fune/dom/animation/ComputedTimingFunction.cpp
Emilio Cobos Álvarez 039592f4d8 Bug 1682003 - Avoid UTF-8 -> UTF-16 conversion during CSSOM serialization. r=heycam
This lifts a bunch of string conversions higher up the stack, but allows
us to make the servo code use utf-8 unconditionally, and seemed faster
in my benchmarking (see comment 0).

It should also make a bunch of attribute setters faster too (like
setting .cssText), now that we use UTF8String for them (we couldn't
because we couldn't specify different string types for the getter and
setters).

Differential Revision: https://phabricator.services.mozilla.com/D99590
2020-12-17 14:04:35 +00:00

219 lines
7.5 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ComputedTimingFunction.h"
#include "mozilla/ServoBindings.h"
#include "nsAlgorithm.h" // For clamped()
namespace mozilla {
void ComputedTimingFunction::Init(const nsTimingFunction& aFunction) {
const StyleComputedTimingFunction& timing = aFunction.mTiming;
switch (timing.tag) {
case StyleComputedTimingFunction::Tag::Keyword: {
mType = static_cast<Type>(static_cast<uint8_t>(timing.keyword._0));
static_assert(
static_cast<uint8_t>(StyleTimingKeyword::Linear) == 0 &&
static_cast<uint8_t>(StyleTimingKeyword::Ease) == 1 &&
static_cast<uint8_t>(StyleTimingKeyword::EaseIn) == 2 &&
static_cast<uint8_t>(StyleTimingKeyword::EaseOut) == 3 &&
static_cast<uint8_t>(StyleTimingKeyword::EaseInOut) == 4,
"transition timing function constants not as expected");
static const float timingFunctionValues[5][4] = {
{0.00f, 0.00f, 1.00f, 1.00f}, // linear
{0.25f, 0.10f, 0.25f, 1.00f}, // ease
{0.42f, 0.00f, 1.00f, 1.00f}, // ease-in
{0.00f, 0.00f, 0.58f, 1.00f}, // ease-out
{0.42f, 0.00f, 0.58f, 1.00f} // ease-in-out
};
const float(&values)[4] = timingFunctionValues[uint8_t(mType)];
mTimingFunction.Init(values[0], values[1], values[2], values[3]);
break;
}
case StyleComputedTimingFunction::Tag::CubicBezier:
mType = Type::CubicBezier;
mTimingFunction.Init(timing.cubic_bezier.x1, timing.cubic_bezier.y1,
timing.cubic_bezier.x2, timing.cubic_bezier.y2);
break;
case StyleComputedTimingFunction::Tag::Steps:
mType = Type::Step;
mSteps.mSteps = static_cast<uint32_t>(timing.steps._0);
mSteps.mPos = timing.steps._1;
break;
}
}
static inline double StepTiming(
const ComputedTimingFunction::StepFunc& aStepFunc, double aPortion,
ComputedTimingFunction::BeforeFlag aBeforeFlag) {
// Use the algorithm defined in the spec:
// https://drafts.csswg.org/css-easing-1/#step-timing-function-algo
// Calculate current step.
int32_t currentStep = floor(aPortion * aStepFunc.mSteps);
// Increment current step if it is jump-start or start.
if (aStepFunc.mPos == StyleStepPosition::Start ||
aStepFunc.mPos == StyleStepPosition::JumpStart ||
aStepFunc.mPos == StyleStepPosition::JumpBoth) {
++currentStep;
}
// If the "before flag" is set and we are at a transition point,
// drop back a step
if (aBeforeFlag == ComputedTimingFunction::BeforeFlag::Set &&
fmod(aPortion * aStepFunc.mSteps, 1) == 0) {
--currentStep;
}
// We should not produce a result outside [0, 1] unless we have an
// input outside that range. This takes care of steps that would otherwise
// occur at boundaries.
if (aPortion >= 0.0 && currentStep < 0) {
currentStep = 0;
}
int32_t jumps = aStepFunc.mSteps;
if (aStepFunc.mPos == StyleStepPosition::JumpBoth) {
++jumps;
} else if (aStepFunc.mPos == StyleStepPosition::JumpNone) {
--jumps;
}
if (aPortion <= 1.0 && currentStep > jumps) {
currentStep = jumps;
}
// Convert to the output progress value.
MOZ_ASSERT(jumps > 0, "`jumps` should be a positive integer");
