fune/dom/media/platforms/apple/AppleVTDecoder.cpp
Jean-Yves Avenard 5be22726b0 Bug 1650696 - P4. Remove the expectation for a MediaDataDecoder to work on a specified TaskQueue. r=jolin
It will now be up to the caller to determine where the decoder is going to run. This allows to simplify the audio decoders so that they can run synchronously and be wrapped in a Wasm sandbox (which doesn't support multi-threading)

The structure guarantees that all MediaDataDecoder methods are called on the same thread it's been initialised.

To achieve this, wherever a MediaDataDecoder was created, we wrap it in a MediaDataDecoderProxy that ensures that all methods are running on the given thread.

We keep the behaviour of all methods in all MediaDataDecoder to assert that they are running on the expected thread for diagnostic purposes. It could go in the future.

Video decoders that could block excessingly the thread on which they are called are made to run on their own task queue.
The Apple decoder is mostly entirely asynchronous, with the exception of the drain method which could block.
We exclude the android and omx decoders are the framework they use is 100% asynchronous and already operate on another thread.

Differential Revision: https://phabricator.services.mozilla.com/D86929
2020-08-17 23:52:21 +00:00

655 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AppleVTDecoder.h"
#include <CoreVideo/CVPixelBufferIOSurface.h>
#include <IOSurface/IOSurface.h>
#include "AppleDecoderModule.h"
#include "AppleUtils.h"
#include "H264.h"
#include "MP4Decoder.h"
#include "MacIOSurfaceImage.h"
#include "MediaData.h"
#include "VPXDecoder.h"
#include "VideoUtils.h"
#include "gfxPlatform.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/Logging.h"
#include "mozilla/TaskQueue.h"
#include "nsThreadUtils.h"
#define LOG(...) DDMOZ_LOG(sPDMLog, mozilla::LogLevel::Debug, __VA_ARGS__)
#define LOGEX(_this, ...) \
DDMOZ_LOGEX(_this, sPDMLog, mozilla::LogLevel::Debug, __VA_ARGS__)
namespace mozilla {
using namespace layers;
AppleVTDecoder::AppleVTDecoder(const VideoInfo& aConfig,
layers::ImageContainer* aImageContainer,
CreateDecoderParams::OptionSet aOptions,
layers::KnowsCompositor* aKnowsCompositor)
: mExtraData(aConfig.mExtraData),
mPictureWidth(aConfig.mImage.width),
mPictureHeight(aConfig.mImage.height),
mDisplayWidth(aConfig.mDisplay.width),
mDisplayHeight(aConfig.mDisplay.height),
mColorSpace(aConfig.mColorSpace == gfx::YUVColorSpace::UNKNOWN
? DefaultColorSpace({mPictureWidth, mPictureHeight})
: aConfig.mColorSpace),
mColorRange(aConfig.mColorRange),
mStreamType(MP4Decoder::IsH264(aConfig.mMimeType)
? StreamType::H264
: VPXDecoder::IsVP9(aConfig.mMimeType)
? StreamType::VP9
: StreamType::Unknown),
mTaskQueue(
new TaskQueue(GetMediaThreadPool(MediaThreadType::PLATFORM_DECODER),
"AppleVTDecoder")),
mMaxRefFrames(
mStreamType != StreamType::H264 ||
aOptions.contains(CreateDecoderParams::Option::LowLatency)
? 0
: H264::ComputeMaxRefFrames(aConfig.mExtraData)),
mImageContainer(aImageContainer),
mKnowsCompositor(aKnowsCompositor)
#ifdef MOZ_WIDGET_UIKIT
,
mUseSoftwareImages(true)
#else
,
mUseSoftwareImages(false)
#endif
,
mIsFlushing(false),
mMonitor("AppleVTDecoder"),
mPromise(&mMonitor), // To ensure our PromiseHolder is only ever accessed
// with the monitor held.
mFormat(nullptr),
mSession(nullptr),
mIsHardwareAccelerated(false) {
MOZ_COUNT_CTOR(AppleVTDecoder);
MOZ_ASSERT(mStreamType != StreamType::Unknown);
// TODO: Verify aConfig.mime_type.
