forked from mirrors/gecko-dev
`PrintUsageThenExit(code)` was supposed to exit when `code` was not zero, but: - The name didn't reflect that, so it was confusing that `PrintUsageThenExit(0)` would *not* exit. - The implementation in the Base Profiler exited anyway! This caused issues with some legacy code that still used the now-removed "threads" feature. This patch renames the function to just `PrintUsage()` and never exits, leaving the caller to invoke `exit(code)` as needed -- with the added benefit that it's possible to exit with a zero code, useful in cases where an exit is not actually an error. Differential Revision: https://phabricator.services.mozilla.com/D135666
6333 lines
243 KiB
C++
6333 lines
243 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
// There are three kinds of samples done by the profiler.
|
|
//
|
|
// - A "periodic" sample is the most complex kind. It is done in response to a
|
|
// timer while the profiler is active. It involves writing a stack trace plus
|
|
// a variety of other values (memory measurements, responsiveness
|
|
// measurements, markers, etc.) into the main ProfileBuffer. The sampling is
|
|
// done from off-thread, and so SuspendAndSampleAndResumeThread() is used to
|
|
// get the register values.
|
|
//
|
|
// - A "synchronous" sample is a simpler kind. It is done in response to an API
|
|
// call (profiler_get_backtrace()). It involves writing a stack trace and
|
|
// little else into a temporary ProfileBuffer, and wrapping that up in a
|
|
// ProfilerBacktrace that can be subsequently used in a marker. The sampling
|
|
// is done on-thread, and so Registers::SyncPopulate() is used to get the
|
|
// register values.
|
|
//
|
|
// - A "backtrace" sample is the simplest kind. It is done in response to an
|
|
// API call (profiler_suspend_and_sample_thread()). It involves getting a
|
|
// stack trace via a ProfilerStackCollector; it does not write to a
|
|
// ProfileBuffer. The sampling is done from off-thread, and so uses
|
|
// SuspendAndSampleAndResumeThread() to get the register values.
|
|
|
|
#include "platform.h"
|
|
|
|
#include "GeckoProfiler.h"
|
|
#include "GeckoProfilerReporter.h"
|
|
#include "PageInformation.h"
|
|
#include "ProfileBuffer.h"
|
|
#include "ProfiledThreadData.h"
|
|
#include "ProfilerBacktrace.h"
|
|
#include "ProfilerChild.h"
|
|
#include "ProfilerCodeAddressService.h"
|
|
#include "ProfilerIOInterposeObserver.h"
|
|
#include "ProfilerParent.h"
|
|
#include "ProfilerRustBindings.h"
|
|
#include "shared-libraries.h"
|
|
#include "VTuneProfiler.h"
|
|
|
|
#include "js/TraceLoggerAPI.h"
|
|
#include "js/ProfilingFrameIterator.h"
|
|
#include "memory_hooks.h"
|
|
#include "mozilla/ArrayUtils.h"
|
|
#include "mozilla/Atomics.h"
|
|
#include "mozilla/AutoProfilerLabel.h"
|
|
#include "mozilla/ExtensionPolicyService.h"
|
|
#include "mozilla/extensions/WebExtensionPolicy.h"
|
|
#include "mozilla/Monitor.h"
|
|
#include "mozilla/Preferences.h"
|
|
#include "mozilla/Printf.h"
|
|
#include "mozilla/ProcInfo.h"
|
|
#include "mozilla/ProfileBufferChunkManagerSingle.h"
|
|
#include "mozilla/ProfileBufferChunkManagerWithLocalLimit.h"
|
|
#include "mozilla/ProfileChunkedBuffer.h"
|
|
#include "mozilla/SchedulerGroup.h"
|
|
#include "mozilla/Services.h"
|
|
#include "mozilla/StackWalk.h"
|
|
#ifdef XP_WIN
|
|
# include "mozilla/StackWalkThread.h"
|
|
#endif
|
|
#include "mozilla/StaticPtr.h"
|
|
#include "mozilla/ThreadLocal.h"
|
|
#include "mozilla/TimeStamp.h"
|
|
#include "mozilla/UniquePtr.h"
|
|
#include "mozilla/Vector.h"
|
|
#include "BaseProfiler.h"
|
|
#include "nsDirectoryServiceDefs.h"
|
|
#include "nsDirectoryServiceUtils.h"
|
|
#include "nsIDocShell.h"
|
|
#include "nsIHttpProtocolHandler.h"
|
|
#include "nsIObserverService.h"
|
|
#include "nsIPropertyBag2.h"
|
|
#include "nsIXULAppInfo.h"
|
|
#include "nsIXULRuntime.h"
|
|
#include "nsJSPrincipals.h"
|
|
#include "nsMemoryReporterManager.h"
|
|
#include "nsPIDOMWindow.h"
|
|
#include "nsProfilerStartParams.h"
|
|
#include "nsScriptSecurityManager.h"
|
|
#include "nsSystemInfo.h"
|
|
#include "nsThreadUtils.h"
|
|
#include "nsXULAppAPI.h"
|
|
#include "Tracing.h"
|
|
#include "prdtoa.h"
|
|
#include "prtime.h"
|
|
|
|
#include <algorithm>
|
|
#include <errno.h>
|
|
#include <fstream>
|
|
#include <ostream>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string_view>
|
|
#include <type_traits>
|
|
|
|
#if defined(GP_OS_android)
|
|
# include "mozilla/java/GeckoJavaSamplerNatives.h"
|
|
#endif
|
|
|
|
#if defined(GP_OS_darwin)
|
|
# include "nsCocoaFeatures.h"
|
|
#endif
|
|
|
|
// Win32 builds always have frame pointers, so FramePointerStackWalk() always
|
|
// works.
|
|
#if defined(GP_PLAT_x86_windows)
|
|
# define HAVE_NATIVE_UNWIND
|
|
# define USE_FRAME_POINTER_STACK_WALK
|
|
#endif
|
|
|
|
// Win64 builds always omit frame pointers, so we use the slower
|
|
// MozStackWalk(), which works in that case.
|
|
#if defined(GP_PLAT_amd64_windows)
|
|
# define HAVE_NATIVE_UNWIND
|
|
# define USE_MOZ_STACK_WALK
|
|
#endif
|
|
|
|
// AArch64 Win64 doesn't seem to use frame pointers, so we use the slower
|
|
// MozStackWalk().
|
|
#if defined(GP_PLAT_arm64_windows)
|
|
# define HAVE_NATIVE_UNWIND
|
|
# define USE_MOZ_STACK_WALK
|
|
#endif
|
|
|
|
// Mac builds only have frame pointers when MOZ_PROFILING is specified, so
|
|
// FramePointerStackWalk() only works in that case. We don't use MozStackWalk()
|
|
// on Mac.
|
|
#if defined(GP_OS_darwin) && defined(MOZ_PROFILING)
|
|
# define HAVE_NATIVE_UNWIND
|
|
# define USE_FRAME_POINTER_STACK_WALK
|
|
#endif
|
|
|
|
// Android builds use the ARM Exception Handling ABI to unwind.
|
|
#if defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
|
|
# define HAVE_NATIVE_UNWIND
|
|
# define USE_EHABI_STACKWALK
|
|
# include "EHABIStackWalk.h"
|
|
#endif
|
|
|
|
// Linux/BSD builds use LUL, which uses DWARF info to unwind stacks.
|
|
#if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_x86_linux) || \
|
|
defined(GP_PLAT_amd64_android) || defined(GP_PLAT_x86_android) || \
|
|
defined(GP_PLAT_mips64_linux) || defined(GP_PLAT_arm64_linux) || \
|
|
defined(GP_PLAT_arm64_android) || defined(GP_PLAT_amd64_freebsd) || \
|
|
defined(GP_PLAT_arm64_freebsd)
|
|
# define HAVE_NATIVE_UNWIND
|
|
# define USE_LUL_STACKWALK
|
|
# include "lul/LulMain.h"
|
|
# include "lul/platform-linux-lul.h"
|
|
|
|
// On linux we use LUL for periodic samples and synchronous samples, but we use
|
|
// FramePointerStackWalk for backtrace samples when MOZ_PROFILING is enabled.
|
|
// (See the comment at the top of the file for a definition of
|
|
// periodic/synchronous/backtrace.).
|
|
//
|
|
// FramePointerStackWalk can produce incomplete stacks when the current entry is
|
|
// in a shared library without framepointers, however LUL can take a long time
|
|
// to initialize, which is undesirable for consumers of
|
|
// profiler_suspend_and_sample_thread like the Background Hang Reporter.
|
|
# if defined(MOZ_PROFILING)
|
|
# define USE_FRAME_POINTER_STACK_WALK
|
|
# endif
|
|
#endif
|
|
|
|
// We can only stackwalk without expensive initialization on platforms which
|
|
// support FramePointerStackWalk or MozStackWalk. LUL Stackwalking requires
|
|
// initializing LUL, and EHABIStackWalk requires initializing EHABI, both of
|
|
// which can be expensive.
|
|
#if defined(USE_FRAME_POINTER_STACK_WALK) || defined(USE_MOZ_STACK_WALK)
|
|
# define HAVE_FASTINIT_NATIVE_UNWIND
|
|
#endif
|
|
|
|
#ifdef MOZ_VALGRIND
|
|
# include <valgrind/memcheck.h>
|
|
#else
|
|
# define VALGRIND_MAKE_MEM_DEFINED(_addr, _len) ((void)0)
|
|
#endif
|
|
|
|
#if defined(GP_OS_linux) || defined(GP_OS_android) || defined(GP_OS_freebsd)
|
|
# include <ucontext.h>
|
|
#endif
|
|
|
|
using namespace mozilla;
|
|
|
|
using mozilla::profiler::detail::RacyFeatures;
|
|
using ThreadRegistration = mozilla::profiler::ThreadRegistration;
|
|
using ThreadRegistrationInfo = mozilla::profiler::ThreadRegistrationInfo;
|
|
using ThreadRegistry = mozilla::profiler::ThreadRegistry;
|
|
|
|
LazyLogModule gProfilerLog("prof");
|
|
|
|
#if defined(GP_OS_android)
|
|
class GeckoJavaSampler
|
|
: public java::GeckoJavaSampler::Natives<GeckoJavaSampler> {
|
|
private:
|
|
GeckoJavaSampler();
|
|
|
|
public:
|
|
static double GetProfilerTime() {
|
|
if (!profiler_is_active()) {
|
|
return 0.0;
|
|
}
|
|
return profiler_time();
|
|
};
|
|
};
|
|
#endif
|
|
|
|
constexpr static bool ValidateFeatures() {
|
|
int expectedFeatureNumber = 0;
|
|
|
|
// Feature numbers should start at 0 and increase by 1 each.
|
|
#define CHECK_FEATURE(n_, str_, Name_, desc_) \
|
|
if ((n_) != expectedFeatureNumber) { \
|
|
return false; \
|
|
} \
|
|
++expectedFeatureNumber;
|
|
|
|
PROFILER_FOR_EACH_FEATURE(CHECK_FEATURE)
|
|
|
|
#undef CHECK_FEATURE
|
|
|
|
return true;
|
|
}
|
|
|
|
static_assert(ValidateFeatures(), "Feature list is invalid");
|
|
|
|
// Return all features that are available on this platform.
|
|
static uint32_t AvailableFeatures() {
|
|
uint32_t features = 0;
|
|
|
|
#define ADD_FEATURE(n_, str_, Name_, desc_) \
|
|
ProfilerFeature::Set##Name_(features);
|
|
|
|
// Add all the possible features.
|
|
PROFILER_FOR_EACH_FEATURE(ADD_FEATURE)
|
|
|
|
#undef ADD_FEATURE
|
|
|
|
// Now remove features not supported on this platform/configuration.
|
|
#if !defined(GP_OS_android)
|
|
ProfilerFeature::ClearJava(features);
|
|
#endif
|
|
#if !defined(HAVE_NATIVE_UNWIND)
|
|
ProfilerFeature::ClearStackWalk(features);
|
|
#endif
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
if (getenv("XPCOM_MEM_BLOAT_LOG")) {
|
|
NS_WARNING("XPCOM_MEM_BLOAT_LOG is set, disabling native allocations.");
|
|
// The memory hooks are available, but the bloat log is enabled, which is
|
|
// not compatible with the native allocations tracking. See the comment in
|
|
// enable_native_allocations() (tools/profiler/core/memory_hooks.cpp) for
|
|
// more information.
|
|
ProfilerFeature::ClearNativeAllocations(features);
|
|
}
|
|
#else
|
|
// The memory hooks are not available.
|
|
ProfilerFeature::ClearNativeAllocations(features);
|
|
#endif
|
|
if (!JS::TraceLoggerSupported()) {
|
|
ProfilerFeature::ClearJSTracer(features);
|
|
}
|
|
#if !defined(GP_OS_windows)
|
|
ProfilerFeature::ClearNoTimerResolutionChange(features);
|
|
#endif
|
|
|
|
return features;
|
|
}
|
|
|
|
// Default features common to all contexts (even if not available).
|
|
static constexpr uint32_t DefaultFeatures() {
|
|
return ProfilerFeature::Java | ProfilerFeature::JS | ProfilerFeature::Leaf |
|
|
ProfilerFeature::StackWalk | ProfilerFeature::CPUUtilization |
|
|
ProfilerFeature::Screenshots;
|
|
}
|
|
|
|
// Extra default features when MOZ_PROFILER_STARTUP is set (even if not
|
|
// available).
|
|
static constexpr uint32_t StartupExtraDefaultFeatures() {
|
|
// Enable file I/Os by default for startup profiles as startup is heavy on
|
|
// I/O operations.
|
|
return ProfilerFeature::FileIOAll | ProfilerFeature::IPCMessages;
|
|
}
|
|
|
|
// RAII class to lock the profiler mutex.
|
|
// It provides a mechanism to determine if it is locked or not in order for
|
|
// memory hooks to avoid re-entering the profiler locked state.
|
|
// Locking order: Profiler, ThreadRegistry, ThreadRegistration.
|
|
class MOZ_RAII PSAutoLock {
|
|
public:
|
|
PSAutoLock()
|
|
: mLock([]() -> mozilla::baseprofiler::detail::BaseProfilerMutex& {
|
|
// In DEBUG builds, *before* we attempt to lock gPSMutex, we want to
|
|
// check that the ThreadRegistry and ThreadRegistration mutexes are
|
|
// *not* locked on this thread, to avoid inversion deadlocks.
|
|
MOZ_ASSERT(!ThreadRegistry::IsRegistryMutexLockedOnCurrentThread());
|
|
MOZ_ASSERT(!ThreadRegistration::IsDataMutexLockedOnCurrentThread());
|
|
return gPSMutex;
|
|
}()) {}
|
|
|
|
PSAutoLock(const PSAutoLock&) = delete;
|
|
void operator=(const PSAutoLock&) = delete;
|
|
|
|
static bool IsLockedOnCurrentThread() {
|
|
return gPSMutex.IsLockedOnCurrentThread();
|
|
}
|
|
|
|
private:
|
|
static mozilla::baseprofiler::detail::BaseProfilerMutex gPSMutex;
|
|
mozilla::baseprofiler::detail::BaseProfilerAutoLock mLock;
|
|
};
|
|
|
|
/* static */ mozilla::baseprofiler::detail::BaseProfilerMutex
|
|
PSAutoLock::gPSMutex{"Gecko Profiler mutex"};
|
|
|
|
// Only functions that take a PSLockRef arg can access CorePS's and ActivePS's
|
|
// fields.
|
|
typedef const PSAutoLock& PSLockRef;
|
|
|
|
#define PS_GET(type_, name_) \
|
|
static type_ name_(PSLockRef) { \
|
|
MOZ_ASSERT(sInstance); \
|
|
return sInstance->m##name_; \
|
|
}
|
|
|
|
#define PS_GET_LOCKLESS(type_, name_) \
|
|
static type_ name_() { \
|
|
MOZ_ASSERT(sInstance); \
|
|
return sInstance->m##name_; \
|
|
}
|
|
|
|
#define PS_GET_AND_SET(type_, name_) \
|
|
PS_GET(type_, name_) \
|
|
static void Set##name_(PSLockRef, type_ a##name_) { \
|
|
MOZ_ASSERT(sInstance); \
|
|
sInstance->m##name_ = a##name_; \
|
|
}
|
|
|
|
static constexpr size_t MAX_JS_FRAMES =
|
|
mozilla::profiler::ThreadRegistrationData::MAX_JS_FRAMES;
|
|
using JsFrame = mozilla::profiler::ThreadRegistrationData::JsFrame;
|
|
using JsFrameBuffer = mozilla::profiler::ThreadRegistrationData::JsFrameBuffer;
|
|
|
|
// All functions in this file can run on multiple threads unless they have an
|
|
// NS_IsMainThread() assertion.
|
|
|
|
// This class contains the profiler's core global state, i.e. that which is
|
|
// valid even when the profiler is not active. Most profile operations can't do
|
|
// anything useful when this class is not instantiated, so we release-assert
|
|
// its non-nullness in all such operations.
|
|
//
|
|
// Accesses to CorePS are guarded by gPSMutex. Getters and setters take a
|
|
// PSAutoLock reference as an argument as proof that the gPSMutex is currently
|
|
// locked. This makes it clear when gPSMutex is locked and helps avoid
|
|
// accidental unlocked accesses to global state. There are ways to circumvent
|
|
// this mechanism, but please don't do so without *very* good reason and a
|
|
// detailed explanation.
|
|
//
|
|
// The exceptions to this rule:
|
|
//
|
|
// - mProcessStartTime, because it's immutable;
|
|
class CorePS {
|
|
private:
|
|
CorePS()
|
|
: mProcessStartTime(TimeStamp::ProcessCreation()),
|
|
// This needs its own mutex, because it is used concurrently from
|
|
// functions guarded by gPSMutex as well as others without safety (e.g.,
|
|
// profiler_add_marker). It is *not* used inside the critical section of
|
|
// the sampler, because mutexes cannot be used there.
|
|
mCoreBuffer(ProfileChunkedBuffer::ThreadSafety::WithMutex)
|
|
#ifdef USE_LUL_STACKWALK
|
|
,
|
|
mLul(nullptr)
|
|
#endif
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread(),
|
|
"CorePS must be created from the main thread");
|
|
}
|
|
|
|
~CorePS() {
|
|
#ifdef USE_LUL_STACKWALK
|
|
delete sInstance->mLul;
|
|
#endif
|
|
}
|
|
|
|
public:
|
|
static void Create(PSLockRef aLock) {
|
|
MOZ_ASSERT(!sInstance);
|
|
sInstance = new CorePS();
|
|
}
|
|
|
|
static void Destroy(PSLockRef aLock) {
|
|
MOZ_ASSERT(sInstance);
|
|
delete sInstance;
|
|
sInstance = nullptr;
|
|
}
|
|
|
|
// Unlike ActivePS::Exists(), CorePS::Exists() can be called without gPSMutex
|
|
// being locked. This is because CorePS is instantiated so early on the main
|
|
// thread that we don't have to worry about it being racy.
|
|
static bool Exists() { return !!sInstance; }
|
|
|
|
static void AddSizeOf(PSLockRef, MallocSizeOf aMallocSizeOf,
|
|
size_t& aProfSize, size_t& aLulSize) {
|
|
MOZ_ASSERT(sInstance);
|
|
|
|
aProfSize += aMallocSizeOf(sInstance);
|
|
|
|
aProfSize += ThreadRegistry::SizeOfIncludingThis(aMallocSizeOf);
|
|
|
|
for (auto& registeredPage : sInstance->mRegisteredPages) {
|
|
aProfSize += registeredPage->SizeOfIncludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
// Measurement of the following things may be added later if DMD finds it
|
|
// is worthwhile:
|
|
// - CorePS::mRegisteredPages itself (its elements' children are
|
|
// measured above)
|
|
// - CorePS::mInterposeObserver
|
|
|
|
#if defined(USE_LUL_STACKWALK)
|
|
if (lul::LUL* lulPtr = sInstance->mLul; lulPtr) {
|
|
aLulSize += lulPtr->SizeOfIncludingThis(aMallocSizeOf);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// No PSLockRef is needed for this field because it's immutable.
|
|
PS_GET_LOCKLESS(TimeStamp, ProcessStartTime)
|
|
|
|
// No PSLockRef is needed for this field because it's thread-safe.
|
|
PS_GET_LOCKLESS(ProfileChunkedBuffer&, CoreBuffer)
|
|
|
|
PS_GET(JsFrameBuffer&, JsFrames)
|
|
|
|
PS_GET(Vector<RefPtr<PageInformation>>&, RegisteredPages)
|
|
|
|
static void AppendRegisteredPage(PSLockRef,
|
|
RefPtr<PageInformation>&& aRegisteredPage) {
|
|
MOZ_ASSERT(sInstance);
|
|
struct RegisteredPageComparator {
|
|
PageInformation* aA;
|
|
bool operator()(PageInformation* aB) const { return aA->Equals(aB); }
|
|
};
|
|
|
|
auto foundPageIter = std::find_if(
|
|
sInstance->mRegisteredPages.begin(), sInstance->mRegisteredPages.end(),
|
|
RegisteredPageComparator{aRegisteredPage.get()});
|
|
|
|
if (foundPageIter != sInstance->mRegisteredPages.end()) {
|
|
if ((*foundPageIter)->Url().EqualsLiteral("about:blank")) {
|
|
// When a BrowsingContext is loaded, the first url loaded in it will be
|
|
// about:blank, and if the principal matches, the first document loaded
|
|
// in it will share an inner window. That's why we should delete the
|
|
// intermittent about:blank if they share the inner window.
|
|
sInstance->mRegisteredPages.erase(foundPageIter);
|
|
} else {
|
|
// Do not register the same page again.
|
|
return;
|
|
}
|
|
}
|
|
|
|
MOZ_RELEASE_ASSERT(
|
|
sInstance->mRegisteredPages.append(std::move(aRegisteredPage)));
|
|
}
|
|
|
|
static void RemoveRegisteredPage(PSLockRef,
|
|
uint64_t aRegisteredInnerWindowID) {
|
|
MOZ_ASSERT(sInstance);
|
|
// Remove RegisteredPage from mRegisteredPages by given inner window ID.
|
|
sInstance->mRegisteredPages.eraseIf([&](const RefPtr<PageInformation>& rd) {
|
|
return rd->InnerWindowID() == aRegisteredInnerWindowID;
|
|
});
|
|
}
|
|
|
|
static void ClearRegisteredPages(PSLockRef) {
|
|
MOZ_ASSERT(sInstance);
|
|
sInstance->mRegisteredPages.clear();
|
|
}
|
|
|
|
PS_GET(const Vector<BaseProfilerCount*>&, Counters)
|
|
|
|
static void AppendCounter(PSLockRef, BaseProfilerCount* aCounter) {
|
|
MOZ_ASSERT(sInstance);
|
|
// we don't own the counter; they may be stored in static objects
|
|
MOZ_RELEASE_ASSERT(sInstance->mCounters.append(aCounter));
|
|
}
|
|
|
|
static void RemoveCounter(PSLockRef, BaseProfilerCount* aCounter) {
|
|
// we may be called to remove a counter after the profiler is stopped or
|
|
// late in shutdown.
|
|
if (sInstance) {
|
|
auto* counter = std::find(sInstance->mCounters.begin(),
|
|
sInstance->mCounters.end(), aCounter);
|
|
MOZ_RELEASE_ASSERT(counter != sInstance->mCounters.end());
|
|
sInstance->mCounters.erase(counter);
|
|
}
|
|
}
|
|
|
|
#ifdef USE_LUL_STACKWALK
|
|
static lul::LUL* Lul() {
|
|
MOZ_RELEASE_ASSERT(sInstance);
|
|
return sInstance->mLul;
|
|
}
|
|
static void SetLul(UniquePtr<lul::LUL> aLul) {
|
|
MOZ_RELEASE_ASSERT(sInstance);
|
|
MOZ_RELEASE_ASSERT(
|
|
sInstance->mLul.compareExchange(nullptr, aLul.release()));
|
|
}
|
|
#endif
|
|
|
|
PS_GET_AND_SET(const nsACString&, ProcessName)
|
|
PS_GET_AND_SET(const nsACString&, ETLDplus1)
|
|
|
|
private:
|
|
// The singleton instance
|
|
static CorePS* sInstance;
|
|
|
|
// The time that the process started.
|
|
const TimeStamp mProcessStartTime;
|
|
|
|
// The thread-safe blocks-oriented buffer into which all profiling data is
|
|
// recorded.
|
|
// ActivePS controls the lifetime of the underlying contents buffer: When
|
|
// ActivePS does not exist, mCoreBuffer is empty and rejects all reads&writes;
|
|
// see ActivePS for further details.
|
|
// Note: This needs to live here outside of ActivePS, because some producers
|
|
// are indirectly controlled (e.g., by atomic flags) and therefore may still
|
|
// attempt to write some data shortly after ActivePS has shutdown and deleted
|
|
// the underlying buffer in memory.
|
|
ProfileChunkedBuffer mCoreBuffer;
|
|
|
|
// Info on all the registered pages.
|
|
// InnerWindowIDs in mRegisteredPages are unique.
|
|
Vector<RefPtr<PageInformation>> mRegisteredPages;
|
|
|
|
// Non-owning pointers to all active counters
|
|
Vector<BaseProfilerCount*> mCounters;
|
|
|
|
#ifdef USE_LUL_STACKWALK
|
|
// LUL's state. Null prior to the first activation, non-null thereafter.
|
|
// Owned by this CorePS.
|
|
mozilla::Atomic<lul::LUL*> mLul;
|
|
#endif
|
|
|
|
// Process name, provided by child process initialization code.
|
|
nsAutoCString mProcessName;
|
|
// Private name, provided by child process initialization code (eTLD+1 in
|
|
// fission)
|
|
nsAutoCString mETLDplus1;
|
|
|
|
// This memory buffer is used by the MergeStacks mechanism. Previously it was
|
|
// stack allocated, but this led to a stack overflow, as it was too much
|
|
// memory. Here the buffer can be pre-allocated, and shared with the
|
|
// MergeStacks feature as needed. MergeStacks is only run while holding the
|
|
// lock, so it is safe to have only one instance allocated for all of the
|
|
// threads.
|
|
JsFrameBuffer mJsFrames;
|
|
};
|
|
|
|
CorePS* CorePS::sInstance = nullptr;
|
|
|
|
ProfileChunkedBuffer& profiler_get_core_buffer() {
|
|
MOZ_ASSERT(CorePS::Exists());
|
|
return CorePS::CoreBuffer();
|
|
}
|
|
|
|
class SamplerThread;
|
|
|
|
static SamplerThread* NewSamplerThread(PSLockRef aLock, uint32_t aGeneration,
|
|
double aInterval, uint32_t aFeatures);
|
|
|
|
struct LiveProfiledThreadData {
|
|
UniquePtr<ProfiledThreadData> mProfiledThreadData;
|
|
};
|
|
|
|
// The buffer size is provided as a number of "entries", this is their size in
|
|
// bytes.
|
|
constexpr static uint32_t scBytesPerEntry = 8;
|
|
|
|
// This class contains the profiler's global state that is valid only when the
|
|
// profiler is active. When not instantiated, the profiler is inactive.
|
|
//
|
|
// Accesses to ActivePS are guarded by gPSMutex, in much the same fashion as
|
|
// CorePS.
|
|
//
|
|
class ActivePS {
|
|
private:
|
|
// We need to decide how many chunks of what size we want to fit in the given
|
|
// total maximum capacity for this process, in the (likely) context of
|
|
// multiple processes doing the same choice and having an inter-process
|
|
// mechanism to control the overal memory limit.
|
|
|
|
// Minimum chunk size allowed, enough for at least one stack.
|
|
constexpr static uint32_t scMinimumChunkSize =
|
|
2 * ProfileBufferChunkManager::scExpectedMaximumStackSize;
|
|
|
|
// Ideally we want at least 2 unreleased chunks to work with (1 current and 1
|
|
// next), and 2 released chunks (so that one can be recycled when old, leaving
|
|
// one with some data).
|
|
constexpr static uint32_t scMinimumNumberOfChunks = 4;
|
|
|
|
// And we want to limit chunks to a maximum size, which is a compromise
|
|
// between:
|
|
// - A big size, which helps with reducing the rate of allocations and IPCs.
|
|
// - A small size, which helps with equalizing the duration of recorded data
|
|
// (as the inter-process controller will discard the oldest chunks in all
|
|
// Firefox processes).
|
|
constexpr static uint32_t scMaximumChunkSize = 1024 * 1024;
|
|
|
|
public:
|
|
// We should be able to store at least the minimum number of the smallest-
|
|
// possible chunks.
|
|
constexpr static uint32_t scMinimumBufferSize =
|
|
scMinimumNumberOfChunks * scMinimumChunkSize;
|
|
// Note: Keep in sync with GeckoThread.maybeStartGeckoProfiler:
|
|
// https://searchfox.org/mozilla-central/source/mobile/android/geckoview/src/main/java/org/mozilla/gecko/GeckoThread.java
|
|
constexpr static uint32_t scMinimumBufferEntries =
|
|
scMinimumBufferSize / scBytesPerEntry;
|
|
|
|
// Limit to 2GiB.
|
|
constexpr static uint32_t scMaximumBufferSize = 2u * 1024u * 1024u * 1024u;
|
|
constexpr static uint32_t scMaximumBufferEntries =
|
|
scMaximumBufferSize / scBytesPerEntry;
|
|
|
|
constexpr static uint32_t ClampToAllowedEntries(uint32_t aEntries) {
|
|
if (aEntries <= scMinimumBufferEntries) {
|
|
return scMinimumBufferEntries;
|
|
}
|
|
if (aEntries >= scMaximumBufferEntries) {
|
|
return scMaximumBufferEntries;
|
|
}
|
|
return aEntries;
|
|
}
|
|
|
|
private:
|
|
constexpr static uint32_t ChunkSizeForEntries(uint32_t aEntries) {
|
|
return uint32_t(std::min(size_t(ClampToAllowedEntries(aEntries)) *
|
|
scBytesPerEntry / scMinimumNumberOfChunks,
|
|
size_t(scMaximumChunkSize)));
|
|
}
|
|
|
|
static uint32_t AdjustFeatures(uint32_t aFeatures, uint32_t aFilterCount) {
|
|
// Filter out any features unavailable in this platform/configuration.
|
|
aFeatures &= AvailableFeatures();
|
|
|
|
// Some features imply others.
|
|
if (aFeatures & ProfilerFeature::FileIOAll) {
|
|
aFeatures |= ProfilerFeature::MainThreadIO | ProfilerFeature::FileIO;
|
|
} else if (aFeatures & ProfilerFeature::FileIO) {
|
|
aFeatures |= ProfilerFeature::MainThreadIO;
|
|
}
|
|
|
|
if (aFeatures & ProfilerFeature::CPUAllThreads) {
|
|
aFeatures |= ProfilerFeature::CPUUtilization;
|
|
}
|
|
|
|
return aFeatures;
|
|
}
|
|
|
|
ActivePS(PSLockRef aLock, PowerOfTwo32 aCapacity, double aInterval,
|
|
uint32_t aFeatures, const char** aFilters, uint32_t aFilterCount,
|
|
uint64_t aActiveTabID, const Maybe<double>& aDuration)
|
|
: mGeneration(sNextGeneration++),
|
|
mCapacity(aCapacity),
|
|
mDuration(aDuration),
|
|
mInterval(aInterval),
|
|
mFeatures(AdjustFeatures(aFeatures, aFilterCount)),
|
|
mActiveTabID(aActiveTabID),
|
|
mProfileBufferChunkManager(
|
|
size_t(ClampToAllowedEntries(aCapacity.Value())) * scBytesPerEntry,
|
|
ChunkSizeForEntries(aCapacity.Value())),
|
|
mProfileBuffer([this]() -> ProfileChunkedBuffer& {
|
|
CorePS::CoreBuffer().SetChunkManager(mProfileBufferChunkManager);
|
|
return CorePS::CoreBuffer();
|
|
}()),
|
|
// The new sampler thread doesn't start sampling immediately because the
|
|
// main loop within Run() is blocked until this function's caller
|
|
// unlocks gPSMutex.
|
|
mSamplerThread(
|
|
NewSamplerThread(aLock, mGeneration, aInterval, aFeatures)),
|
|
mInterposeObserver((ProfilerFeature::HasMainThreadIO(aFeatures) ||
|
|
ProfilerFeature::HasFileIO(aFeatures) ||
|
|
ProfilerFeature::HasFileIOAll(aFeatures))
|
|
? new ProfilerIOInterposeObserver()
|
|
: nullptr),
|
|
mIsPaused(false),
|
|
mIsSamplingPaused(false)
|
|
#if defined(GP_OS_linux) || defined(GP_OS_freebsd)
|
|
,
|
|
mWasSamplingPaused(false)
|
|
#endif
|
|
{
|
|
// Deep copy and lower-case aFilters.
|
|
MOZ_ALWAYS_TRUE(mFilters.resize(aFilterCount));
|
|
MOZ_ALWAYS_TRUE(mFiltersLowered.resize(aFilterCount));
|
|
for (uint32_t i = 0; i < aFilterCount; ++i) {
|
|
mFilters[i] = aFilters[i];
|
|
mFiltersLowered[i].reserve(mFilters[i].size());
|
|
std::transform(mFilters[i].cbegin(), mFilters[i].cend(),
|
|
std::back_inserter(mFiltersLowered[i]), ::tolower);
|
|
}
|
|
|
|
#if !defined(RELEASE_OR_BETA)
|
|
if (mInterposeObserver) {
|
|
// We need to register the observer on the main thread, because we want
|
|
// to observe IO that happens on the main thread.
|
|
// IOInterposer needs to be initialized before calling
|
|
// IOInterposer::Register or our observer will be silently dropped.
|
|
if (NS_IsMainThread()) {
|
|
IOInterposer::Init();
|
|
IOInterposer::Register(IOInterposeObserver::OpAll, mInterposeObserver);
|
|
} else {
|
|
RefPtr<ProfilerIOInterposeObserver> observer = mInterposeObserver;
|
|
NS_DispatchToMainThread(
|
|
NS_NewRunnableFunction("ActivePS::ActivePS", [=]() {
|
|
IOInterposer::Init();
|
|
IOInterposer::Register(IOInterposeObserver::OpAll, observer);
|
|
}));
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
~ActivePS() {
|
|
#if !defined(RELEASE_OR_BETA)
|
|
if (mInterposeObserver) {
|
|
// We need to unregister the observer on the main thread, because that's
|
|
// where we've registered it.
