forked from mirrors/gecko-dev
In the case of FramePointerStackwalk, the caller gives a pointer to the top-most frame to walk from. There isn't really a reason to give a number of frames to skip, as the right frame pointer could be given in the first place if that was really necessary. And in practice, it's hasn't been used so far. In the case of MozStackWalkThread, the caller presumably doesn't know what the thread the stack is being walked for is doing, and it would be a guesswork to pass a valid number of frames to skip. In practice, it's also not used. The aSkipFrames is already a footgun on MozStackWalk (and we're going to change that in bug 1515229), we don't need to keep a footgun on these other stack walking methods. Differential Revision: https://phabricator.services.mozilla.com/D108563
1590 lines
57 KiB
C++
1590 lines
57 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
// PHC is a probabilistic heap checker. A tiny fraction of randomly chosen heap
|
|
// allocations are subject to some expensive checking via the use of OS page
|
|
// access protection. A failed check triggers a crash, whereupon useful
|
|
// information about the failure is put into the crash report. The cost and
|
|
// coverage for each user is minimal, but spread over the entire user base the
|
|
// coverage becomes significant.
|
|
//
|
|
// The idea comes from Chromium, where it is called GWP-ASAN. (Firefox uses PHC
|
|
// as the name because GWP-ASAN is long, awkward, and doesn't have any
|
|
// particular meaning.)
|
|
//
|
|
// In the current implementation up to 64 allocations per process can become
|
|
// PHC allocations. These allocations must be page-sized or smaller. Each PHC
|
|
// allocation gets its own page, and when the allocation is freed its page is
|
|
// marked inaccessible until the page is reused for another allocation. This
|
|
// means that a use-after-free defect (which includes double-frees) will be
|
|
// caught if the use occurs before the page is reused for another allocation.
|
|
// The crash report will contain stack traces for the allocation site, the free
|
|
// site, and the use-after-free site, which is often enough to diagnose the
|
|
// defect.
|
|
//
|
|
// Also, each PHC allocation is followed by a guard page. The PHC allocation is
|
|
// positioned so that its end abuts the guard page (or as close as possible,
|
|
// given alignment constraints). This means that a bounds violation at the end
|
|
// of the allocation (overflow) will be caught. The crash report will contain
|
|
// stack traces for the allocation site and the bounds violation use site,
|
|
// which is often enough to diagnose the defect.
|
|
//
|
|
// (A bounds violation at the start of the allocation (underflow) will not be
|
|
// caught, unless it is sufficiently large to hit the preceding allocation's
|
|
// guard page, which is not that likely. It would be possible to look more
|
|
// assiduously for underflow by randomly placing some allocations at the end of
|
|
// the page and some at the start of the page, and GWP-ASAN does this. PHC does
|
|
// not, however, because overflow is likely to be much more common than
|
|
// underflow in practice.)
|
|
//
|
|
// We use a simple heuristic to categorize a guard page access as overflow or
|
|
// underflow: if the address falls in the lower half of the guard page, we
|
|
// assume it is overflow, otherwise we assume it is underflow. More
|
|
// sophisticated heuristics are possible, but this one is very simple, and it is
|
|
// likely that most overflows/underflows in practice are very close to the page
|
|
// boundary.
|
|
//
|
|
// The design space for the randomization strategy is large. The current
|
|
// implementation has a large random delay before it starts operating, and a
|
|
// small random delay between each PHC allocation attempt. Each freed PHC
|
|
// allocation is quarantined for a medium random delay before being reused, in
|
|
// order to increase the chance of catching UAFs.
|
|
//
|
|
// The basic cost of PHC's operation is as follows.
|
|
//
|
|
// - The physical memory cost is 64 * 4 KiB = 256 KiB per process (assuming 4
|
|
// KiB pages) plus some metadata (including stack traces) for each page.
|
|
//
|
|
// - The virtual memory cost is the physical memory cost plus the guard pages:
|
|
// another 64 * 4 KiB = 256 KiB per process. PHC is currently only enabled on
|
|
// 64-bit platforms so the impact of the virtual memory usage is negligible.
|
|
//
|
|
// - Every allocation requires a size check and a decrement-and-check of an
|
|
// atomic counter. When the counter reaches zero a PHC allocation can occur,
|
|
// which involves marking a page as accessible and getting a stack trace for
|
|
// the allocation site. Otherwise, mozjemalloc performs the allocation.
|
|
//
|
|
// - Every deallocation requires a range check on the pointer to see if it
|
|
// involves a PHC allocation. (The choice to only do PHC allocations that are
|
|
// a page or smaller enables this range check, because the 64 pages are
|
|
// contiguous. Allowing larger allocations would make this more complicated,
|
|
// and we definitely don't want something as slow as a hash table lookup on
|
|
// every deallocation.) PHC deallocations involve marking a page as
|
|
// inaccessible and getting a stack trace for the deallocation site.
|
|
//
|
|
// Note that calls to realloc(), free(), and malloc_usable_size() will
|
|
// immediately crash if the given pointer falls within a page allocation's
|
|
// page, but does not point to the start of the allocation itself.
|
|
//
|
|
// void* p = malloc(64);
|
|
// free(p + 1); // p+1 doesn't point to the allocation start; crash
|
|
//
|
|
// Such crashes will not have the PHC fields in the crash report.
|
|
//
|
|
// PHC-specific tests can be run with the following commands:
|
|
// - gtests: `./mach gtest '*PHC*'`
|
|
// - xpcshell-tests: `./mach test toolkit/crashreporter/test/unit`
|
|
// - This runs some non-PHC tests as well.
|
|
|
|
#include "PHC.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#ifdef XP_WIN
|
|
# include <process.h>
|
|
#else
|
|
# include <sys/mman.h>
|
|
# include <sys/types.h>
|
|
# include <pthread.h>
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#include "replace_malloc.h"
|
|
#include "FdPrintf.h"
|
|
#include "Mutex.h"
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Atomics.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/CheckedInt.h"
|
|
#include "mozilla/Maybe.h"
|
|
#include "mozilla/StackWalk.h"
|
|
#include "mozilla/ThreadLocal.h"
|
|
#include "mozilla/XorShift128PlusRNG.h"
|
|
|
|
using namespace mozilla;
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Utilities
|
|
//---------------------------------------------------------------------------
|
|
|
|
#ifdef ANDROID
|
|
// Android doesn't have pthread_atfork defined in pthread.h.
|
|
extern "C" MOZ_EXPORT int pthread_atfork(void (*)(void), void (*)(void),
|
|
void (*)(void));
|
|
#endif
|
|
|
|
#ifndef DISALLOW_COPY_AND_ASSIGN
|
|
# define DISALLOW_COPY_AND_ASSIGN(T) \
|
|
T(const T&); \
|
|
void operator=(const T&)
|
|
#endif
|
|
|
|
static malloc_table_t sMallocTable;
|
|
|
|
// This class provides infallible operations for the small number of heap
|
|
// allocations that PHC does for itself. It would be nice if we could use the
|
|
// InfallibleAllocPolicy from mozalloc, but PHC cannot use mozalloc.
|
|
class InfallibleAllocPolicy {
|
|
public:
|
|
static void AbortOnFailure(const void* aP) {
|
|
if (!aP) {
|
|
MOZ_CRASH("PHC failed to allocate");
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
static T* new_() {
|
|
void* p = sMallocTable.malloc(sizeof(T));
|
|
AbortOnFailure(p);
|
|
return new (p) T;
|
|
}
|
|
};
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Stack traces
|
|
//---------------------------------------------------------------------------
|
|
|
|
// This code is similar to the equivalent code within DMD.
|
|
|
|
class StackTrace : public phc::StackTrace {
|
|
public:
|
|
StackTrace() : phc::StackTrace() {}
|
|
|
|
void Clear() { mLength = 0; }
|
|
|
|
void Fill();
|
|
|
|
private:
|
|
static void StackWalkCallback(uint32_t aFrameNumber, void* aPc, void* aSp,
|
|
void* aClosure) {
|
|
StackTrace* st = (StackTrace*)aClosure;
|
|
MOZ_ASSERT(st->mLength < kMaxFrames);
|
|
st->mPcs[st->mLength] = aPc;
|
|
st->mLength++;
|
|
MOZ_ASSERT(st->mLength == aFrameNumber);
|
|
}
|
|
};
|
|
|
|
// WARNING WARNING WARNING: this function must only be called when GMut::sMutex
|
|
// is *not* locked, otherwise we might get deadlocks.
|
|
//
|
|
// How? On Windows, MozStackWalk() can lock a mutex, M, from the shared library
|
|
// loader. Another thread might call malloc() while holding M locked (when
|
|
// loading a shared library) and try to lock GMut::sMutex, causing a deadlock.
|
|
// So GMut::sMutex can't be locked during the call to MozStackWalk(). (For
|
|
// details, see https://bugzilla.mozilla.org/show_bug.cgi?id=374829#c8. On
|
|
// Linux, something similar can happen; see bug 824340. So we just disallow it
|
|
// on all platforms.)
|
|
//
|
|
// In DMD, to avoid this problem we temporarily unlock the equivalent mutex for
|
|
// the MozStackWalk() call. But that's grotty, and things are a bit different
|
|
// here, so we just require that stack traces be obtained before locking
|
|
// GMut::sMutex.
|
|
//
|
|
// Unfortunately, there is no reliable way at compile-time or run-time to ensure
|
|
// this pre-condition. Hence this large comment.