LOG("Creating AppleVTDecoder for %dx%d %s video", mDisplayWidth,
mDisplayHeight, mStreamType == StreamType::H264 ? "H.264" : "VP9");
}
AppleVTDecoder::~AppleVTDecoder() { MOZ_COUNT_DTOR(AppleVTDecoder); }
RefPtr<MediaDataDecoder::InitPromise> AppleVTDecoder::Init() {
MediaResult rv = InitializeSession();
if (NS_SUCCEEDED(rv)) {
return InitPromise::CreateAndResolve(TrackType::kVideoTrack, __func__);
}
return InitPromise::CreateAndReject(rv, __func__);
}
RefPtr<MediaDataDecoder::DecodePromise> AppleVTDecoder::Decode(
MediaRawData* aSample) {
LOG("mp4 input sample %p pts %lld duration %lld us%s %zu bytes", aSample,
aSample->mTime.ToMicroseconds(), aSample->mDuration.ToMicroseconds(),
aSample->mKeyframe ? " keyframe" : "", aSample->Size());
RefPtr<AppleVTDecoder> self = this;
RefPtr<MediaRawData> sample = aSample;
return InvokeAsync(mTaskQueue, __func__, [self, this, sample] {
RefPtr<DecodePromise> p;
{
MonitorAutoLock mon(mMonitor);
p = mPromise.Ensure(__func__);
}
ProcessDecode(sample);
return p;
});
}
RefPtr<MediaDataDecoder::FlushPromise> AppleVTDecoder::Flush() {
mIsFlushing = true;
return InvokeAsync(mTaskQueue, this, __func__, &AppleVTDecoder::ProcessFlush);
}
RefPtr<MediaDataDecoder::DecodePromise> AppleVTDecoder::Drain() {
return InvokeAsync(mTaskQueue, this, __func__, &AppleVTDecoder::ProcessDrain);
}
RefPtr<ShutdownPromise> AppleVTDecoder::Shutdown() {
RefPtr<AppleVTDecoder> self = this;
return InvokeAsync(mTaskQueue, __func__, [self]() {
self->ProcessShutdown();
return self->mTaskQueue->BeginShutdown();
});
}
// Helper to fill in a timestamp structure.
static CMSampleTimingInfo TimingInfoFromSample(MediaRawData* aSample) {
CMSampleTimingInfo timestamp;
timestamp.duration =
CMTimeMake(aSample->mDuration.ToMicroseconds(), USECS_PER_S);
timestamp.presentationTimeStamp =
CMTimeMake(aSample->mTime.ToMicroseconds(), USECS_PER_S);
timestamp.decodeTimeStamp =
CMTimeMake(aSample->mTimecode.ToMicroseconds(), USECS_PER_S);
return timestamp;
}
void AppleVTDecoder::ProcessDecode(MediaRawData* aSample) {
AssertOnTaskQueue();
if (mIsFlushing) {
MonitorAutoLock mon(mMonitor);
mPromise.Reject(NS_ERROR_DOM_MEDIA_CANCELED, __func__);
return;
}
AutoCFRelease<CMBlockBufferRef> block = nullptr;
AutoCFRelease<CMSampleBufferRef> sample = nullptr;
VTDecodeInfoFlags infoFlags;
OSStatus rv;
// FIXME: This copies the sample data. I think we can provide
// a custom block source which reuses the aSample buffer.
// But note that there may be a problem keeping the samples
// alive over multiple frames.
rv = CMBlockBufferCreateWithMemoryBlock(
kCFAllocatorDefault, // Struct allocator.
const_cast<uint8_t*>(aSample->Data()), aSample->Size(),
kCFAllocatorNull, // Block allocator.
NULL, // Block source.
