracker.IsRowOriented() &&
|
|
(isSingleLine || aType == IntrinsicISizeType::PrefISize)) {
|
|
containerISize += childISize;
|
|
if (!onFirstChild) {
|
|
containerISize += mainGapSize;
|
|
}
|
|
onFirstChild = false;
|
|
} else { // (col-oriented, or MinISize for multi-line row flex container)
|
|
containerISize = std::max(containerISize, childISize);
|
|
}
|
|
}
|
|
|
|
return containerISize;
|
|
}
|
|
|
|
/* virtual */
|
|
nscoord nsFlexContainerFrame::GetMinISize(gfxContext* aRenderingContext) {
|
|
DISPLAY_MIN_INLINE_SIZE(this, mCachedMinISize);
|
|
if (mCachedMinISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
|
|
if (Maybe<nscoord> containISize = ContainIntrinsicISize()) {
|
|
mCachedMinISize = *containISize;
|
|
} else {
|
|
mCachedMinISize =
|
|
IntrinsicISize(aRenderingContext, IntrinsicISizeType::MinISize);
|
|
}
|
|
}
|
|
|
|
return mCachedMinISize;
|
|
}
|
|
|
|
/* virtual */
|
|
nscoord nsFlexContainerFrame::GetPrefISize(gfxContext* aRenderingContext) {
|
|
DISPLAY_PREF_INLINE_SIZE(this, mCachedPrefISize);
|
|
if (mCachedPrefISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
|
|
if (Maybe<nscoord> containISize = ContainIntrinsicISize()) {
|
|
mCachedPrefISize = *containISize;
|
|
} else {
|
|
mCachedPrefISize =
|
|
IntrinsicISize(aRenderingContext, IntrinsicISizeType::PrefISize);
|
|
}
|
|
}
|
|
|
|
return mCachedPrefISize;
|
|
}
|
|
|
|
int32_t nsFlexContainerFrame::GetNumLines() const {
|
|
// TODO(emilio, bug 1793251): Treating all row oriented frames as single-lines
|
|
// might not be great for flex-wrap'd containers, consider trying to do
|
|
// better? We probably would need to persist more stuff than we do after
|
|
// layout.
|
|
return FlexboxAxisInfo(this).mIsRowOriented ? 1 : mFrames.GetLength();
|
|
}
|
|
|
|
bool nsFlexContainerFrame::IsLineIteratorFlowRTL() {
|
|
FlexboxAxisInfo info(this);
|
|
if (info.mIsRowOriented) {
|
|
const bool isRtl = StyleVisibility()->mDirection == StyleDirection::Rtl;
|
|
return info.mIsMainAxisReversed != isRtl;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Result<nsILineIterator::LineInfo, nsresult> nsFlexContainerFrame::GetLine(
|
|
int32_t aLineNumber) {
|
|
if (aLineNumber < 0 || aLineNumber >= GetNumLines()) {
|
|
return Err(NS_ERROR_FAILURE);
|
|
}
|
|
FlexboxAxisInfo info(this);
|
|
LineInfo lineInfo;
|
|
if (info.mIsRowOriented) {
|
|
lineInfo.mLineBounds = GetRect();
|
|
lineInfo.mFirstFrameOnLine = mFrames.FirstChild();
|
|
// This isn't quite ideal for multi-line row flexbox, see bug 1793251.
|
|
lineInfo.mNumFramesOnLine = mFrames.GetLength();
|
|
} else {
|
|
// TODO(emilio, bug 1793322): Deal with column-reverse (mIsMainAxisReversed)
|
|
nsIFrame* f = mFrames.FrameAt(aLineNumber);
|
|
lineInfo.mLineBounds = f->GetRect();
|
|
lineInfo.mFirstFrameOnLine = f;
|
|
lineInfo.mNumFramesOnLine = 1;
|
|
}
|
|
return lineInfo;
|
|
}
|
|
|
|
int32_t nsFlexContainerFrame::FindLineContaining(nsIFrame* aFrame,
|
|
int32_t aStartLine) {
|
|
const int32_t index = mFrames.IndexOf(aFrame);
|
|
if (index < 0) {
|
|
return -1;
|
|
}
|
|
const FlexboxAxisInfo info(this);
|
|
if (info.mIsRowOriented) {
|
|
return 0;
|
|
}
|
|
if (index < aStartLine) {
|
|
return -1;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsFlexContainerFrame::CheckLineOrder(int32_t aLine, bool* aIsReordered,
|
|
nsIFrame** aFirstVisual,
|
|
nsIFrame** aLastVisual) {
|
|
*aIsReordered = false;
|
|
*aFirstVisual = nullptr;
|
|
*aLastVisual = nullptr;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsFlexContainerFrame::FindFrameAt(int32_t aLineNumber, nsPoint aPos,
|
|
nsIFrame** aFrameFound,
|
|
bool* aPosIsBeforeFirstFrame,
|
|
bool* aPosIsAfterLastFrame) {
|
|
const auto wm = GetWritingMode();
|
|
const LogicalPoint pos(wm, aPos, GetSize());
|
|
const FlexboxAxisInfo info(this);
|
|
|
|
*aFrameFound = nullptr;
|
|
*aPosIsBeforeFirstFrame = true;
|
|
*aPosIsAfterLastFrame = false;
|
|
|
|
if (!info.mIsRowOriented) {
|
|
nsIFrame* f = mFrames.FrameAt(aLineNumber);
|
|
if (!f) {
|
|
return NS_OK;
|
|
}
|
|
|
|
auto rect = f->GetLogicalRect(wm, GetSize());
|
|
*aFrameFound = f;
|
|
*aPosIsBeforeFirstFrame = pos.I(wm) < rect.IStart(wm);
|
|
*aPosIsAfterLastFrame = pos.I(wm) > rect.IEnd(wm);
|
|
return NS_OK;
|
|
}
|
|
|
|
LineFrameFinder finder(aPos, GetSize(), GetWritingMode(),
|
|
IsLineIteratorFlowRTL());
|
|
for (nsIFrame* f : mFrames) {
|
|
finder.Scan(f);
|
|
if (finder.IsDone()) {
|
|
break;
|
|
}
|
|
}
|
|
finder.Finish(aFrameFound, aPosIsBeforeFirstFrame, aPosIsAfterLastFrame);
|
|
return NS_OK;
|
|
}
|