|
|
//
|
|
void StackTrace::Fill() {
|
|
mLength = 0;
|
|
|
|
#if defined(XP_WIN) && defined(_M_IX86)
|
|
// This avoids MozStackWalk(), which causes unusably slow startup on Win32
|
|
// when it is called during static initialization (see bug 1241684).
|
|
//
|
|
// This code is cribbed from the Gecko Profiler, which also uses
|
|
// FramePointerStackWalk() on Win32: Registers::SyncPopulate() for the
|
|
// frame pointer, and GetStackTop() for the stack end.
|
|
CONTEXT context;
|
|
RtlCaptureContext(&context);
|
|
void** fp = reinterpret_cast<void**>(context.Ebp);
|
|
|
|
PNT_TIB pTib = reinterpret_cast<PNT_TIB>(NtCurrentTeb());
|
|
void* stackEnd = static_cast<void*>(pTib->StackBase);
|
|
FramePointerStackWalk(StackWalkCallback, kMaxFrames, this, fp, stackEnd);
|
|
#elif defined(XP_MACOSX)
|
|
// This avoids MozStackWalk(), which has become unusably slow on Mac due to
|
|
// changes in libunwind.
|
|
//
|
|
// This code is cribbed from the Gecko Profiler, which also uses
|
|
// FramePointerStackWalk() on Mac: Registers::SyncPopulate() for the frame
|
|
// pointer, and GetStackTop() for the stack end.
|
|
void** fp;
|
|
asm(
|
|
// Dereference %rbp to get previous %rbp
|
|
"movq (%%rbp), %0\n\t"
|
|
: "=r"(fp));
|
|
void* stackEnd = pthread_get_stackaddr_np(pthread_self());
|
|
FramePointerStackWalk(StackWalkCallback, kMaxFrames, this, fp, stackEnd);
|
|
#else
|
|
MozStackWalk(StackWalkCallback, /* aSkipFrames = */ 0, kMaxFrames, this);
|
|
#endif
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Logging
|
|
//---------------------------------------------------------------------------
|
|
|
|
// Change this to 1 to enable some PHC logging. Useful for debugging.
|
|
#define PHC_LOGGING 0
|
|
|
|
#if PHC_LOGGING
|
|
|
|
static size_t GetPid() { return size_t(getpid()); }
|
|
|
|
static size_t GetTid() {
|
|
# if defined(XP_WIN)
|
|
return size_t(GetCurrentThreadId());
|
|
# else
|
|
return size_t(pthread_self());
|
|
# endif
|
|
}
|
|
|
|
# if defined(XP_WIN)
|
|
# define LOG_STDERR \
|
|
reinterpret_cast<intptr_t>(GetStdHandle(STD_ERROR_HANDLE))
|
|
# else
|
|
# define LOG_STDERR 2
|
|
# endif
|
|
# define LOG(fmt, ...) \
|
|
FdPrintf(LOG_STDERR, "PHC[%zu,%zu,~%zu] " fmt, GetPid(), GetTid(), \
|
|
size_t(GAtomic::Now()), __VA_ARGS__)
|
|
|
|
#else
|
|
|
|
# define LOG(fmt, ...)
|
|
|
|
#endif // PHC_LOGGING
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Global state
|
|
//---------------------------------------------------------------------------
|
|
|
|
// Throughout this entire file time is measured as the number of sub-page
|
|
// allocations performed (by PHC and mozjemalloc combined). `Time` is 64-bit
|
|
// because we could have more than 2**32 allocations in a long-running session.
|
|
// `Delay` is 32-bit because the delays used within PHC are always much smaller
|
|
// than 2**32.
|
|
using Time = uint64_t; // A moment in time.
|
|
using Delay = uint32_t; // A time duration.
|
|
|
|
// PHC only runs if the page size is 4 KiB; anything more is uncommon and would
|
|
// use too much memory. So we hardwire this size.
|
|
static const size_t kPageSize = 4096;
|
|
|
|
// There are two kinds of page.
|
|
// - Allocation pages, from which allocations are made.
|
|
// - Guard pages, which are never touched by PHC.
|
|
//
|
|
// These page kinds are interleaved; each allocation page has a guard page on
|
|
// either side.
|
|
static const size_t kNumAllocPages = 64;
|
|
static const size_t kNumAllPages = kNumAllocPages * 2 + 1;
|
|
|
|
// The total size of the allocation pages and guard pages.
|
|
static const size_t kAllPagesSize = kNumAllPages * kPageSize;
|
|
|
|
// The junk value used to fill new allocation in debug builds. It's same value
|
|
// as the one used by mozjemalloc. PHC applies it unconditionally in debug
|
|
// builds. Unlike mozjemalloc, PHC doesn't consult the MALLOC_OPTIONS
|
|
// environment variable to possibly change that behaviour.
|
|
//
|
|
// Also note that, unlike mozjemalloc, PHC doesn't have a poison value for freed
|
|
// allocations because freed allocations are protected by OS page protection.
|
|
const uint8_t kAllocJunk = 0xe4;
|
|
|
|
// The maximum time.
|
|
static const Time kMaxTime = ~(Time(0));
|
|
|
|
// The average delay before doing any page allocations at the start of a
|
|
// process. Note that roughly 1 million allocations occur in the main process
|
|
// while starting the browser. The delay range is 1..kAvgFirstAllocDelay*2.
|
|
static const Delay kAvgFirstAllocDelay = 512 * 1024;
|
|
|
|
// The average delay until the next attempted page allocation, once we get past
|
|
// the first delay. The delay range is 1..kAvgAllocDelay*2.
|
|
static const Delay kAvgAllocDelay = 16 * 1024;
|
|
|
|
// The average delay before reusing a freed page. Should be significantly larger
|
|
// than kAvgAllocDelay, otherwise there's not much point in having it. The delay
|
|
// range is (kAvgAllocDelay / 2)..(kAvgAllocDelay / 2 * 3). This is different to
|
|
// the other delay ranges in not having a minimum of 1, because that's such a
|
|
// short delay that there is a high likelihood of bad stacks in any crash
|
|
// report.
|
|
static const Delay kAvgPageReuseDelay = 256 * 1024;
|
|
|
|
// Truncate aRnd to the range (1 .. AvgDelay*2). If aRnd is random, this
|
|
// results in an average value of aAvgDelay + 0.5, which is close enough to
|
|
// aAvgDelay. aAvgDelay must be a power-of-two (otherwise it will crash) for
|
|
// speed.
|
|
template <Delay AvgDelay>
|
|
constexpr Delay Rnd64ToDelay(uint64_t aRnd) {
|
|
static_assert(IsPowerOfTwo(AvgDelay), "must be a power of two");
|
|
|
|
return aRnd % (AvgDelay * 2) + 1;
|
|
}
|
|
|
|
// Maps a pointer to a PHC-specific structure:
|
|
// - Nothing
|
|
// - A guard page (it is unspecified which one)
|
|
// - An allocation page (with an index < kNumAllocPages)
|
|
//
|
|
// The standard way of handling a PtrKind is to check IsNothing(), and if that
|
|
// fails, to check IsGuardPage(), and if that fails, to call AllocPage().
|
|
class PtrKind {
|
|
private:
|
|
enum class Tag : uint8_t {
|
|
Nothing,
|
|
GuardPage,
|
|
AllocPage,
|
|
};
|
|
|
|
Tag mTag;
|
|
uintptr_t mIndex; // Only used if mTag == Tag::AllocPage.
|
|
|
|
public:
|
|
// Detect what a pointer points to. This constructor must be fast because it
|
|
// is called for every call to free(), realloc(), malloc_usable_size(), and
|
|
// jemalloc_ptr_info().
|
|
PtrKind(const void* aPtr, const uint8_t* aPagesStart,
|
|
const uint8_t* aPagesLimit) {
|
|
if (!(aPagesStart <= aPtr && aPtr < aPagesLimit)) {
|
|
mTag = Tag::Nothing;
|
|
} else {
|
|
uintptr_t offset = static_cast<const uint8_t*>(aPtr) - aPagesStart;
|
|
uintptr_t allPageIndex = offset / kPageSize;
|
|
MOZ_ASSERT(allPageIndex < kNumAllPages);
|
|
if (allPageIndex & 1) {
|
|
// Odd-indexed pages are allocation pages.
|
|
uintptr_t allocPageIndex = allPageIndex / 2;
|
|
MOZ_ASSERT(allocPageIndex < kNumAllocPages);
|
|
mTag = Tag::AllocPage;
|
|
mIndex = allocPageIndex;
|
|
} else {
|
|
// Even-numbered pages are guard pages.
|
|
mTag = Tag::GuardPage;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool IsNothing() const { return mTag == Tag::Nothing; }
|
|
bool IsGuardPage() const { return mTag == Tag::GuardPage; }
|
|
|
|
// This should only be called after IsNothing() and IsGuardPage() have been
|
|
// checked and failed.
|
|
uintptr_t AllocPageIndex() const {
|
|
MOZ_RELEASE_ASSERT(mTag == Tag::AllocPage);
|
|
return mIndex;
|
|
}
|
|
};
|
|
|
|
// Shared, atomic, mutable global state.