0, // Data offset.
aSample->Size(), false, block.receive());
if (rv != noErr) {
NS_ERROR("Couldn't create CMBlockBuffer");
MonitorAutoLock mon(mMonitor);
mPromise.Reject(
MediaResult(NS_ERROR_OUT_OF_MEMORY,
RESULT_DETAIL("CMBlockBufferCreateWithMemoryBlock:%x", rv)),
__func__);
return;
}
CMSampleTimingInfo timestamp = TimingInfoFromSample(aSample);
rv = CMSampleBufferCreate(kCFAllocatorDefault, block, true, 0, 0, mFormat, 1,
1, &timestamp, 0, NULL, sample.receive());
if (rv != noErr) {
NS_ERROR("Couldn't create CMSampleBuffer");
MonitorAutoLock mon(mMonitor);
mPromise.Reject(MediaResult(NS_ERROR_OUT_OF_MEMORY,
RESULT_DETAIL("CMSampleBufferCreate:%x", rv)),
__func__);
return;
}
VTDecodeFrameFlags decodeFlags =
kVTDecodeFrame_EnableAsynchronousDecompression;
rv = VTDecompressionSessionDecodeFrame(
mSession, sample, decodeFlags, CreateAppleFrameRef(aSample), &infoFlags);
if (infoFlags & kVTDecodeInfo_FrameDropped) {
MonitorAutoLock mon(mMonitor);
// Smile and nod
NS_WARNING("Decoder synchronously dropped frame");
MaybeResolveBufferedFrames();
return;
}
if (rv != noErr) {
LOG("AppleVTDecoder: Error %d VTDecompressionSessionDecodeFrame", rv);
NS_WARNING("Couldn't pass frame to decoder");
// It appears that even when VTDecompressionSessionDecodeFrame returned a
// failure. Decoding sometimes actually get processed.
MonitorAutoLock mon(mMonitor);
mPromise.RejectIfExists(
MediaResult(NS_ERROR_DOM_MEDIA_DECODE_ERR,
RESULT_DETAIL("VTDecompressionSessionDecodeFrame:%x", rv)),
__func__);
return;
}
}
void AppleVTDecoder::ProcessShutdown() {
if (mSession) {
LOG("%s: cleaning up session %p", __func__, mSession);
VTDecompressionSessionInvalidate(mSession);
CFRelease(mSession);
mSession = nullptr;
}
if (mFormat) {
LOG("%s: releasing format %p", __func__, mFormat);
CFRelease(mFormat);
mFormat = nullptr;
}
}
RefPtr<MediaDataDecoder::FlushPromise> AppleVTDecoder::ProcessFlush() {
AssertOnTaskQueue();
nsresult rv = WaitForAsynchronousFrames();
if (NS_FAILED(rv)) {
LOG("AppleVTDecoder::Flush failed waiting for platform decoder");
}
MonitorAutoLock mon(mMonitor);
mPromise.RejectIfExists(NS_ERROR_DOM_MEDIA_CANCELED, __func__);
while (!mReorderQueue.IsEmpty()) {
mReorderQueue.Pop();
}
mSeekTargetThreshold.reset();
mIsFlushing = false;
return FlushPromise::CreateAndResolve(true, __func__);
}
RefPtr<MediaDataDecoder::DecodePromise> AppleVTDecoder::ProcessDrain() {
AssertOnTaskQueue();
nsresult rv = WaitForAsynchronousFrames();
if (NS_FAILED(rv)) {
LOG("AppleVTDecoder::Drain failed waiting for platform decoder");
}
MonitorAutoLock mon(mMonitor);
DecodedData samples;
while (!mReorderQueue.IsEmpty()) {
samples.AppendElement(mReorderQueue.Pop());
}
return DecodePromise::CreateAndResolve(std::move(samples), __func__);
}
AppleVTDecoder::AppleFrameRef* AppleVTDecoder::CreateAppleFrameRef(
const MediaRawData* aSample) {
MOZ_ASSERT(aSample);
return new AppleFrameRef(*aSample);
}
void AppleVTDecoder::SetSeekThreshold(const media::TimeUnit& aTime) {
if (aTime.IsValid()) {
mSeekTargetThreshold = Some(aTime);
} else {
mSeekTargetThreshold.reset();
}
}
//
// Implementation details.
//
// Callback passed to the VideoToolbox decoder for returning data.