|
|
if (NS_IsMainThread()) {
|
|
IOInterposer::Unregister(IOInterposeObserver::OpAll,
|
|
mInterposeObserver);
|
|
} else {
|
|
RefPtr<ProfilerIOInterposeObserver> observer = mInterposeObserver;
|
|
NS_DispatchToMainThread(
|
|
NS_NewRunnableFunction("ActivePS::~ActivePS", [=]() {
|
|
IOInterposer::Unregister(IOInterposeObserver::OpAll, observer);
|
|
}));
|
|
}
|
|
}
|
|
#endif
|
|
CorePS::CoreBuffer().ResetChunkManager();
|
|
}
|
|
|
|
bool ThreadSelected(const char* aThreadName) {
|
|
if (mFiltersLowered.empty()) {
|
|
return true;
|
|
}
|
|
|
|
std::string name = aThreadName;
|
|
std::transform(name.begin(), name.end(), name.begin(), ::tolower);
|
|
|
|
for (const auto& filter : mFiltersLowered) {
|
|
if (filter == "*") {
|
|
return true;
|
|
}
|
|
|
|
// Crude, non UTF-8 compatible, case insensitive substring search
|
|
if (name.find(filter) != std::string::npos) {
|
|
return true;
|
|
}
|
|
|
|
// If the filter starts with pid:, check for a pid match
|
|
if (filter.find("pid:") == 0) {
|
|
std::string mypid =
|
|
std::to_string(profiler_current_process_id().ToNumber());
|
|
if (filter.compare(4, std::string::npos, mypid) == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
static void Create(PSLockRef aLock, PowerOfTwo32 aCapacity, double aInterval,
|
|
uint32_t aFeatures, const char** aFilters,
|
|
uint32_t aFilterCount, uint64_t aActiveTabID,
|
|
const Maybe<double>& aDuration) {
|
|
MOZ_ASSERT(!sInstance);
|
|
sInstance = new ActivePS(aLock, aCapacity, aInterval, aFeatures, aFilters,
|
|
aFilterCount, aActiveTabID, aDuration);
|
|
}
|
|
|
|
[[nodiscard]] static SamplerThread* Destroy(PSLockRef aLock) {
|
|
MOZ_ASSERT(sInstance);
|
|
auto samplerThread = sInstance->mSamplerThread;
|
|
delete sInstance;
|
|
sInstance = nullptr;
|
|
|
|
return samplerThread;
|
|
}
|
|
|
|
static bool Exists(PSLockRef) { return !!sInstance; }
|
|
|
|
static bool Equals(PSLockRef, PowerOfTwo32 aCapacity,
|
|
const Maybe<double>& aDuration, double aInterval,
|
|
uint32_t aFeatures, const char** aFilters,
|
|
uint32_t aFilterCount, uint64_t aActiveTabID) {
|
|
MOZ_ASSERT(sInstance);
|
|
if (sInstance->mCapacity != aCapacity ||
|
|
sInstance->mDuration != aDuration ||
|
|
sInstance->mInterval != aInterval ||
|
|
sInstance->mFeatures != aFeatures ||
|
|
sInstance->mFilters.length() != aFilterCount ||
|
|
sInstance->mActiveTabID != aActiveTabID) {
|
|
return false;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < sInstance->mFilters.length(); ++i) {
|
|
if (strcmp(sInstance->mFilters[i].c_str(), aFilters[i]) != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static size_t SizeOf(PSLockRef, MallocSizeOf aMallocSizeOf) {
|
|
MOZ_ASSERT(sInstance);
|
|
|
|
size_t n = aMallocSizeOf(sInstance);
|
|
|
|
n += sInstance->mProfileBuffer.SizeOfExcludingThis(aMallocSizeOf);
|
|
|
|
// Measurement of the following members may be added later if DMD finds it
|
|
// is worthwhile:
|
|
// - mLiveProfiledThreads (both the array itself, and the contents)
|
|
// - mDeadProfiledThreads (both the array itself, and the contents)
|
|
//
|
|
|
|
return n;
|
|
}
|
|
|
|
static ThreadProfilingFeatures ProfilingFeaturesForThread(
|
|
PSLockRef aLock, const ThreadRegistrationInfo& aInfo) {
|
|
MOZ_ASSERT(sInstance);
|
|
if (sInstance->ThreadSelected(aInfo.Name())) {
|
|
// This thread was selected by the user, record everything.
|
|
return ThreadProfilingFeatures::Any;
|
|
}
|
|
ThreadProfilingFeatures features = ThreadProfilingFeatures::NotProfiled;
|
|
if (ActivePS::FeatureCPUAllThreads(aLock)) {
|
|
features = Combine(features, ThreadProfilingFeatures::CPUUtilization);
|
|
}
|
|
if (ActivePS::FeatureSamplingAllThreads(aLock)) {
|
|
features = Combine(features, ThreadProfilingFeatures::Sampling);
|
|
}
|
|
if (ActivePS::FeatureMarkersAllThreads(aLock)) {
|
|
features = Combine(features, ThreadProfilingFeatures::Markers);
|
|
}
|
|
return features;
|
|
}
|
|
|
|
[[nodiscard]] static bool AppendPostSamplingCallback(
|
|
PSLockRef, PostSamplingCallback&& aCallback);
|
|
|
|
// Writes out the current active configuration of the profile.
|
|
static void WriteActiveConfiguration(
|
|
PSLockRef aLock, JSONWriter& aWriter,
|
|
const Span<const char>& aPropertyName = MakeStringSpan("")) {
|
|
if (!sInstance) {
|
|
if (!aPropertyName.empty()) {
|
|
aWriter.NullProperty(aPropertyName);
|
|
} else {
|
|
aWriter.NullElement();
|
|
}
|
|
return;
|
|
};
|
|
|
|
if (!aPropertyName.empty()) {
|
|
aWriter.StartObjectProperty(aPropertyName);
|
|
} else {
|
|
aWriter.StartObjectElement();
|
|
}
|
|
|
|
{
|
|
aWriter.StartArrayProperty("features", aWriter.SingleLineStyle);
|
|
#define WRITE_ACTIVE_FEATURES(n_, str_, Name_, desc_) \
|
|
if (profiler_feature_active(ProfilerFeature::Name_)) { \
|
|
aWriter.StringElement(str_); \
|
|
}
|
|
|
|
PROFILER_FOR_EACH_FEATURE(WRITE_ACTIVE_FEATURES)
|
|
#undef WRITE_ACTIVE_FEATURES
|
|
aWriter.EndArray();
|
|
}
|
|
{
|
|
aWriter.StartArrayProperty("threads", aWriter.SingleLineStyle);
|
|
for (const auto& filter : sInstance->mFilters) {
|
|
aWriter.StringElement(filter);
|
|
}
|
|
aWriter.EndArray();
|
|
}
|
|
{
|
|
// Now write all the simple values.
|
|
|
|
// The interval is also available on profile.meta.interval
|
|
aWriter.DoubleProperty("interval", sInstance->mInterval);
|
|
aWriter.IntProperty("capacity", sInstance->mCapacity.Value());
|
|
if (sInstance->mDuration) {
|
|
aWriter.DoubleProperty("duration", sInstance->mDuration.value());
|
|
}
|
|
// Here, we are converting uint64_t to double. Tab IDs are
|
|
// being created using `nsContentUtils::GenerateProcessSpecificId`, which
|
|
// is specifically designed to only use 53 of the 64 bits to be lossless
|
|
// when passed into and out of JS as a double.
|
|
aWriter.DoubleProperty("activeTabID", sInstance->mActiveTabID);
|
|
}
|
|
aWriter.EndObject();
|
|
}
|
|
|
|
PS_GET(uint32_t, Generation)
|
|
|
|
PS_GET(PowerOfTwo32, Capacity)
|
|
|
|
PS_GET(Maybe<double>, Duration)
|
|
|
|
PS_GET(double, Interval)
|
|
|
|
PS_GET(uint32_t, Features)
|
|
|
|
PS_GET(uint64_t, ActiveTabID)
|
|
|
|
#define PS_GET_FEATURE(n_, str_, Name_, desc_) \
|
|
static bool Feature##Name_(PSLockRef) { \
|
|
MOZ_ASSERT(sInstance); \
|
|
return ProfilerFeature::Has##Name_(sInstance->mFeatures); \
|
|
}
|
|
|
|
PROFILER_FOR_EACH_FEATURE(PS_GET_FEATURE)
|
|
|
|
#undef PS_GET_FEATURE
|
|
|
|
static uint32_t JSFlags(PSLockRef aLock) {
|
|
uint32_t Flags = 0;
|
|
Flags |=
|
|
FeatureJS(aLock) ? uint32_t(JSInstrumentationFlags::StackSampling) : 0;
|
|
Flags |= FeatureJSTracer(aLock)
|
|
? uint32_t(JSInstrumentationFlags::TraceLogging)
|
|
: 0;
|
|
Flags |= FeatureJSAllocations(aLock)
|
|
? uint32_t(JSInstrumentationFlags::Allocations)
|
|
: 0;
|
|
return Flags;
|
|
}
|
|
|
|
PS_GET(const Vector<std::string>&, Filters)
|
|
PS_GET(const Vector<std::string>&, FiltersLowered)
|
|
|
|
// Not using PS_GET, because only the "Controlled" interface of
|
|
// `mProfileBufferChunkManager` should be exposed here.
|
|
static ProfileBufferChunkManagerWithLocalLimit& ControlledChunkManager(
|
|
PSLockRef) {
|
|
MOZ_ASSERT(sInstance);
|
|
return sInstance->mProfileBufferChunkManager;
|
|
}
|
|
|
|
static void FulfillChunkRequests(PSLockRef) {
|
|
MOZ_ASSERT(sInstance);
|
|
sInstance->mProfileBufferChunkManager.FulfillChunkRequests();
|
|
}
|
|
|
|
static ProfileBuffer& Buffer(PSLockRef) {
|
|
MOZ_ASSERT(sInstance);
|
|
return sInstance->mProfileBuffer;
|
|
}
|
|
|
|
static const Vector<LiveProfiledThreadData>& LiveProfiledThreads(PSLockRef) {
|
|
MOZ_ASSERT(sInstance);
|
|
return sInstance->mLiveProfiledThreads;
|
|
}
|
|
|
|
struct ProfiledThreadListElement {
|
|
TimeStamp mRegisterTime;
|
|
JSContext* mJSContext; // Null for unregistered threads.
|
|
ProfiledThreadData* mProfiledThreadData;
|
|
};
|
|
using ProfiledThreadList = Vector<ProfiledThreadListElement>;
|
|
|
|
// Returns a ProfiledThreadList with all threads that should be included in a
|
|
// profile, both for threads that are still registered, and for threads that
|
|
// have been unregistered but still have data in the buffer.
|
|
// The returned array is sorted by thread register time.
|
|
// Do not hold on to the return value past LockedRegistry.
|
|
static ProfiledThreadList ProfiledThreads(
|
|
ThreadRegistry::LockedRegistry& aLockedRegistry, PSLockRef aLock) {
|
|
MOZ_ASSERT(sInstance);
|
|
ProfiledThreadList array;
|
|
MOZ_RELEASE_ASSERT(
|
|
array.initCapacity(sInstance->mLiveProfiledThreads.length() +
|
|
sInstance->mDeadProfiledThreads.length()));
|
|
|
|
for (ThreadRegistry::OffThreadRef offThreadRef : aLockedRegistry) {
|
|
ProfiledThreadData* profiledThreadData =
|
|
offThreadRef.UnlockedRWForLockedProfilerRef().GetProfiledThreadData(
|
|
aLock);
|
|
if (!profiledThreadData) {
|
|
// This thread was not profiled, continue with the next one.
|
|
continue;
|
|
}
|
|
ThreadRegistry::OffThreadRef::RWFromAnyThreadWithLock lockedThreadData =
|
|
offThreadRef.LockedRWFromAnyThread();
|
|
MOZ_RELEASE_ASSERT(array.append(ProfiledThreadListElement{
|
|
profiledThreadData->Info().RegisterTime(),
|
|
lockedThreadData->GetJSContext(), profiledThreadData}));
|
|
}
|
|
|
|
for (auto& t : sInstance->mDeadProfiledThreads) {
|
|
MOZ_RELEASE_ASSERT(array.append(ProfiledThreadListElement{
|
|
t->Info().RegisterTime(), (JSContext*)nullptr, t.get()}));
|
|
}
|
|
|
|
std::sort(array.begin(), array.end(),
|
|
[](const ProfiledThreadListElement& a,
|
|
const ProfiledThreadListElement& b) {
|
|
return a.mRegisterTime < b.mRegisterTime;
|
|
});
|
|
return array;
|
|
}
|
|
|
|
static Vector<RefPtr<PageInformation>> ProfiledPages(PSLockRef aLock) {
|
|
MOZ_ASSERT(sInstance);
|
|
Vector<RefPtr<PageInformation>> array;
|
|
for (auto& d : CorePS::RegisteredPages(aLock)) {
|
|
MOZ_RELEASE_ASSERT(array.append(d));
|
|
}
|
|
for (auto& d : sInstance->mDeadProfiledPages) {
|
|
MOZ_RELEASE_ASSERT(array.append(d));
|
|
}
|
|
// We don't need to sort the pages like threads since we won't show them
|
|
// as a list.
|
|
return array;
|
|
}
|
|
|
|
static ProfiledThreadData* AddLiveProfiledThread(
|
|
PSLockRef, UniquePtr<ProfiledThreadData>&& aProfiledThreadData) {
|
|
MOZ_ASSERT(sInstance);
|
|
MOZ_RELEASE_ASSERT(sInstance->mLiveProfiledThreads.append(
|
|
LiveProfiledThreadData{std::move(aProfiledThreadData)}));
|
|
|
|
// Return a weak pointer to the ProfiledThreadData object.
|
|
return sInstance->mLiveProfiledThreads.back().mProfiledThreadData.get();
|
|
}
|
|
|
|
static void UnregisterThread(PSLockRef aLockRef,
|
|
ProfiledThreadData* aProfiledThreadData) {
|
|
MOZ_ASSERT(sInstance);
|
|
|
|
DiscardExpiredDeadProfiledThreads(aLockRef);
|
|
|
|
// Find the right entry in the mLiveProfiledThreads array and remove the
|
|
// element, moving the ProfiledThreadData object for the thread into the
|
|
// mDeadProfiledThreads array.
|
|
for (size_t i = 0; i < sInstance->mLiveProfiledThreads.length(); i++) {
|
|
LiveProfiledThreadData& thread = sInstance->mLiveProfiledThreads[i];
|
|
if (thread.mProfiledThreadData == aProfiledThreadData) {
|
|
thread.mProfiledThreadData->NotifyUnregistered(
|
|
sInstance->mProfileBuffer.BufferRangeEnd());
|
|
MOZ_RELEASE_ASSERT(sInstance->mDeadProfiledThreads.append(
|
|
std::move(thread.mProfiledThreadData)));
|
|
sInstance->mLiveProfiledThreads.erase(
|
|
&sInstance->mLiveProfiledThreads[i]);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
PS_GET_AND_SET(bool, IsPaused)
|
|
|
|
// True if sampling is paused (though generic `SetIsPaused()` or specific
|
|
// `SetIsSamplingPaused()`).
|
|
static bool IsSamplingPaused(PSLockRef lock) {
|
|
MOZ_ASSERT(sInstance);
|
|
return IsPaused(lock) || sInstance->mIsSamplingPaused;
|
|
}
|
|
|
|
static void SetIsSamplingPaused(PSLockRef, bool aIsSamplingPaused) {
|
|
MOZ_ASSERT(sInstance);
|
|
sInstance->mIsSamplingPaused = aIsSamplingPaused;
|
|
}
|
|
|
|
#if defined(GP_OS_linux) || defined(GP_OS_freebsd)
|
|
PS_GET_AND_SET(bool, WasSamplingPaused)
|
|
#endif
|
|
|
|
static void DiscardExpiredDeadProfiledThreads(PSLockRef) {
|
|
MOZ_ASSERT(sInstance);
|
|
uint64_t bufferRangeStart = sInstance->mProfileBuffer.BufferRangeStart();
|
|
// Discard any dead threads that were unregistered before bufferRangeStart.
|
|
sInstance->mDeadProfiledThreads.eraseIf(
|
|
[bufferRangeStart](
|
|
const UniquePtr<ProfiledThreadData>& aProfiledThreadData) {
|
|
Maybe<uint64_t> bufferPosition =
|
|
aProfiledThreadData->BufferPositionWhenUnregistered();
|
|
MOZ_RELEASE_ASSERT(bufferPosition,
|
|
"should have unregistered this thread");
|
|
return *bufferPosition < bufferRangeStart;
|
|
});
|
|
}
|
|
|
|
static void UnregisterPage(PSLockRef aLock,
|
|
uint64_t aRegisteredInnerWindowID) {
|
|
MOZ_ASSERT(sInstance);
|
|
auto& registeredPages = CorePS::RegisteredPages(aLock);
|
|
for (size_t i = 0; i < registeredPages.length(); i++) {
|
|
RefPtr<PageInformation>& page = registeredPages[i];
|
|
if (page->InnerWindowID() == aRegisteredInnerWindowID) {
|
|
page->NotifyUnregistered(sInstance->mProfileBuffer.BufferRangeEnd());
|
|
MOZ_RELEASE_ASSERT(
|
|
sInstance->mDeadProfiledPages.append(std::move(page)));
|
|
registeredPages.erase(®isteredPages[i--]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void DiscardExpiredPages(PSLockRef) {
|
|
MOZ_ASSERT(sInstance);
|
|
uint64_t bufferRangeStart = sInstance->mProfileBuffer.BufferRangeStart();
|
|
// Discard any dead pages that were unregistered before
|
|
// bufferRangeStart.
|
|
sInstance->mDeadProfiledPages.eraseIf(
|
|
[bufferRangeStart](const RefPtr<PageInformation>& aProfiledPage) {
|
|
Maybe<uint64_t> bufferPosition =
|
|
aProfiledPage->BufferPositionWhenUnregistered();
|
|
MOZ_RELEASE_ASSERT(bufferPosition,
|
|
"should have unregistered this page");
|
|
return *bufferPosition < bufferRangeStart;
|
|
});
|
|
}
|
|
|
|
static void ClearUnregisteredPages(PSLockRef) {
|
|
MOZ_ASSERT(sInstance);
|
|
sInstance->mDeadProfiledPages.clear();
|
|
}
|
|
|
|
static void ClearExpiredExitProfiles(PSLockRef) {
|
|
MOZ_ASSERT(sInstance);
|
|
uint64_t bufferRangeStart = sInstance->mProfileBuffer.BufferRangeStart();
|
|
// Discard exit profiles that were gathered before our buffer RangeStart.
|
|
// If we have started to overwrite our data from when the Base profile was
|
|
// added, we should get rid of that Base profile because it's now older than
|
|
// our oldest Gecko profile data.
|
|
//
|
|
// When adding: (In practice the starting buffer should be empty)
|
|
// v Start == End
|
|
// | <-- Buffer range, initially empty.
|
|
// ^ mGeckoIndexWhenBaseProfileAdded < Start FALSE -> keep it
|
|
//
|
|
// Later, still in range:
|
|
// v Start v End
|
|
// |=========| <-- Buffer range growing.
|
|
// ^ mGeckoIndexWhenBaseProfileAdded < Start FALSE -> keep it
|
|
//
|
|
// Even later, now out of range:
|
|
// v Start v End
|
|
// |============| <-- Buffer range full and sliding.
|
|
// ^ mGeckoIndexWhenBaseProfileAdded < Start TRUE! -> Discard it
|
|
if (sInstance->mBaseProfileThreads &&
|
|
sInstance->mGeckoIndexWhenBaseProfileAdded
|
|
.ConvertToProfileBufferIndex() <
|
|
CorePS::CoreBuffer().GetState().mRangeStart) {
|
|
DEBUG_LOG("ClearExpiredExitProfiles() - Discarding base profile %p",
|
|
sInstance->mBaseProfileThreads.get());
|
|
sInstance->mBaseProfileThreads.reset();
|
|
}
|
|
sInstance->mExitProfiles.eraseIf(
|
|
[bufferRangeStart](const ExitProfile& aExitProfile) {
|
|
return aExitProfile.mBufferPositionAtGatherTime < bufferRangeStart;
|
|
});
|
|
}
|
|
|
|
static void AddBaseProfileThreads(PSLockRef aLock,
|
|
UniquePtr<char[]> aBaseProfileThreads) {
|
|
MOZ_ASSERT(sInstance);
|
|
DEBUG_LOG("AddBaseProfileThreads(%p)", aBaseProfileThreads.get());
|
|
sInstance->mBaseProfileThreads = std::move(aBaseProfileThreads);
|
|
sInstance->mGeckoIndexWhenBaseProfileAdded =
|
|
ProfileBufferBlockIndex::CreateFromProfileBufferIndex(
|
|
CorePS::CoreBuffer().GetState().mRangeEnd);
|
|
}
|
|
|
|
static UniquePtr<char[]> MoveBaseProfileThreads(PSLockRef aLock) {
|
|
MOZ_ASSERT(sInstance);
|
|
|
|
ClearExpiredExitProfiles(aLock);
|
|
|
|
DEBUG_LOG("MoveBaseProfileThreads() - Consuming base profile %p",
|
|
sInstance->mBaseProfileThreads.get());
|
|
return std::move(sInstance->mBaseProfileThreads);
|
|
}
|
|
|
|
static void AddExitProfile(PSLockRef aLock, const nsCString& aExitProfile) {
|
|
MOZ_ASSERT(sInstance);
|
|
|
|
ClearExpiredExitProfiles(aLock);
|
|
|
|
MOZ_RELEASE_ASSERT(sInstance->mExitProfiles.append(
|
|
ExitProfile{aExitProfile, sInstance->mProfileBuffer.BufferRangeEnd()}));
|
|
}
|
|
|
|
static Vector<nsCString> MoveExitProfiles(PSLockRef aLock) {
|
|
MOZ_ASSERT(sInstance);
|
|
|
|
ClearExpiredExitProfiles(aLock);
|
|
|
|
Vector<nsCString> profiles;
|
|
MOZ_RELEASE_ASSERT(
|
|
profiles.initCapacity(sInstance->mExitProfiles.length()));
|
|
for (auto& profile : sInstance->mExitProfiles) {
|
|
MOZ_RELEASE_ASSERT(profiles.append(std::move(profile.mJSON)));
|
|
}
|
|
sInstance->mExitProfiles.clear();
|
|
return profiles;
|
|
}
|
|
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
static void SetMemoryCounter(const BaseProfilerCount* aMemoryCounter) {
|
|
MOZ_ASSERT(sInstance);
|
|
|
|
sInstance->mMemoryCounter = aMemoryCounter;
|
|
}
|
|
|
|
static bool IsMemoryCounter(const BaseProfilerCount* aMemoryCounter) {
|
|
MOZ_ASSERT(sInstance);
|
|
|
|
return sInstance->mMemoryCounter == aMemoryCounter;
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
// The singleton instance.
|
|
static ActivePS* sInstance;
|
|
|
|
// We need to track activity generations. If we didn't we could have the
|
|
// following scenario.
|
|
//
|
|
// - profiler_stop() locks gPSMutex, de-instantiates ActivePS, unlocks
|
|
// gPSMutex, deletes the SamplerThread (which does a join).
|
|
//
|
|
// - profiler_start() runs on a different thread, locks gPSMutex,
|
|
// re-instantiates ActivePS, unlocks gPSMutex -- all before the join
|
|
// completes.
|
|
//
|
|
// - SamplerThread::Run() locks gPSMutex, sees that ActivePS is instantiated,
|
|
// and continues as if the start/stop pair didn't occur. Also
|
|
// profiler_stop() is stuck, unable to finish.
|
|
//
|
|
// By checking ActivePS *and* the generation, we can avoid this scenario.
|
|
// sNextGeneration is used to track the next generation number; it is static
|
|
// because it must persist across different ActivePS instantiations.
|
|
const uint32_t mGeneration;
|
|
static uint32_t sNextGeneration;
|
|
|
|
// The maximum number of entries in mProfileBuffer.
|
|
const PowerOfTwo32 mCapacity;
|
|
|
|
// The maximum duration of entries in mProfileBuffer, in seconds.
|
|
const Maybe<double> mDuration;
|
|
|
|
// The interval between samples, measured in milliseconds.
|
|
const double mInterval;
|
|
|
|
// The profile features that are enabled.
|
|
const uint32_t mFeatures;
|
|
|
|
// Substrings of names of threads we want to profile.
|
|
Vector<std::string> mFilters;
|
|
Vector<std::string> mFiltersLowered;
|
|
|
|
// ID of the active browser screen's active tab.
|
|
// It's being used to determine the profiled tab. It's "0" if we failed to
|
|
// get the ID.
|
|
const uint64_t mActiveTabID;
|
|
|
|
// The chunk manager used by `mProfileBuffer` below.
|
|
ProfileBufferChunkManagerWithLocalLimit mProfileBufferChunkManager;
|
|
|
|
// The buffer into which all samples are recorded.
|
|
ProfileBuffer mProfileBuffer;
|
|
|
|
// ProfiledThreadData objects for any threads that were profiled at any point
|
|
// during this run of the profiler:
|
|
// - mLiveProfiledThreads contains all threads that are still registered, and
|
|
// - mDeadProfiledThreads contains all threads that have already been
|
|
// unregistered but for which there is still data in the profile buffer.
|
|
Vector<LiveProfiledThreadData> mLiveProfiledThreads;
|
|
Vector<UniquePtr<ProfiledThreadData>> mDeadProfiledThreads;
|
|
|
|
// Info on all the dead pages.
|
|
// Registered pages are being moved to this array after unregistration.
|
|
// We are keeping them in case we need them in the profile data.
|
|
// We are removing them when we ensure that we won't need them anymore.
|
|
Vector<RefPtr<PageInformation>> mDeadProfiledPages;
|
|
|
|
// The current sampler thread. This class is not responsible for destroying
|
|
// the SamplerThread object; the Destroy() method returns it so the caller
|
|
// can destroy it.
|
|
SamplerThread* const mSamplerThread;
|
|
|
|
// The interposer that records main thread I/O.
|
|
RefPtr<ProfilerIOInterposeObserver> mInterposeObserver;
|
|
|
|
// Is the profiler fully paused?
|
|
bool mIsPaused;
|
|
|
|
// Is the profiler periodic sampling paused?
|
|
bool mIsSamplingPaused;
|
|
|
|
#if defined(GP_OS_linux) || defined(GP_OS_freebsd)
|
|
// Used to record whether the sampler was paused just before forking. False
|
|
// at all times except just before/after forking.
|
|
bool mWasSamplingPaused;
|
|
#endif
|
|
|
|
// Optional startup profile thread array from BaseProfiler.
|
|
UniquePtr<char[]> mBaseProfileThreads;
|
|
ProfileBufferBlockIndex mGeckoIndexWhenBaseProfileAdded;
|
|
|
|
struct ExitProfile {
|
|
nsCString mJSON;
|
|
uint64_t mBufferPositionAtGatherTime;
|
|
};
|
|
Vector<ExitProfile> mExitProfiles;
|
|
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
Atomic<const BaseProfilerCount*> mMemoryCounter;
|
|
#endif
|
|
};
|
|
|
|
ActivePS* ActivePS::sInstance = nullptr;
|
|
uint32_t ActivePS::sNextGeneration = 0;
|
|
|
|
#undef PS_GET
|
|
#undef PS_GET_LOCKLESS
|
|
#undef PS_GET_AND_SET
|
|
|
|
using ProfilerStateChangeMutex =
|
|
mozilla::baseprofiler::detail::BaseProfilerMutex;
|
|
using ProfilerStateChangeLock =
|
|
mozilla::baseprofiler::detail::BaseProfilerAutoLock;
|
|
static ProfilerStateChangeMutex gProfilerStateChangeMutex;
|
|
|
|
struct IdentifiedProfilingStateChangeCallback {
|
|
ProfilingStateSet mProfilingStateSet;
|
|
ProfilingStateChangeCallback mProfilingStateChangeCallback;
|
|
uintptr_t mUniqueIdentifier;
|
|
|
|
explicit IdentifiedProfilingStateChangeCallback(
|
|
ProfilingStateSet aProfilingStateSet,
|
|
ProfilingStateChangeCallback&& aProfilingStateChangeCallback,
|
|
uintptr_t aUniqueIdentifier)
|
|
: mProfilingStateSet(aProfilingStateSet),
|
|
mProfilingStateChangeCallback(aProfilingStateChangeCallback),
|
|
mUniqueIdentifier(aUniqueIdentifier) {}
|
|
};
|
|
using IdentifiedProfilingStateChangeCallbackUPtr =
|
|
UniquePtr<IdentifiedProfilingStateChangeCallback>;
|
|
|
|
static Vector<IdentifiedProfilingStateChangeCallbackUPtr>
|
|
mIdentifiedProfilingStateChangeCallbacks;
|
|
|
|
void profiler_add_state_change_callback(
|
|
ProfilingStateSet aProfilingStateSet,
|
|
ProfilingStateChangeCallback&& aCallback,
|
|
uintptr_t aUniqueIdentifier /* = 0 */) {
|
|
MOZ_ASSERT(!PSAutoLock::IsLockedOnCurrentThread());
|
|
ProfilerStateChangeLock lock(gProfilerStateChangeMutex);
|
|
|
|
#ifdef DEBUG
|
|
// Check if a non-zero id is not already used. Bug forgive it in non-DEBUG
|
|
// builds; in the worst case they may get removed too early.
|
|
if (aUniqueIdentifier != 0) {
|
|
for (const IdentifiedProfilingStateChangeCallbackUPtr& idedCallback :
|
|
mIdentifiedProfilingStateChangeCallbacks) {
|
|
MOZ_ASSERT(idedCallback->mUniqueIdentifier != aUniqueIdentifier);
|
|
}
|
|
}
|
|
#endif // DEBUG
|
|
|
|
if (aProfilingStateSet.contains(ProfilingState::AlreadyActive) &&
|
|
profiler_is_active()) {
|
|
aCallback(ProfilingState::AlreadyActive);
|
|
}
|
|
|
|
(void)mIdentifiedProfilingStateChangeCallbacks.append(
|
|
MakeUnique<IdentifiedProfilingStateChangeCallback>(
|
|
aProfilingStateSet, std::move(aCallback), aUniqueIdentifier));
|
|
}
|
|
|
|
// Remove the callback with the given identifier.
|
|
void profiler_remove_state_change_callback(uintptr_t aUniqueIdentifier) {
|
|
MOZ_ASSERT(aUniqueIdentifier != 0);
|
|
if (aUniqueIdentifier == 0) {
|
|
// Forgive zero in non-DEBUG builds.
|
|
return;
|
|
}
|
|
|
|
MOZ_ASSERT(!PSAutoLock::IsLockedOnCurrentThread());
|
|
ProfilerStateChangeLock lock(gProfilerStateChangeMutex);
|
|
|
|
mIdentifiedProfilingStateChangeCallbacks.eraseIf(
|
|
[aUniqueIdentifier](
|
|
const IdentifiedProfilingStateChangeCallbackUPtr& aIdedCallback) {
|
|
if (aIdedCallback->mUniqueIdentifier != aUniqueIdentifier) {
|
|
return false;
|
|
}
|
|
if (aIdedCallback->mProfilingStateSet.contains(
|
|
ProfilingState::RemovingCallback)) {
|
|
aIdedCallback->mProfilingStateChangeCallback(
|
|
ProfilingState::RemovingCallback);
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
static void invoke_profiler_state_change_callbacks(
|
|
ProfilingState aProfilingState) {
|
|
MOZ_ASSERT(!PSAutoLock::IsLockedOnCurrentThread());
|
|
ProfilerStateChangeLock lock(gProfilerStateChangeMutex);
|
|
|
|
for (const IdentifiedProfilingStateChangeCallbackUPtr& idedCallback :
|
|
mIdentifiedProfilingStateChangeCallbacks) {
|
|
if (idedCallback->mProfilingStateSet.contains(aProfilingState)) {
|
|
idedCallback->mProfilingStateChangeCallback(aProfilingState);
|
|
}
|
|
}
|
|
}
|
|
|
|
Atomic<uint32_t, MemoryOrdering::Relaxed> RacyFeatures::sActiveAndFeatures(0);
|
|
|
|
// The name of the main thread.
|
|
static const char* const kMainThreadName = "GeckoMain";
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// BEGIN sampling/unwinding code
|
|
|
|
// The registers used for stack unwinding and a few other sampling purposes.
|
|
// The ctor does nothing; users are responsible for filling in the fields.
|
|
class Registers {
|
|
public:
|
|
Registers() : mPC{nullptr}, mSP{nullptr}, mFP{nullptr}, mLR{nullptr} {}
|
|
|
|
#if defined(HAVE_NATIVE_UNWIND)
|
|
// Fills in mPC, mSP, mFP, mLR, and mContext for a synchronous sample.
|
|
void SyncPopulate();
|
|
#endif
|
|
|
|
void Clear() { memset(this, 0, sizeof(*this)); }
|
|
|
|
// These fields are filled in by
|
|
// Sampler::SuspendAndSampleAndResumeThread() for periodic and backtrace
|
|
// samples, and by SyncPopulate() for synchronous samples.
|
|
Address mPC; // Instruction pointer.
|
|
Address mSP; // Stack pointer.
|
|
Address mFP; // Frame pointer.
|
|
Address mLR; // ARM link register.
|
|
#if defined(GP_OS_linux) || defined(GP_OS_android) || defined(GP_OS_freebsd)
|
|
// This contains all the registers, which means it duplicates the four fields
|
|
// above. This is ok.
|
|
ucontext_t* mContext; // The context from the signal handler or below.
|
|
ucontext_t mContextSyncStorage; // Storage for sync stack unwinding.
|
|
#endif
|
|
};
|
|
|
|
// Setting MAX_NATIVE_FRAMES too high risks the unwinder wasting a lot of time
|
|
// looping on corrupted stacks.
|
|
static const size_t MAX_NATIVE_FRAMES = 1024;
|
|
|
|
struct NativeStack {
|
|
void* mPCs[MAX_NATIVE_FRAMES];
|
|
void* mSPs[MAX_NATIVE_FRAMES];
|
|
size_t mCount; // Number of frames filled.
|
|
|
|
NativeStack() : mPCs(), mSPs(), mCount(0) {}
|
|
};
|
|
|
|
Atomic<bool> WALKING_JS_STACK(false);
|
|
|
|
struct AutoWalkJSStack {
|
|
bool walkAllowed;
|
|
|
|
AutoWalkJSStack() : walkAllowed(false) {
|
|
walkAllowed = WALKING_JS_STACK.compareExchange(false, true);
|
|
}
|
|
|
|
~AutoWalkJSStack() {
|
|
if (walkAllowed) {
|
|
WALKING_JS_STACK = false;
|
|
}
|
|
}
|
|
};
|
|
|
|
class StackWalkControl {
|
|
public:
|
|
struct ResumePoint {
|
|
// If lost, the stack walker should resume at these values.
|
|
void* resumeSp; // If null, stop the walker here, don't resume again.
|
|
void* resumeBp;
|
|
void* resumePc;
|
|
};
|
|
|
|
#if ((defined(USE_MOZ_STACK_WALK) || defined(USE_FRAME_POINTER_STACK_WALK)) && \
|
|
defined(GP_ARCH_amd64))
|
|
public:
|
|
static constexpr bool scIsSupported = true;
|
|
|
|
void Clear() { mResumePointCount = 0; }
|
|
|
|
size_t ResumePointCount() const { return mResumePointCount; }
|
|
|
|
static constexpr size_t MaxResumePointCount() {
|
|
return scMaxResumePointCount;
|
|
}
|
|
|
|
// Add a resume point. Note that adding anything past MaxResumePointCount()
|
|
// would silently fail. In practice this means that stack walking may still
|
|
// lose native frames.