|
|
class GAtomic {
|
|
public:
|
|
static void Init(Delay aFirstDelay) {
|
|
sAllocDelay = aFirstDelay;
|
|
|
|
LOG("Initial sAllocDelay <- %zu\n", size_t(aFirstDelay));
|
|
}
|
|
|
|
static Time Now() { return sNow; }
|
|
|
|
static void IncrementNow() { sNow++; }
|
|
|
|
// Decrements the delay and returns the decremented value.
|
|
static int32_t DecrementDelay() { return --sAllocDelay; }
|
|
|
|
static void SetAllocDelay(Delay aAllocDelay) { sAllocDelay = aAllocDelay; }
|
|
|
|
private:
|
|
// The current time. Relaxed semantics because it's primarily used for
|
|
// determining if an allocation can be recycled yet and therefore it doesn't
|
|
// need to be exact.
|
|
static Atomic<Time, Relaxed> sNow;
|
|
|
|
// Delay until the next attempt at a page allocation. See the comment in
|
|
// MaybePageAlloc() for an explanation of why it is a signed integer, and why
|
|
// it uses ReleaseAcquire semantics.
|
|
static Atomic<Delay, ReleaseAcquire> sAllocDelay;
|
|
};
|
|
|
|
Atomic<Time, Relaxed> GAtomic::sNow;
|
|
Atomic<Delay, ReleaseAcquire> GAtomic::sAllocDelay;
|
|
|
|
// Shared, immutable global state. Initialized by replace_init() and never
|
|
// changed after that. replace_init() runs early enough that no synchronization
|
|
// is needed.
|
|
class GConst {
|
|
private:
|
|
// The bounds of the allocated pages.
|
|
uint8_t* const mPagesStart;
|
|
uint8_t* const mPagesLimit;
|
|
|
|
// Allocates the allocation pages and the guard pages, contiguously.
|
|
uint8_t* AllocAllPages() {
|
|
// Allocate the pages so that they are inaccessible. They are never freed,
|
|
// because it would happen at process termination when it would be of little
|
|
// use.
|
|
void* pages =
|
|
#ifdef XP_WIN
|
|
VirtualAlloc(nullptr, kAllPagesSize, MEM_RESERVE, PAGE_NOACCESS);
|
|
#else
|
|
mmap(nullptr, kAllPagesSize, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1,
|
|
0);
|
|
#endif
|
|
if (!pages) {
|
|
MOZ_CRASH();
|
|
}
|
|
|
|
return static_cast<uint8_t*>(pages);
|
|
}
|
|
|
|
public:
|
|
GConst()
|
|
: mPagesStart(AllocAllPages()), mPagesLimit(mPagesStart + kAllPagesSize) {
|
|
LOG("AllocAllPages at %p..%p\n", mPagesStart, mPagesLimit);
|
|
}
|
|
|
|
class PtrKind PtrKind(const void* aPtr) {
|
|
class PtrKind pk(aPtr, mPagesStart, mPagesLimit);
|
|
return pk;
|
|
}
|
|
|
|
bool IsInFirstGuardPage(const void* aPtr) {
|
|
return mPagesStart <= aPtr && aPtr < mPagesStart + kPageSize;
|
|
}
|
|
|
|
// Get the address of the allocation page referred to via an index. Used when
|
|
// marking the page as accessible/inaccessible.
|
|
uint8_t* AllocPagePtr(uintptr_t aIndex) {
|
|
MOZ_ASSERT(aIndex < kNumAllocPages);
|
|
// Multiply by two and add one to account for allocation pages *and* guard
|
|
// pages.
|
|
return mPagesStart + (2 * aIndex + 1) * kPageSize;
|
|
}
|
|
};
|
|
|
|
static GConst* gConst;
|
|
|
|
// On MacOS, the first __thread/thread_local access calls malloc, which leads
|
|
// to an infinite loop. So we use pthread-based TLS instead, which somehow
|
|
// doesn't have this problem.
|
|
#if !defined(XP_DARWIN)
|
|
# define PHC_THREAD_LOCAL(T) MOZ_THREAD_LOCAL(T)
|
|
#else
|
|
# define PHC_THREAD_LOCAL(T) \
|
|
detail::ThreadLocal<T, detail::ThreadLocalKeyStorage>
|
|
#endif
|
|
|
|
// Thread-local state.
|
|
class GTls {
|
|
GTls(const GTls&) = delete;
|
|
|
|
const GTls& operator=(const GTls&) = delete;
|
|
|
|
// When true, PHC does as little as possible.
|
|
//
|
|
// (a) It does not allocate any new page allocations.
|
|
//
|
|
// (b) It avoids doing any operations that might call malloc/free/etc., which
|
|
// would cause re-entry into PHC. (In practice, MozStackWalk() is the
|
|
// only such operation.) Note that calls to the functions in sMallocTable
|
|
// are ok.
|
|
//
|
|
// For example, replace_malloc() will just fall back to mozjemalloc. However,
|
|
// operations involving existing allocations are more complex, because those
|
|
// existing allocations may be page allocations. For example, if
|
|
// replace_free() is passed a page allocation on a PHC-disabled thread, it
|
|
// will free the page allocation in the usual way, but it will get a dummy
|
|
// freeStack in order to avoid calling MozStackWalk(), as per (b) above.
|
|
//
|
|
// This single disabling mechanism has two distinct uses.
|
|
//
|
|
// - It's used to prevent re-entry into PHC, which can cause correctness
|
|
// problems. For example, consider this sequence.
|
|
//
|
|
// 1. enter replace_free()
|
|
// 2. which calls PageFree()
|
|
// 3. which calls MozStackWalk()
|
|
// 4. which locks a mutex M, and then calls malloc
|
|
// 5. enter replace_malloc()
|
|
// 6. which calls MaybePageAlloc()
|
|
// 7. which calls MozStackWalk()
|
|
// 8. which (re)locks a mutex M --> deadlock
|
|
//
|
|
// We avoid this sequence by "disabling" the thread in PageFree() (at step
|
|
// 2), which causes MaybePageAlloc() to fail, avoiding the call to
|
|
// MozStackWalk() (at step 7).
|
|
//
|
|
// In practice, realloc or free of a PHC allocation is unlikely on a thread
|
|
// that is disabled because of this use: MozStackWalk() will probably only
|
|
// realloc/free allocations that it allocated itself, but those won't be
|
|
// page allocations because PHC is disabled before calling MozStackWalk().
|
|
//
|
|
// (Note that MaybePageAlloc() could safely do a page allocation so long as
|
|
// it avoided calling MozStackWalk() by getting a dummy allocStack. But it
|
|
// wouldn't be useful, and it would prevent the second use below.)
|
|
//
|
|
// - It's used to prevent PHC allocations in some tests that rely on
|
|
// mozjemalloc's exact allocation behaviour, which PHC does not replicate
|
|
// exactly. (Note that (b) isn't necessary for this use -- MozStackWalk()
|
|
// could be safely called -- but it is necessary for the first use above.)
|
|
//
|
|
static PHC_THREAD_LOCAL(bool) tlsIsDisabled;
|
|
|
|
public:
|
|
static void Init() {
|
|
if (!tlsIsDisabled.init()) {
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
|
|
static void DisableOnCurrentThread() {
|
|
MOZ_ASSERT(!GTls::tlsIsDisabled.get());
|
|
tlsIsDisabled.set(true);
|
|
}
|
|
|
|
static void EnableOnCurrentThread() {
|
|
MOZ_ASSERT(GTls::tlsIsDisabled.get());
|
|
tlsIsDisabled.set(false);
|
|
}
|
|
|
|
static bool IsDisabledOnCurrentThread() { return tlsIsDisabled.get(); }
|
|
};
|
|
|
|
PHC_THREAD_LOCAL(bool) GTls::tlsIsDisabled;
|
|
|
|
class AutoDisableOnCurrentThread {
|
|
AutoDisableOnCurrentThread(const AutoDisableOnCurrentThread&) = delete;
|
|
|
|
const AutoDisableOnCurrentThread& operator=(
|
|
const AutoDisableOnCurrentThread&) = delete;
|
|
|
|
public:
|
|
explicit AutoDisableOnCurrentThread() { GTls::DisableOnCurrentThread(); }
|
|
~AutoDisableOnCurrentThread() { GTls::EnableOnCurrentThread(); }
|
|
};
|
|
|
|
// This type is used as a proof-of-lock token, to make it clear which functions
|
|
// require sMutex to be locked.
|
|
using GMutLock = const MutexAutoLock&;
|
|
|
|
// Shared, mutable global state. Protected by sMutex; all accessing functions
|
|
// take a GMutLock as proof that sMutex is held.
|
|
class GMut {
|
|
enum class AllocPageState {
|
|
NeverAllocated = 0,
|
|
InUse = 1,
|
|
Freed = 2,
|
|
};
|
|
|
|
// Metadata for each allocation page.
|
|
class AllocPageInfo {
|
|
public:
|
|
AllocPageInfo()
|
|
: mState(AllocPageState::NeverAllocated),
|
|
mArenaId(),
|
|
mBaseAddr(nullptr),
|
|
mAllocStack(),
|
|
mFreeStack(),
|
|
mReuseTime(0) {}
|
|
|
|
// The current allocation page state.
|
|
AllocPageState mState;
|
|
|
|
// The arena that the allocation is nominally from. This isn't meaningful
|
|
// within PHC, which has no arenas. But it is necessary for reallocation of
|
|
// page allocations as normal allocations, such as in this code:
|
|
//
|
|
// p = moz_arena_malloc(arenaId, 4096);
|
|
// realloc(p, 8192);
|
|
//
|
|
// The realloc is more than one page, and thus too large for PHC to handle.