// This needs to be static because the API takes a C-style pair of
// function and userdata pointers. This validates parameters and
// forwards the decoded image back to an object method.
static void PlatformCallback(void* decompressionOutputRefCon,
void* sourceFrameRefCon, OSStatus status,
VTDecodeInfoFlags flags, CVImageBufferRef image,
CMTime presentationTimeStamp,
CMTime presentationDuration) {
AppleVTDecoder* decoder =
static_cast<AppleVTDecoder*>(decompressionOutputRefCon);
LOGEX(decoder, "AppleVideoDecoder %s status %d flags %d", __func__,
static_cast<int>(status), flags);
UniquePtr<AppleVTDecoder::AppleFrameRef> frameRef(
static_cast<AppleVTDecoder::AppleFrameRef*>(sourceFrameRefCon));
// Validate our arguments.
if (status != noErr) {
NS_WARNING("VideoToolbox decoder returned an error");
decoder->OnDecodeError(status);
return;
} else if (!image) {
NS_WARNING("VideoToolbox decoder returned no data");
} else if (flags & kVTDecodeInfo_FrameDropped) {
NS_WARNING(" ...frame tagged as dropped...");
} else {
MOZ_ASSERT(CFGetTypeID(image) == CVPixelBufferGetTypeID(),
"VideoToolbox returned an unexpected image type");
}
decoder->OutputFrame(image, *frameRef);
}
void AppleVTDecoder::MaybeResolveBufferedFrames() {
mMonitor.AssertCurrentThreadOwns();
if (mPromise.IsEmpty()) {
return;
}
DecodedData results;
while (mReorderQueue.Length() > mMaxRefFrames) {
results.AppendElement(mReorderQueue.Pop());
}
mPromise.Resolve(std::move(results), __func__);
}
// Copy and return a decoded frame.
void AppleVTDecoder::OutputFrame(CVPixelBufferRef aImage,
AppleVTDecoder::AppleFrameRef aFrameRef) {
if (mIsFlushing) {
// We are in the process of flushing or shutting down; ignore frame.
return;
}
LOG("mp4 output frame %lld dts %lld pts %lld duration %lld us%s",
aFrameRef.byte_offset, aFrameRef.decode_timestamp.ToMicroseconds(),
aFrameRef.composition_timestamp.ToMicroseconds(),
aFrameRef.duration.ToMicroseconds(),
aFrameRef.is_sync_point ? " keyframe" : "");
if (!aImage) {
// Image was dropped by decoder or none return yet.
// We need more input to continue.
MonitorAutoLock mon(mMonitor);
MaybeResolveBufferedFrames();
return;
}
bool useNullSample = false;
if (mSeekTargetThreshold.isSome()) {
if ((aFrameRef.composition_timestamp + aFrameRef.duration) <
mSeekTargetThreshold.ref()) {
useNullSample = true;
} else {
mSeekTargetThreshold.reset();
}
}
// Where our resulting image will end up.
RefPtr<MediaData> data;
// Bounds.
VideoInfo info;
info.mDisplay = gfx::IntSize(mDisplayWidth, mDisplayHeight);
if (useNullSample) {
data = new NullData(aFrameRef.byte_offset, aFrameRef.composition_timestamp,
aFrameRef.duration);
} else if (mUseSoftwareImages) {
size_t width = CVPixelBufferGetWidth(aImage);
size_t height = CVPixelBufferGetHeight(aImage);
DebugOnly<size_t> planes = CVPixelBufferGetPlaneCount(aImage);
MOZ_ASSERT(planes == 3, "Likely not YUV420 format and it must be.");
VideoData::YCbCrBuffer buffer;
// Lock the returned image data.