|
|
void AddResumePoint(ResumePoint&& aResumePoint) {
|
|
// If SP is null, we expect BP and PC to also be null.
|
|
MOZ_ASSERT_IF(!aResumePoint.resumeSp, !aResumePoint.resumeBp);
|
|
MOZ_ASSERT_IF(!aResumePoint.resumeSp, !aResumePoint.resumePc);
|
|
|
|
// If BP and/or PC are not null, SP must not be null. (But we allow BP/PC to
|
|
// be null even if SP is not null.)
|
|
MOZ_ASSERT_IF(aResumePoint.resumeBp, aResumePoint.resumeSp);
|
|
MOZ_ASSERT_IF(aResumePoint.resumePc, aResumePoint.resumeSp);
|
|
|
|
if (mResumePointCount < scMaxResumePointCount) {
|
|
mResumePoint[mResumePointCount] = std::move(aResumePoint);
|
|
++mResumePointCount;
|
|
}
|
|
}
|
|
|
|
// Only allow non-modifying range-for loops.
|
|
const ResumePoint* begin() const { return &mResumePoint[0]; }
|
|
const ResumePoint* end() const { return &mResumePoint[mResumePointCount]; }
|
|
|
|
// Find the next resume point that would be a caller of the function with the
|
|
// given SP; i.e., the resume point with the closest resumeSp > aSp.
|
|
const ResumePoint* GetResumePointCallingSp(void* aSp) const {
|
|
const ResumePoint* callingResumePoint = nullptr;
|
|
for (const ResumePoint& resumePoint : *this) {
|
|
if (resumePoint.resumeSp && // This is a potential resume point.
|
|
resumePoint.resumeSp > aSp && // It is a caller of the given SP.
|
|
(!callingResumePoint || // This is the first candidate.
|
|
resumePoint.resumeSp < callingResumePoint->resumeSp) // Or better.
|
|
) {
|
|
callingResumePoint = &resumePoint;
|
|
}
|
|
}
|
|
return callingResumePoint;
|
|
}
|
|
|
|
private:
|
|
size_t mResumePointCount = 0;
|
|
static constexpr size_t scMaxResumePointCount = 32;
|
|
ResumePoint mResumePoint[scMaxResumePointCount];
|
|
|
|
#else
|
|
public:
|
|
static constexpr bool scIsSupported = false;
|
|
// Discarded constexpr-if statements are still checked during compilation,
|
|
// these declarations are necessary for that, even if not actually used.
|
|
void Clear();
|
|
size_t ResumePointCount();
|
|
static constexpr size_t MaxResumePointCount();
|
|
void AddResumePoint(ResumePoint&& aResumePoint);
|
|
const ResumePoint* begin() const;
|
|
const ResumePoint* end() const;
|
|
const ResumePoint* GetResumePointCallingSp(void* aSp) const;
|
|
#endif
|
|
};
|
|
|
|
// Make a copy of the JS stack into a JSFrame array, and return the number of
|
|
// copied frames.
|
|
// This copy is necessary since, like the native stack, the JS stack is iterated
|
|
// youngest-to-oldest and we need to iterate oldest-to-youngest in MergeStacks.
|
|
static uint32_t ExtractJsFrames(
|
|
bool aIsSynchronous,
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const Registers& aRegs, ProfilerStackCollector& aCollector,
|
|
JsFrameBuffer aJsFrames, StackWalkControl* aStackWalkControlIfSupported) {
|
|
MOZ_ASSERT(aJsFrames,
|
|
"ExtractJsFrames should only be called if there is a "
|
|
"JsFrameBuffer to fill.");
|
|
|
|
uint32_t jsFramesCount = 0;
|
|
|
|
// Only walk jit stack if profiling frame iterator is turned on.
|
|
JSContext* context = aThreadData.GetJSContext();
|
|
if (context && JS::IsProfilingEnabledForContext(context)) {
|
|
AutoWalkJSStack autoWalkJSStack;
|
|
|
|
if (autoWalkJSStack.walkAllowed) {
|
|
JS::ProfilingFrameIterator::RegisterState registerState;
|
|
registerState.pc = aRegs.mPC;
|
|
registerState.sp = aRegs.mSP;
|
|
registerState.lr = aRegs.mLR;
|
|
registerState.fp = aRegs.mFP;
|
|
|
|
// Non-periodic sampling passes Nothing() as the buffer write position to
|
|
// ProfilingFrameIterator to avoid incorrectly resetting the buffer
|
|
// position of sampled JIT frames inside the JS engine.
|
|
Maybe<uint64_t> samplePosInBuffer;
|
|
if (!aIsSynchronous) {
|
|
// aCollector.SamplePositionInBuffer() will return Nothing() when
|
|
// profiler_suspend_and_sample_thread is called from the background hang
|
|
// reporter.
|
|
samplePosInBuffer = aCollector.SamplePositionInBuffer();
|
|
}
|
|
|
|
for (JS::ProfilingFrameIterator jsIter(context, registerState,
|
|
samplePosInBuffer);
|
|
!jsIter.done(); ++jsIter) {
|
|
if (aIsSynchronous || jsIter.isWasm()) {
|
|
jsFramesCount +=
|
|
jsIter.extractStack(aJsFrames, jsFramesCount, MAX_JS_FRAMES);
|
|
if (jsFramesCount == MAX_JS_FRAMES) {
|
|
break;
|
|
}
|
|
} else {
|
|
Maybe<JS::ProfilingFrameIterator::Frame> frame =
|
|
jsIter.getPhysicalFrameWithoutLabel();
|
|
if (frame.isSome()) {
|
|
aJsFrames[jsFramesCount++] = std::move(frame).ref();
|
|
if (jsFramesCount == MAX_JS_FRAMES) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if constexpr (StackWalkControl::scIsSupported) {
|
|
if (aStackWalkControlIfSupported) {
|
|
jsIter.getCppEntryRegisters().apply(
|
|
[&](const JS::ProfilingFrameIterator::RegisterState&
|
|
aCppEntry) {
|
|
StackWalkControl::ResumePoint resumePoint;
|
|
resumePoint.resumeSp = aCppEntry.sp;
|
|
resumePoint.resumeBp = aCppEntry.fp;
|
|
resumePoint.resumePc = aCppEntry.pc;
|
|
aStackWalkControlIfSupported->AddResumePoint(
|
|
std::move(resumePoint));
|
|
});
|
|
}
|
|
} else {
|
|
MOZ_ASSERT(!aStackWalkControlIfSupported,
|
|
"aStackWalkControlIfSupported should be null when "
|
|
"!StackWalkControl::scIsSupported");
|
|
(void)aStackWalkControlIfSupported;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return jsFramesCount;
|
|
}
|
|
|
|
// Merges the profiling stack, native stack, and JS stack, outputting the
|
|
// details to aCollector.
|
|
static void MergeStacks(
|
|
uint32_t aFeatures, bool aIsSynchronous,
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const Registers& aRegs, const NativeStack& aNativeStack,
|
|
ProfilerStackCollector& aCollector, JsFrame* aJsFrames,
|
|
uint32_t aJsFramesCount) {
|
|
// WARNING: this function runs within the profiler's "critical section".
|
|
// WARNING: this function might be called while the profiler is inactive, and
|
|
// cannot rely on ActivePS.
|
|
|
|
MOZ_ASSERT_IF(!aJsFrames, aJsFramesCount == 0);
|
|
|
|
const ProfilingStack& profilingStack = aThreadData.ProfilingStackCRef();
|
|
const js::ProfilingStackFrame* profilingStackFrames = profilingStack.frames;
|
|
uint32_t profilingStackFrameCount = profilingStack.stackSize();
|
|
|
|
// While the profiling stack array is ordered oldest-to-youngest, the JS and
|
|
// native arrays are ordered youngest-to-oldest. We must add frames to aInfo
|
|
// oldest-to-youngest. Thus, iterate over the profiling stack forwards and JS
|
|
// and native arrays backwards. Note: this means the terminating condition
|
|
// jsIndex and nativeIndex is being < 0.
|
|
uint32_t profilingStackIndex = 0;
|
|
int32_t jsIndex = aJsFramesCount - 1;
|
|
int32_t nativeIndex = aNativeStack.mCount - 1;
|
|
|
|
uint8_t* lastLabelFrameStackAddr = nullptr;
|
|
uint8_t* jitEndStackAddr = nullptr;
|
|
|
|
// Iterate as long as there is at least one frame remaining.
|
|
while (profilingStackIndex != profilingStackFrameCount || jsIndex >= 0 ||
|
|
nativeIndex >= 0) {
|
|
// There are 1 to 3 frames available. Find and add the oldest.
|
|
uint8_t* profilingStackAddr = nullptr;
|
|
uint8_t* jsStackAddr = nullptr;
|
|
uint8_t* nativeStackAddr = nullptr;
|
|
uint8_t* jsActivationAddr = nullptr;
|
|
|
|
if (profilingStackIndex != profilingStackFrameCount) {
|
|
const js::ProfilingStackFrame& profilingStackFrame =
|
|
profilingStackFrames[profilingStackIndex];
|
|
|
|
if (profilingStackFrame.isLabelFrame() ||
|
|
profilingStackFrame.isSpMarkerFrame()) {
|
|
lastLabelFrameStackAddr = (uint8_t*)profilingStackFrame.stackAddress();
|
|
}
|
|
|
|
// Skip any JS_OSR frames. Such frames are used when the JS interpreter
|
|
// enters a jit frame on a loop edge (via on-stack-replacement, or OSR).
|
|
// To avoid both the profiling stack frame and jit frame being recorded
|
|
// (and showing up twice), the interpreter marks the interpreter
|
|
// profiling stack frame as JS_OSR to ensure that it doesn't get counted.
|
|
if (profilingStackFrame.isOSRFrame()) {
|
|
profilingStackIndex++;
|
|
continue;
|
|
}
|
|
|
|
MOZ_ASSERT(lastLabelFrameStackAddr);
|
|
profilingStackAddr = lastLabelFrameStackAddr;
|
|
}
|
|
|
|
if (jsIndex >= 0) {
|
|
jsStackAddr = (uint8_t*)aJsFrames[jsIndex].stackAddress;
|
|
jsActivationAddr = (uint8_t*)aJsFrames[jsIndex].activation;
|
|
}
|
|
|
|
if (nativeIndex >= 0) {
|
|
nativeStackAddr = (uint8_t*)aNativeStack.mSPs[nativeIndex];
|
|
}
|
|
|
|
// If there's a native stack frame which has the same SP as a profiling
|
|
// stack frame, pretend we didn't see the native stack frame. Ditto for a
|
|
// native stack frame which has the same SP as a JS stack frame. In effect
|
|
// this means profiling stack frames or JS frames trump conflicting native
|
|
// frames.
|
|
if (nativeStackAddr && (profilingStackAddr == nativeStackAddr ||
|
|
jsStackAddr == nativeStackAddr)) {
|
|
nativeStackAddr = nullptr;
|
|
nativeIndex--;
|
|
MOZ_ASSERT(profilingStackAddr || jsStackAddr);
|
|
}
|
|
|
|
// Sanity checks.
|
|
MOZ_ASSERT_IF(profilingStackAddr,
|
|
profilingStackAddr != jsStackAddr &&
|
|
profilingStackAddr != nativeStackAddr);
|
|
MOZ_ASSERT_IF(jsStackAddr, jsStackAddr != profilingStackAddr &&
|
|
jsStackAddr != nativeStackAddr);
|
|
MOZ_ASSERT_IF(nativeStackAddr, nativeStackAddr != profilingStackAddr &&
|
|
nativeStackAddr != jsStackAddr);
|
|
|
|
// Check to see if profiling stack frame is top-most.
|
|
if (profilingStackAddr > jsStackAddr &&
|
|
profilingStackAddr > nativeStackAddr) {
|
|
MOZ_ASSERT(profilingStackIndex < profilingStackFrameCount);
|
|
const js::ProfilingStackFrame& profilingStackFrame =
|
|
profilingStackFrames[profilingStackIndex];
|
|
|
|
// Sp marker frames are just annotations and should not be recorded in
|
|
// the profile.
|
|
if (!profilingStackFrame.isSpMarkerFrame()) {
|
|
// The JIT only allows the top-most frame to have a nullptr pc.
|
|
MOZ_ASSERT_IF(
|
|
profilingStackFrame.isJsFrame() && profilingStackFrame.script() &&
|
|
!profilingStackFrame.pc(),
|
|
&profilingStackFrame ==
|
|
&profilingStack.frames[profilingStack.stackSize() - 1]);
|
|
if (aIsSynchronous && profilingStackFrame.categoryPair() ==
|
|
JS::ProfilingCategoryPair::PROFILER) {
|
|
// For stacks captured synchronously (ie. marker stacks), stop
|
|
// walking the stack as soon as we enter the profiler category,
|
|
// to avoid showing profiler internal code in marker stacks.
|
|
return;
|
|
}
|
|
aCollector.CollectProfilingStackFrame(profilingStackFrame);
|
|
}
|
|
profilingStackIndex++;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if JS jit stack frame is top-most
|
|
if (jsStackAddr > nativeStackAddr) {
|
|
MOZ_ASSERT(jsIndex >= 0);
|
|
const JS::ProfilingFrameIterator::Frame& jsFrame = aJsFrames[jsIndex];
|
|
jitEndStackAddr = (uint8_t*)jsFrame.endStackAddress;
|
|
// Stringifying non-wasm JIT frames is delayed until streaming time. To
|
|
// re-lookup the entry in the JitcodeGlobalTable, we need to store the
|
|
// JIT code address (OptInfoAddr) in the circular buffer.
|
|
//
|
|
// Note that we cannot do this when we are sychronously sampling the
|
|
// current thread; that is, when called from profiler_get_backtrace. The
|
|
// captured backtrace is usually externally stored for an indeterminate
|
|
// amount of time, such as in nsRefreshDriver. Problematically, the
|
|
// stored backtrace may be alive across a GC during which the profiler
|
|
// itself is disabled. In that case, the JS engine is free to discard its
|
|
// JIT code. This means that if we inserted such OptInfoAddr entries into
|
|
// the buffer, nsRefreshDriver would now be holding on to a backtrace
|
|
// with stale JIT code return addresses.
|
|
if (aIsSynchronous ||
|
|
jsFrame.kind == JS::ProfilingFrameIterator::Frame_Wasm) {
|
|
aCollector.CollectWasmFrame(jsFrame.label);
|
|
} else if (jsFrame.kind ==
|
|
JS::ProfilingFrameIterator::Frame_BaselineInterpreter) {
|
|
// Materialize a ProfilingStackFrame similar to the C++ Interpreter. We
|
|
// also set the IS_BLINTERP_FRAME flag to differentiate though.
|
|
JSScript* script = jsFrame.interpreterScript;
|
|
jsbytecode* pc = jsFrame.interpreterPC();
|
|
js::ProfilingStackFrame stackFrame;
|
|
constexpr uint32_t ExtraFlags =
|
|
uint32_t(js::ProfilingStackFrame::Flags::IS_BLINTERP_FRAME);
|
|
stackFrame.initJsFrame<JS::ProfilingCategoryPair::JS_BaselineInterpret,
|
|
ExtraFlags>("", jsFrame.label, script, pc,
|
|
jsFrame.realmID);
|
|
aCollector.CollectProfilingStackFrame(stackFrame);
|
|
} else {
|
|
MOZ_ASSERT(jsFrame.kind == JS::ProfilingFrameIterator::Frame_Ion ||
|
|
jsFrame.kind == JS::ProfilingFrameIterator::Frame_Baseline);
|
|
aCollector.CollectJitReturnAddr(jsFrame.returnAddress());
|
|
}
|
|
|
|
jsIndex--;
|
|
continue;
|
|
}
|
|
|
|
// If we reach here, there must be a native stack frame and it must be the
|
|
// greatest frame.
|
|
if (nativeStackAddr &&
|
|
// If the latest JS frame was JIT, this could be the native frame that
|
|
// corresponds to it. In that case, skip the native frame, because
|
|
// there's no need for the same frame to be present twice in the stack.
|
|
// The JS frame can be considered the symbolicated version of the native
|
|
// frame.
|
|
(!jitEndStackAddr || nativeStackAddr < jitEndStackAddr) &&
|
|
// This might still be a JIT operation, check to make sure that is not
|
|
// in range of the NEXT JavaScript's stacks' activation address.
|
|
(!jsActivationAddr || nativeStackAddr > jsActivationAddr)) {
|
|
MOZ_ASSERT(nativeIndex >= 0);
|
|
void* addr = (void*)aNativeStack.mPCs[nativeIndex];
|
|
aCollector.CollectNativeLeafAddr(addr);
|
|
}
|
|
if (nativeIndex >= 0) {
|
|
nativeIndex--;
|
|
}
|
|
}
|
|
|
|
// Update the JS context with the current profile sample buffer generation.
|
|
//
|
|
// Only do this for periodic samples. We don't want to do this for
|
|
// synchronous samples, and we also don't want to do it for calls to
|
|
// profiler_suspend_and_sample_thread() from the background hang reporter -
|
|
// in that case, aCollector.BufferRangeStart() will return Nothing().
|
|
if (!aIsSynchronous) {
|
|
aCollector.BufferRangeStart().apply(
|
|
[&aThreadData](uint64_t aBufferRangeStart) {
|
|
JSContext* context = aThreadData.GetJSContext();
|
|
if (context) {
|
|
JS::SetJSContextProfilerSampleBufferRangeStart(context,
|
|
aBufferRangeStart);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
#if defined(USE_FRAME_POINTER_STACK_WALK) || defined(USE_MOZ_STACK_WALK)
|
|
static void StackWalkCallback(uint32_t aFrameNumber, void* aPC, void* aSP,
|
|
void* aClosure) {
|
|
NativeStack* nativeStack = static_cast<NativeStack*>(aClosure);
|
|
MOZ_ASSERT(nativeStack->mCount < MAX_NATIVE_FRAMES);
|
|
nativeStack->mSPs[nativeStack->mCount] = aSP;
|
|
nativeStack->mPCs[nativeStack->mCount] = aPC;
|
|
nativeStack->mCount++;
|
|
}
|
|
#endif
|
|
|
|
#if defined(USE_FRAME_POINTER_STACK_WALK)
|
|
static void DoFramePointerBacktrace(
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const Registers& aRegs, NativeStack& aNativeStack,
|
|
StackWalkControl* aStackWalkControlIfSupported) {
|
|
// WARNING: this function runs within the profiler's "critical section".
|
|
// WARNING: this function might be called while the profiler is inactive, and
|
|
// cannot rely on ActivePS.
|
|
|
|
// Make a local copy of the Registers, to allow modifications.
|
|
Registers regs = aRegs;
|
|
|
|
// Start with the current function. We use 0 as the frame number here because
|
|
// the FramePointerStackWalk() call below will use 1..N. This is a bit weird
|
|
// but it doesn't matter because StackWalkCallback() doesn't use the frame
|
|
// number argument.
|
|
StackWalkCallback(/* frameNum */ 0, regs.mPC, regs.mSP, &aNativeStack);
|
|
|
|
const void* const stackEnd = aThreadData.StackTop();
|
|
|
|
// This is to check forward-progress after using a resume point.
|
|
void* previousResumeSp = nullptr;
|
|
|
|
for (;;) {
|
|
if (!(regs.mSP && regs.mSP <= regs.mFP && regs.mFP <= stackEnd)) {
|
|
break;
|
|
}
|
|
FramePointerStackWalk(StackWalkCallback,
|
|
uint32_t(MAX_NATIVE_FRAMES - aNativeStack.mCount),
|
|
&aNativeStack, reinterpret_cast<void**>(regs.mFP),
|
|
const_cast<void*>(stackEnd));
|
|
|
|
if constexpr (!StackWalkControl::scIsSupported) {
|
|
break;
|
|
} else {
|
|
if (aNativeStack.mCount >= MAX_NATIVE_FRAMES) {
|
|
// No room to add more frames.
|
|
break;
|
|
}
|
|
if (!aStackWalkControlIfSupported ||
|
|
aStackWalkControlIfSupported->ResumePointCount() == 0) {
|
|
// No resume information.
|
|
break;
|
|
}
|
|
void* lastSP = aNativeStack.mSPs[aNativeStack.mCount - 1];
|
|
if (previousResumeSp &&
|
|
((uintptr_t)lastSP <= (uintptr_t)previousResumeSp)) {
|
|
// No progress after the previous resume point.
|
|
break;
|
|
}
|
|
const StackWalkControl::ResumePoint* resumePoint =
|
|
aStackWalkControlIfSupported->GetResumePointCallingSp(lastSP);
|
|
if (!resumePoint) {
|
|
break;
|
|
}
|
|
void* sp = resumePoint->resumeSp;
|
|
if (!sp) {
|
|
// Null SP in a resume point means we stop here.
|
|
break;
|
|
}
|
|
void* pc = resumePoint->resumePc;
|
|
StackWalkCallback(/* frameNum */ aNativeStack.mCount, pc, sp,
|
|
&aNativeStack);
|
|
++aNativeStack.mCount;
|
|
if (aNativeStack.mCount >= MAX_NATIVE_FRAMES) {
|
|
break;
|
|
}
|
|
// Prepare context to resume stack walking.
|
|
regs.mPC = (Address)pc;
|
|
regs.mSP = (Address)sp;
|
|
regs.mFP = (Address)resumePoint->resumeBp;
|
|
|
|
previousResumeSp = sp;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(USE_MOZ_STACK_WALK)
|
|
static void DoMozStackWalkBacktrace(
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const Registers& aRegs, NativeStack& aNativeStack,
|
|
StackWalkControl* aStackWalkControlIfSupported) {
|
|
// WARNING: this function runs within the profiler's "critical section".
|
|
// WARNING: this function might be called while the profiler is inactive, and
|
|
// cannot rely on ActivePS.
|
|
|
|
// Start with the current function. We use 0 as the frame number here because
|
|
// the MozStackWalkThread() call below will use 1..N. This is a bit weird but
|
|
// it doesn't matter because StackWalkCallback() doesn't use the frame number
|
|
// argument.
|
|
StackWalkCallback(/* frameNum */ 0, aRegs.mPC, aRegs.mSP, &aNativeStack);
|
|
|
|
HANDLE thread = aThreadData.PlatformDataCRef().ProfiledThread();
|
|
MOZ_ASSERT(thread);
|
|
|
|
CONTEXT context_buf;
|
|
CONTEXT* context = nullptr;
|
|
if constexpr (StackWalkControl::scIsSupported) {
|
|
context = &context_buf;
|
|
memset(&context_buf, 0, sizeof(CONTEXT));
|
|
context_buf.ContextFlags = CONTEXT_FULL;
|
|
# if defined(_M_AMD64)
|
|
context_buf.Rsp = (DWORD64)aRegs.mSP;
|
|
context_buf.Rbp = (DWORD64)aRegs.mFP;
|
|
context_buf.Rip = (DWORD64)aRegs.mPC;
|
|
# else
|
|
static_assert(!StackWalkControl::scIsSupported,
|
|
"Mismatched support between StackWalkControl and "
|
|
"DoMozStackWalkBacktrace");
|
|
# endif
|
|
} else {
|
|
context = nullptr;
|
|
}
|
|
|
|
// This is to check forward-progress after using a resume point.
|
|
void* previousResumeSp = nullptr;
|
|
|
|
for (;;) {
|
|
MozStackWalkThread(StackWalkCallback,
|
|
uint32_t(MAX_NATIVE_FRAMES - aNativeStack.mCount),
|
|
&aNativeStack, thread, context);
|
|
|
|
if constexpr (!StackWalkControl::scIsSupported) {
|
|
break;
|
|
} else {
|
|
if (aNativeStack.mCount >= MAX_NATIVE_FRAMES) {
|
|
// No room to add more frames.
|
|
break;
|
|
}
|
|
if (!aStackWalkControlIfSupported ||
|
|
aStackWalkControlIfSupported->ResumePointCount() == 0) {
|
|
// No resume information.
|
|
break;
|
|
}
|
|
void* lastSP = aNativeStack.mSPs[aNativeStack.mCount - 1];
|
|
if (previousResumeSp &&
|
|
((uintptr_t)lastSP <= (uintptr_t)previousResumeSp)) {
|
|
// No progress after the previous resume point.
|
|
break;
|
|
}
|
|
const StackWalkControl::ResumePoint* resumePoint =
|
|
aStackWalkControlIfSupported->GetResumePointCallingSp(lastSP);
|
|
if (!resumePoint) {
|
|
break;
|
|
}
|
|
void* sp = resumePoint->resumeSp;
|
|
if (!sp) {
|
|
// Null SP in a resume point means we stop here.
|
|
break;
|
|
}
|
|
void* pc = resumePoint->resumePc;
|
|
StackWalkCallback(/* frameNum */ aNativeStack.mCount, pc, sp,
|
|
&aNativeStack);
|
|
++aNativeStack.mCount;
|
|
if (aNativeStack.mCount >= MAX_NATIVE_FRAMES) {
|
|
break;
|
|
}
|
|
// Prepare context to resume stack walking.
|
|
memset(&context_buf, 0, sizeof(CONTEXT));
|
|
context_buf.ContextFlags = CONTEXT_FULL;
|
|
# if defined(_M_AMD64)
|
|
context_buf.Rsp = (DWORD64)sp;
|
|
context_buf.Rbp = (DWORD64)resumePoint->resumeBp;
|
|
context_buf.Rip = (DWORD64)pc;
|
|
# else
|
|
static_assert(!StackWalkControl::scIsSupported,
|
|
"Mismatched support between StackWalkControl and "
|
|
"DoMozStackWalkBacktrace");
|
|
# endif
|
|
previousResumeSp = sp;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_EHABI_STACKWALK
|
|
static void DoEHABIBacktrace(
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const Registers& aRegs, NativeStack& aNativeStack,
|
|
StackWalkControl* aStackWalkControlIfSupported) {
|
|
// WARNING: this function runs within the profiler's "critical section".
|
|
// WARNING: this function might be called while the profiler is inactive, and
|
|
// cannot rely on ActivePS.
|
|
|
|
aNativeStack.mCount = EHABIStackWalk(
|
|
aRegs.mContext->uc_mcontext, const_cast<void*>(aThreadData.StackTop()),
|
|
aNativeStack.mSPs, aNativeStack.mPCs, MAX_NATIVE_FRAMES);
|
|
(void)aStackWalkControlIfSupported; // TODO: Implement.
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_LUL_STACKWALK
|
|
|
|
// See the comment at the callsite for why this function is necessary.
|
|
# if defined(MOZ_HAVE_ASAN_BLACKLIST)
|
|
MOZ_ASAN_BLACKLIST static void ASAN_memcpy(void* aDst, const void* aSrc,
|
|
size_t aLen) {
|
|
// The obvious thing to do here is call memcpy(). However, although
|
|
// ASAN_memcpy() is not instrumented by ASAN, memcpy() still is, and the
|
|
// false positive still manifests! So we must implement memcpy() ourselves
|
|
// within this function.
|
|
char* dst = static_cast<char*>(aDst);
|
|
const char* src = static_cast<const char*>(aSrc);
|
|
|
|
for (size_t i = 0; i < aLen; i++) {
|
|
dst[i] = src[i];
|
|
}
|
|
}
|
|
# endif
|
|
|
|
static void DoLULBacktrace(
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const Registers& aRegs, NativeStack& aNativeStack,
|
|
StackWalkControl* aStackWalkControlIfSupported) {
|
|
// WARNING: this function runs within the profiler's "critical section".
|
|
// WARNING: this function might be called while the profiler is inactive, and
|
|
// cannot rely on ActivePS.
|
|
|
|
(void)aStackWalkControlIfSupported; // TODO: Implement.
|
|
|
|
const mcontext_t* mc = &aRegs.mContext->uc_mcontext;
|
|
|
|
lul::UnwindRegs startRegs;
|
|
memset(&startRegs, 0, sizeof(startRegs));
|
|
|
|
# if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_amd64_android)
|
|
startRegs.xip = lul::TaggedUWord(mc->gregs[REG_RIP]);
|
|
startRegs.xsp = lul::TaggedUWord(mc->gregs[REG_RSP]);
|
|
startRegs.xbp = lul::TaggedUWord(mc->gregs[REG_RBP]);
|
|
# elif defined(GP_PLAT_amd64_freebsd)
|
|
startRegs.xip = lul::TaggedUWord(mc->mc_rip);
|
|
startRegs.xsp = lul::TaggedUWord(mc->mc_rsp);
|
|
startRegs.xbp = lul::TaggedUWord(mc->mc_rbp);
|
|
# elif defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
|
|
startRegs.r15 = lul::TaggedUWord(mc->arm_pc);
|
|
startRegs.r14 = lul::TaggedUWord(mc->arm_lr);
|
|
startRegs.r13 = lul::TaggedUWord(mc->arm_sp);
|
|
startRegs.r12 = lul::TaggedUWord(mc->arm_ip);
|
|
startRegs.r11 = lul::TaggedUWord(mc->arm_fp);
|
|
startRegs.r7 = lul::TaggedUWord(mc->arm_r7);
|
|
# elif defined(GP_PLAT_arm64_linux) || defined(GP_PLAT_arm64_android)
|
|
startRegs.pc = lul::TaggedUWord(mc->pc);
|
|
startRegs.x29 = lul::TaggedUWord(mc->regs[29]);
|
|
startRegs.x30 = lul::TaggedUWord(mc->regs[30]);
|
|
startRegs.sp = lul::TaggedUWord(mc->sp);
|
|
# elif defined(GP_PLAT_arm64_freebsd)
|
|
startRegs.pc = lul::TaggedUWord(mc->mc_gpregs.gp_elr);
|
|
startRegs.x29 = lul::TaggedUWord(mc->mc_gpregs.gp_x[29]);
|
|
startRegs.x30 = lul::TaggedUWord(mc->mc_gpregs.gp_lr);
|
|
startRegs.sp = lul::TaggedUWord(mc->mc_gpregs.gp_sp);
|
|
# elif defined(GP_PLAT_x86_linux) || defined(GP_PLAT_x86_android)
|
|
startRegs.xip = lul::TaggedUWord(mc->gregs[REG_EIP]);
|
|
startRegs.xsp = lul::TaggedUWord(mc->gregs[REG_ESP]);
|
|
startRegs.xbp = lul::TaggedUWord(mc->gregs[REG_EBP]);
|
|
# elif defined(GP_PLAT_mips64_linux)
|
|
startRegs.pc = lul::TaggedUWord(mc->pc);
|
|
startRegs.sp = lul::TaggedUWord(mc->gregs[29]);
|
|
startRegs.fp = lul::TaggedUWord(mc->gregs[30]);
|
|
# else
|
|
# error "Unknown plat"
|
|
# endif
|
|
|
|
// Copy up to N_STACK_BYTES from rsp-REDZONE upwards, but not going past the
|
|
// stack's registered top point. Do some basic validity checks too. This
|
|
// assumes that the TaggedUWord holding the stack pointer value is valid, but
|
|
// it should be, since it was constructed that way in the code just above.
|
|
|
|
// We could construct |stackImg| so that LUL reads directly from the stack in
|
|
// question, rather than from a copy of it. That would reduce overhead and
|
|
// space use a bit. However, it gives a problem with dynamic analysis tools
|
|
// (ASan, TSan, Valgrind) which is that such tools will report invalid or
|
|
// racing memory accesses, and such accesses will be reported deep inside LUL.
|
|
// By taking a copy here, we can either sanitise the copy (for Valgrind) or
|
|
// copy it using an unchecked memcpy (for ASan, TSan). That way we don't have
|
|
// to try and suppress errors inside LUL.
|
|
//
|
|
// N_STACK_BYTES is set to 160KB. This is big enough to hold all stacks
|
|
// observed in some minutes of testing, whilst keeping the size of this
|
|
// function (DoNativeBacktrace)'s frame reasonable. Most stacks observed in
|
|
// practice are small, 4KB or less, and so the copy costs are insignificant
|
|
// compared to other profiler overhead.
|
|
//
|
|
// |stackImg| is allocated on this (the sampling thread's) stack. That
|
|
// implies that the frame for this function is at least N_STACK_BYTES large.
|
|
// In general it would be considered unacceptable to have such a large frame
|
|
// on a stack, but it only exists for the unwinder thread, and so is not
|
|
// expected to be a problem. Allocating it on the heap is troublesome because
|
|
// this function runs whilst the sampled thread is suspended, so any heap
|
|
// allocation risks deadlock. Allocating it as a global variable is not
|
|
// thread safe, which would be a problem if we ever allow multiple sampler
|
|
// threads. Hence allocating it on the stack seems to be the least-worst
|
|
// option.
|
|
|
|
lul::StackImage stackImg;
|
|
|
|
{
|
|
# if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_amd64_android) || \
|
|
defined(GP_PLAT_amd64_freebsd)
|
|
uintptr_t rEDZONE_SIZE = 128;
|
|
uintptr_t start = startRegs.xsp.Value() - rEDZONE_SIZE;
|
|
# elif defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
|
|
uintptr_t rEDZONE_SIZE = 0;
|
|
uintptr_t start = startRegs.r13.Value() - rEDZONE_SIZE;
|
|
# elif defined(GP_PLAT_arm64_linux) || defined(GP_PLAT_arm64_android) || \
|
|
defined(GP_PLAT_arm64_freebsd)
|
|
uintptr_t rEDZONE_SIZE = 0;
|
|
uintptr_t start = startRegs.sp.Value() - rEDZONE_SIZE;
|
|
# elif defined(GP_PLAT_x86_linux) || defined(GP_PLAT_x86_android)
|
|
uintptr_t rEDZONE_SIZE = 0;
|
|
uintptr_t start = startRegs.xsp.Value() - rEDZONE_SIZE;
|
|
# elif defined(GP_PLAT_mips64_linux)
|
|
uintptr_t rEDZONE_SIZE = 0;
|
|
uintptr_t start = startRegs.sp.Value() - rEDZONE_SIZE;
|
|
# else
|
|
# error "Unknown plat"
|
|
# endif
|
|
uintptr_t end = reinterpret_cast<uintptr_t>(aThreadData.StackTop());
|
|
uintptr_t ws = sizeof(void*);
|
|
start &= ~(ws - 1);
|
|
end &= ~(ws - 1);
|
|
uintptr_t nToCopy = 0;
|
|
if (start < end) {
|
|
nToCopy = end - start;
|
|
if (nToCopy >= 1024u * 1024u) {
|
|
// start is abnormally far from end, possibly due to some special code
|
|
// that uses a separate stack elsewhere (e.g.: rr). In this case we just
|
|
// give up on this sample.
|
|
nToCopy = 0;
|
|
} else if (nToCopy > lul::N_STACK_BYTES) {
|
|
nToCopy = lul::N_STACK_BYTES;
|
|
}
|
|
}
|
|
MOZ_ASSERT(nToCopy <= lul::N_STACK_BYTES);
|
|
stackImg.mLen = nToCopy;
|
|
stackImg.mStartAvma = start;
|
|
if (nToCopy > 0) {
|
|
// If this is a vanilla memcpy(), ASAN makes the following complaint:
|
|
//
|
|
// ERROR: AddressSanitizer: stack-buffer-underflow ...