|
|
// Therefore, if PHC handles the first allocation, it must ask mozjemalloc
|
|
// to allocate the 8192 bytes in the correct arena, and to do that, it must
|
|
// call sMallocTable.moz_arena_malloc with the correct arenaId under the
|
|
// covers. Therefore it must record that arenaId.
|
|
//
|
|
// This field is also needed for jemalloc_ptr_info() to work, because it
|
|
// also returns the arena ID (but only in debug builds).
|
|
//
|
|
// - NeverAllocated: must be 0.
|
|
// - InUse | Freed: can be any valid arena ID value.
|
|
Maybe<arena_id_t> mArenaId;
|
|
|
|
// The starting address of the allocation. Will not be the same as the page
|
|
// address unless the allocation is a full page.
|
|
// - NeverAllocated: must be 0.
|
|
// - InUse | Freed: must be within the allocation page.
|
|
uint8_t* mBaseAddr;
|
|
|
|
// Usable size is computed as the number of bytes between the pointer and
|
|
// the end of the allocation page. This might be bigger than the requested
|
|
// size, especially if an outsized alignment is requested.
|
|
size_t UsableSize() const {
|
|
return mState == AllocPageState::NeverAllocated
|
|
? 0
|
|
: kPageSize - (reinterpret_cast<uintptr_t>(mBaseAddr) &
|
|
(kPageSize - 1));
|
|
}
|
|
|
|
// The allocation stack.
|
|
// - NeverAllocated: Nothing.
|
|
// - InUse | Freed: Some.
|
|
Maybe<StackTrace> mAllocStack;
|
|
|
|
// The free stack.
|
|
// - NeverAllocated | InUse: Nothing.
|
|
// - Freed: Some.
|
|
Maybe<StackTrace> mFreeStack;
|
|
|
|
// The time at which the page is available for reuse, as measured against
|
|
// GAtomic::sNow. When the page is in use this value will be kMaxTime.
|
|
// - NeverAllocated: must be 0.
|
|
// - InUse: must be kMaxTime.
|
|
// - Freed: must be > 0 and < kMaxTime.
|
|
Time mReuseTime;
|
|
};
|
|
|
|
public:
|
|
// The mutex that protects the other members.
|
|
static Mutex sMutex;
|
|
|
|
GMut()
|
|
: mRNG(RandomSeed<0>(), RandomSeed<1>()),
|
|
mAllocPages(),
|
|
mNumPageAllocs(0),
|
|
mPageAllocHits(0),
|
|
mPageAllocMisses(0) {
|
|
sMutex.Init();
|
|
}
|
|
|
|
uint64_t Random64(GMutLock) { return mRNG.next(); }
|
|
|
|
bool IsPageInUse(GMutLock, uintptr_t aIndex) {
|
|
return mAllocPages[aIndex].mState == AllocPageState::InUse;
|
|
}
|
|
|
|
// Is the page free? And if so, has enough time passed that we can use it?
|
|
bool IsPageAllocatable(GMutLock, uintptr_t aIndex, Time aNow) {
|
|
const AllocPageInfo& page = mAllocPages[aIndex];
|
|
return page.mState != AllocPageState::InUse && aNow >= page.mReuseTime;
|
|
}
|
|
|
|
Maybe<arena_id_t> PageArena(GMutLock aLock, uintptr_t aIndex) {
|
|
const AllocPageInfo& page = mAllocPages[aIndex];
|
|
AssertAllocPageInUse(aLock, page);
|
|
|
|
return page.mArenaId;
|
|
}
|
|
|
|
size_t PageUsableSize(GMutLock aLock, uintptr_t aIndex) {
|
|
const AllocPageInfo& page = mAllocPages[aIndex];
|
|
AssertAllocPageInUse(aLock, page);
|
|
|
|
return page.UsableSize();
|
|
}
|
|
|
|
void SetPageInUse(GMutLock aLock, uintptr_t aIndex,
|
|
const Maybe<arena_id_t>& aArenaId, uint8_t* aBaseAddr,
|
|
const StackTrace& aAllocStack) {
|
|
AllocPageInfo& page = mAllocPages[aIndex];
|
|
AssertAllocPageNotInUse(aLock, page);
|
|
|
|
page.mState = AllocPageState::InUse;
|
|
page.mArenaId = aArenaId;
|
|
page.mBaseAddr = aBaseAddr;
|
|
page.mAllocStack = Some(aAllocStack);
|
|
page.mFreeStack = Nothing();
|
|
page.mReuseTime = kMaxTime;
|
|
|
|
mNumPageAllocs++;
|
|
MOZ_RELEASE_ASSERT(mNumPageAllocs <= kNumAllocPages);
|
|
}
|
|
|
|
void ResizePageInUse(GMutLock aLock, uintptr_t aIndex,
|
|
const Maybe<arena_id_t>& aArenaId, uint8_t* aNewBaseAddr,
|
|
const StackTrace& aAllocStack) {
|
|
AllocPageInfo& page = mAllocPages[aIndex];
|
|
AssertAllocPageInUse(aLock, page);
|
|
|
|
// page.mState is not changed.
|
|
if (aArenaId.isSome()) {
|
|
// Crash if the arenas don't match.
|
|
MOZ_RELEASE_ASSERT(page.mArenaId == aArenaId);
|
|
}
|
|
page.mBaseAddr = aNewBaseAddr;
|
|
// We could just keep the original alloc stack, but the realloc stack is
|
|
// more recent and therefore seems more useful.
|
|
page.mAllocStack = Some(aAllocStack);
|
|
// page.mFreeStack is not changed.
|
|
// page.mReuseTime is not changed.
|
|
};
|
|
|
|
void SetPageFreed(GMutLock aLock, uintptr_t aIndex,
|
|
const Maybe<arena_id_t>& aArenaId,
|
|
const StackTrace& aFreeStack, Delay aReuseDelay) {
|
|
AllocPageInfo& page = mAllocPages[aIndex];
|
|
AssertAllocPageInUse(aLock, page);
|
|
|
|
page.mState = AllocPageState::Freed;
|
|
|
|
// page.mArenaId is left unchanged, for jemalloc_ptr_info() calls that
|
|
// occur after freeing (e.g. in the PtrInfo test in TestJemalloc.cpp).
|
|
if (aArenaId.isSome()) {
|
|
// Crash if the arenas don't match.
|
|
MOZ_RELEASE_ASSERT(page.mArenaId == aArenaId);
|
|
}
|
|
|
|
// page.musableSize is left unchanged, for reporting on UAF, and for
|
|
// jemalloc_ptr_info() calls that occur after freeing (e.g. in the PtrInfo
|
|
// test in TestJemalloc.cpp).
|
|
|
|
// page.mAllocStack is left unchanged, for reporting on UAF.
|
|
|
|
page.mFreeStack = Some(aFreeStack);
|
|
page.mReuseTime = GAtomic::Now() + aReuseDelay;
|
|
|
|
MOZ_RELEASE_ASSERT(mNumPageAllocs > 0);
|
|
mNumPageAllocs--;
|
|
}
|
|
|
|
static void CrashOnGuardPage(void* aPtr) {
|
|
// An operation on a guard page? This is a bounds violation. Deliberately
|
|
// touch the page in question, to cause a crash that triggers the usual PHC
|
|
// machinery.
|
|
LOG("CrashOnGuardPage(%p), bounds violation\n", aPtr);
|
|
*static_cast<uint8_t*>(aPtr) = 0;
|
|
MOZ_CRASH("unreachable");
|
|
}
|
|
|
|
void EnsureValidAndInUse(GMutLock, void* aPtr, uintptr_t aIndex) {
|
|
const AllocPageInfo& page = mAllocPages[aIndex];
|
|
|
|
// The pointer must point to the start of the allocation.
|
|
MOZ_RELEASE_ASSERT(page.mBaseAddr == aPtr);
|
|
|
|
if (page.mState == AllocPageState::Freed) {
|
|
// An operation on a freed page? This is a particular kind of
|
|
// use-after-free. Deliberately touch the page in question, in order to
|
|
// cause a crash that triggers the usual PHC machinery. But unlock sMutex
|
|
// first, because that self-same PHC machinery needs to re-lock it, and
|
|
// the crash causes non-local control flow so sMutex won't be unlocked
|
|
// the normal way in the caller.