CVReturn rv =
CVPixelBufferLockBaseAddress(aImage, kCVPixelBufferLock_ReadOnly);
if (rv != kCVReturnSuccess) {
NS_ERROR("error locking pixel data");
MonitorAutoLock mon(mMonitor);
mPromise.Reject(
MediaResult(NS_ERROR_DOM_MEDIA_DECODE_ERR,
RESULT_DETAIL("CVPixelBufferLockBaseAddress:%x", rv)),
__func__);
return;
}
// Y plane.
buffer.mPlanes[0].mData =
static_cast<uint8_t*>(CVPixelBufferGetBaseAddressOfPlane(aImage, 0));
buffer.mPlanes[0].mStride = CVPixelBufferGetBytesPerRowOfPlane(aImage, 0);
buffer.mPlanes[0].mWidth = width;
buffer.mPlanes[0].mHeight = height;
buffer.mPlanes[0].mSkip = 0;
// Cb plane.
buffer.mPlanes[1].mData =
static_cast<uint8_t*>(CVPixelBufferGetBaseAddressOfPlane(aImage, 1));
buffer.mPlanes[1].mStride = CVPixelBufferGetBytesPerRowOfPlane(aImage, 1);
buffer.mPlanes[1].mWidth = (width + 1) / 2;
buffer.mPlanes[1].mHeight = (height + 1) / 2;
buffer.mPlanes[1].mSkip = 0;
// Cr plane.
buffer.mPlanes[2].mData =
static_cast<uint8_t*>(CVPixelBufferGetBaseAddressOfPlane(aImage, 2));
buffer.mPlanes[2].mStride = CVPixelBufferGetBytesPerRowOfPlane(aImage, 2);
buffer.mPlanes[2].mWidth = (width + 1) / 2;
buffer.mPlanes[2].mHeight = (height + 1) / 2;
buffer.mPlanes[2].mSkip = 0;
buffer.mYUVColorSpace = mColorSpace;
buffer.mColorRange = mColorRange;
gfx::IntRect visible = gfx::IntRect(0, 0, mPictureWidth, mPictureHeight);
// Copy the image data into our own format.
data = VideoData::CreateAndCopyData(
info, mImageContainer, aFrameRef.byte_offset,
aFrameRef.composition_timestamp, aFrameRef.duration, buffer,
aFrameRef.is_sync_point, aFrameRef.decode_timestamp, visible,
mKnowsCompositor);
// Unlock the returned image data.
CVPixelBufferUnlockBaseAddress(aImage, kCVPixelBufferLock_ReadOnly);
} else {
#ifndef MOZ_WIDGET_UIKIT
CFTypeRefPtr<IOSurfaceRef> surface =
CFTypeRefPtr<IOSurfaceRef>::WrapUnderGetRule(
CVPixelBufferGetIOSurface(aImage));
MOZ_ASSERT(surface, "Decoder didn't return an IOSurface backed buffer");
// Setup the correct YCbCr conversion matrix on the IOSurface, in case we
// pass this directly to CoreAnimation.
if (mColorSpace == gfx::YUVColorSpace::BT601) {
IOSurfaceSetValue(surface.get(), CFSTR("IOSurfaceYCbCrMatrix"),
CFSTR("ITU_R_601_4"));
} else {
IOSurfaceSetValue(surface.get(), CFSTR("IOSurfaceYCbCrMatrix"),
CFSTR("ITU_R_709_2"));
}
// Override the color space to be the same as the main display, so that
// CoreAnimation won't try to do any color correction (from the IOSurface
// space, to the display). In the future we may want to try specifying this
// correctly, but probably only once we do the same for videos drawn through
// our gfx code.
auto colorSpace = CFTypeRefPtr<CGColorSpaceRef>::WrapUnderCreateRule(
CGDisplayCopyColorSpace(CGMainDisplayID()));
auto colorData = CFTypeRefPtr<CFDataRef>::WrapUnderCreateRule(
CGColorSpaceCopyICCProfile(colorSpace.get()));
IOSurfaceSetValue(surface.get(), CFSTR("IOSurfaceColorSpace"),
colorData.get());
RefPtr<MacIOSurface> macSurface = new MacIOSurface(std::move(surface));
macSurface->SetYUVColorSpace(mColorSpace);
RefPtr<layers::Image> image = new layers::MacIOSurfaceImage(macSurface);
data = VideoData::CreateFromImage(
info.mDisplay, aFrameRef.byte_offset, aFrameRef.composition_timestamp,
aFrameRef.duration, image.forget(), aFrameRef.is_sync_point,
aFrameRef.decode_timestamp);
#else
MOZ_ASSERT_UNREACHABLE("No MacIOSurface on iOS");
#endif
}
if (!data) {
NS_ERROR("Couldn't create VideoData for frame");
MonitorAutoLock mon(mMonitor);
mPromise.Reject(MediaResult(NS_ERROR_OUT_OF_MEMORY, __func__), __func__);
return;
}
// Frames come out in DTS order but we need to output them
// in composition order.