|
|
// ...
|
|
// HINT: this may be a false positive if your program uses some custom
|
|
// stack unwind mechanism or swapcontext
|
|
//
|
|
// This code is very much a custom stack unwind mechanism! So we use an
|
|
// alternative memcpy() implementation that is ignored by ASAN.
|
|
# if defined(MOZ_HAVE_ASAN_BLACKLIST)
|
|
ASAN_memcpy(&stackImg.mContents[0], (void*)start, nToCopy);
|
|
# else
|
|
memcpy(&stackImg.mContents[0], (void*)start, nToCopy);
|
|
# endif
|
|
(void)VALGRIND_MAKE_MEM_DEFINED(&stackImg.mContents[0], nToCopy);
|
|
}
|
|
}
|
|
|
|
size_t framePointerFramesAcquired = 0;
|
|
lul::LUL* lul = CorePS::Lul();
|
|
MOZ_RELEASE_ASSERT(lul);
|
|
lul->Unwind(reinterpret_cast<uintptr_t*>(aNativeStack.mPCs),
|
|
reinterpret_cast<uintptr_t*>(aNativeStack.mSPs),
|
|
&aNativeStack.mCount, &framePointerFramesAcquired,
|
|
MAX_NATIVE_FRAMES, &startRegs, &stackImg);
|
|
|
|
// Update stats in the LUL stats object. Unfortunately this requires
|
|
// three global memory operations.
|
|
lul->mStats.mContext += 1;
|
|
lul->mStats.mCFI += aNativeStack.mCount - 1 - framePointerFramesAcquired;
|
|
lul->mStats.mFP += framePointerFramesAcquired;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_NATIVE_UNWIND
|
|
static void DoNativeBacktrace(
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const Registers& aRegs, NativeStack& aNativeStack,
|
|
StackWalkControl* aStackWalkControlIfSupported) {
|
|
// This method determines which stackwalker is used for periodic and
|
|
// synchronous samples. (Backtrace samples are treated differently, see
|
|
// profiler_suspend_and_sample_thread() for details). The only part of the
|
|
// ordering that matters is that LUL must precede FRAME_POINTER, because on
|
|
// Linux they can both be present.
|
|
# if defined(USE_LUL_STACKWALK)
|
|
DoLULBacktrace(aThreadData, aRegs, aNativeStack,
|
|
aStackWalkControlIfSupported);
|
|
# elif defined(USE_EHABI_STACKWALK)
|
|
DoEHABIBacktrace(aThreadData, aRegs, aNativeStack,
|
|
aStackWalkControlIfSupported);
|
|
# elif defined(USE_FRAME_POINTER_STACK_WALK)
|
|
DoFramePointerBacktrace(aThreadData, aRegs, aNativeStack,
|
|
aStackWalkControlIfSupported);
|
|
# elif defined(USE_MOZ_STACK_WALK)
|
|
DoMozStackWalkBacktrace(aThreadData, aRegs, aNativeStack,
|
|
aStackWalkControlIfSupported);
|
|
# else
|
|
# error "Invalid configuration"
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
// Writes some components shared by periodic and synchronous profiles to
|
|
// ActivePS's ProfileBuffer. (This should only be called from DoSyncSample()
|
|
// and DoPeriodicSample().)
|
|
//
|
|
// The grammar for entry sequences is in a comment above
|
|
// ProfileBuffer::StreamSamplesToJSON.
|
|
static inline void DoSharedSample(
|
|
bool aIsSynchronous, uint32_t aFeatures,
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
JsFrame* aJsFrames, const Registers& aRegs, uint64_t aSamplePos,
|
|
uint64_t aBufferRangeStart, ProfileBuffer& aBuffer,
|
|
StackCaptureOptions aCaptureOptions = StackCaptureOptions::Full) {
|
|
// WARNING: this function runs within the profiler's "critical section".
|
|
|
|
MOZ_ASSERT(!aBuffer.IsThreadSafe(),
|
|
"Mutexes cannot be used inside this critical section");
|
|
|
|
ProfileBufferCollector collector(aBuffer, aSamplePos, aBufferRangeStart);
|
|
StackWalkControl* stackWalkControlIfSupported = nullptr;
|
|
#if defined(HAVE_NATIVE_UNWIND)
|
|
const bool captureNative = ProfilerFeature::HasStackWalk(aFeatures) &&
|
|
aCaptureOptions == StackCaptureOptions::Full;
|
|
StackWalkControl stackWalkControl;
|
|
if constexpr (StackWalkControl::scIsSupported) {
|
|
if (captureNative) {
|
|
stackWalkControlIfSupported = &stackWalkControl;
|
|
}
|
|
}
|
|
#endif // defined(HAVE_NATIVE_UNWIND)
|
|
const uint32_t jsFramesCount =
|
|
aJsFrames ? ExtractJsFrames(aIsSynchronous, aThreadData, aRegs, collector,
|
|
aJsFrames, stackWalkControlIfSupported)
|
|
: 0;
|
|
NativeStack nativeStack;
|
|
#if defined(HAVE_NATIVE_UNWIND)
|
|
if (captureNative) {
|
|
DoNativeBacktrace(aThreadData, aRegs, nativeStack,
|
|
stackWalkControlIfSupported);
|
|
|
|
MergeStacks(aFeatures, aIsSynchronous, aThreadData, aRegs, nativeStack,
|
|
collector, aJsFrames, jsFramesCount);
|
|
} else
|
|
#endif
|
|
{
|
|
MergeStacks(aFeatures, aIsSynchronous, aThreadData, aRegs, nativeStack,
|
|
collector, aJsFrames, jsFramesCount);
|
|
|
|
// We can't walk the whole native stack, but we can record the top frame.
|
|
if (ProfilerFeature::HasLeaf(aFeatures) &&
|
|
aCaptureOptions == StackCaptureOptions::Full) {
|
|
aBuffer.AddEntry(ProfileBufferEntry::NativeLeafAddr((void*)aRegs.mPC));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Writes the components of a synchronous sample to the given ProfileBuffer.
|
|
static void DoSyncSample(
|
|
uint32_t aFeatures,
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const TimeStamp& aNow, const Registers& aRegs, ProfileBuffer& aBuffer,
|
|
StackCaptureOptions aCaptureOptions) {
|
|
// WARNING: this function runs within the profiler's "critical section".
|
|
|
|
MOZ_ASSERT(aCaptureOptions != StackCaptureOptions::NoStack,
|
|
"DoSyncSample should not be called when no capture is needed");
|
|
|
|
const uint64_t bufferRangeStart = aBuffer.BufferRangeStart();
|
|
|
|
const uint64_t samplePos =
|
|
aBuffer.AddThreadIdEntry(aThreadData.Info().ThreadId());
|
|
|
|
TimeDuration delta = aNow - CorePS::ProcessStartTime();
|
|
aBuffer.AddEntry(ProfileBufferEntry::Time(delta.ToMilliseconds()));
|
|
|
|
if (!aThreadData.GetJSContext()) {
|
|
// No JSContext, there is no JS frame buffer (and no need for it).
|
|
DoSharedSample(/* aIsSynchronous = */ true, aFeatures, aThreadData,
|
|
/* aJsFrames = */ nullptr, aRegs, samplePos,
|
|
bufferRangeStart, aBuffer, aCaptureOptions);
|
|
} else {
|
|
// JSContext is present, we need to lock the thread data to access the JS
|
|
// frame buffer.
|
|
ThreadRegistration::WithOnThreadRef([&](ThreadRegistration::OnThreadRef
|
|
aOnThreadRef) {
|
|
aOnThreadRef.WithConstLockedRWOnThread(
|
|
[&](const ThreadRegistration::LockedRWOnThread& aLockedThreadData) {
|
|
DoSharedSample(/* aIsSynchronous = */ true, aFeatures, aThreadData,
|
|
aLockedThreadData.GetJsFrameBuffer(), aRegs,
|
|
samplePos, bufferRangeStart, aBuffer,
|
|
aCaptureOptions);
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
// Writes the components of a periodic sample to ActivePS's ProfileBuffer.
|
|
// The ThreadId entry is already written in the main ProfileBuffer, its location
|
|
// is `aSamplePos`, we can write the rest to `aBuffer` (which may be different).
|
|
static inline void DoPeriodicSample(
|
|
PSLockRef aLock,
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const Registers& aRegs, uint64_t aSamplePos, uint64_t aBufferRangeStart,
|
|
ProfileBuffer& aBuffer) {
|
|
// WARNING: this function runs within the profiler's "critical section".
|
|
|
|
MOZ_RELEASE_ASSERT(ActivePS::Exists(aLock));
|
|
|
|
JsFrameBuffer& jsFrames = CorePS::JsFrames(aLock);
|
|
DoSharedSample(/* aIsSynchronous = */ false, ActivePS::Features(aLock),
|
|
aThreadData, jsFrames, aRegs, aSamplePos, aBufferRangeStart,
|
|
aBuffer);
|
|
}
|
|
|
|
// END sampling/unwinding code
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// BEGIN saving/streaming code
|
|
|
|
const static uint64_t kJS_MAX_SAFE_UINTEGER = +9007199254740991ULL;
|
|
|
|
static int64_t SafeJSInteger(uint64_t aValue) {
|
|
return aValue <= kJS_MAX_SAFE_UINTEGER ? int64_t(aValue) : -1;
|
|
}
|
|
|
|
static void AddSharedLibraryInfoToStream(JSONWriter& aWriter,
|
|
const SharedLibrary& aLib) {
|
|
aWriter.StartObjectElement();
|
|
aWriter.IntProperty("start", SafeJSInteger(aLib.GetStart()));
|
|
aWriter.IntProperty("end", SafeJSInteger(aLib.GetEnd()));
|
|
aWriter.IntProperty("offset", SafeJSInteger(aLib.GetOffset()));
|
|
aWriter.StringProperty("name", NS_ConvertUTF16toUTF8(aLib.GetModuleName()));
|
|
aWriter.StringProperty("path", NS_ConvertUTF16toUTF8(aLib.GetModulePath()));
|
|
aWriter.StringProperty("debugName",
|
|
NS_ConvertUTF16toUTF8(aLib.GetDebugName()));
|
|
aWriter.StringProperty("debugPath",
|
|
NS_ConvertUTF16toUTF8(aLib.GetDebugPath()));
|
|
aWriter.StringProperty("breakpadId", aLib.GetBreakpadId());
|
|
aWriter.StringProperty("arch", aLib.GetArch());
|
|
aWriter.EndObject();
|
|
}
|
|
|
|
void AppendSharedLibraries(JSONWriter& aWriter) {
|
|
SharedLibraryInfo info = SharedLibraryInfo::GetInfoForSelf();
|
|
info.SortByAddress();
|
|
for (size_t i = 0; i < info.GetSize(); i++) {
|
|
AddSharedLibraryInfoToStream(aWriter, info.GetEntry(i));
|
|
}
|
|
}
|
|
|
|
static void StreamCategories(SpliceableJSONWriter& aWriter) {
|
|
// Same order as ProfilingCategory. Format:
|
|
// [
|
|
// {
|
|
// name: "Idle",
|
|
// color: "transparent",
|
|
// subcategories: ["Other"],
|
|
// },
|
|
// {
|
|
// name: "Other",
|
|
// color: "grey",
|
|
// subcategories: [
|
|
// "JSM loading",
|
|
// "Subprocess launching",
|
|
// "DLL loading"
|
|
// ]
|
|
// },
|
|
// ...
|
|
// ]
|
|
|
|
#define CATEGORY_JSON_BEGIN_CATEGORY(name, labelAsString, color) \
|
|
aWriter.Start(); \
|
|
aWriter.StringProperty("name", labelAsString); \
|
|
aWriter.StringProperty("color", color); \
|
|
aWriter.StartArrayProperty("subcategories");
|
|
#define CATEGORY_JSON_SUBCATEGORY(supercategory, name, labelAsString) \
|
|
aWriter.StringElement(labelAsString);
|
|
#define CATEGORY_JSON_END_CATEGORY \
|
|
aWriter.EndArray(); \
|
|
aWriter.EndObject();
|
|
|
|
MOZ_PROFILING_CATEGORY_LIST(CATEGORY_JSON_BEGIN_CATEGORY,
|
|
CATEGORY_JSON_SUBCATEGORY,
|
|
CATEGORY_JSON_END_CATEGORY)
|
|
|
|
#undef CATEGORY_JSON_BEGIN_CATEGORY
|
|
#undef CATEGORY_JSON_SUBCATEGORY
|
|
#undef CATEGORY_JSON_END_CATEGORY
|
|
}
|
|
|
|
static void StreamMarkerSchema(SpliceableJSONWriter& aWriter) {
|
|
// Get an array view with all registered marker-type-specific functions.
|
|
Span<const base_profiler_markers_detail::Streaming::MarkerTypeFunctions>
|
|
markerTypeFunctionsArray =
|
|
base_profiler_markers_detail::Streaming::MarkerTypeFunctionsArray();
|
|
// List of streamed marker names, this is used to spot duplicates.
|
|
std::set<std::string> names;
|
|
// Stream the display schema for each different one. (Duplications may come
|
|
// from the same code potentially living in different libraries.)
|
|
for (const auto& markerTypeFunctions : markerTypeFunctionsArray) {
|
|
auto name = markerTypeFunctions.mMarkerTypeNameFunction();
|
|
// std::set.insert(T&&) returns a pair, its `second` is true if the element
|
|
// was actually inserted (i.e., it was not there yet.)
|
|
const bool didInsert =
|
|
names.insert(std::string(name.data(), name.size())).second;
|
|
if (didInsert) {
|
|
markerTypeFunctions.mMarkerSchemaFunction().Stream(aWriter, name);
|
|
}
|
|
}
|
|
|
|
// Now stream the Rust marker schemas. Passing the names set as a void pointer
|
|
// as well, so we can continue checking if the schemes are added already in
|
|
// the Rust side.
|
|
profiler::ffi::gecko_profiler_stream_marker_schemas(
|
|
&aWriter, static_cast<void*>(&names));
|
|
}
|
|
|
|
// Some meta information that is better recorded before streaming the profile.
|
|
// This is *not* intended to be cached, as some values could change between
|
|
// profiling sessions.
|
|
struct PreRecordedMetaInformation {
|
|
bool mAsyncStacks;
|
|
|
|
// This struct should only live on the stack, so it's fine to use Auto
|
|
// strings.
|
|
nsAutoCString mHttpPlatform;
|
|
nsAutoCString mHttpOscpu;
|
|
nsAutoCString mHttpMisc;
|
|
|
|
nsAutoCString mRuntimeABI;
|
|
nsAutoCString mRuntimeToolkit;
|
|
|
|
nsAutoCString mAppInfoProduct;
|
|
nsAutoCString mAppInfoAppBuildID;
|
|
nsAutoCString mAppInfoSourceURL;
|
|
|
|
int32_t mProcessInfoCpuCount;
|
|
int32_t mProcessInfoCpuCores;
|
|
};
|
|
|
|
// This function should be called out of the profiler lock.
|
|
// It gathers non-trivial data that doesn't require the profiler to stop, or for
|
|
// which the request could theoretically deadlock if the profiler is locked.
|
|
static PreRecordedMetaInformation PreRecordMetaInformation() {
|
|
MOZ_ASSERT(!PSAutoLock::IsLockedOnCurrentThread());
|
|
|
|
PreRecordedMetaInformation info = {}; // Aggregate-init all fields.
|
|
|
|
if (!NS_IsMainThread()) {
|
|
// Leave these properties out if we're not on the main thread.
|
|
// At the moment, the only case in which this function is called on a
|
|
// background thread is if we're in a content process and are going to
|
|
// send this profile to the parent process. In that case, the parent
|
|
// process profile's "meta" object already has the rest of the properties,
|
|
// and the parent process profile is dumped on that process's main thread.
|
|
return info;
|
|
}
|
|
|
|
info.mAsyncStacks = Preferences::GetBool("javascript.options.asyncstack");
|
|
|
|
nsresult res;
|
|
|
|
if (nsCOMPtr<nsIHttpProtocolHandler> http =
|
|
do_GetService(NS_NETWORK_PROTOCOL_CONTRACTID_PREFIX "http", &res);
|
|
!NS_FAILED(res) && http) {
|
|
Unused << http->GetPlatform(info.mHttpPlatform);
|
|
|
|
#if defined(GP_OS_darwin)
|
|
// On Mac, the http "oscpu" is capped at 10.15, so we need to get the real
|
|
// OS version directly.
|
|
int major = 0;
|
|
int minor = 0;
|
|
int bugfix = 0;
|
|
nsCocoaFeatures::GetSystemVersion(major, minor, bugfix);
|
|
if (major != 0) {
|
|
info.mHttpOscpu.AppendLiteral("macOS ");
|
|
info.mHttpOscpu.AppendInt(major);
|
|
info.mHttpOscpu.AppendLiteral(".");
|
|
info.mHttpOscpu.AppendInt(minor);
|
|
info.mHttpOscpu.AppendLiteral(".");
|
|
info.mHttpOscpu.AppendInt(bugfix);
|
|
} else
|
|
#endif
|
|
{
|
|
Unused << http->GetOscpu(info.mHttpOscpu);
|
|
}
|
|
|
|
Unused << http->GetMisc(info.mHttpMisc);
|
|
}
|
|
|
|
if (nsCOMPtr<nsIXULRuntime> runtime =
|
|
do_GetService("@mozilla.org/xre/runtime;1");
|
|
runtime) {
|
|
Unused << runtime->GetXPCOMABI(info.mRuntimeABI);
|
|
Unused << runtime->GetWidgetToolkit(info.mRuntimeToolkit);
|
|
}
|
|
|
|
if (nsCOMPtr<nsIXULAppInfo> appInfo =
|
|
do_GetService("@mozilla.org/xre/app-info;1");
|
|
appInfo) {
|
|
Unused << appInfo->GetName(info.mAppInfoProduct);
|
|
Unused << appInfo->GetAppBuildID(info.mAppInfoAppBuildID);
|
|
Unused << appInfo->GetSourceURL(info.mAppInfoSourceURL);
|
|
}
|
|
|
|
ProcessInfo processInfo = {}; // Aggregate-init all fields to false/zeroes.
|
|
if (NS_SUCCEEDED(CollectProcessInfo(processInfo))) {
|
|
info.mProcessInfoCpuCount = processInfo.cpuCount;
|
|
info.mProcessInfoCpuCores = processInfo.cpuCores;
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
// Implemented in platform-specific cpps, to add object properties describing
|
|
// the units of CPU measurements in samples.
|
|
static void StreamMetaPlatformSampleUnits(PSLockRef aLock,
|
|
SpliceableJSONWriter& aWriter);
|
|
|
|
static void StreamMetaJSCustomObject(
|
|
PSLockRef aLock, SpliceableJSONWriter& aWriter, bool aIsShuttingDown,
|
|
const PreRecordedMetaInformation& aPreRecordedMetaInformation) {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
|
|
|
|
aWriter.IntProperty("version", 24);
|
|
|
|
// The "startTime" field holds the number of milliseconds since midnight
|
|
// January 1, 1970 GMT. This grotty code computes (Now - (Now -
|
|
// ProcessStartTime)) to convert CorePS::ProcessStartTime() into that form.
|
|
TimeDuration delta = TimeStamp::Now() - CorePS::ProcessStartTime();
|
|
aWriter.DoubleProperty(
|
|
"startTime",
|
|
static_cast<double>(PR_Now() / 1000.0 - delta.ToMilliseconds()));
|
|
|
|
// Write the shutdownTime field. Unlike startTime, shutdownTime is not an
|
|
// absolute time stamp: It's relative to startTime. This is consistent with
|
|
// all other (non-"startTime") times anywhere in the profile JSON.
|
|
if (aIsShuttingDown) {
|
|
aWriter.DoubleProperty("shutdownTime", profiler_time());
|
|
} else {
|
|
aWriter.NullProperty("shutdownTime");
|
|
}
|
|
|
|
aWriter.StartArrayProperty("categories");
|
|
StreamCategories(aWriter);
|
|
aWriter.EndArray();
|
|
|
|
aWriter.StartArrayProperty("markerSchema");
|
|
StreamMarkerSchema(aWriter);
|
|
aWriter.EndArray();
|
|
|
|
ActivePS::WriteActiveConfiguration(aLock, aWriter,
|
|
MakeStringSpan("configuration"));
|
|
|
|
if (!NS_IsMainThread()) {
|
|
// Leave the rest of the properties out if we're not on the main thread.
|
|
// At the moment, the only case in which this function is called on a
|
|
// background thread is if we're in a content process and are going to
|
|
// send this profile to the parent process. In that case, the parent
|
|
// process profile's "meta" object already has the rest of the properties,
|
|
// and the parent process profile is dumped on that process's main thread.
|
|
return;
|
|
}
|
|
|
|
aWriter.DoubleProperty("interval", ActivePS::Interval(aLock));
|
|
aWriter.IntProperty("stackwalk", ActivePS::FeatureStackWalk(aLock));
|
|
|
|
#ifdef DEBUG
|
|
aWriter.IntProperty("debug", 1);
|
|
#else
|
|
aWriter.IntProperty("debug", 0);
|
|
#endif
|
|
|
|
aWriter.IntProperty("gcpoison", JS::IsGCPoisoning() ? 1 : 0);
|
|
|
|
aWriter.IntProperty("asyncstack", aPreRecordedMetaInformation.mAsyncStacks);
|
|
|
|
aWriter.IntProperty("processType", XRE_GetProcessType());
|
|
|
|
aWriter.StringProperty("updateChannel", MOZ_STRINGIFY(MOZ_UPDATE_CHANNEL));
|
|
|
|
if (!aPreRecordedMetaInformation.mHttpPlatform.IsEmpty()) {
|
|
aWriter.StringProperty("platform",
|
|
aPreRecordedMetaInformation.mHttpPlatform);
|
|
}
|
|
if (!aPreRecordedMetaInformation.mHttpOscpu.IsEmpty()) {
|
|
aWriter.StringProperty("oscpu", aPreRecordedMetaInformation.mHttpOscpu);
|
|
}
|
|
if (!aPreRecordedMetaInformation.mHttpMisc.IsEmpty()) {
|
|
aWriter.StringProperty("misc", aPreRecordedMetaInformation.mHttpMisc);
|
|
}
|
|
|
|
if (!aPreRecordedMetaInformation.mRuntimeABI.IsEmpty()) {
|
|
aWriter.StringProperty("abi", aPreRecordedMetaInformation.mRuntimeABI);
|
|
}
|
|
if (!aPreRecordedMetaInformation.mRuntimeToolkit.IsEmpty()) {
|
|
aWriter.StringProperty("toolkit",
|
|
aPreRecordedMetaInformation.mRuntimeToolkit);
|
|
}
|
|
|
|
if (!aPreRecordedMetaInformation.mAppInfoProduct.IsEmpty()) {
|
|
aWriter.StringProperty("product",
|
|
aPreRecordedMetaInformation.mAppInfoProduct);
|
|
}
|
|
if (!aPreRecordedMetaInformation.mAppInfoAppBuildID.IsEmpty()) {
|
|
aWriter.StringProperty("appBuildID",
|
|
aPreRecordedMetaInformation.mAppInfoAppBuildID);
|
|
}
|
|
if (!aPreRecordedMetaInformation.mAppInfoSourceURL.IsEmpty()) {
|
|
aWriter.StringProperty("sourceURL",
|
|
aPreRecordedMetaInformation.mAppInfoSourceURL);
|
|
}
|
|
|
|
if (aPreRecordedMetaInformation.mProcessInfoCpuCores > 0) {
|
|
aWriter.IntProperty("physicalCPUs",
|
|
aPreRecordedMetaInformation.mProcessInfoCpuCores);
|
|
}
|
|
if (aPreRecordedMetaInformation.mProcessInfoCpuCount > 0) {
|
|
aWriter.IntProperty("logicalCPUs",
|
|
aPreRecordedMetaInformation.mProcessInfoCpuCount);
|
|
}
|
|
|
|
#if defined(GP_OS_android)
|
|
jni::String::LocalRef deviceInformation =
|
|
java::GeckoJavaSampler::GetDeviceInformation();
|
|
aWriter.StringProperty("device", deviceInformation->ToCString());
|
|
#endif
|
|
|
|
aWriter.StartObjectProperty("sampleUnits");
|
|
{
|
|
aWriter.StringProperty("time", "ms");
|
|
aWriter.StringProperty("eventDelay", "ms");
|
|
StreamMetaPlatformSampleUnits(aLock, aWriter);
|
|
}
|
|
aWriter.EndObject();
|
|
|
|
// We should avoid collecting extension metadata for profiler when there is no
|
|
// observer service, since a ExtensionPolicyService could not be created then.
|
|
if (nsCOMPtr<nsIObserverService> os = services::GetObserverService()) {
|
|
aWriter.StartObjectProperty("extensions");
|
|
{
|
|
{
|
|
JSONSchemaWriter schema(aWriter);
|
|
schema.WriteField("id");
|
|
schema.WriteField("name");
|
|
schema.WriteField("baseURL");
|
|
}
|
|
|
|
aWriter.StartArrayProperty("data");
|
|
{
|
|
nsTArray<RefPtr<WebExtensionPolicy>> exts;
|
|
ExtensionPolicyService::GetSingleton().GetAll(exts);
|
|
|
|
for (auto& ext : exts) {
|
|
aWriter.StartArrayElement(JSONWriter::SingleLineStyle);
|
|
|
|
nsAutoString id;
|
|
ext->GetId(id);
|
|
aWriter.StringElement(NS_ConvertUTF16toUTF8(id));
|
|
|
|
aWriter.StringElement(NS_ConvertUTF16toUTF8(ext->Name()));
|
|
|
|
auto url = ext->GetURL(u""_ns);
|
|
if (url.isOk()) {
|
|
aWriter.StringElement(NS_ConvertUTF16toUTF8(url.unwrap()));
|
|
}
|
|
|
|
aWriter.EndArray();
|
|
}
|
|
}
|
|
aWriter.EndArray();
|
|
}
|
|
aWriter.EndObject();
|
|
}
|
|
}
|
|
|
|
static void StreamPages(PSLockRef aLock, SpliceableJSONWriter& aWriter) {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
ActivePS::DiscardExpiredPages(aLock);
|
|
for (const auto& page : ActivePS::ProfiledPages(aLock)) {
|
|
page->StreamJSON(aWriter);
|
|
}
|
|
}
|
|
|
|
#if defined(GP_OS_android)
|
|
template <int N>
|
|
static bool StartsWith(const nsACString& string, const char (&prefix)[N]) {
|
|
if (N - 1 > string.Length()) {
|
|
return false;
|
|
}
|
|
return memcmp(string.Data(), prefix, N - 1) == 0;
|
|
}
|
|
|
|
static JS::ProfilingCategoryPair InferJavaCategory(nsACString& aName) {
|
|
if (aName.EqualsLiteral("android.os.MessageQueue.nativePollOnce()")) {
|
|
return JS::ProfilingCategoryPair::IDLE;
|
|
}
|
|
if (aName.EqualsLiteral("java.lang.Object.wait()")) {
|
|
return JS::ProfilingCategoryPair::JAVA_BLOCKED;
|
|
}
|
|
if (StartsWith(aName, "android.") || StartsWith(aName, "com.android.")) {
|
|
return JS::ProfilingCategoryPair::JAVA_ANDROID;
|
|
}
|
|
if (StartsWith(aName, "mozilla.") || StartsWith(aName, "org.mozilla.")) {
|
|
return JS::ProfilingCategoryPair::JAVA_MOZILLA;
|
|
}
|
|
if (StartsWith(aName, "java.") || StartsWith(aName, "sun.") ||
|
|
StartsWith(aName, "com.sun.")) {
|
|
return JS::ProfilingCategoryPair::JAVA_LANGUAGE;
|
|
}
|
|
if (StartsWith(aName, "kotlin.") || StartsWith(aName, "kotlinx.")) {
|
|
return JS::ProfilingCategoryPair::JAVA_KOTLIN;
|
|
}
|
|
if (StartsWith(aName, "androidx.")) {
|
|
return JS::ProfilingCategoryPair::JAVA_ANDROIDX;
|
|
}
|
|
return JS::ProfilingCategoryPair::OTHER;
|
|
}
|
|
|
|
// Marker type for Java markers without any details.
|
|
struct JavaMarker {
|
|
static constexpr Span<const char> MarkerTypeName() {
|
|
return MakeStringSpan("Java");
|
|
}
|
|
static void StreamJSONMarkerData(
|
|
baseprofiler::SpliceableJSONWriter& aWriter) {}
|
|
static MarkerSchema MarkerTypeDisplay() {
|
|
using MS = MarkerSchema;
|
|
MS schema{MS::Location::TimelineOverview, MS::Location::MarkerChart,
|
|
MS::Location::MarkerTable};
|
|
schema.SetAllLabels("{marker.name}");
|
|
return schema;
|
|
}
|
|
};
|
|
|
|
// Marker type for Java markers with a detail field.
|
|
struct JavaMarkerWithDetails {
|
|
static constexpr Span<const char> MarkerTypeName() {
|
|
return MakeStringSpan("JavaWithDetails");
|
|
}
|
|
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
|
|
const ProfilerString8View& aText) {
|
|
// This (currently) needs to be called "name" to be searchable on the
|
|
// front-end.
|
|
aWriter.StringProperty("name", aText);
|
|
}
|
|
static MarkerSchema MarkerTypeDisplay() {
|
|
using MS = MarkerSchema;
|
|
MS schema{MS::Location::TimelineOverview, MS::Location::MarkerChart,
|
|
MS::Location::MarkerTable};
|
|
schema.SetTooltipLabel("{marker.name}");
|
|
schema.SetChartLabel("{marker.data.name}");
|
|
schema.SetTableLabel("{marker.name} - {marker.data.name}");
|
|
schema.AddKeyLabelFormat("name", "Details", MS::Format::String);
|
|
return schema;
|
|
}
|
|
};
|
|
|
|
static void CollectJavaThreadProfileData(ProfileBuffer& aProfileBuffer) {
|
|
// locked_profiler_start uses sample count is 1000 for Java thread.
|
|
// This entry size is enough now, but we might have to estimate it
|
|
// if we can customize it
|
|
|
|
// Pass the samples
|
|
// FIXME(bug 1618560): We are currently only profiling the Android UI thread.
|
|
constexpr ProfilerThreadId threadId;
|
|
int sampleId = 0;
|
|
while (true) {
|
|
// Gets the data from the Android UI thread only.
|
|
double sampleTime = java::GeckoJavaSampler::GetSampleTime(sampleId);
|
|
if (sampleTime == 0.0) {
|
|
break;
|
|
}
|
|
|
|
aProfileBuffer.AddThreadIdEntry(threadId);
|
|
aProfileBuffer.AddEntry(ProfileBufferEntry::Time(sampleTime));
|
|
int frameId = 0;
|
|
while (true) {
|
|
jni::String::LocalRef frameName =
|
|
java::GeckoJavaSampler::GetFrameName(sampleId, frameId++);
|
|
if (!frameName) {
|
|
break;
|
|
}
|
|
nsCString frameNameString = frameName->ToCString();
|
|
|
|
auto categoryPair = InferJavaCategory(frameNameString);
|
|
aProfileBuffer.CollectCodeLocation("", frameNameString.get(), 0, 0,
|
|
Nothing(), Nothing(),
|
|
Some(categoryPair));
|
|
}
|
|
sampleId++;
|
|
}
|
|
|
|
// Pass the markers now
|
|
while (true) {
|
|
// Gets the data from the Android UI thread only.
|
|
java::GeckoJavaSampler::Marker::LocalRef marker =
|
|
java::GeckoJavaSampler::PollNextMarker();
|
|
if (!marker) {
|
|
// All markers are transferred.
|
|
break;
|
|
}
|
|
|
|
// Get all the marker information from the Java thread using JNI.
|
|
nsCString markerName = marker->GetMarkerName()->ToCString();
|
|
jni::String::LocalRef text = marker->GetMarkerText();
|
|
TimeStamp startTime =
|
|
CorePS::ProcessStartTime() +
|
|
TimeDuration::FromMilliseconds(marker->GetStartTime());
|
|
|
|
double endTimeMs = marker->GetEndTime();
|
|
// A marker can be either a duration with start and end, or a point in time
|
|
// with only startTime. If endTime is 0, this means it's a point in time.
|
|
TimeStamp endTime = endTimeMs == 0
|
|
? startTime
|
|
: CorePS::ProcessStartTime() +
|
|
TimeDuration::FromMilliseconds(endTimeMs);
|
|
MarkerTiming timing = endTimeMs == 0
|
|
? MarkerTiming::InstantAt(startTime)
|
|
: MarkerTiming::Interval(startTime, endTime);
|
|
|
|
if (!text) {
|
|
// This marker doesn't have a text.
|
|
AddMarkerToBuffer(aProfileBuffer.UnderlyingChunkedBuffer(), markerName,
|
|
geckoprofiler::category::JAVA_ANDROID,
|
|
{MarkerThreadId(threadId), std::move(timing)},
|
|
JavaMarker{});
|
|
} else {
|
|
// This marker has a text.
|
|
AddMarkerToBuffer(aProfileBuffer.UnderlyingChunkedBuffer(), markerName,
|
|
geckoprofiler::category::JAVA_ANDROID,
|
|
{MarkerThreadId(threadId), std::move(timing)},
|
|
JavaMarkerWithDetails{}, text->ToCString());
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
UniquePtr<ProfilerCodeAddressService>
|
|
profiler_code_address_service_for_presymbolication() {
|
|
static const bool preSymbolicate = []() {
|
|
const char* symbolicate = getenv("MOZ_PROFILER_SYMBOLICATE");
|
|
return symbolicate && symbolicate[0] != '\0';
|
|
}();
|
|
return preSymbolicate ? MakeUnique<ProfilerCodeAddressService>() : nullptr;
|
|
}
|
|
|
|
static void locked_profiler_stream_json_for_this_process(
|
|
PSLockRef aLock, SpliceableJSONWriter& aWriter, double aSinceTime,
|
|
const PreRecordedMetaInformation& aPreRecordedMetaInformation,
|
|
bool aIsShuttingDown, ProfilerCodeAddressService* aService) {
|
|
LOG("locked_profiler_stream_json_for_this_process");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
|
|
|
|
AUTO_PROFILER_STATS(locked_profiler_stream_json_for_this_process);
|
|
|
|
const double collectionStartMs = profiler_time();
|
|
|
|
ProfileBuffer& buffer = ActivePS::Buffer(aLock);
|
|
|
|
// If there is a set "Window length", discard older data.
|
|
Maybe<double> durationS = ActivePS::Duration(aLock);
|
|
if (durationS.isSome()) {
|
|
const double durationStartMs = collectionStartMs - *durationS * 1000;
|
|
buffer.DiscardSamplesBeforeTime(durationStartMs);
|
|
}
|
|
|
|
#if defined(GP_OS_android)
|
|
// Java thread profile data should be collected before serializing the meta
|
|
// object. This is because Java thread adds some markers with marker schema
|
|
// objects. And these objects should be added before the serialization of the
|
|
// `profile.meta.markerSchema` array, so these marker schema objects can also
|
|
// be serialized properly. That's why java thread profile data needs to be
|
|
// done before everything.