|
|
LOG("EnsureValidAndInUse(%p), use-after-free\n", aPtr);
|
|
sMutex.Unlock();
|
|
*static_cast<uint8_t*>(aPtr) = 0;
|
|
MOZ_CRASH("unreachable");
|
|
}
|
|
}
|
|
|
|
void FillAddrInfo(GMutLock, uintptr_t aIndex, const void* aBaseAddr,
|
|
bool isGuardPage, phc::AddrInfo& aOut) {
|
|
const AllocPageInfo& page = mAllocPages[aIndex];
|
|
if (isGuardPage) {
|
|
aOut.mKind = phc::AddrInfo::Kind::GuardPage;
|
|
} else {
|
|
switch (page.mState) {
|
|
case AllocPageState::NeverAllocated:
|
|
aOut.mKind = phc::AddrInfo::Kind::NeverAllocatedPage;
|
|
break;
|
|
|
|
case AllocPageState::InUse:
|
|
aOut.mKind = phc::AddrInfo::Kind::InUsePage;
|
|
break;
|
|
|
|
case AllocPageState::Freed:
|
|
aOut.mKind = phc::AddrInfo::Kind::FreedPage;
|
|
break;
|
|
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
aOut.mBaseAddr = page.mBaseAddr;
|
|
aOut.mUsableSize = page.UsableSize();
|
|
aOut.mAllocStack = page.mAllocStack;
|
|
aOut.mFreeStack = page.mFreeStack;
|
|
}
|
|
|
|
void FillJemallocPtrInfo(GMutLock, const void* aPtr, uintptr_t aIndex,
|
|
jemalloc_ptr_info_t* aInfo) {
|
|
const AllocPageInfo& page = mAllocPages[aIndex];
|
|
switch (page.mState) {
|
|
case AllocPageState::NeverAllocated:
|
|
break;
|
|
|
|
case AllocPageState::InUse: {
|
|
// Only return TagLiveAlloc if the pointer is within the bounds of the
|
|
// allocation's usable size.
|
|
uint8_t* base = page.mBaseAddr;
|
|
uint8_t* limit = base + page.UsableSize();
|
|
if (base <= aPtr && aPtr < limit) {
|
|
*aInfo = {TagLiveAlloc, page.mBaseAddr, page.UsableSize(),
|
|
page.mArenaId.valueOr(0)};
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case AllocPageState::Freed: {
|
|
// Only return TagFreedAlloc if the pointer is within the bounds of the
|
|
// former allocation's usable size.
|
|
uint8_t* base = page.mBaseAddr;
|
|
uint8_t* limit = base + page.UsableSize();
|
|
if (base <= aPtr && aPtr < limit) {
|
|
*aInfo = {TagFreedAlloc, page.mBaseAddr, page.UsableSize(),
|
|
page.mArenaId.valueOr(0)};
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
|
|
// Pointers into guard pages will end up here, as will pointers into
|
|
// allocation pages that aren't within the allocation's bounds.
|
|
*aInfo = {TagUnknown, nullptr, 0, 0};
|
|
}
|
|
|
|
static void prefork() { sMutex.Lock(); }
|
|
static void postfork() { sMutex.Unlock(); }
|
|
|
|
void IncPageAllocHits(GMutLock) { mPageAllocHits++; }
|
|
void IncPageAllocMisses(GMutLock) { mPageAllocMisses++; }
|
|
|
|
size_t NumPageAllocs(GMutLock) { return mNumPageAllocs; }
|
|
|
|
size_t PageAllocHits(GMutLock) { return mPageAllocHits; }
|
|
size_t PageAllocAttempts(GMutLock) {
|
|
return mPageAllocHits + mPageAllocMisses;
|
|
}
|
|
|
|
// This is an integer because FdPrintf only supports integer printing.
|
|
size_t PageAllocHitRate(GMutLock) {
|
|
return mPageAllocHits * 100 / (mPageAllocHits + mPageAllocMisses);
|
|
}
|
|
|
|
private:
|
|
template <int N>
|
|
uint64_t RandomSeed() {
|
|
// An older version of this code used RandomUint64() here, but on Mac that
|
|
// function uses arc4random(), which can allocate, which would cause
|
|
// re-entry, which would be bad. So we just use time() and a local variable
|
|
// address. These are mediocre sources of entropy, but good enough for PHC.
|
|
static_assert(N == 0 || N == 1, "must be 0 or 1");
|
|
uint64_t seed;
|
|
if (N == 0) {
|
|
time_t t = time(nullptr);
|
|
seed = t ^ (t << 32);
|
|
} else {
|
|
seed = uintptr_t(&seed) ^ (uintptr_t(&seed) << 32);
|
|
}
|
|
return seed;
|
|
}
|
|
|
|
void AssertAllocPageInUse(GMutLock, const AllocPageInfo& aPage) {
|
|
MOZ_ASSERT(aPage.mState == AllocPageState::InUse);
|
|
// There is nothing to assert about aPage.mArenaId.
|
|
MOZ_ASSERT(aPage.mBaseAddr);
|
|
MOZ_ASSERT(aPage.UsableSize() > 0);
|
|
MOZ_ASSERT(aPage.mAllocStack.isSome());
|
|
MOZ_ASSERT(aPage.mFreeStack.isNothing());
|
|
MOZ_ASSERT(aPage.mReuseTime == kMaxTime);
|
|
}
|
|
|
|
void AssertAllocPageNotInUse(GMutLock, const AllocPageInfo& aPage) {
|
|
// We can assert a lot about `NeverAllocated` pages, but not much about
|
|
// `Freed` pages.
|
|
#ifdef DEBUG
|
|
bool isFresh = aPage.mState == AllocPageState::NeverAllocated;
|
|
MOZ_ASSERT(isFresh || aPage.mState == AllocPageState::Freed);
|
|
MOZ_ASSERT_IF(isFresh, aPage.mArenaId == Nothing());
|
|
MOZ_ASSERT(isFresh == (aPage.mBaseAddr == nullptr));
|
|
MOZ_ASSERT(isFresh == (aPage.mAllocStack.isNothing()));
|
|
MOZ_ASSERT(isFresh == (aPage.mFreeStack.isNothing()));
|
|
MOZ_ASSERT(aPage.mReuseTime != kMaxTime);
|
|
#endif
|
|
}
|
|
|
|
// RNG for deciding which allocations to treat specially. It doesn't need to
|
|
// be high quality.
|
|
//
|
|
// This is a raw pointer for the reason explained in the comment above
|
|
// GMut's constructor. Don't change it to UniquePtr or anything like that.
|
|
non_crypto::XorShift128PlusRNG mRNG;
|
|
|
|
AllocPageInfo mAllocPages[kNumAllocPages];
|
|
|
|
// How many page allocs are currently in use (the max is kNumAllocPages).
|
|
size_t mNumPageAllocs;
|
|
|
|
// How many allocations that could have been page allocs actually were? As
|
|
// constrained kNumAllocPages. If the hit ratio isn't close to 100% it's
|
|
// likely that the global constants are poorly chosen.
|
|
size_t mPageAllocHits;
|
|
size_t mPageAllocMisses;
|
|
};
|
|
|
|
Mutex GMut::sMutex;
|
|
|
|
static GMut* gMut;
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Page allocation operations
|
|
//---------------------------------------------------------------------------
|
|
|
|
// Attempt a page allocation if the time and the size are right. Allocated
|
|
// memory is zeroed if aZero is true. On failure, the caller should attempt a
|
|
// normal allocation via sMallocTable. Can be called in a context where
|
|
// GMut::sMutex is locked.
|
|
static void* MaybePageAlloc(const Maybe<arena_id_t>& aArenaId, size_t aReqSize,
|
|
size_t aAlignment, bool aZero) {
|
|
MOZ_ASSERT(IsPowerOfTwo(aAlignment));
|
|
|
|
if (aReqSize > kPageSize) {
|
|
return nullptr;
|
|
}
|
|
|
|
GAtomic::IncrementNow();
|
|
|
|
// Decrement the delay. If it's zero, we do a page allocation and reset the
|
|
// delay to a random number. Because the assignment to the random number isn't
|
|
// atomic w.r.t. the decrement, we might have a sequence like this:
|
|
//
|
|
// Thread 1 Thread 2 Thread 3
|
|
// -------- -------- --------
|
|
// (a) newDelay = --sAllocDelay (-> 0)
|
|
// (b) --sAllocDelay (-> -1)
|
|
// (c) (newDelay != 0) fails
|
|
// (d) --sAllocDelay (-> -2)
|
|
// (e) sAllocDelay = new_random_number()
|
|
//
|
|
// It's critical that sAllocDelay has ReleaseAcquire semantics, because that
|
|
// guarantees that exactly one thread will see sAllocDelay have the value 0.
|
|
// (Relaxed semantics wouldn't guarantee that.)
|
|
//
|
|
// It's also nice that sAllocDelay is signed, given that we can decrement to
|
|
// below zero. (Strictly speaking, an unsigned integer would also work due
|
|
// to wrapping, but a signed integer is conceptually cleaner.)
|
|
//
|
|
// Finally, note that the decrements that occur between (a) and (e) above are
|
|
// effectively ignored, because (e) clobbers them. This shouldn't be a
|
|
// problem; it effectively just adds a little more randomness to
|
|
// new_random_number(). An early version of this code tried to account for
|
|
// these decrements by doing `sAllocDelay += new_random_number()`. However, if
|
|
// new_random_value() is small, the number of decrements between (a) and (e)
|
|
// can easily exceed it, whereupon sAllocDelay ends up negative after
|
|
// `sAllocDelay += new_random_number()`, and the zero-check never succeeds
|
|
// again. (At least, not until sAllocDelay wraps around on overflow, which
|
|
// would take a very long time indeed.)
|
|
//
|
|
int32_t newDelay = GAtomic::DecrementDelay();
|
|
if (newDelay != 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (GTls::IsDisabledOnCurrentThread()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Disable on this thread *before* getting the stack trace.
|
|
AutoDisableOnCurrentThread disable;
|
|
|
|
// Get the stack trace *before* locking the mutex. If we return nullptr then
|
|
// it was a waste, but it's not so frequent, and doing a stack walk while
|
|
// the mutex is locked is problematic (see the big comment on
|
|
// StackTrace::Fill() for details).