MonitorAutoLock mon(mMonitor);
mReorderQueue.Push(std::move(data));
MaybeResolveBufferedFrames();
LOG("%llu decoded frames queued",
static_cast<unsigned long long>(mReorderQueue.Length()));
}
void AppleVTDecoder::OnDecodeError(OSStatus aError) {
MonitorAutoLock mon(mMonitor);
mPromise.RejectIfExists(
MediaResult(NS_ERROR_DOM_MEDIA_DECODE_ERR,
RESULT_DETAIL("OnDecodeError:%x", aError)),
__func__);
}
nsresult AppleVTDecoder::WaitForAsynchronousFrames() {
OSStatus rv = VTDecompressionSessionWaitForAsynchronousFrames(mSession);
if (rv != noErr) {
NS_ERROR("AppleVTDecoder: Error waiting for asynchronous frames");
return NS_ERROR_FAILURE;
}
return NS_OK;
}
MediaResult AppleVTDecoder::InitializeSession() {
OSStatus rv;
AutoCFRelease<CFDictionaryRef> extensions = CreateDecoderExtensions();
rv = CMVideoFormatDescriptionCreate(
kCFAllocatorDefault,
mStreamType == StreamType::H264
? kCMVideoCodecType_H264
: CMVideoCodecType(AppleDecoderModule::kCMVideoCodecType_VP9),
mPictureWidth, mPictureHeight, extensions, &mFormat);
if (rv != noErr) {
return MediaResult(NS_ERROR_DOM_MEDIA_FATAL_ERR,
RESULT_DETAIL("Couldn't create format description!"));
}
// Contruct video decoder selection spec.
AutoCFRelease<CFDictionaryRef> spec = CreateDecoderSpecification();
// Contruct output configuration.
AutoCFRelease<CFDictionaryRef> outputConfiguration =
CreateOutputConfiguration();
VTDecompressionOutputCallbackRecord cb = {PlatformCallback, this};
rv =
VTDecompressionSessionCreate(kCFAllocatorDefault, mFormat,
spec, // Video decoder selection.
outputConfiguration, // Output video format.
&cb, &mSession);
if (rv != noErr) {
return MediaResult(NS_ERROR_DOM_MEDIA_FATAL_ERR,
RESULT_DETAIL("Couldn't create decompression session!"));
}
CFBooleanRef isUsingHW = nullptr;
rv = VTSessionCopyProperty(
mSession,
kVTDecompressionPropertyKey_UsingHardwareAcceleratedVideoDecoder,
kCFAllocatorDefault, &isUsingHW);
if (rv != noErr) {
LOG("AppleVTDecoder: system doesn't support hardware acceleration");
}
mIsHardwareAccelerated = rv == noErr && isUsingHW == kCFBooleanTrue;
LOG("AppleVTDecoder: %s hardware accelerated decoding",
mIsHardwareAccelerated ? "using" : "not using");
return NS_OK;
}
CFDictionaryRef AppleVTDecoder::CreateDecoderExtensions() {
AutoCFRelease<CFDataRef> data = CFDataCreate(
kCFAllocatorDefault, mExtraData->Elements(), mExtraData->Length());
const void* atomsKey[1];
atomsKey[0] = mStreamType == StreamType::H264 ? CFSTR("avcC") : CFSTR("vpcC");
const void* atomsValue[] = {data};
static_assert(ArrayLength(atomsKey) == ArrayLength(atomsValue),
"Non matching keys/values array size");
AutoCFRelease<CFDictionaryRef> atoms = CFDictionaryCreate(
kCFAllocatorDefault, atomsKey, atomsValue, ArrayLength(atomsKey),
&kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
const void* extensionKeys[] = {
kCVImageBufferChromaLocationBottomFieldKey,
kCVImageBufferChromaLocationTopFieldKey,
kCMFormatDescriptionExtension_SampleDescriptionExtensionAtoms};
const void* extensionValues[] = {kCVImageBufferChromaLocation_Left,
kCVImageBufferChromaLocation_Left, atoms};
static_assert(ArrayLength(extensionKeys) == ArrayLength(extensionValues),
"Non matching keys/values array size");
return CFDictionaryCreate(kCFAllocatorDefault, extensionKeys, extensionValues,
ArrayLength(extensionKeys),
&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
}
CFDictionaryRef AppleVTDecoder::CreateDecoderSpecification() {
const void* specKeys[] = {
kVTVideoDecoderSpecification_EnableHardwareAcceleratedVideoDecoder};
const void* specValues[1];
if (AppleDecoderModule::sCanUseHardwareVideoDecoder) {
specValues[0] = kCFBooleanTrue;
} else {
// This GPU is blacklisted for hardware decoding.