|
|
|
|
// We are allocating it chunk by chunk. So this will not allocate 64 MiB
|
|
// at once. This size should be more than enough for java threads.
|
|
// This buffer is being created for each process but Android has
|
|
// relatively fewer processes compared to desktop, so it's okay here.
|
|
mozilla::ProfileBufferChunkManagerWithLocalLimit javaChunkManager(
|
|
64 * 1024 * 1024, 1024 * 1024);
|
|
ProfileChunkedBuffer javaBufferManager(
|
|
ProfileChunkedBuffer::ThreadSafety::WithoutMutex, javaChunkManager);
|
|
ProfileBuffer javaBuffer(javaBufferManager);
|
|
if (ActivePS::FeatureJava(aLock)) {
|
|
CollectJavaThreadProfileData(javaBuffer);
|
|
}
|
|
#endif
|
|
|
|
// Put shared library info
|
|
aWriter.StartArrayProperty("libs");
|
|
AppendSharedLibraries(aWriter);
|
|
aWriter.EndArray();
|
|
|
|
// Put meta data
|
|
aWriter.StartObjectProperty("meta");
|
|
{
|
|
StreamMetaJSCustomObject(aLock, aWriter, aIsShuttingDown,
|
|
aPreRecordedMetaInformation);
|
|
}
|
|
aWriter.EndObject();
|
|
|
|
// Put page data
|
|
aWriter.StartArrayProperty("pages");
|
|
{ StreamPages(aLock, aWriter); }
|
|
aWriter.EndArray();
|
|
|
|
buffer.StreamProfilerOverheadToJSON(aWriter, CorePS::ProcessStartTime(),
|
|
aSinceTime);
|
|
buffer.StreamCountersToJSON(aWriter, CorePS::ProcessStartTime(), aSinceTime);
|
|
|
|
// Lists the samples for each thread profile
|
|
aWriter.StartArrayProperty("threads");
|
|
{
|
|
ActivePS::DiscardExpiredDeadProfiledThreads(aLock);
|
|
ThreadRegistry::LockedRegistry lockedRegistry;
|
|
ActivePS::ProfiledThreadList threads =
|
|
ActivePS::ProfiledThreads(lockedRegistry, aLock);
|
|
|
|
// Prepare the streaming context for each thread.
|
|
ProcessStreamingContext processStreamingContext(
|
|
threads.length(), CorePS::ProcessStartTime(), aSinceTime);
|
|
for (ActivePS::ProfiledThreadListElement& thread : threads) {
|
|
MOZ_RELEASE_ASSERT(thread.mProfiledThreadData);
|
|
processStreamingContext.AddThreadStreamingContext(
|
|
*thread.mProfiledThreadData, buffer, thread.mJSContext, aService);
|
|
}
|
|
|
|
// Read the buffer once, and extract all samples and markers that the
|
|
// context expects.
|
|
buffer.StreamSamplesAndMarkersToJSON(processStreamingContext);
|
|
|
|
// Stream each thread from the pre-filled context.
|
|
for (ThreadStreamingContext& threadStreamingContext :
|
|
std::move(processStreamingContext)) {
|
|
threadStreamingContext.FinalizeWriter();
|
|
threadStreamingContext.mProfiledThreadData.StreamJSON(
|
|
std::move(threadStreamingContext), aWriter,
|
|
CorePS::ProcessName(aLock), CorePS::ETLDplus1(aLock),
|
|
CorePS::ProcessStartTime(), ActivePS::FeatureJSTracer(aLock),
|
|
aService);
|
|
}
|
|
|
|
#if defined(GP_OS_android)
|
|
if (ActivePS::FeatureJava(aLock)) {
|
|
// Set the thread id of the Android UI thread to be 0.
|
|
// We are profiling the Android UI thread twice: Both from the C++ side
|
|
// (as a regular C++ profiled thread with the name "AndroidUI"), and from
|
|
// the Java side. The thread's actual ID is mozilla::jni::GetUIThreadId(),
|
|
// but since we're using that ID for the C++ side, we need to pick another
|
|
// tid that doesn't conflict with it for the Java side. So we just use 0.
|
|
// Once we add support for profiling of other java threads, we'll have to
|
|
// get their thread id and name via JNI.
|
|
const ThreadRegistrationInfo threadInfo{"AndroidUI (JVM)",
|
|
ProfilerThreadId{}, false,
|
|
CorePS::ProcessStartTime()};
|
|
ProfiledThreadData profiledThreadData(threadInfo, nullptr);
|
|
profiledThreadData.StreamJSON(
|
|
javaBuffer, nullptr, aWriter, CorePS::ProcessName(aLock),
|
|
CorePS::ETLDplus1(aLock), CorePS::ProcessStartTime(), aSinceTime,
|
|
ActivePS::FeatureJSTracer(aLock), nullptr);
|
|
}
|
|
#endif
|
|
|
|
UniquePtr<char[]> baseProfileThreads =
|
|
ActivePS::MoveBaseProfileThreads(aLock);
|
|
if (baseProfileThreads) {
|
|
aWriter.Splice(MakeStringSpan(baseProfileThreads.get()));
|
|
}
|
|
}
|
|
aWriter.EndArray();
|
|
|
|
if (ActivePS::FeatureJSTracer(aLock)) {
|
|
aWriter.StartArrayProperty("jsTracerDictionary");
|
|
{
|
|
JS::AutoTraceLoggerLockGuard lockGuard;
|
|
// Collect Event Dictionary
|
|
JS::TraceLoggerDictionaryBuffer collectionBuffer(lockGuard);
|
|
while (collectionBuffer.NextChunk()) {
|
|
aWriter.StringElement(
|
|
MakeStringSpan(collectionBuffer.internalBuffer()));
|
|
}
|
|
}
|
|
aWriter.EndArray();
|
|
}
|
|
|
|
aWriter.StartArrayProperty("pausedRanges");
|
|
{ buffer.StreamPausedRangesToJSON(aWriter, aSinceTime); }
|
|
aWriter.EndArray();
|
|
|
|
const double collectionEndMs = profiler_time();
|
|
|
|
// Record timestamps for the collection into the buffer, so that consumers
|
|
// know why we didn't collect any samples for its duration.
|
|
// We put these entries into the buffer after we've collected the profile,
|
|
// so they'll be visible for the *next* profile collection (if they haven't
|
|
// been overwritten due to buffer wraparound by then).
|
|
buffer.AddEntry(ProfileBufferEntry::CollectionStart(collectionStartMs));
|
|
buffer.AddEntry(ProfileBufferEntry::CollectionEnd(collectionEndMs));
|
|
}
|
|
|
|
// Keep this internal function non-static, so it may be used by tests.
|
|
bool do_profiler_stream_json_for_this_process(
|
|
SpliceableJSONWriter& aWriter, double aSinceTime, bool aIsShuttingDown,
|
|
ProfilerCodeAddressService* aService) {
|
|
LOG("profiler_stream_json_for_this_process");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
const auto preRecordedMetaInformation = PreRecordMetaInformation();
|
|
|
|
if (profiler_is_active()) {
|
|
invoke_profiler_state_change_callbacks(ProfilingState::GeneratingProfile);
|
|
}
|
|
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return false;
|
|
}
|
|
|
|
locked_profiler_stream_json_for_this_process(lock, aWriter, aSinceTime,
|
|
preRecordedMetaInformation,
|
|
aIsShuttingDown, aService);
|
|
return true;
|
|
}
|
|
|
|
bool profiler_stream_json_for_this_process(
|
|
SpliceableJSONWriter& aWriter, double aSinceTime, bool aIsShuttingDown,
|
|
ProfilerCodeAddressService* aService) {
|
|
MOZ_RELEASE_ASSERT(
|
|
!XRE_IsParentProcess() || NS_IsMainThread(),
|
|
"In the parent process, profiles should only be generated from the main "
|
|
"thread, otherwise they will be incomplete.");
|
|
return do_profiler_stream_json_for_this_process(aWriter, aSinceTime,
|
|
aIsShuttingDown, aService);
|
|
}
|
|
|
|
// END saving/streaming code
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
static char FeatureCategory(uint32_t aFeature) {
|
|
if (aFeature & DefaultFeatures()) {
|
|
if (aFeature & AvailableFeatures()) {
|
|
return 'D';
|
|
}
|
|
return 'd';
|
|
}
|
|
|
|
if (aFeature & StartupExtraDefaultFeatures()) {
|
|
if (aFeature & AvailableFeatures()) {
|
|
return 'S';
|
|
}
|
|
return 's';
|
|
}
|
|
|
|
if (aFeature & AvailableFeatures()) {
|
|
return '-';
|
|
}
|
|
return 'x';
|
|
}
|
|
|
|
static void PrintUsage() {
|
|
MOZ_RELEASE_ASSERT(NS_IsMainThread());
|
|
|
|
printf(
|
|
"\n"
|
|
"Profiler environment variable usage:\n"
|
|
"\n"
|
|
" MOZ_PROFILER_HELP\n"
|
|
" If set to any value, prints this message.\n"
|
|
" Use MOZ_BASE_PROFILER_HELP for BaseProfiler help.\n"
|
|
"\n"
|
|
" MOZ_LOG\n"
|
|
" Enables logging. The levels of logging available are\n"
|
|
" 'prof:3' (least verbose), 'prof:4', 'prof:5' (most verbose).\n"
|
|
"\n"
|
|
" MOZ_PROFILER_STARTUP\n"
|
|
" If set to any value other than '' or '0'/'N'/'n', starts the\n"
|
|
" profiler immediately on start-up.\n"
|
|
" Useful if you want profile code that runs very early.\n"
|
|
"\n"
|
|
" MOZ_PROFILER_STARTUP_ENTRIES=<%u..%u>\n"
|
|
" If MOZ_PROFILER_STARTUP is set, specifies the number of entries per\n"
|
|
" process in the profiler's circular buffer when the profiler is first\n"
|
|
" started.\n"
|
|
" If unset, the platform default is used:\n"
|
|
" %u entries per process, or %u when MOZ_PROFILER_STARTUP is set.\n"
|
|
" (%u bytes per entry -> %u or %u total bytes per process)\n"
|
|
" Optional units in bytes: KB, KiB, MB, MiB, GB, GiB\n"
|
|
"\n"
|
|
" MOZ_PROFILER_STARTUP_DURATION=<1..>\n"
|
|
" If MOZ_PROFILER_STARTUP is set, specifies the maximum life time of\n"
|
|
" entries in the the profiler's circular buffer when the profiler is\n"
|
|
" first started, in seconds.\n"
|
|
" If unset, the life time of the entries will only be restricted by\n"
|
|
" MOZ_PROFILER_STARTUP_ENTRIES (or its default value), and no\n"
|
|
" additional time duration restriction will be applied.\n"
|
|
"\n"
|
|
" MOZ_PROFILER_STARTUP_INTERVAL=<1..%d>\n"
|
|
" If MOZ_PROFILER_STARTUP is set, specifies the sample interval,\n"
|
|
" measured in milliseconds, when the profiler is first started.\n"
|
|
" If unset, the platform default is used.\n"
|
|
"\n"
|
|
" MOZ_PROFILER_STARTUP_FEATURES_BITFIELD=<Number>\n"
|
|
" If MOZ_PROFILER_STARTUP is set, specifies the profiling features, as\n"
|
|
" the integer value of the features bitfield.\n"
|
|
" If unset, the value from MOZ_PROFILER_STARTUP_FEATURES is used.\n"
|
|
"\n"
|
|
" MOZ_PROFILER_STARTUP_FEATURES=<Features>\n"
|
|
" If MOZ_PROFILER_STARTUP is set, specifies the profiling features, as\n"
|
|
" a comma-separated list of strings.\n"
|
|
" Ignored if MOZ_PROFILER_STARTUP_FEATURES_BITFIELD is set.\n"
|
|
" If unset, the platform default is used.\n"
|
|
"\n"
|
|
" Features: (x=unavailable, D/d=default/unavailable,\n"
|
|
" S/s=MOZ_PROFILER_STARTUP extra default/unavailable)\n",
|
|
unsigned(ActivePS::scMinimumBufferEntries),
|
|
unsigned(ActivePS::scMaximumBufferEntries),
|
|
unsigned(PROFILER_DEFAULT_ENTRIES.Value()),
|
|
unsigned(PROFILER_DEFAULT_STARTUP_ENTRIES.Value()),
|
|
unsigned(scBytesPerEntry),
|
|
unsigned(PROFILER_DEFAULT_ENTRIES.Value() * scBytesPerEntry),
|
|
unsigned(PROFILER_DEFAULT_STARTUP_ENTRIES.Value() * scBytesPerEntry),
|
|
PROFILER_MAX_INTERVAL);
|
|
|
|
#define PRINT_FEATURE(n_, str_, Name_, desc_) \
|
|
printf(" %c %7u: \"%s\" (%s)\n", FeatureCategory(ProfilerFeature::Name_), \
|
|
ProfilerFeature::Name_, str_, desc_);
|
|
|
|
PROFILER_FOR_EACH_FEATURE(PRINT_FEATURE)
|
|
|
|
#undef PRINT_FEATURE
|
|
|
|
printf(
|
|
" - \"default\" (All above D+S defaults)\n"
|
|
"\n"
|
|
" MOZ_PROFILER_STARTUP_FILTERS=<Filters>\n"
|
|
" If MOZ_PROFILER_STARTUP is set, specifies the thread filters, as a\n"
|
|
" comma-separated list of strings. A given thread will be sampled if\n"
|
|
" any of the filters is a case-insensitive substring of the thread\n"
|
|
" name. If unset, a default is used.\n"
|
|
"\n"
|
|
" MOZ_PROFILER_STARTUP_ACTIVE_TAB_ID=<Number>\n"
|
|
" This variable is used to propagate the activeTabID of\n"
|
|
" the profiler init params to subprocesses.\n"
|
|
"\n"
|
|
" MOZ_PROFILER_SHUTDOWN\n"
|
|
" If set, the profiler saves a profile to the named file on shutdown.\n"
|
|
"\n"
|
|
" MOZ_PROFILER_SYMBOLICATE\n"
|
|
" If set, the profiler will pre-symbolicate profiles.\n"
|
|
" *Note* This will add a significant pause when gathering data, and\n"
|
|
" is intended mainly for local development.\n"
|
|
"\n"
|
|
" MOZ_PROFILER_LUL_TEST\n"
|
|
" If set to any value, runs LUL unit tests at startup.\n"
|
|
"\n"
|
|
" This platform %s native unwinding.\n"
|
|
"\n",
|
|
#if defined(HAVE_NATIVE_UNWIND)
|
|
"supports"
|
|
#else
|
|
"does not support"
|
|
#endif
|
|
);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// BEGIN Sampler
|
|
|
|
#if defined(GP_OS_linux) || defined(GP_OS_android)
|
|
struct SigHandlerCoordinator;
|
|
#endif
|
|
|
|
// Sampler performs setup and teardown of the state required to sample with the
|
|
// profiler. Sampler may exist when ActivePS is not present.
|
|
//
|
|
// SuspendAndSampleAndResumeThread must only be called from a single thread,
|
|
// and must not sample the thread it is being called from. A separate Sampler
|
|
// instance must be used for each thread which wants to capture samples.
|
|
|
|
// WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
|
|
//
|
|
// With the exception of SamplerThread, all Sampler objects must be Disable-d
|
|
// before releasing the lock which was used to create them. This avoids races
|
|
// on linux with the SIGPROF signal handler.
|
|
|
|
class Sampler {
|
|
public:
|
|
// Sets up the profiler such that it can begin sampling.
|
|
explicit Sampler(PSLockRef aLock);
|
|
|
|
// Disable the sampler, restoring it to its previous state. This must be
|
|
// called once, and only once, before the Sampler is destroyed.
|
|
void Disable(PSLockRef aLock);
|
|
|
|
// This method suspends and resumes the samplee thread. It calls the passed-in
|
|
// function-like object aProcessRegs (passing it a populated |const
|
|
// Registers&| arg) while the samplee thread is suspended. Note that
|
|
// the aProcessRegs function must be very careful not to do anything that
|
|
// requires a lock, since we may have interrupted the thread at any point.
|
|
// As an example, you can't call TimeStamp::Now() since on windows it
|
|
// takes a lock on the performance counter.
|
|
//
|
|
// Func must be a function-like object of type `void()`.
|
|
template <typename Func>
|
|
void SuspendAndSampleAndResumeThread(
|
|
PSLockRef aLock,
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
const TimeStamp& aNow, const Func& aProcessRegs);
|
|
|
|
private:
|
|
#if defined(GP_OS_linux) || defined(GP_OS_android) || defined(GP_OS_freebsd)
|
|
// Used to restore the SIGPROF handler when ours is removed.
|
|
struct sigaction mOldSigprofHandler;
|
|
|
|
// This process' ID. Needed as an argument for tgkill in
|
|
// SuspendAndSampleAndResumeThread.
|
|
ProfilerProcessId mMyPid;
|
|
|
|
// The sampler thread's ID. Used to assert that it is not sampling itself,
|
|
// which would lead to deadlock.
|
|
ProfilerThreadId mSamplerTid;
|
|
|
|
public:
|
|
// This is the one-and-only variable used to communicate between the sampler
|
|
// thread and the samplee thread's signal handler. It's static because the
|
|
// samplee thread's signal handler is static.
|
|
static struct SigHandlerCoordinator* sSigHandlerCoordinator;
|
|
#endif
|
|
};
|
|
|
|
// END Sampler
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// Platform-specific function that retrieves per-thread CPU measurements.
|
|
static RunningTimes GetThreadRunningTimesDiff(
|
|
PSLockRef aLock,
|
|
ThreadRegistration::UnlockedRWForLockedProfiler& aThreadData);
|
|
// Platform-specific function that *may* discard CPU measurements since the
|
|
// previous call to GetThreadRunningTimesDiff, if the way to suspend threads on
|
|
// this platform may add running times to that thread.
|
|
// No-op otherwise, if suspending a thread doesn't make it work.
|
|
static void DiscardSuspendedThreadRunningTimes(
|
|
PSLockRef aLock,
|
|
ThreadRegistration::UnlockedRWForLockedProfiler& aThreadData);
|
|
|
|
// Template function to be used by `GetThreadRunningTimesDiff()` (unless some
|
|
// platform has a better way to achieve this).
|
|
// It help perform CPU measurements and tie them to a timestamp, such that the
|
|
// measurements and timestamp are very close together.
|
|
// This is necessary, because the relative CPU usage is computed by dividing
|
|
// consecutive CPU measurements by their timestamp difference; if there was an
|
|
// unexpected big gap, it could skew this computation and produce impossible
|
|
// spikes that would hide the rest of the data. See bug 1685938 for more info.
|
|
// Note that this may call the measurement function more than once; it is
|
|
// assumed to normally be fast.
|
|
// This was verified experimentally, but there is currently no regression
|
|
// testing for it; see follow-up bug 1687402.
|
|
template <typename GetCPURunningTimesFunction>
|
|
RunningTimes GetRunningTimesWithTightTimestamp(
|
|
GetCPURunningTimesFunction&& aGetCPURunningTimesFunction) {
|
|
// Once per process, compute a threshold over which running times and their
|
|
// timestamp is considered too far apart.
|
|
static const TimeDuration scMaxRunningTimesReadDuration = [&]() {
|
|
// Run the main CPU measurements + timestamp a number of times and capture
|
|
// their durations.
|
|
constexpr int loops = 128;
|
|
TimeDuration durations[loops];
|
|
RunningTimes runningTimes;
|
|
TimeStamp before = TimeStamp::Now();
|
|
for (int i = 0; i < loops; ++i) {
|
|
AUTO_PROFILER_STATS(GetRunningTimes_MaxRunningTimesReadDuration);
|
|
aGetCPURunningTimesFunction(runningTimes);
|
|
const TimeStamp after = TimeStamp::Now();
|
|
durations[i] = after - before;
|
|
before = after;
|
|
}
|
|
// Move median duration to the middle.
|
|
std::nth_element(&durations[0], &durations[loops / 2], &durations[loops]);
|
|
// Use median*8 as cut-off point.
|
|
// Typical durations should be around a microsecond, the cut-off should then
|
|
// be around 10 microseconds, well below the expected minimum inter-sample
|
|
// interval (observed as a few milliseconds), so overall this should keep
|
|
// cpu/interval spikes
|
|
return durations[loops / 2] * 8;
|
|
}();
|
|
|
|
// Record CPU measurements between two timestamps.
|
|
RunningTimes runningTimes;
|
|
TimeStamp before = TimeStamp::Now();
|
|
aGetCPURunningTimesFunction(runningTimes);
|
|
TimeStamp after = TimeStamp::Now();
|
|
const TimeDuration duration = after - before;
|
|
|
|
// In most cases, the above should be quick enough. But if not (e.g., because
|
|
// of an OS context switch), repeat once:
|
|
if (MOZ_UNLIKELY(duration > scMaxRunningTimesReadDuration)) {
|
|
AUTO_PROFILER_STATS(GetRunningTimes_REDO);
|
|
RunningTimes runningTimes2;
|
|
aGetCPURunningTimesFunction(runningTimes2);
|
|
TimeStamp after2 = TimeStamp::Now();
|
|
const TimeDuration duration2 = after2 - after;
|
|
if (duration2 < duration) {
|
|
// We did it faster, use the new results. (But it could still be slower
|
|
// than expected, see note below for why it's acceptable.)
|
|
// This must stay *after* the CPU measurements.
|
|
runningTimes2.SetPostMeasurementTimeStamp(after2);
|
|
return runningTimes2;
|
|
}
|
|
// Otherwise use the initial results, they were slow, but faster than the
|
|
// second attempt.
|
|
// This means that something bad happened twice in a row on the same thread!
|
|
// So trying more times would be unlikely to get much better, and would be
|
|
// more expensive than the precision is worth.
|
|
// At worst, it means that a spike of activity may be reported in the next
|
|
// time slice. But in the end, the cumulative work is conserved, so it
|
|
// should still be visible at about the correct time in the graph.
|
|
AUTO_PROFILER_STATS(GetRunningTimes_RedoWasWorse);
|
|
}
|
|
|
|
// This must stay *after* the CPU measurements.
|
|
runningTimes.SetPostMeasurementTimeStamp(after);
|
|
|
|
return runningTimes;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// BEGIN SamplerThread
|
|
|
|
// The sampler thread controls sampling and runs whenever the profiler is
|
|
// active. It periodically runs through all registered threads, finds those
|
|
// that should be sampled, then pauses and samples them.
|
|
|
|
class SamplerThread {
|
|
public:
|
|
// Creates a sampler thread, but doesn't start it.
|
|
SamplerThread(PSLockRef aLock, uint32_t aActivityGeneration,
|
|
double aIntervalMilliseconds, uint32_t aFeatures);
|
|
~SamplerThread();
|
|
|
|
// This runs on (is!) the sampler thread.
|
|
void Run();
|
|
|
|
#if defined(GP_OS_windows)
|
|
// This runs on (is!) the thread to spy on unregistered threads.
|
|
void RunUnregisteredThreadSpy();
|
|
#endif
|
|
|
|
// This runs on the main thread.
|
|
void Stop(PSLockRef aLock);
|
|
|
|
void AppendPostSamplingCallback(PSLockRef, PostSamplingCallback&& aCallback) {
|
|
// We are under lock, so it's safe to just modify the list pointer.
|
|
// Also this means the sampler has not started its run yet, so any callback
|
|
// added now will be invoked at the end of the next loop; this guarantees
|
|
// that the callback will be invoked after at least one full sampling loop.
|
|
mPostSamplingCallbackList = MakeUnique<PostSamplingCallbackListItem>(
|
|
std::move(mPostSamplingCallbackList), std::move(aCallback));
|
|
}
|
|
|
|
private:
|
|
void SpyOnUnregisteredThreads();
|
|
|
|
// Item containing a post-sampling callback, and a tail-list of more items.
|
|
// Using a linked list means no need to move items when adding more, and
|
|
// "stealing" the whole list is one pointer move.
|
|
struct PostSamplingCallbackListItem {
|
|
UniquePtr<PostSamplingCallbackListItem> mPrev;
|
|
PostSamplingCallback mCallback;
|
|
|
|
PostSamplingCallbackListItem(UniquePtr<PostSamplingCallbackListItem> aPrev,
|
|
PostSamplingCallback&& aCallback)
|
|
: mPrev(std::move(aPrev)), mCallback(std::move(aCallback)) {}
|
|
};
|
|
|
|
[[nodiscard]] UniquePtr<PostSamplingCallbackListItem>
|
|
TakePostSamplingCallbacks(PSLockRef) {
|
|
return std::move(mPostSamplingCallbackList);
|
|
}
|
|
|
|
static void InvokePostSamplingCallbacks(
|
|
UniquePtr<PostSamplingCallbackListItem> aCallbacks,
|
|
SamplingState aSamplingState) {
|
|
if (!aCallbacks) {
|
|
return;
|
|
}
|
|
// We want to drill down to the last element in this list, which is the
|
|
// oldest one, so that we invoke them in FIFO order.
|
|
// We don't expect many callbacks, so it's safe to recurse. Note that we're
|
|
// moving-from the UniquePtr, so the tail will implicitly get destroyed.
|
|
InvokePostSamplingCallbacks(std::move(aCallbacks->mPrev), aSamplingState);
|
|
// We are going to destroy this item, so we can safely move-from the
|
|
// callback before calling it (in case it has an rvalue-ref-qualified call
|
|
// operator).
|
|
std::move(aCallbacks->mCallback)(aSamplingState);
|
|
// It may be tempting for a future maintainer to change aCallbacks into an
|
|
// rvalue reference; this will remind them not to do that!
|
|
static_assert(
|
|
std::is_same_v<decltype(aCallbacks),
|
|
UniquePtr<PostSamplingCallbackListItem>>,
|
|
"We need to capture the list by-value, to implicitly destroy it");
|
|
}
|
|
|
|
// This suspends the calling thread for the given number of microseconds.
|
|
// Best effort timing.
|
|
void SleepMicro(uint32_t aMicroseconds);
|
|
|
|
// The sampler used to suspend and sample threads.
|
|
Sampler mSampler;
|
|
|
|
// The activity generation, for detecting when the sampler thread must stop.
|
|
const uint32_t mActivityGeneration;
|
|
|
|
// The interval between samples, measured in microseconds.
|
|
const int mIntervalMicroseconds;
|
|
|
|
// The OS-specific handle for the sampler thread.
|
|
#if defined(GP_OS_windows)
|
|
HANDLE mThread;
|
|
HANDLE mUnregisteredThreadSpyThread = nullptr;
|
|
enum class SpyingState {
|
|
NoSpying,
|
|
Spy_Initializing,
|
|
// Spy is waiting for SamplerToSpy_Start or MainToSpy_Shutdown.
|
|
Spy_Waiting,
|
|
// Sampler requests spy to start working. May be pre-empted by
|
|
// MainToSpy_Shutdown.
|
|
SamplerToSpy_Start,
|
|
// Spy is currently working, cannot be interrupted, only the spy is allowed
|
|
// to change the state again.
|
|
Spy_Working,
|
|
// Main control requests spy to shut down.
|
|
MainToSpy_Shutdown,
|
|
// Spy notified main control that it's out of the loop, about to exit.
|
|
SpyToMain_ShuttingDown
|
|
};
|
|
SpyingState mSpyingState = SpyingState::NoSpying;
|
|
// The sampler will increment this while the spy is working, then while the
|
|
// spy is waiting the sampler will decrement it until <=0 before starting the
|
|
// spy. This will ensure that the work doesn't take more than 50% of a CPU
|
|
// core.
|
|
int mDelaySpyStart = 0;
|
|
Monitor mSpyingStateMonitor{"SamplerThread::mSpyingStateMonitor"};
|
|
#elif defined(GP_OS_darwin) || defined(GP_OS_linux) || \
|
|
defined(GP_OS_android) || defined(GP_OS_freebsd)
|
|
pthread_t mThread;
|
|
#endif
|
|
|
|
// Post-sampling callbacks are kept in a simple linked list, which will be
|
|
// stolen by the sampler thread at the end of its next run.
|
|
UniquePtr<PostSamplingCallbackListItem> mPostSamplingCallbackList;
|
|
|
|
#if defined(GP_OS_windows)
|
|
bool mNoTimerResolutionChange = true;
|
|
#endif
|
|
|
|
struct SpiedThread {
|
|
base::ProcessId mThreadId;
|
|
nsCString mName;
|
|
uint64_t mCPUTimeNs;
|
|
|
|
SpiedThread(base::ProcessId aThreadId, const nsACString& aName,
|
|
uint64_t aCPUTimeNs)
|
|
: mThreadId(aThreadId), mName(aName), mCPUTimeNs(aCPUTimeNs) {}
|
|
|
|
// Comparisons with just a thread id, for easy searching in an array.
|
|
friend bool operator==(const SpiedThread& aSpiedThread,
|
|
base::ProcessId aThreadId) {
|
|
return aSpiedThread.mThreadId == aThreadId;
|
|
}
|
|
friend bool operator==(base::ProcessId aThreadId,
|
|
const SpiedThread& aSpiedThread) {
|
|
return aThreadId == aSpiedThread.mThreadId;
|
|
}
|
|
};
|
|
|
|
// Time at which mSpiedThreads was previously updated. Null before 1st update.
|
|
TimeStamp mLastSpying;
|
|
// Unregistered threads that have been found, and are being spied on.
|
|
using SpiedThreads = AutoTArray<SpiedThread, 128>;
|
|
SpiedThreads mSpiedThreads;
|
|
|
|
SamplerThread(const SamplerThread&) = delete;
|
|
void operator=(const SamplerThread&) = delete;
|
|
};
|
|
|
|
// [[nodiscard]] static
|
|
bool ActivePS::AppendPostSamplingCallback(PSLockRef aLock,
|
|
PostSamplingCallback&& aCallback) {
|
|
if (!sInstance || !sInstance->mSamplerThread) {
|
|
return false;
|
|
}
|
|
sInstance->mSamplerThread->AppendPostSamplingCallback(aLock,
|
|
std::move(aCallback));
|
|
return true;
|
|
}
|
|
|
|
// This function is required because we need to create a SamplerThread within
|
|
// ActivePS's constructor, but SamplerThread is defined after ActivePS. It
|
|
// could probably be removed by moving some code around.
|
|
static SamplerThread* NewSamplerThread(PSLockRef aLock, uint32_t aGeneration,
|
|
double aInterval, uint32_t aFeatures) {
|
|
return new SamplerThread(aLock, aGeneration, aInterval, aFeatures);
|
|
}
|
|
|
|
// This function is the sampler thread. This implementation is used for all
|
|
// targets.
|
|
void SamplerThread::Run() {
|
|
PR_SetCurrentThreadName("SamplerThread");
|
|
|
|
// Features won't change during this SamplerThread's lifetime, so we can read
|
|
// them once and store them locally.
|
|
const uint32_t features = []() -> uint32_t {
|
|
PSAutoLock lock;
|
|
if (!ActivePS::Exists(lock)) {
|
|
// If there is no active profiler, it doesn't matter what we return,
|
|
// because this thread will exit before any feature is used.
|
|
return 0;
|
|
}
|
|
return ActivePS::Features(lock);
|
|
}();
|
|
|
|
// Not *no*-stack-sampling means we do want stack sampling.
|
|
const bool stackSampling = !ProfilerFeature::HasNoStackSampling(features);
|
|
|
|
const bool cpuUtilization = ProfilerFeature::HasCPUUtilization(features);
|
|
|
|
// Use local ProfileBuffer and underlying buffer to capture the stack.
|
|
// (This is to avoid touching the CorePS::CoreBuffer lock while a thread is
|
|
// suspended, because that thread could be working with the CorePS::CoreBuffer
|
|
// as well.)
|
|
mozilla::ProfileBufferChunkManagerSingle localChunkManager(
|
|
ProfileBufferChunkManager::scExpectedMaximumStackSize);
|
|
ProfileChunkedBuffer localBuffer(
|
|
ProfileChunkedBuffer::ThreadSafety::WithoutMutex, localChunkManager);
|
|
ProfileBuffer localProfileBuffer(localBuffer);
|
|
|
|
// Will be kept between collections, to know what each collection does.
|
|
auto previousState = localBuffer.GetState();
|
|
|
|
// This will be set inside the loop, from inside the lock scope, to capture
|
|
// all callbacks added before that, but none after the lock is released.
|
|
UniquePtr<PostSamplingCallbackListItem> postSamplingCallbacks;
|
|
// This will be set inside the loop, before invoking callbacks outside.
|
|
SamplingState samplingState{};
|
|
|
|
const TimeDuration sampleInterval =
|
|
TimeDuration::FromMicroseconds(mIntervalMicroseconds);
|
|
const uint32_t minimumIntervalSleepUs =
|
|
static_cast<uint32_t>(mIntervalMicroseconds / 4);
|
|
|
|
// This is the scheduled time at which each sampling loop should start.
|
|
// It will determine the ideal next sampling start by adding the expected
|
|
// interval, unless when sampling runs late -- See end of while() loop.
|
|
TimeStamp scheduledSampleStart = TimeStamp::Now();
|
|
|
|
while (true) {
|
|
const TimeStamp sampleStart = TimeStamp::Now();
|
|
|
|
// This scope is for |lock|. It ends before we sleep below.
|
|
{
|
|
// There should be no local callbacks left from a previous loop.
|
|
MOZ_ASSERT(!postSamplingCallbacks);
|
|
|
|
PSAutoLock lock;
|
|
TimeStamp lockAcquired = TimeStamp::Now();
|
|
|
|
// Move all the post-sampling callbacks locally, so that new ones cannot
|
|
// sneak in between the end of the lock scope and the invocation after it.
|
|
postSamplingCallbacks = TakePostSamplingCallbacks(lock);
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
// Exit the `while` loop, including the lock scope, before invoking
|
|
// callbacks and returning.
|
|
samplingState = SamplingState::JustStopped;
|
|
break;
|
|
}
|
|
|
|
// At this point profiler_stop() might have been called, and
|
|
// profiler_start() might have been called on another thread. If this
|
|
// happens the generation won't match.
|
|
if (ActivePS::Generation(lock) != mActivityGeneration) {
|
|
samplingState = SamplingState::JustStopped;
|
|
// Exit the `while` loop, including the lock scope, before invoking
|
|
// callbacks and returning.
|
|
break;
|
|
}
|
|
|
|
ActivePS::ClearExpiredExitProfiles(lock);
|
|
|
|
TimeStamp expiredMarkersCleaned = TimeStamp::Now();
|
|
|
|
if (!ActivePS::IsSamplingPaused(lock)) {
|
|
double sampleStartDeltaMs =
|
|
(sampleStart - CorePS::ProcessStartTime()).ToMilliseconds();
|
|
ProfileBuffer& buffer = ActivePS::Buffer(lock);
|
|
|
|
// handle per-process generic counters
|
|
const Vector<BaseProfilerCount*>& counters = CorePS::Counters(lock);
|
|
for (auto& counter : counters) {
|
|
// create Buffer entries for each counter
|
|
buffer.AddEntry(ProfileBufferEntry::CounterId(counter));
|
|
buffer.AddEntry(ProfileBufferEntry::Time(sampleStartDeltaMs));
|
|
// XXX support keyed maps of counts
|
|
// In the future, we'll support keyed counters - for example, counters
|
|
// with a key which is a thread ID. For "simple" counters we'll just
|
|
// use a key of 0.