|
|
StackTrace allocStack;
|
|
allocStack.Fill();
|
|
|
|
MutexAutoLock lock(GMut::sMutex);
|
|
|
|
Time now = GAtomic::Now();
|
|
Delay newAllocDelay = Rnd64ToDelay<kAvgAllocDelay>(gMut->Random64(lock));
|
|
|
|
// We start at a random page alloc and wrap around, to ensure pages get even
|
|
// amounts of use.
|
|
uint8_t* ptr = nullptr;
|
|
uint8_t* pagePtr = nullptr;
|
|
for (uintptr_t n = 0, i = size_t(gMut->Random64(lock)) % kNumAllocPages;
|
|
n < kNumAllocPages; n++, i = (i + 1) % kNumAllocPages) {
|
|
if (!gMut->IsPageAllocatable(lock, i, now)) {
|
|
continue;
|
|
}
|
|
|
|
pagePtr = gConst->AllocPagePtr(i);
|
|
MOZ_ASSERT(pagePtr);
|
|
bool ok =
|
|
#ifdef XP_WIN
|
|
!!VirtualAlloc(pagePtr, kPageSize, MEM_COMMIT, PAGE_READWRITE);
|
|
#else
|
|
mprotect(pagePtr, kPageSize, PROT_READ | PROT_WRITE) == 0;
|
|
#endif
|
|
size_t usableSize = sMallocTable.malloc_good_size(aReqSize);
|
|
if (ok) {
|
|
MOZ_ASSERT(usableSize > 0);
|
|
|
|
// Put the allocation as close to the end of the page as possible,
|
|
// allowing for alignment requirements.
|
|
ptr = pagePtr + kPageSize - usableSize;
|
|
if (aAlignment != 1) {
|
|
ptr = reinterpret_cast<uint8_t*>(
|
|
(reinterpret_cast<uintptr_t>(ptr) & ~(aAlignment - 1)));
|
|
}
|
|
|
|
gMut->SetPageInUse(lock, i, aArenaId, ptr, allocStack);
|
|
|
|
if (aZero) {
|
|
memset(ptr, 0, usableSize);
|
|
} else {
|
|
#ifdef DEBUG
|
|
memset(ptr, kAllocJunk, usableSize);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
gMut->IncPageAllocHits(lock);
|
|
LOG("PageAlloc(%zu, %zu) -> %p[%zu]/%p (%zu) (z%zu), sAllocDelay <- %zu, "
|
|
"fullness %zu/%zu, hits %zu/%zu (%zu%%)\n",
|
|
aReqSize, aAlignment, pagePtr, i, ptr, usableSize, size_t(aZero),
|
|
size_t(newAllocDelay), gMut->NumPageAllocs(lock), kNumAllocPages,
|
|
gMut->PageAllocHits(lock), gMut->PageAllocAttempts(lock),
|
|
gMut->PageAllocHitRate(lock));
|
|
break;
|
|
}
|
|
|
|
if (!pagePtr) {
|
|
// No pages are available, or VirtualAlloc/mprotect failed.
|
|
gMut->IncPageAllocMisses(lock);
|
|
LOG("No PageAlloc(%zu, %zu), sAllocDelay <- %zu, fullness %zu/%zu, hits "
|
|
"%zu/%zu "
|
|
"(%zu%%)\n",
|
|
aReqSize, aAlignment, size_t(newAllocDelay), gMut->NumPageAllocs(lock),
|
|
kNumAllocPages, gMut->PageAllocHits(lock),
|
|
gMut->PageAllocAttempts(lock), gMut->PageAllocHitRate(lock));
|
|
}
|
|
|
|
// Set the new alloc delay.
|
|
GAtomic::SetAllocDelay(newAllocDelay);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static void FreePage(GMutLock aLock, uintptr_t aIndex,
|
|
const Maybe<arena_id_t>& aArenaId,
|
|
const StackTrace& aFreeStack, Delay aReuseDelay) {
|
|
void* pagePtr = gConst->AllocPagePtr(aIndex);
|
|
#ifdef XP_WIN
|
|
if (!VirtualFree(pagePtr, kPageSize, MEM_DECOMMIT)) {
|
|
return;
|
|
}
|
|
#else
|
|
if (!mmap(pagePtr, kPageSize, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON,
|
|
-1, 0)) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
gMut->SetPageFreed(aLock, aIndex, aArenaId, aFreeStack, aReuseDelay);
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// replace-malloc machinery
|
|
//---------------------------------------------------------------------------
|
|
|
|
// This handles malloc, moz_arena_malloc, and realloc-with-a-nullptr.
|
|
MOZ_ALWAYS_INLINE static void* PageMalloc(const Maybe<arena_id_t>& aArenaId,
|
|
size_t aReqSize) {
|
|
void* ptr = MaybePageAlloc(aArenaId, aReqSize, /* aAlignment */ 1,
|
|
/* aZero */ false);
|
|
return ptr ? ptr
|
|
: (aArenaId.isSome()
|
|
? sMallocTable.moz_arena_malloc(*aArenaId, aReqSize)
|
|
: sMallocTable.malloc(aReqSize));
|
|
}
|
|
|
|
static void* replace_malloc(size_t aReqSize) {
|
|
return PageMalloc(Nothing(), aReqSize);
|
|
}
|
|
|
|
static Delay ReuseDelay(GMutLock aLock) {
|
|
return (kAvgPageReuseDelay / 2) +
|
|
Rnd64ToDelay<kAvgPageReuseDelay / 2>(gMut->Random64(aLock));
|
|
}
|
|
|
|
// This handles both calloc and moz_arena_calloc.
|
|
MOZ_ALWAYS_INLINE static void* PageCalloc(const Maybe<arena_id_t>& aArenaId,
|
|
size_t aNum, size_t aReqSize) {
|
|
CheckedInt<size_t> checkedSize = CheckedInt<size_t>(aNum) * aReqSize;
|
|
if (!checkedSize.isValid()) {
|
|
return nullptr;
|
|
}
|
|
|
|
void* ptr = MaybePageAlloc(aArenaId, checkedSize.value(), /* aAlignment */ 1,
|
|
/* aZero */ true);
|
|
return ptr ? ptr
|
|
: (aArenaId.isSome()
|
|
? sMallocTable.moz_arena_calloc(*aArenaId, aNum, aReqSize)
|
|
: sMallocTable.calloc(aNum, aReqSize));
|
|
}
|
|
|
|
static void* replace_calloc(size_t aNum, size_t aReqSize) {
|
|
return PageCalloc(Nothing(), aNum, aReqSize);
|
|
}
|
|
|
|
// This function handles both realloc and moz_arena_realloc.
|
|
//
|
|
// As always, realloc is complicated, and doubly so when there are two
|
|
// different kinds of allocations in play. Here are the possible transitions,
|
|
// and what we do in practice.
|
|
//
|
|
// - normal-to-normal: This is straightforward and obviously necessary.
|
|
//
|
|
// - normal-to-page: This is disallowed because it would require getting the
|
|
// arenaId of the normal allocation, which isn't possible in non-DEBUG builds
|
|
// for security reasons.
|
|
//
|
|
// - page-to-page: This is done whenever possible, i.e. whenever the new size
|
|
// is less than or equal to 4 KiB. This choice counterbalances the
|
|
// disallowing of normal-to-page allocations, in order to avoid biasing
|
|
// towards or away from page allocations. It always occurs in-place.
|
|
//
|
|
// - page-to-normal: this is done only when necessary, i.e. only when the new
|
|
// size is greater than 4 KiB. This choice naturally flows from the
|
|
// prior choice on page-to-page transitions.
|
|
//
|
|
// In summary: realloc doesn't change the allocation kind unless it must.
|
|
//
|
|
MOZ_ALWAYS_INLINE static void* PageRealloc(const Maybe<arena_id_t>& aArenaId,
|
|
void* aOldPtr, size_t aNewSize) {
|
|
if (!aOldPtr) {
|
|
// Null pointer. Treat like malloc(aNewSize).
|
|
return PageMalloc(aArenaId, aNewSize);
|
|
}
|
|
|
|
PtrKind pk = gConst->PtrKind(aOldPtr);
|
|
if (pk.IsNothing()) {
|
|
// A normal-to-normal transition.
|
|
return aArenaId.isSome()
|
|
? sMallocTable.moz_arena_realloc(*aArenaId, aOldPtr, aNewSize)
|
|
: sMallocTable.realloc(aOldPtr, aNewSize);
|
|
}
|
|
|
|
if (pk.IsGuardPage()) {
|
|
GMut::CrashOnGuardPage(aOldPtr);
|
|
}
|
|
|
|
// At this point we know we have an allocation page.
|
|
uintptr_t index = pk.AllocPageIndex();
|
|
|
|
// A page-to-something transition.
|
|
|
|
// Note that `disable` has no effect unless it is emplaced below.
|
|
Maybe<AutoDisableOnCurrentThread> disable;
|
|
// Get the stack trace *before* locking the mutex.
|
|
StackTrace stack;
|
|
if (GTls::IsDisabledOnCurrentThread()) {
|
|
// PHC is disabled on this thread. Leave the stack empty.
|
|
} else {
|
|
// Disable on this thread *before* getting the stack trace.
|
|
disable.emplace();
|
|
stack.Fill();
|
|
}
|
|
|
|
MutexAutoLock lock(GMut::sMutex);
|
|
|
|
// Check for realloc() of a freed block.