specValues[0] = kCFBooleanFalse;
}
static_assert(ArrayLength(specKeys) == ArrayLength(specValues),
"Non matching keys/values array size");
return CFDictionaryCreate(
kCFAllocatorDefault, specKeys, specValues, ArrayLength(specKeys),
&kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
}
CFDictionaryRef AppleVTDecoder::CreateOutputConfiguration() {
if (mUseSoftwareImages) {
// Output format type:
SInt32 PixelFormatTypeValue = kCVPixelFormatType_420YpCbCr8Planar;
AutoCFRelease<CFNumberRef> PixelFormatTypeNumber = CFNumberCreate(
kCFAllocatorDefault, kCFNumberSInt32Type, &PixelFormatTypeValue);
const void* outputKeys[] = {kCVPixelBufferPixelFormatTypeKey};
const void* outputValues[] = {PixelFormatTypeNumber};
static_assert(ArrayLength(outputKeys) == ArrayLength(outputValues),
"Non matching keys/values array size");
return CFDictionaryCreate(
kCFAllocatorDefault, outputKeys, outputValues, ArrayLength(outputKeys),
&kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
}
#ifndef MOZ_WIDGET_UIKIT
// Output format type:
SInt32 PixelFormatTypeValue =
mColorRange == gfx::ColorRange::FULL
? kCVPixelFormatType_420YpCbCr8BiPlanarFullRange
: kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange;
AutoCFRelease<CFNumberRef> PixelFormatTypeNumber = CFNumberCreate(
kCFAllocatorDefault, kCFNumberSInt32Type, &PixelFormatTypeValue);
// Construct IOSurface Properties
const void* IOSurfaceKeys[] = {kIOSurfaceIsGlobal};
const void* IOSurfaceValues[] = {kCFBooleanTrue};
static_assert(ArrayLength(IOSurfaceKeys) == ArrayLength(IOSurfaceValues),
"Non matching keys/values array size");
// Contruct output configuration.
AutoCFRelease<CFDictionaryRef> IOSurfaceProperties = CFDictionaryCreate(
kCFAllocatorDefault, IOSurfaceKeys, IOSurfaceValues,
ArrayLength(IOSurfaceKeys), &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
const void* outputKeys[] = {kCVPixelBufferIOSurfacePropertiesKey,
kCVPixelBufferPixelFormatTypeKey,
kCVPixelBufferOpenGLCompatibilityKey};
const void* outputValues[] = {IOSurfaceProperties, PixelFormatTypeNumber,
kCFBooleanTrue};
static_assert(ArrayLength(outputKeys) == ArrayLength(outputValues),
"Non matching keys/values array size");
return CFDictionaryCreate(
kCFAllocatorDefault, outputKeys, outputValues, ArrayLength(outputKeys),
&kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
#else
MOZ_ASSERT_UNREACHABLE("No MacIOSurface on iOS");
#endif
}
} // namespace mozilla
#undef LOG
#undef LOGEX