return double(currentStep) / double(jumps);
}
double ComputedTimingFunction::GetValue(
double aPortion, ComputedTimingFunction::BeforeFlag aBeforeFlag) const {
if (HasSpline()) {
// Check for a linear curve.
// (GetSplineValue(), below, also checks this but doesn't work when
// aPortion is outside the range [0.0, 1.0]).
if (mTimingFunction.X1() == mTimingFunction.Y1() &&
mTimingFunction.X2() == mTimingFunction.Y2()) {
return aPortion;
}
// Ensure that we return 0 or 1 on both edges.
if (aPortion == 0.0) {
return 0.0;
}
if (aPortion == 1.0) {
return 1.0;
}
// For negative values, try to extrapolate with tangent (p1 - p0) or,
// if p1 is coincident with p0, with (p2 - p0).
if (aPortion < 0.0) {
if (mTimingFunction.X1() > 0.0) {
return aPortion * mTimingFunction.Y1() / mTimingFunction.X1();
} else if (mTimingFunction.Y1() == 0 && mTimingFunction.X2() > 0.0) {
return aPortion * mTimingFunction.Y2() / mTimingFunction.X2();
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 0.0;
}
// For values greater than 1, try to extrapolate with tangent (p2 - p3) or,
// if p2 is coincident with p3, with (p1 - p3).
if (aPortion > 1.0) {
if (mTimingFunction.X2() < 1.0) {
return 1.0 + (aPortion - 1.0) * (mTimingFunction.Y2() - 1) /
(mTimingFunction.X2() - 1);
} else if (mTimingFunction.Y2() == 1 && mTimingFunction.X1() < 1.0) {
return 1.0 + (aPortion - 1.0) * (mTimingFunction.Y1() - 1) /
(mTimingFunction.X1() - 1);
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 1.0;
}
return mTimingFunction.GetSplineValue(aPortion);
}
return StepTiming(mSteps, aPortion, aBeforeFlag);
}
int32_t ComputedTimingFunction::Compare(
const ComputedTimingFunction& aRhs) const {
if (mType != aRhs.mType) {
return int32_t(mType) - int32_t(aRhs.mType);
}
if (mType == Type::CubicBezier) {
int32_t order = mTimingFunction.Compare(aRhs.mTimingFunction);
if (order != 0) {
return order;
}
} else if (mType == Type::Step) {
if (mSteps.mPos != aRhs.mSteps.mPos) {
return int32_t(mSteps.mPos) - int32_t(aRhs.mSteps.mPos);
} else if (mSteps.mSteps != aRhs.mSteps.mSteps) {
return int32_t(mSteps.mSteps) - int32_t(aRhs.mSteps.mSteps);
}
}
return 0;
}
void ComputedTimingFunction::AppendToString(nsACString& aResult) const {
nsTimingFunction timing;
switch (mType) {
case Type::CubicBezier:
timing.mTiming = StyleComputedTimingFunction::CubicBezier(
mTimingFunction.X1(), mTimingFunction.Y1(), mTimingFunction.X2(),
mTimingFunction.Y2());
break;
case Type::Step:
timing.mTiming =
StyleComputedTimingFunction::Steps(mSteps.mSteps, mSteps.mPos);
break;
case Type::Linear:
case Type::Ease:
case Type::EaseIn:
case Type::EaseOut:
case Type::EaseInOut:
timing.mTiming = StyleComputedTimingFunction::Keyword(
static_cast<StyleTimingKeyword>(mType));
break;
default:
MOZ_ASSERT_UNREACHABLE("Unsupported timing type");
}
Servo_SerializeEasing(&timing, &aResult);
}
/* static */
int32_t ComputedTimingFunction::Compare(
const Maybe<ComputedTimingFunction>& aLhs,
const Maybe<ComputedTimingFunction>& aRhs) {
// We can't use |operator<| for const Maybe<>& here because
// 'ease' is prior to 'linear' which is represented by Nothing().
// So we have to convert Nothing() as 'linear' and check it first.
Type lhsType = aLhs.isNothing() ? Type::Linear : aLhs->GetType();
Type rhsType = aRhs.isNothing() ? Type::Linear : aRhs->GetType();
if (lhsType != rhsType) {
return int32_t(lhsType) - int32_t(rhsType);
}
// Both of them are Nothing().
if (lhsType == Type::Linear) {
return 0;
}
// Other types.
return aLhs->Compare(aRhs.value());
}
} // namespace mozilla