|
|
int64_t count;
|
|
uint64_t number;
|
|
counter->Sample(count, number);
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
if (ActivePS::IsMemoryCounter(counter)) {
|
|
// For the memory counter, substract the size of our buffer to avoid
|
|
// giving the misleading impression that the memory use keeps on
|
|
// growing when it's just the profiler session that's using a larger
|
|
// buffer as it gets longer.
|
|
count -= static_cast<int64_t>(
|
|
ActivePS::ControlledChunkManager(lock).TotalSize());
|
|
}
|
|
#endif
|
|
buffer.AddEntry(ProfileBufferEntry::CounterKey(0));
|
|
buffer.AddEntry(ProfileBufferEntry::Count(count));
|
|
if (number) {
|
|
buffer.AddEntry(ProfileBufferEntry::Number(number));
|
|
}
|
|
}
|
|
TimeStamp countersSampled = TimeStamp::Now();
|
|
|
|
if (stackSampling || cpuUtilization) {
|
|
samplingState = SamplingState::SamplingCompleted;
|
|
|
|
// Prevent threads from ending (or starting) and allow access to all
|
|
// OffThreadRef's.
|
|
ThreadRegistry::LockedRegistry lockedRegistry;
|
|
|
|
for (ThreadRegistry::OffThreadRef offThreadRef : lockedRegistry) {
|
|
ThreadRegistration::UnlockedRWForLockedProfiler&
|
|
unlockedThreadData =
|
|
offThreadRef.UnlockedRWForLockedProfilerRef();
|
|
ProfiledThreadData* profiledThreadData =
|
|
unlockedThreadData.GetProfiledThreadData(lock);
|
|
if (!profiledThreadData) {
|
|
// This thread is not being profiled, continue with the next one.
|
|
continue;
|
|
}
|
|
|
|
const ThreadProfilingFeatures whatToProfile =
|
|
unlockedThreadData.ProfilingFeatures();
|
|
const bool threadCPUUtilization =
|
|
cpuUtilization &&
|
|
DoFeaturesIntersect(whatToProfile,
|
|
ThreadProfilingFeatures::CPUUtilization);
|
|
const bool threadStackSampling =
|
|
stackSampling &&
|
|
DoFeaturesIntersect(whatToProfile,
|
|
ThreadProfilingFeatures::Sampling);
|
|
if (!threadCPUUtilization && !threadStackSampling) {
|
|
// Nothing to profile on this thread, continue with the next one.
|
|
continue;
|
|
}
|
|
|
|
const ProfilerThreadId threadId =
|
|
unlockedThreadData.Info().ThreadId();
|
|
|
|
const RunningTimes runningTimesDiff = [&]() {
|
|
if (!threadCPUUtilization) {
|
|
// If we don't need CPU measurements, we only need a timestamp.
|
|
return RunningTimes(TimeStamp::Now());
|
|
}
|
|
return GetThreadRunningTimesDiff(lock, unlockedThreadData);
|
|
}();
|
|
|
|
const TimeStamp& now = runningTimesDiff.PostMeasurementTimeStamp();
|
|
double threadSampleDeltaMs =
|
|
(now - CorePS::ProcessStartTime()).ToMilliseconds();
|
|
|
|
// If the thread is asleep and has been sampled before in the same
|
|
// sleep episode, or otherwise(*) if there was zero CPU activity
|
|
// since the previous sampling, find and copy the previous sample,
|
|
// as that's cheaper than taking a new sample.
|
|
// (*) Tech note: The asleep check is done first and always, because
|
|
// it is more reliable, and knows if it's the first asleep
|
|
// sample, which cannot be duplicated; if the test was the other
|
|
// way around, it could find zero CPU and then short-circuit
|
|
// that state-changing second-asleep-check operation, which
|
|
// could result in an unneeded sample.
|
|
// However we're using current running times (instead of copying the
|
|
// old ones) because some work could have happened.
|
|
if (threadStackSampling &&
|
|
(unlockedThreadData.CanDuplicateLastSampleDueToSleep() ||
|
|
runningTimesDiff.GetThreadCPUDelta() == Some(uint64_t(0)))) {
|
|
const bool dup_ok = ActivePS::Buffer(lock).DuplicateLastSample(
|
|
threadId, threadSampleDeltaMs,
|
|
profiledThreadData->LastSample(), runningTimesDiff);
|
|
if (dup_ok) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
AUTO_PROFILER_STATS(gecko_SamplerThread_Run_DoPeriodicSample);
|
|
|
|
// Record the global profiler buffer's range start now, before
|
|
// adding the first entry for this thread's sample.
|
|
const uint64_t bufferRangeStart = buffer.BufferRangeStart();
|
|
|
|
// Add the thread ID now, so we know its position in the main
|
|
// buffer, which is used by some JS data.
|
|
// (DoPeriodicSample only knows about the temporary local buffer.)
|
|
const uint64_t samplePos = buffer.AddThreadIdEntry(threadId);
|
|
profiledThreadData->LastSample() = Some(samplePos);
|
|
|
|
// Also add the time, so it's always there after the thread ID, as
|
|
// expected by the parser. (Other stack data is optional.)
|
|
buffer.AddEntry(ProfileBufferEntry::TimeBeforeCompactStack(
|
|
threadSampleDeltaMs));
|
|
|
|
Maybe<double> unresponsiveDuration_ms;
|
|
|
|
// If we have RunningTimes data, store it before the CompactStack.
|
|
// Note: It is not stored inside the CompactStack so that it doesn't
|
|
// get incorrectly duplicated when the thread is sleeping.
|
|
if (!runningTimesDiff.IsEmpty()) {
|
|
CorePS::CoreBuffer().PutObjects(
|
|
ProfileBufferEntry::Kind::RunningTimes, runningTimesDiff);
|
|
}
|
|
|
|
if (threadStackSampling) {
|
|
ThreadRegistry::OffThreadRef::RWFromAnyThreadWithLock
|
|
lockedThreadData = offThreadRef.LockedRWFromAnyThread();
|
|
// Suspend the thread and collect its stack data in the local
|
|
// buffer.
|
|
mSampler.SuspendAndSampleAndResumeThread(
|
|
lock, lockedThreadData.DataCRef(), now,
|
|
[&](const Registers& aRegs, const TimeStamp& aNow) {
|
|
DoPeriodicSample(lock, lockedThreadData.DataCRef(), aRegs,
|
|
samplePos, bufferRangeStart,
|
|
localProfileBuffer);
|
|
|
|
// For "eventDelay", we want the input delay - but if
|
|
// there are no events in the input queue (or even if there
|
|
// are), we're interested in how long the delay *would* be
|
|
// for an input event now, which would be the time to finish
|
|
// the current event + the delay caused by any events
|
|
// already in the input queue (plus any High priority
|
|
// events). Events at lower priorities (in a
|
|
// PrioritizedEventQueue) than Input count for input delay
|
|
// only for the duration that they're running, since when
|
|
// they finish, any queued input event would run.
|
|
//
|
|
// Unless we record the time state of all events and queue
|
|
// states at all times, this is hard to precisely calculate,
|
|
// but we can approximate it well in post-processing with
|
|
// RunningEventDelay and RunningEventStart.
|
|
//
|
|
// RunningEventDelay is the time duration the event was
|
|
// queued before starting execution. RunningEventStart is
|
|
// the time the event started. (Note: since we care about
|
|
// Input event delays on MainThread, for
|
|
// PrioritizedEventQueues we return 0 for RunningEventDelay
|
|
// if the currently running event has a lower priority than
|
|
// Input (since Input events won't queue behind them).
|
|
//
|
|
// To directly measure this we would need to record the time
|
|
// at which the newest event currently in each queue at time
|
|
// X (the sample time) finishes running. This of course
|
|
// would require looking into the future, or recording all
|
|
// this state and then post-processing it later. If we were
|
|
// to trace every event start and end we could do this, but
|
|
// it would have significant overhead to do so (and buffer
|
|
// usage). From a recording of RunningEventDelays and
|
|
// RunningEventStarts we can infer the actual delay:
|
|
//
|
|
// clang-format off
|
|
// Event queue: <tail> D : C : B : A <head>
|
|
// Time inserted (ms): 40 : 20 : 10 : 0
|
|
// Run Time (ms): 30 : 100 : 40 : 30
|
|
//
|
|
// 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
|
|
// [A||||||||||||]
|
|
// ----------[B|||||||||||||||||]
|
|
// -------------------------[C|||||||||||||||||||||||||||||||||||||||||||||||]
|
|
// -----------------------------------------------------------------[D|||||||||...]
|
|
//
|
|
// Calculate the delay of a new event added at time t: (run every sample)
|
|
// TimeSinceRunningEventBlockedInputEvents = RunningEventDelay + (now - RunningEventStart);
|
|
// effective_submission = now - TimeSinceRunningEventBlockedInputEvents;
|
|
// delta = (now - last_sample_time);
|
|
// last_sample_time = now;
|
|
// for (t=effective_submission to now) {
|
|
// delay[t] += delta;
|
|
// }
|
|
//
|
|
// Can be reduced in overhead by:
|
|
// TimeSinceRunningEventBlockedInputEvents = RunningEventDelay + (now - RunningEventStart);
|
|
// effective_submission = now - TimeSinceRunningEventBlockedInputEvents;
|
|
// if (effective_submission != last_submission) {
|
|
// delta = (now - last_submision);
|
|
// // this loop should be made to match each sample point in the range
|
|
// // intead of assuming 1ms sampling as this pseudocode does
|
|
// for (t=last_submission to effective_submission-1) {
|
|
// delay[t] += delta;
|
|
// delta -= 1; // assumes 1ms; adjust as needed to match for()
|
|
// }
|
|
// last_submission = effective_submission;
|
|
// }
|
|
//
|
|
// Time Head of queue Running Event RunningEventDelay Delay of Effective Started Calc (submission->now add 10ms) Final
|
|
// hypothetical Submission Running @ result
|
|
// event E
|
|
// 0 Empty A 0 30 0 0 @0=10 30
|
|
// 10 B A 0 60 0 0 @0=20, @10=10 60
|
|
// 20 B A 0 150 0 0 @0=30, @10=20, @20=10 150
|
|
// 30 C B 20 140 10 30 @10=20, @20=10, @30=0 140
|
|
// 40 C B 20 160 @10=30, @20=20... 160
|
|
// 50 C B 20 150 150
|
|
// 60 C B 20 140 @10=50, @20=40... 140
|
|
// 70 D C 50 130 20 70 @20=50, @30=40... 130
|
|
// ...
|
|
// 160 D C 50 40 @20=140, @30=130... 40
|
|
// 170 <empty> D 140 30 40 @40=140, @50=130... (rounding) 30
|
|
// 180 <empty> D 140 20 40 @40=150 20
|
|
// 190 <empty> D 140 10 40 @40=160 10
|
|
// 200 <empty> <empty> 0 0 NA 0
|
|
//
|
|
// Function Delay(t) = the time between t and the time at which a hypothetical
|
|
// event e would start executing, if e was enqueued at time t.
|
|
//
|
|
// Delay(-1) = 0 // Before A was enqueued. No wait time, can start running
|
|
// // instantly.
|
|
// Delay(0) = 30 // The hypothetical event e got enqueued just after A got
|
|
// // enqueued. It can start running at 30, when A is done.
|
|
// Delay(5) = 25
|
|
// Delay(10) = 60 // Can start running at 70, after both A and B are done.
|
|
// Delay(19) = 51
|
|
// Delay(20) = 150 // Can start running at 170, after A, B & C.
|
|
// Delay(25) = 145
|
|
// Delay(30) = 170 // Can start running at 200, after A, B, C & D.
|
|
// Delay(120) = 80
|
|
// Delay(200) = 0 // (assuming nothing was enqueued after D)
|
|
//
|
|
// For every event that gets enqueued, the Delay time will go up by the
|
|
// event's running time at the time at which the event is enqueued.
|
|
// The Delay function will be a sawtooth of the following shape:
|
|
//
|
|
// |\ |...
|
|
// | \ |
|
|
// |\ | \ |
|
|
// | \ | \ |
|
|
// |\ | \ | \ |
|
|
// |\ | \| \| \ |
|
|
// | \| \ |
|
|
// _| \____|
|
|
//
|
|
//
|
|
// A more complex example with a PrioritizedEventQueue:
|
|
//
|
|
// Event queue: <tail> D : C : B : A <head>
|
|
// Time inserted (ms): 40 : 20 : 10 : 0
|
|
// Run Time (ms): 30 : 100 : 40 : 30
|
|
// Priority: Input: Norm: Norm: Norm
|
|
//
|
|
// 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
|
|
// [A||||||||||||]
|
|
// ----------[B|||||||||||||||||]
|
|
// ----------------------------------------[C|||||||||||||||||||||||||||||||||||||||||||||||]
|
|
// ---------------[D||||||||||||]
|
|
//
|
|
//
|
|
// Time Head of queue Running Event RunningEventDelay Delay of Effective Started Calc (submission->now add 10ms) Final
|
|
// hypothetical Submission Running @ result
|
|
// event
|
|
// 0 Empty A 0 30 0 0 @0=10 30
|
|
// 10 B A 0 20 0 0 @0=20, @10=10 20
|
|
// 20 B A 0 10 0 0 @0=30, @10=20, @20=10 10
|
|
// 30 C B 0 40 30 30 @30=10 40
|
|
// 40 C B 0 60 30 @40=10, @30=20 60
|
|
// 50 C B 0 50 30 @50=10, @40=20, @30=30 50
|
|
// 60 C B 0 40 30 @60=10, @50=20, @40=30, @30=40 40
|
|
// 70 C D 30 30 40 70 @60=20, @50=30, @40=40 30
|
|
// 80 C D 30 20 40 70 ...@50=40, @40=50 20
|
|
// 90 C D 30 10 40 70 ...@60=40, @50=50, @40=60 10
|
|
// 100 <empty> C 0 100 100 100 @100=10 100
|
|
// 110 <empty> C 0 90 100 100 @110=10, @100=20 90
|
|
|
|
//
|
|
// For PrioritizedEventQueue, the definition of the Delay(t) function is adjusted: the hypothetical event e has Input priority.
|
|
// Delay(-1) = 0 // Before A was enqueued. No wait time, can start running
|
|
// // instantly.
|
|
// Delay(0) = 30 // The hypothetical input event e got enqueued just after A got
|
|
// // enqueued. It can start running at 30, when A is done.
|
|
// Delay(5) = 25
|
|
// Delay(10) = 20
|
|
// Delay(25) = 5 // B has been queued, but e does not need to wait for B because e has Input priority and B does not.
|
|
// // So e can start running at 30, when A is done.
|
|
// Delay(30) = 40 // Can start running at 70, after B is done.
|
|
// Delay(40) = 60 // Can start at 100, after B and D are done (D is Input Priority)
|
|
// Delay(80) = 20
|
|
// Delay(100) = 100 // Wait for C to finish
|
|
|
|
// clang-format on
|
|
//
|
|
// Alternatively we could insert (recycled instead of
|
|
// allocated/freed) input events at every sample period
|
|
// (1ms...), and use them to back-calculate the delay. This
|
|
// might also be somewhat expensive, and would require
|
|
// guessing at the maximum delay, which would likely be in
|
|
// the seconds, and so you'd need 1000's of pre-allocated
|
|
// events per queue per thread - so there would be a memory
|
|
// impact as well.
|
|
|
|
TimeDuration currentEventDelay;
|
|
TimeDuration currentEventRunning;
|
|
lockedThreadData->GetRunningEventDelay(
|
|
aNow, currentEventDelay, currentEventRunning);
|
|
|
|
// Note: eventDelay is a different definition of
|
|
// responsiveness than the 16ms event injection.
|
|
|
|
// Don't suppress 0's for now; that can be a future
|
|
// optimization. We probably want one zero to be stored
|
|
// before we start suppressing, which would be more
|
|
// complex.
|
|
unresponsiveDuration_ms =
|
|
Some(currentEventDelay.ToMilliseconds() +
|
|
currentEventRunning.ToMilliseconds());
|
|
});
|
|
|
|
if (cpuUtilization) {
|
|
// Suspending the thread for sampling could have added some
|
|
// running time to it, discard any since the call to
|
|
// GetThreadRunningTimesDiff above.
|
|
DiscardSuspendedThreadRunningTimes(lock, unlockedThreadData);
|
|
}
|
|
|
|
// If we got eventDelay data, store it before the CompactStack.
|
|
// Note: It is not stored inside the CompactStack so that it
|
|
// doesn't get incorrectly duplicated when the thread is sleeping.
|
|
if (unresponsiveDuration_ms.isSome()) {
|
|
CorePS::CoreBuffer().PutObjects(
|
|
ProfileBufferEntry::Kind::UnresponsiveDurationMs,
|
|
*unresponsiveDuration_ms);
|
|
}
|
|
}
|
|
|
|
// There *must* be a CompactStack after a TimeBeforeCompactStack;
|
|
// but note that other entries may have been concurrently inserted
|
|
// between the TimeBeforeCompactStack above and now. If the captured
|
|
// sample from `DoPeriodicSample` is complete, copy it into the
|
|
// global buffer, otherwise add an empty one to satisfy the parser
|
|
// that expects one.
|
|
auto state = localBuffer.GetState();
|
|
if (NS_WARN_IF(state.mFailedPutBytes !=
|
|
previousState.mFailedPutBytes)) {
|
|
LOG("Stack sample too big for local storage, failed to store %u "
|
|
"bytes",
|
|
unsigned(state.mFailedPutBytes -
|
|
previousState.mFailedPutBytes));
|
|
// There *must* be a CompactStack after a TimeBeforeCompactStack,
|
|
// even an empty one.
|
|
CorePS::CoreBuffer().PutObjects(
|
|
ProfileBufferEntry::Kind::CompactStack,
|
|
UniquePtr<ProfileChunkedBuffer>(nullptr));
|
|
} else if (state.mRangeEnd - previousState.mRangeEnd >=
|
|
*CorePS::CoreBuffer().BufferLength()) {
|
|
LOG("Stack sample too big for profiler storage, needed %u bytes",
|
|
unsigned(state.mRangeEnd - previousState.mRangeEnd));
|
|
// There *must* be a CompactStack after a TimeBeforeCompactStack,
|
|
// even an empty one.
|
|
CorePS::CoreBuffer().PutObjects(
|
|
ProfileBufferEntry::Kind::CompactStack,
|
|
UniquePtr<ProfileChunkedBuffer>(nullptr));
|
|
} else {
|
|
CorePS::CoreBuffer().PutObjects(
|
|
ProfileBufferEntry::Kind::CompactStack, localBuffer);
|
|
}
|
|
|
|
// Clean up for the next run.
|
|
localBuffer.Clear();
|
|
previousState = localBuffer.GetState();
|
|
}
|
|
} else {
|
|
samplingState = SamplingState::NoStackSamplingCompleted;
|
|
}
|
|
|
|
#if defined(USE_LUL_STACKWALK)
|
|
// The LUL unwind object accumulates frame statistics. Periodically we
|
|
// should poke it to give it a chance to print those statistics. This
|
|
// involves doing I/O (fprintf, __android_log_print, etc.) and so
|
|
// can't safely be done from the critical section inside
|
|
// SuspendAndSampleAndResumeThread, which is why it is done here.
|
|
lul::LUL* lul = CorePS::Lul();
|
|
if (lul) {
|
|
lul->MaybeShowStats();
|
|
}
|
|
#endif
|
|
TimeStamp threadsSampled = TimeStamp::Now();
|
|
|
|
{
|
|
AUTO_PROFILER_STATS(Sampler_FulfillChunkRequests);
|
|
ActivePS::FulfillChunkRequests(lock);
|
|
}
|
|
|
|
buffer.CollectOverheadStats(sampleStartDeltaMs,
|
|
lockAcquired - sampleStart,
|
|
expiredMarkersCleaned - lockAcquired,
|
|
countersSampled - expiredMarkersCleaned,
|
|
threadsSampled - countersSampled);
|
|
} else {
|
|
samplingState = SamplingState::SamplingPaused;
|
|
}
|
|
}
|
|
// gPSMutex is not held after this point.
|
|
|
|
// Invoke end-of-sampling callbacks outside of the locked scope.
|
|
InvokePostSamplingCallbacks(std::move(postSamplingCallbacks),
|
|
samplingState);
|
|
|
|
ProfilerChild::ProcessPendingUpdate();
|
|
|
|
if (ProfilerFeature::HasUnregisteredThreads(features)) {
|
|
#if defined(GP_OS_windows)
|
|
{
|
|
MonitorAutoLock spyingStateLock{mSpyingStateMonitor};
|
|
switch (mSpyingState) {
|
|
case SpyingState::SamplerToSpy_Start:
|
|
case SpyingState::Spy_Working:
|
|
// If the spy is working (or about to work), record this loop
|
|
// iteration to delay the next start.
|
|
++mDelaySpyStart;
|
|
break;
|
|
case SpyingState::Spy_Waiting:
|
|
// The Spy is idle, waiting for instructions. Should we delay?
|
|
if (--mDelaySpyStart <= 0) {
|
|
mDelaySpyStart = 0;
|
|
mSpyingState = SpyingState::SamplerToSpy_Start;
|
|
mSpyingStateMonitor.NotifyAll();
|
|
}
|
|
break;
|
|
default:
|
|
// Otherwise the spy should be initializing or shutting down.
|
|
MOZ_ASSERT(mSpyingState == SpyingState::Spy_Initializing ||
|
|
mSpyingState == SpyingState::MainToSpy_Shutdown ||
|
|
mSpyingState == SpyingState::SpyToMain_ShuttingDown);
|
|
break;
|
|
}
|
|
}
|
|
#else
|
|
// On non-Windows platforms, this is fast enough to run in this thread,
|
|
// each sampling loop.
|
|
SpyOnUnregisteredThreads();
|
|
#endif
|
|
}
|
|
|
|
// We expect the next sampling loop to start `sampleInterval` after this
|
|
// loop here was scheduled to start.
|
|
scheduledSampleStart += sampleInterval;
|
|
|
|
// Try to sleep until we reach that next scheduled time.
|
|
const TimeStamp beforeSleep = TimeStamp::Now();
|
|
if (scheduledSampleStart >= beforeSleep) {
|
|
// There is still time before the next scheduled sample time.
|
|
const uint32_t sleepTimeUs = static_cast<uint32_t>(
|
|
(scheduledSampleStart - beforeSleep).ToMicroseconds());
|
|
if (sleepTimeUs >= minimumIntervalSleepUs) {
|
|
SleepMicro(sleepTimeUs);
|
|
} else {
|
|
// If we're too close to that time, sleep the minimum amount of time.
|
|
// Note that the next scheduled start is not shifted, so at the end of
|
|
// the next loop, sleep may again be adjusted to get closer to schedule.
|
|
SleepMicro(minimumIntervalSleepUs);
|
|
}
|
|
} else {
|
|
// This sampling loop ended after the next sampling should have started!
|
|
// There is little point to try and keep up to schedule now, it would
|
|
// require more work, while it's likely we're late because the system is
|
|
// already busy. Try and restart a normal schedule from now.
|
|
scheduledSampleStart = beforeSleep + sampleInterval;
|
|
SleepMicro(static_cast<uint32_t>(sampleInterval.ToMicroseconds()));
|
|
}
|
|
}
|
|
|
|
// End of `while` loop. We can only be here from a `break` inside the loop.
|
|
InvokePostSamplingCallbacks(std::move(postSamplingCallbacks), samplingState);
|
|
}
|
|
|
|
namespace geckoprofiler::markers {
|
|
|
|
struct UnregisteredThreadLifetimeMarker {
|
|
static constexpr Span<const char> MarkerTypeName() {
|
|
return MakeStringSpan("UnregisteredThreadLifetime");
|
|
}
|
|
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
|
|
base::ProcessId aThreadId,
|
|
const ProfilerString8View& aName,
|
|
const ProfilerString8View& aEndEvent) {
|
|
aWriter.IntProperty("Thread Id", aThreadId);
|
|
aWriter.StringProperty("Thread Name", aName.Length() != 0
|
|
? aName.AsSpan()
|
|
: MakeStringSpan("~Unnamed~"));
|
|
if (aEndEvent.Length() != 0) {
|
|
aWriter.StringProperty("End Event", aEndEvent);
|
|
}
|
|
}
|
|
static MarkerSchema MarkerTypeDisplay() {
|
|
using MS = MarkerSchema;
|
|
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
|
|
schema.AddKeyFormatSearchable("Thread Id", MS::Format::Integer,
|
|
MS::Searchable::Searchable);
|
|
schema.AddKeyFormatSearchable("Thread Name", MS::Format::String,
|
|
MS::Searchable::Searchable);
|
|
schema.AddKeyFormat("End Event", MS::Format::String);
|
|
schema.AddStaticLabelValue(
|
|
"Note",
|
|
"Start and end are approximate, based on first and last appearances.");
|
|
schema.SetChartLabel(
|
|
"{marker.data.Thread Name} (tid {marker.data.Thread Id})");
|
|
schema.SetTableLabel("{marker.name} lifetime");
|
|
return schema;
|
|
}
|
|
};
|
|
|
|
struct UnregisteredThreadCPUMarker {
|
|
static constexpr Span<const char> MarkerTypeName() {
|
|
return MakeStringSpan("UnregisteredThreadCPU");
|
|
}
|
|
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
|
|
base::ProcessId aThreadId,
|
|
int64_t aCPUDiffNs, const TimeStamp& aStart,
|
|
const TimeStamp& aEnd) {
|
|
aWriter.IntProperty("Thread Id", aThreadId);
|
|
aWriter.IntProperty("CPU Time", aCPUDiffNs);
|
|
aWriter.DoubleProperty(
|
|
"CPU Utilization",
|
|
double(aCPUDiffNs) / ((aEnd - aStart).ToMicroseconds() * 1000.0));
|
|
}
|
|
static MarkerSchema MarkerTypeDisplay() {
|
|
using MS = MarkerSchema;
|
|
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
|
|
schema.AddKeyFormatSearchable("Thread Id", MS::Format::Integer,
|
|
MS::Searchable::Searchable);
|
|
schema.AddKeyFormat("CPU Time", MS::Format::Nanoseconds);
|
|
schema.AddKeyFormat("CPU Utilization", MS::Format::Percentage);
|
|
schema.SetChartLabel("{marker.data.CPU Utilization}");
|
|
schema.SetTableLabel(
|
|
"{marker.name} - Activity: {marker.data.CPU Utilization}");
|
|
return schema;
|
|
}
|
|
};
|
|
|
|
} // namespace geckoprofiler::markers
|
|
|
|
static bool IsThreadIdRegistered(ProfilerThreadId aThreadId) {
|
|
ThreadRegistry::LockedRegistry lockedRegistry;
|
|
const auto registryEnd = lockedRegistry.end();
|
|
return std::find_if(
|
|
lockedRegistry.begin(), registryEnd,
|
|
[aThreadId](const ThreadRegistry::OffThreadRef& aOffThreadRef) {
|
|
return aOffThreadRef.UnlockedConstReaderCRef()
|
|
.Info()
|
|
.ThreadId() == aThreadId;
|
|
}) != registryEnd;
|
|
}
|
|
|
|
static nsAutoCString MakeThreadInfoMarkerName(base::ProcessId aThreadId,
|
|
const nsACString& aName) {
|
|
nsAutoCString markerName{"tid "};
|
|
markerName.AppendInt(int64_t(aThreadId));
|
|
if (!aName.IsEmpty()) {
|
|
markerName.AppendLiteral(" ");
|
|
markerName.Append(aName);
|
|
}
|
|
return markerName;
|
|
}
|
|
|
|
void SamplerThread::SpyOnUnregisteredThreads() {
|
|
const TimeStamp unregisteredThreadSearchStart = TimeStamp::Now();
|
|
|
|
const base::ProcessId currentProcessId =
|
|
base::ProcessId(profiler_current_process_id().ToNumber());
|
|
nsTArray<ProcInfoRequest> request(1);
|
|
request.EmplaceBack(
|
|
/* aPid = */ currentProcessId,
|
|
/* aProcessType = */ ProcType::Unknown,
|
|
/* aOrigin = */ ""_ns,
|
|
/* aWindowInfo = */ nsTArray<WindowInfo>{},
|
|
/* aChild = */ 0
|
|
#ifdef XP_MACOSX
|
|
,
|
|
/* aChildTask = */ MACH_PORT_NULL
|
|
#endif // XP_MACOSX
|
|
);
|
|
|
|
const ProcInfoPromise::ResolveOrRejectValue procInfoOrError =
|
|
GetProcInfoSync(std::move(request));
|
|
|
|
if (!procInfoOrError.IsResolve()) {
|
|
PROFILER_MARKER_TEXT("Failed unregistered thread search", PROFILER,
|
|
MarkerOptions(MarkerThreadId::MainThread(),
|
|
MarkerTiming::IntervalUntilNowFrom(
|
|
unregisteredThreadSearchStart)),
|
|
"Could not retrieve any process information");
|
|
return;
|
|
}
|
|
|
|
const auto& procInfoHashMap = procInfoOrError.ResolveValue();
|
|
// Expecting the requested (current) process information to be present in the
|
|
// hashmap.
|
|
const auto& procInfoPtr =
|
|
procInfoHashMap.readonlyThreadsafeLookup(currentProcessId);
|
|
if (!procInfoPtr) {
|
|
PROFILER_MARKER_TEXT("Failed unregistered thread search", PROFILER,
|
|
MarkerOptions(MarkerThreadId::MainThread(),
|
|
MarkerTiming::IntervalUntilNowFrom(
|
|
unregisteredThreadSearchStart)),
|
|
"Could not retrieve information about this process");
|
|
return;
|
|
}
|
|
|
|
// Record the time spent so far, which is OS-bound...
|
|
PROFILER_MARKER_TEXT("Unregistered thread search", PROFILER,
|
|
MarkerOptions(MarkerThreadId::MainThread(),
|
|
MarkerTiming::IntervalUntilNowFrom(
|
|
unregisteredThreadSearchStart)),
|
|
"Work to discover threads");
|
|
|
|
// ... and record the time needed to process the data, which we can control.
|
|
AUTO_PROFILER_MARKER_TEXT(
|
|
"Unregistered thread search", PROFILER,
|
|
MarkerOptions(MarkerThreadId::MainThread()),
|
|
"Work to process discovered threads and record unregistered ones"_ns);
|
|
|
|
const Span<const mozilla::ThreadInfo> threads = procInfoPtr->value().threads;
|
|
|
|
// mLastSpying timestamp should be null only at the beginning of a session,
|
|
// when mSpiedThreads is still empty.
|
|
MOZ_ASSERT_IF(mLastSpying.IsNull(), mSpiedThreads.IsEmpty());
|
|
|
|
const TimeStamp previousSpying = std::exchange(mLastSpying, TimeStamp::Now());
|
|
|
|
// Find threads that were spied on but are not present anymore.
|
|
const auto threadsBegin = threads.begin();
|
|
const auto threadsEnd = threads.end();
|
|
for (size_t spiedThreadIndexPlus1 = mSpiedThreads.Length();
|
|
spiedThreadIndexPlus1 != 0; --spiedThreadIndexPlus1) {
|
|
const SpiedThread& spiedThread = mSpiedThreads[spiedThreadIndexPlus1 - 1];
|
|
if (std::find_if(threadsBegin, threadsEnd,
|
|
[spiedTid = spiedThread.mThreadId](
|
|
const mozilla::ThreadInfo& aThreadInfo) {
|
|
return aThreadInfo.tid == spiedTid;
|
|
}) == threadsEnd) {
|
|
// This spied thread is gone.
|
|
PROFILER_MARKER(
|
|
MakeThreadInfoMarkerName(spiedThread.mThreadId, spiedThread.mName),
|
|
PROFILER,
|
|
MarkerOptions(
|
|
MarkerThreadId::MainThread(),
|
|
// Place the end between this update and the previous one.
|
|
MarkerTiming::IntervalEnd(previousSpying +
|
|
(mLastSpying - previousSpying) /
|
|
int64_t(2))),
|
|
UnregisteredThreadLifetimeMarker, spiedThread.mThreadId,
|
|
spiedThread.mName, "Thread disappeared");
|
|
|
|
// Don't spy on it anymore, assuming it won't come back.
|
|
mSpiedThreads.RemoveElementAt(spiedThreadIndexPlus1 - 1);
|
|
}
|
|
}
|
|
|
|
for (const mozilla::ThreadInfo& threadInfo : threads) {
|
|
// Index of this encountered thread in mSpiedThreads, or NoIndex.
|
|
size_t spiedThreadIndex = mSpiedThreads.IndexOf(threadInfo.tid);
|
|
if (IsThreadIdRegistered(ProfilerThreadId::FromNumber(threadInfo.tid))) {
|
|
// This thread id is already officially registered.
|
|
if (spiedThreadIndex != SpiedThreads::NoIndex) {
|
|
// This now-registered thread was previously being spied.
|
|
SpiedThread& spiedThread = mSpiedThreads[spiedThreadIndex];
|
|
PROFILER_MARKER(
|
|
MakeThreadInfoMarkerName(spiedThread.mThreadId, spiedThread.mName),
|
|
PROFILER,
|
|
MarkerOptions(
|
|
MarkerThreadId::MainThread(),
|
|
// Place the end between this update and the previous one.
|
|
// TODO: Find the real time from the thread registration?
|
|
MarkerTiming::IntervalEnd(previousSpying +
|
|
(mLastSpying - previousSpying) /
|
|
int64_t(2))),
|
|
UnregisteredThreadLifetimeMarker, spiedThread.mThreadId,
|
|
spiedThread.mName, "Thread registered itself");
|
|
|
|
// Remove from mSpiedThreads, since it can be profiled normally.
|
|
mSpiedThreads.RemoveElement(threadInfo.tid);
|
|
}
|
|
} else {
|
|
// This thread id is not registered.
|
|
if (spiedThreadIndex == SpiedThreads::NoIndex) {
|
|
// This unregistered thread has not been spied yet, store it now.
|
|
NS_ConvertUTF16toUTF8 name(threadInfo.name);
|
|
mSpiedThreads.EmplaceBack(threadInfo.tid, name, threadInfo.cpuTime);
|
|
|
|
PROFILER_MARKER(
|
|
MakeThreadInfoMarkerName(threadInfo.tid, name), PROFILER,
|
|
MarkerOptions(
|
|
MarkerThreadId::MainThread(),
|
|
// Place the start between this update and the previous one (or
|
|
// the start of this search if it's the first one).