|
|
gMut->EnsureValidAndInUse(lock, aOldPtr, index);
|
|
|
|
if (aNewSize <= kPageSize) {
|
|
// A page-to-page transition. Just keep using the page allocation. We do
|
|
// this even if the thread is disabled, because it doesn't create a new
|
|
// page allocation. Note that ResizePageInUse() checks aArenaId.
|
|
//
|
|
// Move the bytes with memmove(), because the old allocation and the new
|
|
// allocation overlap. Move the usable size rather than the requested size,
|
|
// because the user might have used malloc_usable_size() and filled up the
|
|
// usable size.
|
|
size_t oldUsableSize = gMut->PageUsableSize(lock, index);
|
|
size_t newUsableSize = sMallocTable.malloc_good_size(aNewSize);
|
|
uint8_t* pagePtr = gConst->AllocPagePtr(index);
|
|
uint8_t* newPtr = pagePtr + kPageSize - newUsableSize;
|
|
memmove(newPtr, aOldPtr, std::min(oldUsableSize, aNewSize));
|
|
gMut->ResizePageInUse(lock, index, aArenaId, newPtr, stack);
|
|
LOG("PageRealloc-Reuse(%p, %zu) -> %p\n", aOldPtr, aNewSize, newPtr);
|
|
return newPtr;
|
|
}
|
|
|
|
// A page-to-normal transition (with the new size greater than page-sized).
|
|
// (Note that aArenaId is checked below.)
|
|
void* newPtr;
|
|
if (aArenaId.isSome()) {
|
|
newPtr = sMallocTable.moz_arena_malloc(*aArenaId, aNewSize);
|
|
} else {
|
|
Maybe<arena_id_t> oldArenaId = gMut->PageArena(lock, index);
|
|
newPtr = (oldArenaId.isSome()
|
|
? sMallocTable.moz_arena_malloc(*oldArenaId, aNewSize)
|
|
: sMallocTable.malloc(aNewSize));
|
|
}
|
|
if (!newPtr) {
|
|
return nullptr;
|
|
}
|
|
|
|
MOZ_ASSERT(aNewSize > kPageSize);
|
|
|
|
Delay reuseDelay = ReuseDelay(lock);
|
|
|
|
// Copy the usable size rather than the requested size, because the user
|
|
// might have used malloc_usable_size() and filled up the usable size. Note
|
|
// that FreePage() checks aArenaId (via SetPageFreed()).
|
|
size_t oldUsableSize = gMut->PageUsableSize(lock, index);
|
|
memcpy(newPtr, aOldPtr, std::min(oldUsableSize, aNewSize));
|
|
FreePage(lock, index, aArenaId, stack, reuseDelay);
|
|
LOG("PageRealloc-Free(%p[%zu], %zu) -> %p, %zu delay, reuse at ~%zu\n",
|
|
aOldPtr, index, aNewSize, newPtr, size_t(reuseDelay),
|
|
size_t(GAtomic::Now()) + reuseDelay);
|
|
|
|
return newPtr;
|
|
}
|
|
|
|
static void* replace_realloc(void* aOldPtr, size_t aNewSize) {
|
|
return PageRealloc(Nothing(), aOldPtr, aNewSize);
|
|
}
|
|
|
|
// This handles both free and moz_arena_free.
|
|
MOZ_ALWAYS_INLINE static void PageFree(const Maybe<arena_id_t>& aArenaId,
|
|
void* aPtr) {
|
|
PtrKind pk = gConst->PtrKind(aPtr);
|
|
if (pk.IsNothing()) {
|
|
// Not a page allocation.
|
|
return aArenaId.isSome() ? sMallocTable.moz_arena_free(*aArenaId, aPtr)
|
|
: sMallocTable.free(aPtr);
|
|
}
|
|
|
|
if (pk.IsGuardPage()) {
|
|
GMut::CrashOnGuardPage(aPtr);
|
|
}
|
|
|
|
// At this point we know we have an allocation page.
|
|
uintptr_t index = pk.AllocPageIndex();
|
|
|
|
// Note that `disable` has no effect unless it is emplaced below.
|
|
Maybe<AutoDisableOnCurrentThread> disable;
|
|
// Get the stack trace *before* locking the mutex.
|
|
StackTrace freeStack;
|
|
if (GTls::IsDisabledOnCurrentThread()) {
|
|
// PHC is disabled on this thread. Leave the stack empty.
|
|
} else {
|
|
// Disable on this thread *before* getting the stack trace.
|
|
disable.emplace();
|
|
freeStack.Fill();
|
|
}
|
|
|
|
MutexAutoLock lock(GMut::sMutex);
|
|
|
|
// Check for a double-free.
|
|
gMut->EnsureValidAndInUse(lock, aPtr, index);
|
|
|
|
// Note that FreePage() checks aArenaId (via SetPageFreed()).
|
|
Delay reuseDelay = ReuseDelay(lock);
|
|
FreePage(lock, index, aArenaId, freeStack, reuseDelay);
|
|
|
|
LOG("PageFree(%p[%zu]), %zu delay, reuse at ~%zu, fullness %zu/%zu\n", aPtr,
|
|
index, size_t(reuseDelay), size_t(GAtomic::Now()) + reuseDelay,
|
|
gMut->NumPageAllocs(lock), kNumAllocPages);
|
|
}
|
|
|
|
static void replace_free(void* aPtr) { return PageFree(Nothing(), aPtr); }
|
|
|
|
// This handles memalign and moz_arena_memalign.
|
|
MOZ_ALWAYS_INLINE static void* PageMemalign(const Maybe<arena_id_t>& aArenaId,
|
|
size_t aAlignment,
|
|
size_t aReqSize) {
|
|
MOZ_RELEASE_ASSERT(IsPowerOfTwo(aAlignment));
|
|
|
|
// PHC can't satisfy an alignment greater than a page size, so fall back to
|
|
// mozjemalloc in that case.
|
|
void* ptr = nullptr;
|
|
if (aAlignment <= kPageSize) {
|
|
ptr = MaybePageAlloc(aArenaId, aReqSize, aAlignment, /* aZero */ false);
|
|
}
|
|
return ptr ? ptr
|
|
: (aArenaId.isSome()
|
|
? sMallocTable.moz_arena_memalign(*aArenaId, aAlignment,
|
|
aReqSize)
|
|
: sMallocTable.memalign(aAlignment, aReqSize));
|
|
}
|
|
|
|
static void* replace_memalign(size_t aAlignment, size_t aReqSize) {
|
|
return PageMemalign(Nothing(), aAlignment, aReqSize);
|
|
}
|
|
|
|
static size_t replace_malloc_usable_size(usable_ptr_t aPtr) {
|
|
PtrKind pk = gConst->PtrKind(aPtr);
|
|
if (pk.IsNothing()) {
|
|
// Not a page allocation. Measure it normally.
|
|
return sMallocTable.malloc_usable_size(aPtr);
|
|
}
|
|
|
|
if (pk.IsGuardPage()) {
|
|
GMut::CrashOnGuardPage(const_cast<void*>(aPtr));
|
|
}
|
|
|
|
// At this point we know we have an allocation page.
|
|
uintptr_t index = pk.AllocPageIndex();
|
|
|
|
MutexAutoLock lock(GMut::sMutex);
|
|
|
|
// Check for malloc_usable_size() of a freed block.
|
|
gMut->EnsureValidAndInUse(lock, const_cast<void*>(aPtr), index);
|
|
|
|
return gMut->PageUsableSize(lock, index);
|
|
}
|
|
|
|
void replace_jemalloc_stats(jemalloc_stats_t* aStats,
|
|
jemalloc_bin_stats_t* aBinStats) {
|
|
sMallocTable.jemalloc_stats_internal(aStats, aBinStats);
|
|
|
|
// Add all the pages to `mapped`.
|
|
size_t mapped = kAllPagesSize;
|
|
aStats->mapped += mapped;
|
|
|
|
size_t allocated = 0;
|
|
{
|
|
MutexAutoLock lock(GMut::sMutex);
|
|
|
|
// Add usable space of in-use allocations to `allocated`.
|
|
for (size_t i = 0; i < kNumAllocPages; i++) {
|
|
if (gMut->IsPageInUse(lock, i)) {
|
|
allocated += gMut->PageUsableSize(lock, i);
|
|
}
|
|
}
|
|
}
|
|
aStats->allocated += allocated;
|
|
|
|
// Waste is the gap between `allocated` and `mapped`.
|
|
size_t waste = mapped - allocated;
|
|
aStats->waste += waste;
|
|
|
|
// aStats.page_cache and aStats.bin_unused are left unchanged because PHC
|
|
// doesn't have anything corresponding to those.
|
|
|
|
// gConst and gMut are normal heap allocations, so they're measured by
|
|
// mozjemalloc as `allocated`. Move them into `bookkeeping`.
|
|
size_t bookkeeping = sMallocTable.malloc_usable_size(gConst) +
|
|
sMallocTable.malloc_usable_size(gMut);
|
|
aStats->allocated -= bookkeeping;
|
|
aStats->bookkeeping += bookkeeping;
|
|
}
|
|
|
|
void replace_jemalloc_ptr_info(const void* aPtr, jemalloc_ptr_info_t* aInfo) {
|
|
// We need to implement this properly, because various code locations do
|
|
// things like checking that allocations are in the expected arena.