|
|
MarkerTiming::IntervalStart(
|
|
mLastSpying -
|
|
(mLastSpying - (previousSpying.IsNull()
|
|
? unregisteredThreadSearchStart
|
|
: previousSpying)) /
|
|
int64_t(2))),
|
|
UnregisteredThreadLifetimeMarker, threadInfo.tid, name,
|
|
/* aEndEvent */ "");
|
|
} else {
|
|
// This unregistered thread was already being spied, record its work.
|
|
SpiedThread& spiedThread = mSpiedThreads[spiedThreadIndex];
|
|
int64_t diffCPUTimeNs =
|
|
int64_t(threadInfo.cpuTime) - int64_t(spiedThread.mCPUTimeNs);
|
|
spiedThread.mCPUTimeNs = threadInfo.cpuTime;
|
|
if (diffCPUTimeNs != 0) {
|
|
PROFILER_MARKER(
|
|
MakeThreadInfoMarkerName(threadInfo.tid, spiedThread.mName),
|
|
PROFILER,
|
|
MarkerOptions(
|
|
MarkerThreadId::MainThread(),
|
|
MarkerTiming::Interval(previousSpying, mLastSpying)),
|
|
UnregisteredThreadCPUMarker, threadInfo.tid, diffCPUTimeNs,
|
|
previousSpying, mLastSpying);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PROFILER_MARKER_TEXT("Unregistered thread search", PROFILER,
|
|
MarkerOptions(MarkerThreadId::MainThread(),
|
|
MarkerTiming::IntervalUntilNowFrom(
|
|
unregisteredThreadSearchStart)),
|
|
"Work to discover and record unregistered threads");
|
|
}
|
|
|
|
// We #include these files directly because it means those files can use
|
|
// declarations from this file trivially. These provide target-specific
|
|
// implementations of all SamplerThread methods except Run().
|
|
#if defined(GP_OS_windows)
|
|
# include "platform-win32.cpp"
|
|
#elif defined(GP_OS_darwin)
|
|
# include "platform-macos.cpp"
|
|
#elif defined(GP_OS_linux) || defined(GP_OS_android) || defined(GP_OS_freebsd)
|
|
# include "platform-linux-android.cpp"
|
|
#else
|
|
# error "bad platform"
|
|
#endif
|
|
|
|
// END SamplerThread
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// BEGIN externally visible functions
|
|
|
|
MOZ_DEFINE_MALLOC_SIZE_OF(GeckoProfilerMallocSizeOf)
|
|
|
|
NS_IMETHODIMP
|
|
GeckoProfilerReporter::CollectReports(nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData, bool aAnonymize) {
|
|
MOZ_RELEASE_ASSERT(NS_IsMainThread());
|
|
|
|
size_t profSize = 0;
|
|
size_t lulSize = 0;
|
|
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
if (CorePS::Exists()) {
|
|
CorePS::AddSizeOf(lock, GeckoProfilerMallocSizeOf, profSize, lulSize);
|
|
}
|
|
|
|
if (ActivePS::Exists(lock)) {
|
|
profSize += ActivePS::SizeOf(lock, GeckoProfilerMallocSizeOf);
|
|
}
|
|
}
|
|
|
|
MOZ_COLLECT_REPORT(
|
|
"explicit/profiler/profiler-state", KIND_HEAP, UNITS_BYTES, profSize,
|
|
"Memory used by the Gecko Profiler's global state (excluding memory used "
|
|
"by LUL).");
|
|
|
|
#if defined(USE_LUL_STACKWALK)
|
|
MOZ_COLLECT_REPORT(
|
|
"explicit/profiler/lul", KIND_HEAP, UNITS_BYTES, lulSize,
|
|
"Memory used by LUL, a stack unwinder used by the Gecko Profiler.");
|
|
#endif
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMPL_ISUPPORTS(GeckoProfilerReporter, nsIMemoryReporter)
|
|
|
|
static uint32_t ParseFeature(const char* aFeature, bool aIsStartup) {
|
|
if (strcmp(aFeature, "default") == 0) {
|
|
return (aIsStartup ? (DefaultFeatures() | StartupExtraDefaultFeatures())
|
|
: DefaultFeatures()) &
|
|
AvailableFeatures();
|
|
}
|
|
|
|
#define PARSE_FEATURE_BIT(n_, str_, Name_, desc_) \
|
|
if (strcmp(aFeature, str_) == 0) { \
|
|
return ProfilerFeature::Name_; \
|
|
}
|
|
|
|
PROFILER_FOR_EACH_FEATURE(PARSE_FEATURE_BIT)
|
|
|
|
#undef PARSE_FEATURE_BIT
|
|
|
|
printf("\nUnrecognized feature \"%s\".\n\n", aFeature);
|
|
// Since we may have an old feature we don't implement anymore, don't exit.
|
|
PrintUsage();
|
|
return 0;
|
|
}
|
|
|
|
uint32_t ParseFeaturesFromStringArray(const char** aFeatures,
|
|
uint32_t aFeatureCount,
|
|
bool aIsStartup /* = false */) {
|
|
uint32_t features = 0;
|
|
for (size_t i = 0; i < aFeatureCount; i++) {
|
|
features |= ParseFeature(aFeatures[i], aIsStartup);
|
|
}
|
|
return features;
|
|
}
|
|
|
|
static ProfilingStack* locked_register_thread(
|
|
PSLockRef aLock, ThreadRegistry::OffThreadRef aOffThreadRef) {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
VTUNE_REGISTER_THREAD(aOffThreadRef.UnlockedConstReaderCRef().Info().Name());
|
|
|
|
if (ActivePS::Exists(aLock)) {
|
|
ThreadProfilingFeatures threadProfilingFeatures =
|
|
ActivePS::ProfilingFeaturesForThread(
|
|
aLock, aOffThreadRef.UnlockedConstReaderCRef().Info());
|
|
if (threadProfilingFeatures != ThreadProfilingFeatures::NotProfiled) {
|
|
ThreadRegistry::OffThreadRef::RWFromAnyThreadWithLock
|
|
lockedRWFromAnyThread = aOffThreadRef.LockedRWFromAnyThread();
|
|
|
|
nsCOMPtr<nsIEventTarget> eventTarget =
|
|
lockedRWFromAnyThread->GetEventTarget();
|
|
ProfiledThreadData* profiledThreadData = ActivePS::AddLiveProfiledThread(
|
|
aLock,
|
|
MakeUnique<ProfiledThreadData>(
|
|
aOffThreadRef.UnlockedConstReaderCRef().Info(), eventTarget));
|
|
lockedRWFromAnyThread->SetProfilingFeaturesAndData(
|
|
threadProfilingFeatures, profiledThreadData, aLock);
|
|
|
|
if (ActivePS::FeatureJS(aLock)) {
|
|
lockedRWFromAnyThread->StartJSSampling(ActivePS::JSFlags(aLock));
|
|
if (ThreadRegistration::LockedRWOnThread* lockedRWOnThread =
|
|
lockedRWFromAnyThread.GetLockedRWOnThread();
|
|
lockedRWOnThread) {
|
|
// We can manually poll the current thread so it starts sampling
|
|
// immediately.
|
|
lockedRWOnThread->PollJSSampling();
|
|
}
|
|
if (lockedRWFromAnyThread->GetJSContext()) {
|
|
profiledThreadData->NotifyReceivedJSContext(
|
|
ActivePS::Buffer(aLock).BufferRangeEnd());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return &aOffThreadRef.UnlockedConstReaderAndAtomicRWRef().ProfilingStackRef();
|
|
}
|
|
|
|
static void NotifyObservers(const char* aTopic,
|
|
nsISupports* aSubject = nullptr) {
|
|
if (!NS_IsMainThread()) {
|
|
// Dispatch a task to the main thread that notifies observers.
|
|
// If NotifyObservers is called both on and off the main thread within a
|
|
// short time, the order of the notifications can be different from the
|
|
// order of the calls to NotifyObservers.
|
|
// Getting the order 100% right isn't that important at the moment, because
|
|
// these notifications are only observed in the parent process, where the
|
|
// profiler_* functions are currently only called on the main thread.
|
|
nsCOMPtr<nsISupports> subject = aSubject;
|
|
NS_DispatchToMainThread(NS_NewRunnableFunction(
|
|
"NotifyObservers", [=] { NotifyObservers(aTopic, subject); }));
|
|
return;
|
|
}
|
|
|
|
if (nsCOMPtr<nsIObserverService> os = services::GetObserverService()) {
|
|
os->NotifyObservers(aSubject, aTopic, nullptr);
|
|
}
|
|
}
|
|
|
|
static void NotifyProfilerStarted(const PowerOfTwo32& aCapacity,
|
|
const Maybe<double>& aDuration,
|
|
double aInterval, uint32_t aFeatures,
|
|
const char** aFilters, uint32_t aFilterCount,
|
|
uint64_t aActiveTabID) {
|
|
nsTArray<nsCString> filtersArray;
|
|
for (size_t i = 0; i < aFilterCount; ++i) {
|
|
filtersArray.AppendElement(aFilters[i]);
|
|
}
|
|
|
|
nsCOMPtr<nsIProfilerStartParams> params = new nsProfilerStartParams(
|
|
aCapacity.Value(), aDuration, aInterval, aFeatures,
|
|
std::move(filtersArray), aActiveTabID);
|
|
|
|
ProfilerParent::ProfilerStarted(params);
|
|
NotifyObservers("profiler-started", params);
|
|
}
|
|
|
|
static void locked_profiler_start(PSLockRef aLock, PowerOfTwo32 aCapacity,
|
|
double aInterval, uint32_t aFeatures,
|
|
const char** aFilters, uint32_t aFilterCount,
|
|
uint64_t aActiveTabID,
|
|
const Maybe<double>& aDuration);
|
|
|
|
// This basically duplicates AutoProfilerLabel's constructor.
|
|
static void* MozGlueLabelEnter(const char* aLabel, const char* aDynamicString,
|
|
void* aSp) {
|
|
ThreadRegistration::OnThreadPtr onThreadPtr =
|
|
ThreadRegistration::GetOnThreadPtr();
|
|
if (!onThreadPtr) {
|
|
return nullptr;
|
|
}
|
|
ProfilingStack& profilingStack =
|
|
onThreadPtr->UnlockedConstReaderAndAtomicRWRef().ProfilingStackRef();
|
|
profilingStack.pushLabelFrame(aLabel, aDynamicString, aSp,
|
|
JS::ProfilingCategoryPair::OTHER);
|
|
return &profilingStack;
|
|
}
|
|
|
|
// This basically duplicates AutoProfilerLabel's destructor.
|
|
static void MozGlueLabelExit(void* aProfilingStack) {
|
|
if (aProfilingStack) {
|
|
reinterpret_cast<ProfilingStack*>(aProfilingStack)->pop();
|
|
}
|
|
}
|
|
|
|
static Vector<const char*> SplitAtCommas(const char* aString,
|
|
UniquePtr<char[]>& aStorage) {
|
|
size_t len = strlen(aString);
|
|
aStorage = MakeUnique<char[]>(len + 1);
|
|
PodCopy(aStorage.get(), aString, len + 1);
|
|
|
|
// Iterate over all characters in aStorage and split at commas, by
|
|
// overwriting commas with the null char.
|
|
Vector<const char*> array;
|
|
size_t currentElementStart = 0;
|
|
for (size_t i = 0; i <= len; i++) {
|
|
if (aStorage[i] == ',') {
|
|
aStorage[i] = '\0';
|
|
}
|
|
if (aStorage[i] == '\0') {
|
|
// Only add non-empty elements, otherwise ParseFeatures would later
|
|
// complain about unrecognized features.
|
|
if (currentElementStart != i) {
|
|
MOZ_RELEASE_ASSERT(array.append(&aStorage[currentElementStart]));
|
|
}
|
|
currentElementStart = i + 1;
|
|
}
|
|
}
|
|
return array;
|
|
}
|
|
|
|
void profiler_init_threadmanager() {
|
|
LOG("profiler_init_threadmanager");
|
|
|
|
ThreadRegistration::WithOnThreadRef(
|
|
[](ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
aOnThreadRef.WithLockedRWOnThread(
|
|
[](ThreadRegistration::LockedRWOnThread& aThreadData) {
|
|
if (!aThreadData.GetEventTarget()) {
|
|
aThreadData.ResetMainThread(NS_GetCurrentThreadNoCreate());
|
|
}
|
|
});
|
|
});
|
|
}
|
|
|
|
static const char* get_size_suffix(const char* str) {
|
|
const char* ptr = str;
|
|
|
|
while (isdigit(*ptr)) {
|
|
ptr++;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void profiler_init(void* aStackTop) {
|
|
LOG("profiler_init");
|
|
|
|
profiler_init_main_thread_id();
|
|
|
|
VTUNE_INIT();
|
|
|
|
MOZ_RELEASE_ASSERT(!CorePS::Exists());
|
|
|
|
if (getenv("MOZ_PROFILER_HELP")) {
|
|
PrintUsage();
|
|
exit(0);
|
|
}
|
|
|
|
SharedLibraryInfo::Initialize();
|
|
|
|
uint32_t features = DefaultFeatures() & AvailableFeatures();
|
|
|
|
UniquePtr<char[]> filterStorage;
|
|
|
|
Vector<const char*> filters;
|
|
MOZ_RELEASE_ASSERT(filters.append("GeckoMain"));
|
|
MOZ_RELEASE_ASSERT(filters.append("Compositor"));
|
|
MOZ_RELEASE_ASSERT(filters.append("Renderer"));
|
|
MOZ_RELEASE_ASSERT(filters.append("DOM Worker"));
|
|
|
|
PowerOfTwo32 capacity = PROFILER_DEFAULT_ENTRIES;
|
|
Maybe<double> duration = Nothing();
|
|
double interval = PROFILER_DEFAULT_INTERVAL;
|
|
uint64_t activeTabID = PROFILER_DEFAULT_ACTIVE_TAB_ID;
|
|
|
|
ThreadRegistration::RegisterThread(kMainThreadName, aStackTop);
|
|
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
// We've passed the possible failure point. Instantiate CorePS, which
|
|
// indicates that the profiler has initialized successfully.
|
|
CorePS::Create(lock);
|
|
|
|
// Make sure threads already in the ThreadRegistry (like the main thread)
|
|
// get registered in CorePS as well.
|
|
{
|
|
ThreadRegistry::LockedRegistry lockedRegistry;
|
|
for (ThreadRegistry::OffThreadRef offThreadRef : lockedRegistry) {
|
|
locked_register_thread(lock, offThreadRef);
|
|
}
|
|
}
|
|
|
|
// Platform-specific initialization.
|
|
PlatformInit(lock);
|
|
|
|
#if defined(GP_OS_android)
|
|
if (jni::IsAvailable()) {
|
|
GeckoJavaSampler::Init();
|
|
}
|
|
#endif
|
|
|
|
// (Linux-only) We could create CorePS::mLul and read unwind info into it
|
|
// at this point. That would match the lifetime implied by destruction of
|
|
// it in profiler_shutdown() just below. However, that gives a big delay on
|
|
// startup, even if no profiling is actually to be done. So, instead, it is
|
|
// created on demand at the first call to PlatformStart().
|
|
|
|
const char* startupEnv = getenv("MOZ_PROFILER_STARTUP");
|
|
if (!startupEnv || startupEnv[0] == '\0' ||
|
|
((startupEnv[0] == '0' || startupEnv[0] == 'N' ||
|
|
startupEnv[0] == 'n') &&
|
|
startupEnv[1] == '\0')) {
|
|
return;
|
|
}
|
|
|
|
LOG("- MOZ_PROFILER_STARTUP is set");
|
|
|
|
// Startup default capacity may be different.
|
|
capacity = PROFILER_DEFAULT_STARTUP_ENTRIES;
|
|
|
|
const char* startupCapacity = getenv("MOZ_PROFILER_STARTUP_ENTRIES");
|
|
if (startupCapacity && startupCapacity[0] != '\0') {
|
|
errno = 0;
|
|
long capacityLong = strtol(startupCapacity, nullptr, 10);
|
|
std::string_view sizeSuffix = get_size_suffix(startupCapacity);
|
|
|
|
if (sizeSuffix == "KB") {
|
|
capacityLong *= 1000 / scBytesPerEntry;
|
|
} else if (sizeSuffix == "KiB") {
|
|
capacityLong *= 1024 / scBytesPerEntry;
|
|
} else if (sizeSuffix == "MB") {
|
|
capacityLong *= (1000 * 1000) / scBytesPerEntry;
|
|
} else if (sizeSuffix == "MiB") {
|
|
capacityLong *= (1024 * 1024) / scBytesPerEntry;
|
|
} else if (sizeSuffix == "GB") {
|
|
capacityLong *= (1000 * 1000 * 1000) / scBytesPerEntry;
|
|
} else if (sizeSuffix == "GiB") {
|
|
capacityLong *= (1024 * 1024 * 1024) / scBytesPerEntry;
|
|
} else if (!sizeSuffix.empty()) {
|
|
LOG("- MOZ_PROFILER_STARTUP_ENTRIES unit must be one of the "
|
|
"following: KB, KiB, MB, MiB, GB, GiB");
|
|
PrintUsage();
|
|
exit(1);
|
|
}
|
|
|
|
// `long` could be 32 or 64 bits, so we force a 64-bit comparison with
|
|
// the maximum 32-bit signed number (as more than that is clamped down to
|
|
// 2^31 anyway).
|
|
if (errno == 0 && capacityLong > 0 &&
|
|
static_cast<uint64_t>(capacityLong) <=
|
|
static_cast<uint64_t>(INT32_MAX)) {
|
|
capacity = PowerOfTwo32(ActivePS::ClampToAllowedEntries(
|
|
static_cast<uint32_t>(capacityLong)));
|
|
LOG("- MOZ_PROFILER_STARTUP_ENTRIES = %u", unsigned(capacity.Value()));
|
|
} else {
|
|
LOG("- MOZ_PROFILER_STARTUP_ENTRIES not a valid integer: %s",
|
|
startupCapacity);
|
|
PrintUsage();
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
const char* startupDuration = getenv("MOZ_PROFILER_STARTUP_DURATION");
|
|
if (startupDuration && startupDuration[0] != '\0') {
|
|
errno = 0;
|
|
double durationVal = PR_strtod(startupDuration, nullptr);
|
|
if (errno == 0 && durationVal >= 0.0) {
|
|
if (durationVal > 0.0) {
|
|
duration = Some(durationVal);
|
|
}
|
|
LOG("- MOZ_PROFILER_STARTUP_DURATION = %f", durationVal);
|
|
} else {
|
|
LOG("- MOZ_PROFILER_STARTUP_DURATION not a valid float: %s",
|
|
startupDuration);
|
|
PrintUsage();
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
const char* startupInterval = getenv("MOZ_PROFILER_STARTUP_INTERVAL");
|
|
if (startupInterval && startupInterval[0] != '\0') {
|
|
errno = 0;
|
|
interval = PR_strtod(startupInterval, nullptr);
|
|
if (errno == 0 && interval > 0.0 && interval <= PROFILER_MAX_INTERVAL) {
|
|
LOG("- MOZ_PROFILER_STARTUP_INTERVAL = %f", interval);
|
|
} else {
|
|
LOG("- MOZ_PROFILER_STARTUP_INTERVAL not a valid float: %s",
|
|
startupInterval);
|
|
PrintUsage();
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
features |= StartupExtraDefaultFeatures() & AvailableFeatures();
|
|
|
|
const char* startupFeaturesBitfield =
|
|
getenv("MOZ_PROFILER_STARTUP_FEATURES_BITFIELD");
|
|
if (startupFeaturesBitfield && startupFeaturesBitfield[0] != '\0') {
|
|
errno = 0;
|
|
features = strtol(startupFeaturesBitfield, nullptr, 10);
|
|
if (errno == 0) {
|
|
LOG("- MOZ_PROFILER_STARTUP_FEATURES_BITFIELD = %d", features);
|
|
} else {
|
|
LOG("- MOZ_PROFILER_STARTUP_FEATURES_BITFIELD not a valid integer: %s",
|
|
startupFeaturesBitfield);
|
|
PrintUsage();
|
|
exit(1);
|
|
}
|
|
} else {
|
|
const char* startupFeatures = getenv("MOZ_PROFILER_STARTUP_FEATURES");
|
|
if (startupFeatures) {
|
|
// Interpret startupFeatures as a list of feature strings, separated by
|
|
// commas.
|
|
UniquePtr<char[]> featureStringStorage;
|
|
Vector<const char*> featureStringArray =
|
|
SplitAtCommas(startupFeatures, featureStringStorage);
|
|
features = ParseFeaturesFromStringArray(featureStringArray.begin(),
|
|
featureStringArray.length(),
|
|
/* aIsStartup */ true);
|
|
LOG("- MOZ_PROFILER_STARTUP_FEATURES = %d", features);
|
|
}
|
|
}
|
|
|
|
const char* startupFilters = getenv("MOZ_PROFILER_STARTUP_FILTERS");
|
|
if (startupFilters && startupFilters[0] != '\0') {
|
|
filters = SplitAtCommas(startupFilters, filterStorage);
|
|
LOG("- MOZ_PROFILER_STARTUP_FILTERS = %s", startupFilters);
|
|
}
|
|
|
|
const char* startupActiveTabID =
|
|
getenv("MOZ_PROFILER_STARTUP_ACTIVE_TAB_ID");
|
|
if (startupActiveTabID && startupActiveTabID[0] != '\0') {
|
|
std::istringstream iss(startupActiveTabID);
|
|
iss >> activeTabID;
|
|
if (!iss.fail()) {
|
|
LOG("- MOZ_PROFILER_STARTUP_ACTIVE_TAB_ID = %" PRIu64, activeTabID);
|
|
} else {
|
|
LOG("- MOZ_PROFILER_STARTUP_ACTIVE_TAB_ID not a valid "
|
|
"uint64_t: %s",
|
|
startupActiveTabID);
|
|
PrintUsage();
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
locked_profiler_start(lock, capacity, interval, features, filters.begin(),
|
|
filters.length(), activeTabID, duration);
|
|
}
|
|
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
// Start counting memory allocations (outside of lock because this may call
|
|
// profiler_add_sampled_counter which would attempt to take the lock.)
|
|
ActivePS::SetMemoryCounter(mozilla::profiler::install_memory_hooks());
|
|
#endif
|
|
|
|
invoke_profiler_state_change_callbacks(ProfilingState::Started);
|
|
|
|
// We do this with gPSMutex unlocked. The comment in profiler_stop() explains
|
|
// why.
|
|
NotifyProfilerStarted(capacity, duration, interval, features, filters.begin(),
|
|
filters.length(), 0);
|
|
}
|
|
|
|
static void locked_profiler_save_profile_to_file(
|
|
PSLockRef aLock, const char* aFilename,
|
|
const PreRecordedMetaInformation& aPreRecordedMetaInformation,
|
|
bool aIsShuttingDown);
|
|
|
|
static SamplerThread* locked_profiler_stop(PSLockRef aLock);
|
|
|
|
void profiler_shutdown(IsFastShutdown aIsFastShutdown) {
|
|
LOG("profiler_shutdown");
|
|
|
|
VTUNE_SHUTDOWN();
|
|
|
|
MOZ_RELEASE_ASSERT(NS_IsMainThread());
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
if (profiler_is_active()) {
|
|
invoke_profiler_state_change_callbacks(ProfilingState::Stopping);
|
|
}
|
|
invoke_profiler_state_change_callbacks(ProfilingState::ShuttingDown);
|
|
|
|
const auto preRecordedMetaInformation = PreRecordMetaInformation();
|
|
|
|
ProfilerParent::ProfilerWillStopIfStarted();
|
|
|
|
// If the profiler is active we must get a handle to the SamplerThread before
|
|
// ActivePS is destroyed, in order to delete it.
|
|
SamplerThread* samplerThread = nullptr;
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
// Save the profile on shutdown if requested.
|
|
if (ActivePS::Exists(lock)) {
|
|
const char* filename = getenv("MOZ_PROFILER_SHUTDOWN");
|
|
if (filename && filename[0] != '\0') {
|
|
locked_profiler_save_profile_to_file(lock, filename,
|
|
preRecordedMetaInformation,
|
|
/* aIsShuttingDown */ true);
|
|
}
|
|
if (aIsFastShutdown == IsFastShutdown::Yes) {
|
|
return;
|
|
}
|
|
|
|
samplerThread = locked_profiler_stop(lock);
|
|
} else if (aIsFastShutdown == IsFastShutdown::Yes) {
|
|
return;
|
|
}
|
|
|
|
CorePS::Destroy(lock);
|
|
}
|
|
|
|
// We do these operations with gPSMutex unlocked. The comments in
|
|
// profiler_stop() explain why.
|
|
if (samplerThread) {
|
|
ProfilerParent::ProfilerStopped();
|
|
NotifyObservers("profiler-stopped");
|
|
delete samplerThread;
|
|
}
|
|
|
|
// Reverse the registration done in profiler_init.
|
|
ThreadRegistration::UnregisterThread();
|
|
}
|
|
|
|
static bool WriteProfileToJSONWriter(SpliceableChunkedJSONWriter& aWriter,
|
|
double aSinceTime, bool aIsShuttingDown,
|
|
ProfilerCodeAddressService* aService) {
|
|
LOG("WriteProfileToJSONWriter");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
aWriter.Start();
|
|
{
|
|
if (!profiler_stream_json_for_this_process(aWriter, aSinceTime,
|
|
aIsShuttingDown, aService)) {
|
|
return false;
|
|
}
|
|
|
|
// Don't include profiles from other processes because this is a
|
|
// synchronous function.
|
|
aWriter.StartArrayProperty("processes");
|
|
aWriter.EndArray();
|
|
}
|
|
aWriter.End();
|
|
return true;
|
|
}
|
|
|
|
void profiler_set_process_name(const nsACString& aProcessName,
|
|
const nsACString* aETLDplus1) {
|
|
LOG("profiler_set_process_name(\"%s\", \"%s\")", aProcessName.Data(),
|
|
aETLDplus1 ? aETLDplus1->Data() : "<none>");
|
|
PSAutoLock lock;
|
|
CorePS::SetProcessName(lock, aProcessName);
|
|
if (aETLDplus1) {
|
|
CorePS::SetETLDplus1(lock, *aETLDplus1);
|
|
}
|
|
}
|
|
|
|
UniquePtr<char[]> profiler_get_profile(double aSinceTime,
|
|
bool aIsShuttingDown) {
|
|
LOG("profiler_get_profile");
|
|
|
|
UniquePtr<ProfilerCodeAddressService> service =
|
|
profiler_code_address_service_for_presymbolication();
|
|
|
|
SpliceableChunkedJSONWriter b;
|
|
if (!WriteProfileToJSONWriter(b, aSinceTime, aIsShuttingDown,
|
|
service.get())) {
|
|
return nullptr;
|
|
}
|
|
return b.ChunkedWriteFunc().CopyData();
|
|
}
|
|
|
|
void profiler_get_profile_json_into_lazily_allocated_buffer(
|
|
const std::function<char*(size_t)>& aAllocator, double aSinceTime,
|
|
bool aIsShuttingDown) {
|
|
LOG("profiler_get_profile_json_into_lazily_allocated_buffer");
|
|
|
|
UniquePtr<ProfilerCodeAddressService> service =
|
|
profiler_code_address_service_for_presymbolication();
|
|
|
|
SpliceableChunkedJSONWriter b;
|
|
if (!WriteProfileToJSONWriter(b, aSinceTime, aIsShuttingDown,
|
|
service.get())) {
|
|
return;
|
|
}
|
|
|
|
b.ChunkedWriteFunc().CopyDataIntoLazilyAllocatedBuffer(aAllocator);
|
|
}
|
|
|
|
void profiler_get_start_params(int* aCapacity, Maybe<double>* aDuration,
|
|
double* aInterval, uint32_t* aFeatures,
|
|
Vector<const char*>* aFilters,
|
|
uint64_t* aActiveTabID) {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
if (NS_WARN_IF(!aCapacity) || NS_WARN_IF(!aDuration) ||
|
|
NS_WARN_IF(!aInterval) || NS_WARN_IF(!aFeatures) ||
|
|
NS_WARN_IF(!aFilters)) {
|
|
return;
|
|
}
|
|
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
*aCapacity = 0;
|
|
*aDuration = Nothing();
|
|
*aInterval = 0;
|
|
*aFeatures = 0;
|
|
*aActiveTabID = 0;
|
|
aFilters->clear();
|
|
return;
|
|
}
|
|
|
|
*aCapacity = ActivePS::Capacity(lock).Value();
|
|
*aDuration = ActivePS::Duration(lock);
|
|
*aInterval = ActivePS::Interval(lock);
|
|
*aFeatures = ActivePS::Features(lock);
|
|
*aActiveTabID = ActivePS::ActiveTabID(lock);
|
|
|
|
const Vector<std::string>& filters = ActivePS::Filters(lock);
|
|
MOZ_ALWAYS_TRUE(aFilters->resize(filters.length()));
|
|
for (uint32_t i = 0; i < filters.length(); ++i) {
|
|
(*aFilters)[i] = filters[i].c_str();
|
|
}
|
|
}
|
|
|
|
ProfileBufferControlledChunkManager* profiler_get_controlled_chunk_manager() {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
PSAutoLock lock;
|
|
if (NS_WARN_IF(!ActivePS::Exists(lock))) {
|
|
return nullptr;
|
|
}
|
|
return &ActivePS::ControlledChunkManager(lock);
|
|
}
|
|
|
|
namespace mozilla {
|
|
|
|
void GetProfilerEnvVarsForChildProcess(
|
|
std::function<void(const char* key, const char* value)>&& aSetEnv) {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
aSetEnv("MOZ_PROFILER_STARTUP", "");
|
|
return;
|
|
}
|
|
|
|
aSetEnv("MOZ_PROFILER_STARTUP", "1");
|
|
|
|
// If MOZ_PROFILER_SHUTDOWN is defined, make sure it's empty in children, so
|
|
// that they don't attempt to write over that file.
|
|
if (getenv("MOZ_PROFILER_SHUTDOWN")) {
|
|
aSetEnv("MOZ_PROFILER_SHUTDOWN", "");
|
|
}
|
|
|
|
// Hidden option to stop Base Profiler, mostly due to Talos intermittents,
|
|
// see https://bugzilla.mozilla.org/show_bug.cgi?id=1638851#c3
|
|
// TODO: Investigate root cause and remove this in bugs 1648324 and 1648325.
|
|
if (getenv("MOZ_PROFILER_STARTUP_NO_BASE")) {
|
|
aSetEnv("MOZ_PROFILER_STARTUP_NO_BASE", "1");
|
|
}
|
|
|
|
auto capacityString =
|
|
Smprintf("%u", unsigned(ActivePS::Capacity(lock).Value()));
|
|
aSetEnv("MOZ_PROFILER_STARTUP_ENTRIES", capacityString.get());
|
|
|
|
// Use AppendFloat instead of Smprintf with %f because the decimal
|
|
// separator used by %f is locale-dependent. But the string we produce needs
|
|
// to be parseable by strtod, which only accepts the period character as a
|
|
// decimal separator. AppendFloat always uses the period character.
|
|
nsCString intervalString;
|
|
intervalString.AppendFloat(ActivePS::Interval(lock));
|
|
aSetEnv("MOZ_PROFILER_STARTUP_INTERVAL", intervalString.get());
|
|
|
|
auto featuresString = Smprintf("%d", ActivePS::Features(lock));
|
|
aSetEnv("MOZ_PROFILER_STARTUP_FEATURES_BITFIELD", featuresString.get());
|
|
|
|
std::string filtersString;
|
|
const Vector<std::string>& filters = ActivePS::Filters(lock);
|
|
for (uint32_t i = 0; i < filters.length(); ++i) {
|
|
if (i != 0) {
|
|
filtersString += ",";
|
|
}
|
|
filtersString += filters[i];
|
|
}
|
|
aSetEnv("MOZ_PROFILER_STARTUP_FILTERS", filtersString.c_str());
|
|
|
|
auto activeTabIDString = Smprintf("%" PRIu64, ActivePS::ActiveTabID(lock));
|
|
aSetEnv("MOZ_PROFILER_STARTUP_ACTIVE_TAB_ID", activeTabIDString.get());
|
|
}
|
|
|
|
} // namespace mozilla
|
|
|
|
void profiler_received_exit_profile(const nsCString& aExitProfile) {
|
|
MOZ_RELEASE_ASSERT(NS_IsMainThread());
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
PSAutoLock lock;
|
|
if (!ActivePS::Exists(lock)) {
|
|
return;
|
|
}
|
|
ActivePS::AddExitProfile(lock, aExitProfile);
|
|
}
|
|
|
|
Vector<nsCString> profiler_move_exit_profiles() {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
PSAutoLock lock;
|
|
Vector<nsCString> profiles;
|
|
if (ActivePS::Exists(lock)) {
|
|
profiles = ActivePS::MoveExitProfiles(lock);
|
|
}
|
|
return profiles;
|
|
}
|
|
|
|
static void locked_profiler_save_profile_to_file(
|
|
PSLockRef aLock, const char* aFilename,
|
|
const PreRecordedMetaInformation& aPreRecordedMetaInformation,
|
|
bool aIsShuttingDown = false) {
|
|
LOG("locked_profiler_save_profile_to_file(%s)", aFilename);
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
|
|
|
|
std::ofstream stream;
|
|
stream.open(aFilename);
|
|
if (stream.is_open()) {
|
|
SpliceableJSONWriter w(MakeUnique<OStreamJSONWriteFunc>(stream));
|
|
w.Start();
|
|
{
|
|
locked_profiler_stream_json_for_this_process(aLock, w, /* sinceTime */ 0,
|
|
aPreRecordedMetaInformation,
|
|
aIsShuttingDown, nullptr);
|
|
|
|
w.StartArrayProperty("processes");
|
|
Vector<nsCString> exitProfiles = ActivePS::MoveExitProfiles(aLock);
|
|
for (auto& exitProfile : exitProfiles) {
|
|
if (!exitProfile.IsEmpty()) {
|
|
w.Splice(exitProfile);
|
|
}
|
|
}
|
|
w.EndArray();
|
|
}
|
|
w.End();
|
|
|
|
stream.close();
|
|
}
|
|
}
|
|
|
|
void profiler_save_profile_to_file(const char* aFilename) {
|
|
LOG("profiler_save_profile_to_file(%s)", aFilename);
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
const auto preRecordedMetaInformation = PreRecordMetaInformation();
|
|
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return;
|
|
}
|
|
|
|
locked_profiler_save_profile_to_file(lock, aFilename,
|
|
preRecordedMetaInformation);
|
|
}
|
|
|
|
uint32_t profiler_get_available_features() {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
return AvailableFeatures();
|
|
}
|
|
|
|
Maybe<ProfilerBufferInfo> profiler_get_buffer_info() {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return Nothing();
|
|
}
|
|
|
|
return Some(ActivePS::Buffer(lock).GetProfilerBufferInfo());
|
|
}
|
|
|
|
static void PollJSSamplingForCurrentThread() {
|
|
ThreadRegistration::WithOnThreadRef(
|
|
[](ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
aOnThreadRef.WithLockedRWOnThread(
|
|
[](ThreadRegistration::LockedRWOnThread& aThreadData) {
|
|
aThreadData.PollJSSampling();
|
|
});
|
|
});
|
|
}
|
|
|
|
// When the profiler is started on a background thread, we can't synchronously
|
|
// call PollJSSampling on the main thread's ThreadInfo. And the next regular
|
|
// call to PollJSSampling on the main thread would only happen once the main
|
|
// thread triggers a JS interrupt callback.