|
|
PtrKind pk = gConst->PtrKind(aPtr);
|
|
if (pk.IsNothing()) {
|
|
// Not a page allocation.
|
|
return sMallocTable.jemalloc_ptr_info(aPtr, aInfo);
|
|
}
|
|
|
|
if (pk.IsGuardPage()) {
|
|
// Treat a guard page as unknown because there's no better alternative.
|
|
*aInfo = {TagUnknown, nullptr, 0, 0};
|
|
return;
|
|
}
|
|
|
|
// At this point we know we have an allocation page.
|
|
uintptr_t index = pk.AllocPageIndex();
|
|
|
|
MutexAutoLock lock(GMut::sMutex);
|
|
|
|
gMut->FillJemallocPtrInfo(lock, aPtr, index, aInfo);
|
|
#if DEBUG
|
|
LOG("JemallocPtrInfo(%p[%zu]) -> {%zu, %p, %zu, %zu}\n", aPtr, index,
|
|
size_t(aInfo->tag), aInfo->addr, aInfo->size, aInfo->arenaId);
|
|
#else
|
|
LOG("JemallocPtrInfo(%p[%zu]) -> {%zu, %p, %zu}\n", aPtr, index,
|
|
size_t(aInfo->tag), aInfo->addr, aInfo->size);
|
|
#endif
|
|
}
|
|
|
|
arena_id_t replace_moz_create_arena_with_params(arena_params_t* aParams) {
|
|
// No need to do anything special here.
|
|
return sMallocTable.moz_create_arena_with_params(aParams);
|
|
}
|
|
|
|
void replace_moz_dispose_arena(arena_id_t aArenaId) {
|
|
// No need to do anything special here.
|
|
return sMallocTable.moz_dispose_arena(aArenaId);
|
|
}
|
|
|
|
void* replace_moz_arena_malloc(arena_id_t aArenaId, size_t aReqSize) {
|
|
return PageMalloc(Some(aArenaId), aReqSize);
|
|
}
|
|
|
|
void* replace_moz_arena_calloc(arena_id_t aArenaId, size_t aNum,
|
|
size_t aReqSize) {
|
|
return PageCalloc(Some(aArenaId), aNum, aReqSize);
|
|
}
|
|
|
|
void* replace_moz_arena_realloc(arena_id_t aArenaId, void* aOldPtr,
|
|
size_t aNewSize) {
|
|
return PageRealloc(Some(aArenaId), aOldPtr, aNewSize);
|
|
}
|
|
|
|
void replace_moz_arena_free(arena_id_t aArenaId, void* aPtr) {
|
|
return PageFree(Some(aArenaId), aPtr);
|
|
}
|
|
|
|
void* replace_moz_arena_memalign(arena_id_t aArenaId, size_t aAlignment,
|
|
size_t aReqSize) {
|
|
return PageMemalign(Some(aArenaId), aAlignment, aReqSize);
|
|
}
|
|
|
|
class PHCBridge : public ReplaceMallocBridge {
|
|
virtual bool IsPHCAllocation(const void* aPtr, phc::AddrInfo* aOut) override {
|
|
PtrKind pk = gConst->PtrKind(aPtr);
|
|
if (pk.IsNothing()) {
|
|
return false;
|
|
}
|
|
|
|
bool isGuardPage = false;
|
|
if (pk.IsGuardPage()) {
|
|
if ((uintptr_t(aPtr) % kPageSize) < (kPageSize / 2)) {
|
|
// The address is in the lower half of a guard page, so it's probably an
|
|
// overflow. But first check that it is not on the very first guard
|
|
// page, in which case it cannot be an overflow, and we ignore it.
|
|
if (gConst->IsInFirstGuardPage(aPtr)) {
|
|
return false;
|
|
}
|
|
|
|
// Get the allocation page preceding this guard page.
|
|
pk = gConst->PtrKind(static_cast<const uint8_t*>(aPtr) - kPageSize);
|
|
|
|
} else {
|
|
// The address is in the upper half of a guard page, so it's probably an
|
|
// underflow. Get the allocation page following this guard page.
|
|
pk = gConst->PtrKind(static_cast<const uint8_t*>(aPtr) + kPageSize);
|
|
}
|
|
|
|
// Make a note of the fact that we hit a guard page.
|
|
isGuardPage = true;
|
|
}
|
|
|
|
// At this point we know we have an allocation page.
|
|
uintptr_t index = pk.AllocPageIndex();
|
|
|
|
if (aOut) {
|
|
MutexAutoLock lock(GMut::sMutex);
|
|
gMut->FillAddrInfo(lock, index, aPtr, isGuardPage, *aOut);
|
|
LOG("IsPHCAllocation: %zu, %p, %zu, %zu, %zu\n", size_t(aOut->mKind),
|
|
aOut->mBaseAddr, aOut->mUsableSize,
|
|
aOut->mAllocStack.isSome() ? aOut->mAllocStack->mLength : 0,
|
|
aOut->mFreeStack.isSome() ? aOut->mFreeStack->mLength : 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
virtual void DisablePHCOnCurrentThread() override {
|
|
GTls::DisableOnCurrentThread();
|
|
LOG("DisablePHCOnCurrentThread: %zu\n", 0ul);
|
|
}
|
|
|
|
virtual void ReenablePHCOnCurrentThread() override {
|
|
GTls::EnableOnCurrentThread();
|
|
LOG("ReenablePHCOnCurrentThread: %zu\n", 0ul);
|
|
}
|
|
|
|
virtual bool IsPHCEnabledOnCurrentThread() override {
|
|
bool enabled = !GTls::IsDisabledOnCurrentThread();
|
|
LOG("IsPHCEnabledOnCurrentThread: %zu\n", size_t(enabled));
|
|
return enabled;
|
|
}
|
|
};
|
|
|
|
// WARNING: this function runs *very* early -- before all static initializers
|
|
// have run. For this reason, non-scalar globals (gConst, gMut) are allocated
|
|
// dynamically (so we can guarantee their construction in this function) rather
|
|
// than statically. GAtomic and GTls contain simple static data that doesn't
|
|
// involve static initializers so they don't need to be allocated dynamically.
|
|
void replace_init(malloc_table_t* aMallocTable, ReplaceMallocBridge** aBridge) {
|
|
// Don't run PHC if the page size isn't 4 KiB.
|
|
jemalloc_stats_t stats;
|
|
aMallocTable->jemalloc_stats_internal(&stats, nullptr);
|
|
if (stats.page_size != kPageSize) {
|
|
return;
|
|
}
|
|
|
|
sMallocTable = *aMallocTable;
|
|
|
|
// The choices of which functions to replace are complex enough that we set
|
|
// them individually instead of using MALLOC_FUNCS/malloc_decls.h.
|
|
|
|
aMallocTable->malloc = replace_malloc;
|
|
aMallocTable->calloc = replace_calloc;
|
|
aMallocTable->realloc = replace_realloc;
|
|
aMallocTable->free = replace_free;
|
|
aMallocTable->memalign = replace_memalign;
|
|
|
|
// posix_memalign, aligned_alloc & valloc: unset, which means they fall back
|
|
// to replace_memalign.
|
|
aMallocTable->malloc_usable_size = replace_malloc_usable_size;
|
|
// default malloc_good_size: the default suffices.
|
|
|
|
aMallocTable->jemalloc_stats_internal = replace_jemalloc_stats;
|
|
// jemalloc_purge_freed_pages: the default suffices.
|
|
// jemalloc_free_dirty_pages: the default suffices.
|
|
// jemalloc_thread_local_arena: the default suffices.
|
|
aMallocTable->jemalloc_ptr_info = replace_jemalloc_ptr_info;
|
|
|
|
aMallocTable->moz_create_arena_with_params =
|
|
replace_moz_create_arena_with_params;
|
|
aMallocTable->moz_dispose_arena = replace_moz_dispose_arena;
|
|
aMallocTable->moz_arena_malloc = replace_moz_arena_malloc;
|
|
aMallocTable->moz_arena_calloc = replace_moz_arena_calloc;
|
|
aMallocTable->moz_arena_realloc = replace_moz_arena_realloc;
|
|
aMallocTable->moz_arena_free = replace_moz_arena_free;
|
|
aMallocTable->moz_arena_memalign = replace_moz_arena_memalign;
|
|
|
|
static PHCBridge bridge;
|
|
*aBridge = &bridge;
|
|
|
|
#ifndef XP_WIN
|
|
// Avoid deadlocks when forking by acquiring our state lock prior to forking
|
|
// and releasing it after forking. See |LogAlloc|'s |replace_init| for
|
|
// in-depth details.
|
|
//
|
|
// Note: This must run after attempting an allocation so as to give the
|
|
// system malloc a chance to insert its own atfork handler.
|
|
sMallocTable.malloc(-1);
|
|
pthread_atfork(GMut::prefork, GMut::postfork, GMut::postfork);
|
|
#endif
|
|
|
|
// gConst and gMut are never freed. They live for the life of the process.
|
|
gConst = InfallibleAllocPolicy::new_<GConst>();
|
|
GTls::Init();
|
|
gMut = InfallibleAllocPolicy::new_<GMut>();
|
|
{
|
|
MutexAutoLock lock(GMut::sMutex);
|
|
Delay firstAllocDelay =
|
|
Rnd64ToDelay<kAvgFirstAllocDelay>(gMut->Random64(lock));
|
|
GAtomic::Init(firstAllocDelay);
|
|
}
|
|
}
|