|
|
// This means that all the JS execution between profiler_start() and the first
|
|
// JS interrupt would happen with JS sampling disabled, and we wouldn't get any
|
|
// JS function information for that period of time.
|
|
// So in order to start JS sampling as soon as possible, we dispatch a runnable
|
|
// to the main thread which manually calls PollJSSamplingForCurrentThread().
|
|
// In some cases this runnable will lose the race with the next JS interrupt.
|
|
// That's fine; PollJSSamplingForCurrentThread() is immune to redundant calls.
|
|
static void TriggerPollJSSamplingOnMainThread() {
|
|
nsCOMPtr<nsIThread> mainThread;
|
|
nsresult rv = NS_GetMainThread(getter_AddRefs(mainThread));
|
|
if (NS_SUCCEEDED(rv) && mainThread) {
|
|
nsCOMPtr<nsIRunnable> task =
|
|
NS_NewRunnableFunction("TriggerPollJSSamplingOnMainThread",
|
|
[]() { PollJSSamplingForCurrentThread(); });
|
|
SchedulerGroup::Dispatch(TaskCategory::Other, task.forget());
|
|
}
|
|
}
|
|
|
|
static bool HasMinimumLength(const char* aString, size_t aMinimumLength) {
|
|
if (!aString) {
|
|
return false;
|
|
}
|
|
for (size_t i = 0; i < aMinimumLength; ++i) {
|
|
if (aString[i] == '\0') {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void locked_profiler_start(PSLockRef aLock, PowerOfTwo32 aCapacity,
|
|
double aInterval, uint32_t aFeatures,
|
|
const char** aFilters, uint32_t aFilterCount,
|
|
uint64_t aActiveTabID,
|
|
const Maybe<double>& aDuration) {
|
|
if (LOG_TEST) {
|
|
LOG("locked_profiler_start");
|
|
LOG("- capacity = %u", unsigned(aCapacity.Value()));
|
|
LOG("- duration = %.2f", aDuration ? *aDuration : -1);
|
|
LOG("- interval = %.2f", aInterval);
|
|
LOG("- tab ID = %" PRIu64, aActiveTabID);
|
|
|
|
#define LOG_FEATURE(n_, str_, Name_, desc_) \
|
|
if (ProfilerFeature::Has##Name_(aFeatures)) { \
|
|
LOG("- feature = %s", str_); \
|
|
}
|
|
|
|
PROFILER_FOR_EACH_FEATURE(LOG_FEATURE)
|
|
|
|
#undef LOG_FEATURE
|
|
|
|
for (uint32_t i = 0; i < aFilterCount; i++) {
|
|
LOG("- threads = %s", aFilters[i]);
|
|
}
|
|
}
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists() && !ActivePS::Exists(aLock));
|
|
|
|
// Do this before the Base Profiler is stopped, to keep the existing buffer
|
|
// (if any) alive for our use.
|
|
mozilla::base_profiler_markers_detail::EnsureBufferForMainThreadAddMarker();
|
|
|
|
UniquePtr<char[]> baseprofile;
|
|
if (baseprofiler::profiler_is_active()) {
|
|
// Note that we still hold the lock, so the sampler cannot run yet and
|
|
// interact negatively with the still-active BaseProfiler sampler.
|
|
// Assume that Base Profiler is active because of MOZ_PROFILER_STARTUP.
|
|
// Capture the Base Profiler startup profile threads (if any).
|
|
baseprofile = baseprofiler::profiler_get_profile(
|
|
/* aSinceTime */ 0, /* aIsShuttingDown */ false,
|
|
/* aOnlyThreads */ true);
|
|
|
|
// Now stop Base Profiler (BP), as further recording will be ignored anyway,
|
|
// and so that it won't clash with Gecko Profiler (GP) sampling starting
|
|
// after the lock is dropped.
|
|
// On Linux this is especially important to do before creating the GP
|
|
// sampler, because the BP sampler may send a signal (to stop threads to be
|
|
// sampled), which the GP would intercept before its own initialization is
|
|
// complete and ready to handle such signals.
|
|
// Note that even though `profiler_stop()` doesn't immediately destroy and
|
|
// join the sampler thread, it safely deactivates it in such a way that the
|
|
// thread will soon exit without doing any actual work.
|
|
// TODO: Allow non-sampling profiling to continue.
|
|
// TODO: Re-start BP after GP shutdown, to capture post-XPCOM shutdown.
|
|
baseprofiler::profiler_stop();
|
|
}
|
|
|
|
#if defined(GP_PLAT_amd64_windows)
|
|
InitializeWin64ProfilerHooks();
|
|
#endif
|
|
|
|
// Fall back to the default values if the passed-in values are unreasonable.
|
|
// We want to be able to store at least one full stack.
|
|
PowerOfTwo32 capacity =
|
|
(aCapacity.Value() >=
|
|
ProfileBufferChunkManager::scExpectedMaximumStackSize / scBytesPerEntry)
|
|
? aCapacity
|
|
: PROFILER_DEFAULT_ENTRIES;
|
|
Maybe<double> duration = aDuration;
|
|
|
|
if (aDuration && *aDuration <= 0) {
|
|
duration = Nothing();
|
|
}
|
|
|
|
double interval = aInterval > 0 ? aInterval : PROFILER_DEFAULT_INTERVAL;
|
|
|
|
ActivePS::Create(aLock, capacity, interval, aFeatures, aFilters, aFilterCount,
|
|
aActiveTabID, duration);
|
|
|
|
// ActivePS::Create can only succeed or crash.
|
|
MOZ_ASSERT(ActivePS::Exists(aLock));
|
|
|
|
// An "empty" profile string may in fact contain 1 character (a newline), so
|
|
// we want at least 2 characters to register a profile.
|
|
if (HasMinimumLength(baseprofile.get(), 2)) {
|
|
// The BaseProfiler startup profile will be stored as a separate "process"
|
|
// in the Gecko Profiler profile, and shown as a new track under the
|
|
// corresponding Gecko Profiler thread.
|
|
ActivePS::AddBaseProfileThreads(aLock, std::move(baseprofile));
|
|
}
|
|
|
|
// Set up profiling for each registered thread, if appropriate.
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
bool isMainThreadBeingProfiled = false;
|
|
#endif
|
|
ThreadRegistry::LockedRegistry lockedRegistry;
|
|
for (ThreadRegistry::OffThreadRef offThreadRef : lockedRegistry) {
|
|
const ThreadRegistrationInfo& info =
|
|
offThreadRef.UnlockedConstReaderCRef().Info();
|
|
|
|
ThreadProfilingFeatures threadProfilingFeatures =
|
|
ActivePS::ProfilingFeaturesForThread(aLock, info);
|
|
if (threadProfilingFeatures != ThreadProfilingFeatures::NotProfiled) {
|
|
ThreadRegistry::OffThreadRef::RWFromAnyThreadWithLock lockedThreadData =
|
|
offThreadRef.LockedRWFromAnyThread();
|
|
nsCOMPtr<nsIEventTarget> eventTarget = lockedThreadData->GetEventTarget();
|
|
ProfiledThreadData* profiledThreadData = ActivePS::AddLiveProfiledThread(
|
|
aLock, MakeUnique<ProfiledThreadData>(info, eventTarget));
|
|
lockedThreadData->SetProfilingFeaturesAndData(threadProfilingFeatures,
|
|
profiledThreadData, aLock);
|
|
if (ActivePS::FeatureJS(aLock)) {
|
|
lockedThreadData->StartJSSampling(ActivePS::JSFlags(aLock));
|
|
if (ThreadRegistration::LockedRWOnThread* lockedRWOnThread =
|
|
lockedThreadData.GetLockedRWOnThread();
|
|
lockedRWOnThread) {
|
|
// We can manually poll the current thread so it starts sampling
|
|
// immediately.
|
|
lockedRWOnThread->PollJSSampling();
|
|
} else if (info.IsMainThread()) {
|
|
// Dispatch a runnable to the main thread to call
|
|
// PollJSSampling(), so that we don't have wait for the next JS
|
|
// interrupt callback in order to start profiling JS.
|
|
TriggerPollJSSamplingOnMainThread();
|
|
}
|
|
}
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
if (info.IsMainThread()) {
|
|
isMainThreadBeingProfiled = true;
|
|
}
|
|
#endif
|
|
lockedThreadData->ReinitializeOnResume();
|
|
if (ActivePS::FeatureJS(aLock) && lockedThreadData->GetJSContext()) {
|
|
profiledThreadData->NotifyReceivedJSContext(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Setup support for pushing/popping labels in mozglue.
|
|
RegisterProfilerLabelEnterExit(MozGlueLabelEnter, MozGlueLabelExit);
|
|
|
|
#if defined(GP_OS_android)
|
|
if (ActivePS::FeatureJava(aLock)) {
|
|
int javaInterval = interval;
|
|
// Java sampling doesn't accurately keep up with the sampling rate that is
|
|
// lower than 1ms.
|
|
if (javaInterval < 1) {
|
|
javaInterval = 1;
|
|
}
|
|
// Send the interval-relative entry count, but we have 100000 hard cap in
|
|
// the java code, it can't be more than that.
|
|
java::GeckoJavaSampler::Start(
|
|
javaInterval, std::round((double)(capacity.Value()) * interval /
|
|
(double)(javaInterval)));
|
|
}
|
|
#endif
|
|
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
if (ActivePS::FeatureNativeAllocations(aLock)) {
|
|
if (isMainThreadBeingProfiled) {
|
|
mozilla::profiler::enable_native_allocations();
|
|
} else {
|
|
NS_WARNING(
|
|
"The nativeallocations feature is turned on, but the main thread is "
|
|
"not being profiled. The allocations are only stored on the main "
|
|
"thread.");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (ProfilerFeature::HasAudioCallbackTracing(aFeatures)) {
|
|
StartAudioCallbackTracing();
|
|
}
|
|
|
|
// At the very end, set up RacyFeatures.
|
|
RacyFeatures::SetActive(ActivePS::Features(aLock));
|
|
}
|
|
|
|
void profiler_start(PowerOfTwo32 aCapacity, double aInterval,
|
|
uint32_t aFeatures, const char** aFilters,
|
|
uint32_t aFilterCount, uint64_t aActiveTabID,
|
|
const Maybe<double>& aDuration) {
|
|
LOG("profiler_start");
|
|
|
|
ProfilerParent::ProfilerWillStopIfStarted();
|
|
|
|
SamplerThread* samplerThread = nullptr;
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
// Initialize if necessary.
|
|
if (!CorePS::Exists()) {
|
|
profiler_init(nullptr);
|
|
}
|
|
|
|
// Reset the current state if the profiler is running.
|
|
if (ActivePS::Exists(lock)) {
|
|
// Note: Not invoking callbacks with ProfilingState::Stopping, because
|
|
// we're under lock, and also it would not be useful: Any profiling data
|
|
// will be discarded, and we're immediately restarting the profiler below
|
|
// and then notifying ProfilingState::Started.
|
|
samplerThread = locked_profiler_stop(lock);
|
|
}
|
|
|
|
locked_profiler_start(lock, aCapacity, aInterval, aFeatures, aFilters,
|
|
aFilterCount, aActiveTabID, aDuration);
|
|
}
|
|
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
// Start counting memory allocations (outside of lock because this may call
|
|
// profiler_add_sampled_counter which would attempt to take the lock.)
|
|
ActivePS::SetMemoryCounter(mozilla::profiler::install_memory_hooks());
|
|
#endif
|
|
|
|
invoke_profiler_state_change_callbacks(ProfilingState::Started);
|
|
|
|
// We do these operations with gPSMutex unlocked. The comments in
|
|
// profiler_stop() explain why.
|
|
if (samplerThread) {
|
|
ProfilerParent::ProfilerStopped();
|
|
NotifyObservers("profiler-stopped");
|
|
delete samplerThread;
|
|
}
|
|
NotifyProfilerStarted(aCapacity, aDuration, aInterval, aFeatures, aFilters,
|
|
aFilterCount, aActiveTabID);
|
|
}
|
|
|
|
void profiler_ensure_started(PowerOfTwo32 aCapacity, double aInterval,
|
|
uint32_t aFeatures, const char** aFilters,
|
|
uint32_t aFilterCount, uint64_t aActiveTabID,
|
|
const Maybe<double>& aDuration) {
|
|
LOG("profiler_ensure_started");
|
|
|
|
ProfilerParent::ProfilerWillStopIfStarted();
|
|
|
|
bool startedProfiler = false;
|
|
SamplerThread* samplerThread = nullptr;
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
// Initialize if necessary.
|
|
if (!CorePS::Exists()) {
|
|
profiler_init(nullptr);
|
|
}
|
|
|
|
if (ActivePS::Exists(lock)) {
|
|
// The profiler is active.
|
|
if (!ActivePS::Equals(lock, aCapacity, aDuration, aInterval, aFeatures,
|
|
aFilters, aFilterCount, aActiveTabID)) {
|
|
// Stop and restart with different settings.
|
|
// Note: Not invoking callbacks with ProfilingState::Stopping, because
|
|
// we're under lock, and also it would not be useful: Any profiling data
|
|
// will be discarded, and we're immediately restarting the profiler
|
|
// below and then notifying ProfilingState::Started.
|
|
samplerThread = locked_profiler_stop(lock);
|
|
locked_profiler_start(lock, aCapacity, aInterval, aFeatures, aFilters,
|
|
aFilterCount, aActiveTabID, aDuration);
|
|
startedProfiler = true;
|
|
}
|
|
} else {
|
|
// The profiler is stopped.
|
|
locked_profiler_start(lock, aCapacity, aInterval, aFeatures, aFilters,
|
|
aFilterCount, aActiveTabID, aDuration);
|
|
startedProfiler = true;
|
|
}
|
|
}
|
|
|
|
// We do these operations with gPSMutex unlocked. The comments in
|
|
// profiler_stop() explain why.
|
|
if (samplerThread) {
|
|
ProfilerParent::ProfilerStopped();
|
|
NotifyObservers("profiler-stopped");
|
|
delete samplerThread;
|
|
}
|
|
|
|
if (startedProfiler) {
|
|
invoke_profiler_state_change_callbacks(ProfilingState::Started);
|
|
|
|
NotifyProfilerStarted(aCapacity, aDuration, aInterval, aFeatures, aFilters,
|
|
aFilterCount, aActiveTabID);
|
|
}
|
|
}
|
|
|
|
[[nodiscard]] static SamplerThread* locked_profiler_stop(PSLockRef aLock) {
|
|
LOG("locked_profiler_stop");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
|
|
|
|
// At the very start, clear RacyFeatures.
|
|
RacyFeatures::SetInactive();
|
|
|
|
if (ActivePS::FeatureAudioCallbackTracing(aLock)) {
|
|
StopAudioCallbackTracing();
|
|
}
|
|
|
|
#if defined(GP_OS_android)
|
|
if (ActivePS::FeatureJava(aLock)) {
|
|
java::GeckoJavaSampler::Stop();
|
|
}
|
|
#endif
|
|
|
|
// Remove support for pushing/popping labels in mozglue.
|
|
RegisterProfilerLabelEnterExit(nullptr, nullptr);
|
|
|
|
// Stop sampling live threads.
|
|
ThreadRegistry::LockedRegistry lockedRegistry;
|
|
for (ThreadRegistry::OffThreadRef offThreadRef : lockedRegistry) {
|
|
if (offThreadRef.UnlockedRWForLockedProfilerRef().ProfilingFeatures() ==
|
|
ThreadProfilingFeatures::NotProfiled) {
|
|
continue;
|
|
}
|
|
|
|
ThreadRegistry::OffThreadRef::RWFromAnyThreadWithLock lockedThreadData =
|
|
offThreadRef.LockedRWFromAnyThread();
|
|
|
|
lockedThreadData->ClearProfilingFeaturesAndData(aLock);
|
|
|
|
if (ActivePS::FeatureJS(aLock)) {
|
|
lockedThreadData->StopJSSampling();
|
|
if (ThreadRegistration::LockedRWOnThread* lockedRWOnThread =
|
|
lockedThreadData.GetLockedRWOnThread();
|
|
lockedRWOnThread) {
|
|
// We are on the thread, we can manually poll the current thread so it
|
|
// stops profiling immediately.
|
|
lockedRWOnThread->PollJSSampling();
|
|
} else if (lockedThreadData->Info().IsMainThread()) {
|
|
// Dispatch a runnable to the main thread to call PollJSSampling(),
|
|
// so that we don't have wait for the next JS interrupt callback in
|
|
// order to start profiling JS.
|
|
TriggerPollJSSamplingOnMainThread();
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
if (ActivePS::FeatureNativeAllocations(aLock)) {
|
|
mozilla::profiler::disable_native_allocations();
|
|
}
|
|
#endif
|
|
|
|
// The Stop() call doesn't actually stop Run(); that happens in this
|
|
// function's caller when the sampler thread is destroyed. Stop() just gives
|
|
// the SamplerThread a chance to do some cleanup with gPSMutex locked.
|
|
SamplerThread* samplerThread = ActivePS::Destroy(aLock);
|
|
samplerThread->Stop(aLock);
|
|
|
|
mozilla::base_profiler_markers_detail::ReleaseBufferForMainThreadAddMarker();
|
|
|
|
return samplerThread;
|
|
}
|
|
|
|
void profiler_stop() {
|
|
LOG("profiler_stop");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
if (profiler_is_active()) {
|
|
invoke_profiler_state_change_callbacks(ProfilingState::Stopping);
|
|
}
|
|
|
|
ProfilerParent::ProfilerWillStopIfStarted();
|
|
|
|
#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
|
|
// Remove the hooks early, as native allocations (if they are on) can be
|
|
// quite expensive.
|
|
mozilla::profiler::remove_memory_hooks();
|
|
#endif
|
|
|
|
SamplerThread* samplerThread;
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return;
|
|
}
|
|
|
|
samplerThread = locked_profiler_stop(lock);
|
|
}
|
|
|
|
// We notify observers with gPSMutex unlocked. Otherwise we might get a
|
|
// deadlock, if code run by these functions calls a profiler function that
|
|
// locks gPSMutex, for example when it wants to insert a marker.
|
|
// (This has been seen in practise in bug 1346356, when we were still firing
|
|
// these notifications synchronously.)
|
|
ProfilerParent::ProfilerStopped();
|
|
NotifyObservers("profiler-stopped");
|
|
|
|
// We delete with gPSMutex unlocked. Otherwise we would get a deadlock: we
|
|
// would be waiting here with gPSMutex locked for SamplerThread::Run() to
|
|
// return so the join operation within the destructor can complete, but Run()
|
|
// needs to lock gPSMutex to return.
|
|
//
|
|
// Because this call occurs with gPSMutex unlocked, it -- including the final
|
|
// iteration of Run()'s loop -- must be able detect deactivation and return
|
|
// in a way that's safe with respect to other gPSMutex-locking operations
|
|
// that may have occurred in the meantime.
|
|
delete samplerThread;
|
|
}
|
|
|
|
bool profiler_is_paused() {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return false;
|
|
}
|
|
|
|
return ActivePS::IsPaused(lock);
|
|
}
|
|
|
|
/* [[nodiscard]] */ bool profiler_callback_after_sampling(
|
|
PostSamplingCallback&& aCallback) {
|
|
LOG("profiler_callback_after_sampling");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
PSAutoLock lock;
|
|
|
|
return ActivePS::AppendPostSamplingCallback(lock, std::move(aCallback));
|
|
}
|
|
|
|
void profiler_pause() {
|
|
LOG("profiler_pause");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
invoke_profiler_state_change_callbacks(ProfilingState::Pausing);
|
|
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return;
|
|
}
|
|
|
|
#if defined(GP_OS_android)
|
|
if (ActivePS::FeatureJava(lock) && !ActivePS::IsSamplingPaused(lock)) {
|
|
// Not paused yet, so this is the first pause, let Java know.
|
|
// TODO: Distinguish Pause and PauseSampling in Java.
|
|
java::GeckoJavaSampler::PauseSampling();
|
|
}
|
|
#endif
|
|
|
|
RacyFeatures::SetPaused();
|
|
ActivePS::SetIsPaused(lock, true);
|
|
ActivePS::Buffer(lock).AddEntry(ProfileBufferEntry::Pause(profiler_time()));
|
|
}
|
|
|
|
// gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
|
|
ProfilerParent::ProfilerPaused();
|
|
NotifyObservers("profiler-paused");
|
|
}
|
|
|
|
void profiler_resume() {
|
|
LOG("profiler_resume");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return;
|
|
}
|
|
|
|
ActivePS::Buffer(lock).AddEntry(
|
|
ProfileBufferEntry::Resume(profiler_time()));
|
|
ActivePS::SetIsPaused(lock, false);
|
|
RacyFeatures::SetUnpaused();
|
|
|
|
#if defined(GP_OS_android)
|
|
if (ActivePS::FeatureJava(lock) && !ActivePS::IsSamplingPaused(lock)) {
|
|
// Not paused anymore, so this is the last unpause, let Java know.
|
|
// TODO: Distinguish Unpause and UnpauseSampling in Java.
|
|
java::GeckoJavaSampler::UnpauseSampling();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
|
|
ProfilerParent::ProfilerResumed();
|
|
NotifyObservers("profiler-resumed");
|
|
|
|
invoke_profiler_state_change_callbacks(ProfilingState::Resumed);
|
|
}
|
|
|
|
bool profiler_is_sampling_paused() {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return false;
|
|
}
|
|
|
|
return ActivePS::IsSamplingPaused(lock);
|
|
}
|
|
|
|
void profiler_pause_sampling() {
|
|
LOG("profiler_pause_sampling");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return;
|
|
}
|
|
|
|
#if defined(GP_OS_android)
|
|
if (ActivePS::FeatureJava(lock) && !ActivePS::IsSamplingPaused(lock)) {
|
|
// Not paused yet, so this is the first pause, let Java know.
|
|
// TODO: Distinguish Pause and PauseSampling in Java.
|
|
java::GeckoJavaSampler::PauseSampling();
|
|
}
|
|
#endif
|
|
|
|
RacyFeatures::SetSamplingPaused();
|
|
ActivePS::SetIsSamplingPaused(lock, true);
|
|
ActivePS::Buffer(lock).AddEntry(
|
|
ProfileBufferEntry::PauseSampling(profiler_time()));
|
|
}
|
|
|
|
// gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
|
|
ProfilerParent::ProfilerPausedSampling();
|
|
NotifyObservers("profiler-paused-sampling");
|
|
}
|
|
|
|
void profiler_resume_sampling() {
|
|
LOG("profiler_resume_sampling");
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
if (!ActivePS::Exists(lock)) {
|
|
return;
|
|
}
|
|
|
|
ActivePS::Buffer(lock).AddEntry(
|
|
ProfileBufferEntry::ResumeSampling(profiler_time()));
|
|
ActivePS::SetIsSamplingPaused(lock, false);
|
|
RacyFeatures::SetSamplingUnpaused();
|
|
|
|
#if defined(GP_OS_android)
|
|
if (ActivePS::FeatureJava(lock) && !ActivePS::IsSamplingPaused(lock)) {
|
|
// Not paused anymore, so this is the last unpause, let Java know.
|
|
// TODO: Distinguish Unpause and UnpauseSampling in Java.
|
|
java::GeckoJavaSampler::UnpauseSampling();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
|
|
ProfilerParent::ProfilerResumedSampling();
|
|
NotifyObservers("profiler-resumed-sampling");
|
|
}
|
|
|
|
bool profiler_feature_active(uint32_t aFeature) {
|
|
// This function runs both on and off the main thread.
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
// This function is hot enough that we use RacyFeatures, not ActivePS.
|
|
return RacyFeatures::IsActiveWithFeature(aFeature);
|
|
}
|
|
|
|
void profiler_write_active_configuration(JSONWriter& aWriter) {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
PSAutoLock lock;
|
|
ActivePS::WriteActiveConfiguration(lock, aWriter);
|
|
}
|
|
|
|
void profiler_add_sampled_counter(BaseProfilerCount* aCounter) {
|
|
DEBUG_LOG("profiler_add_sampled_counter(%s)", aCounter->mLabel);
|
|
PSAutoLock lock;
|
|
CorePS::AppendCounter(lock, aCounter);
|
|
}
|
|
|
|
void profiler_remove_sampled_counter(BaseProfilerCount* aCounter) {
|
|
DEBUG_LOG("profiler_remove_sampled_counter(%s)", aCounter->mLabel);
|
|
PSAutoLock lock;
|
|
// Note: we don't enforce a final sample, though we could do so if the
|
|
// profiler was active
|
|
CorePS::RemoveCounter(lock, aCounter);
|
|
}
|
|
|
|
ProfilingStack* profiler_register_thread(const char* aName,
|
|
void* aGuessStackTop) {
|
|
DEBUG_LOG("profiler_register_thread(%s)", aName);
|
|
|
|
// This will call `ThreadRegistry::Register()` (see below).
|
|
return ThreadRegistration::RegisterThread(aName, aGuessStackTop);
|
|
}
|
|
|
|
/* static */
|
|
void ThreadRegistry::Register(ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
// Set the thread name (except for the main thread, which is controlled
|
|
// elsewhere, and influences the process name on some systems like Linux).
|
|
if (!aOnThreadRef.UnlockedConstReaderCRef().Info().IsMainThread()) {
|
|
// Make sure we have a nsThread wrapper for the current thread, and that
|
|
// NSPR knows its name.
|
|
(void)NS_GetCurrentThread();
|
|
NS_SetCurrentThreadName(
|
|
aOnThreadRef.UnlockedConstReaderCRef().Info().Name());
|
|
}
|
|
|
|
PSAutoLock lock;
|
|
|
|
{
|
|
LockedRegistry lock;
|
|
MOZ_RELEASE_ASSERT(sRegistryContainer.append(OffThreadRef{aOnThreadRef}));
|
|
}
|
|
|
|
if (!CorePS::Exists()) {
|
|
// CorePS has not been created yet.
|
|
// If&when that happens, it will handle already-registered threads then.
|
|
return;
|
|
}
|
|
|
|
(void)locked_register_thread(lock, OffThreadRef{aOnThreadRef});
|
|
}
|
|
|
|
void profiler_unregister_thread() {
|
|
// This will call `ThreadRegistry::Unregister()` (see below).
|
|
ThreadRegistration::UnregisterThread();
|
|
}
|
|
|
|
static void locked_unregister_thread(
|
|
PSLockRef lock, ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
if (!CorePS::Exists()) {
|
|
// This function can be called after the main thread has already shut
|
|
// down.
|
|
return;
|
|
}
|
|
|
|
// We don't call StopJSSampling() here; there's no point doing that for a JS
|
|
// thread that is in the process of disappearing.
|
|
|
|
ThreadRegistration::OnThreadRef::RWOnThreadWithLock lockedThreadData =
|
|
aOnThreadRef.LockedRWOnThread();
|
|
|
|
ProfiledThreadData* profiledThreadData =
|
|
lockedThreadData->GetProfiledThreadData(lock);
|
|
lockedThreadData->ClearProfilingFeaturesAndData(lock);
|
|
|
|
MOZ_RELEASE_ASSERT(
|
|
lockedThreadData->Info().ThreadId() == profiler_current_thread_id(),
|
|
"Thread being unregistered has changed its TID");
|
|
|
|
DEBUG_LOG("profiler_unregister_thread: %s", lockedThreadData->Info().Name());
|
|
|
|
if (profiledThreadData && ActivePS::Exists(lock)) {
|
|
ActivePS::UnregisterThread(lock, profiledThreadData);
|
|
}
|
|
}
|
|
|
|
/* static */
|
|
void ThreadRegistry::Unregister(ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
PSAutoLock psLock;
|
|
locked_unregister_thread(psLock, aOnThreadRef);
|
|
|
|
LockedRegistry registryLock;
|
|
for (OffThreadRef& thread : sRegistryContainer) {
|
|
if (thread.IsPointingAt(*aOnThreadRef.mThreadRegistration)) {
|
|
sRegistryContainer.erase(&thread);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void profiler_register_page(uint64_t aTabID, uint64_t aInnerWindowID,
|
|
const nsCString& aUrl,
|
|
uint64_t aEmbedderInnerWindowID) {
|
|
DEBUG_LOG("profiler_register_page(%" PRIu64 ", %" PRIu64 ", %s, %" PRIu64 ")",
|
|
aTabID, aInnerWindowID, aUrl.get(), aEmbedderInnerWindowID);
|
|
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
PSAutoLock lock;
|
|
|
|
// When a Browsing context is first loaded, the first url loaded in it will be
|
|
// about:blank. Because of that, this call keeps the first non-about:blank
|
|
// registration of window and discards the previous one.
|
|
RefPtr<PageInformation> pageInfo =
|
|
new PageInformation(aTabID, aInnerWindowID, aUrl, aEmbedderInnerWindowID);
|
|
CorePS::AppendRegisteredPage(lock, std::move(pageInfo));
|
|
|
|
// After appending the given page to CorePS, look for the expired
|
|
// pages and remove them if there are any.
|
|
if (ActivePS::Exists(lock)) {
|
|
ActivePS::DiscardExpiredPages(lock);
|
|
}
|
|
}
|
|
|
|
void profiler_unregister_page(uint64_t aRegisteredInnerWindowID) {
|
|
PSAutoLock lock;
|
|
|
|
if (!CorePS::Exists()) {
|
|
// This function can be called after the main thread has already shut down.
|
|
return;
|
|
}
|
|
|
|
// During unregistration, if the profiler is active, we have to keep the
|
|
// page information since there may be some markers associated with the given
|
|
// page. But if profiler is not active. we have no reason to keep the
|
|
// page information here because there can't be any marker associated with it.
|
|
if (ActivePS::Exists(lock)) {
|
|
ActivePS::UnregisterPage(lock, aRegisteredInnerWindowID);
|
|
} else {
|
|
CorePS::RemoveRegisteredPage(lock, aRegisteredInnerWindowID);
|
|
}
|
|
}
|
|
|
|
void profiler_clear_all_pages() {
|
|
{
|
|
PSAutoLock lock;
|
|
|
|
if (!CorePS::Exists()) {
|
|
// This function can be called after the main thread has already shut
|
|
// down.
|
|
return;
|
|
}
|
|
|
|
CorePS::ClearRegisteredPages(lock);
|
|
if (ActivePS::Exists(lock)) {
|
|
ActivePS::ClearUnregisteredPages(lock);
|
|
}
|
|
}
|
|
|
|
// gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
|
|
ProfilerParent::ClearAllPages();
|
|
}
|
|
|
|
namespace geckoprofiler::markers::detail {
|
|
|
|
Maybe<uint64_t> profiler_get_inner_window_id_from_docshell(
|
|
nsIDocShell* aDocshell) {
|
|
Maybe<uint64_t> innerWindowID = Nothing();
|
|
if (aDocshell) {
|
|
auto outerWindow = aDocshell->GetWindow();
|
|
if (outerWindow) {
|
|
auto innerWindow = outerWindow->GetCurrentInnerWindow();
|
|
if (innerWindow) {
|
|
innerWindowID = Some(innerWindow->WindowID());
|
|
}
|
|
}
|
|
}
|
|
return innerWindowID;
|
|
}
|
|
|
|
} // namespace geckoprofiler::markers::detail
|
|
|
|
void profiler_thread_sleep() {
|
|
ThreadRegistration::WithOnThreadRef(
|
|
[](ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
aOnThreadRef.UnlockedConstReaderAndAtomicRWRef().SetSleeping();
|
|
});
|
|
}
|
|
|
|
void profiler_thread_wake() {
|
|
ThreadRegistration::WithOnThreadRef(
|
|
[](ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
aOnThreadRef.UnlockedConstReaderAndAtomicRWRef().SetAwake();
|
|
});
|
|
}
|
|
|
|
void profiler_js_interrupt_callback() {
|
|
// This function runs on JS threads being sampled.
|
|
PollJSSamplingForCurrentThread();
|
|
}
|
|
|
|
double profiler_time() {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
TimeDuration delta = TimeStamp::Now() - CorePS::ProcessStartTime();
|
|
return delta.ToMilliseconds();
|
|
}
|
|
|
|
bool profiler_capture_backtrace_into(ProfileChunkedBuffer& aChunkedBuffer,
|
|
StackCaptureOptions aCaptureOptions) {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
if (!profiler_is_active() ||
|
|
aCaptureOptions == StackCaptureOptions::NoStack) {
|
|
return false;
|
|
}
|
|
|
|
return ThreadRegistration::WithOnThreadRefOr(
|
|
[&](ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
mozilla::Maybe<uint32_t> maybeFeatures =
|
|
RacyFeatures::FeaturesIfActiveAndUnpaused();
|
|
if (!maybeFeatures) {
|
|
return false;
|
|
}
|
|
|
|
ProfileBuffer profileBuffer(aChunkedBuffer);
|
|
|
|
Registers regs;
|
|
#if defined(HAVE_NATIVE_UNWIND)
|
|
regs.SyncPopulate();
|
|
#else
|
|
regs.Clear();
|
|
#endif
|
|
|
|
DoSyncSample(*maybeFeatures,
|
|
aOnThreadRef.UnlockedReaderAndAtomicRWOnThreadCRef(),
|
|
TimeStamp::Now(), regs, profileBuffer, aCaptureOptions);
|
|
|
|
return true;
|
|
},
|
|
// If this was called from a non-registered thread, return false and do no
|
|
// more work. This can happen from a memory hook.
|
|
false);
|
|
}
|
|
|
|
UniquePtr<ProfileChunkedBuffer> profiler_capture_backtrace() {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
AUTO_PROFILER_LABEL("profiler_capture_backtrace", PROFILER);
|
|
|
|
// Quick is-active check before allocating a buffer.
|
|
if (!profiler_is_active()) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto buffer = MakeUnique<ProfileChunkedBuffer>(
|
|
ProfileChunkedBuffer::ThreadSafety::WithoutMutex,
|
|
MakeUnique<ProfileBufferChunkManagerSingle>(
|
|
ProfileBufferChunkManager::scExpectedMaximumStackSize));
|
|
|
|
if (!profiler_capture_backtrace_into(*buffer, StackCaptureOptions::Full)) {
|
|
return nullptr;
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
UniqueProfilerBacktrace profiler_get_backtrace() {
|
|
UniquePtr<ProfileChunkedBuffer> buffer = profiler_capture_backtrace();
|
|
|
|
if (!buffer) {
|
|
return nullptr;
|
|
}
|
|
|
|
return UniqueProfilerBacktrace(
|
|
new ProfilerBacktrace("SyncProfile", std::move(buffer)));
|
|
}
|
|
|
|
void ProfilerBacktraceDestructor::operator()(ProfilerBacktrace* aBacktrace) {
|
|
delete aBacktrace;
|
|
}
|
|
|
|
bool profiler_is_locked_on_current_thread() {
|
|
// This function is used to help users avoid calling `profiler_...` functions
|
|
// when the profiler may already have a lock in place, which would prevent a
|
|
// 2nd recursive lock (resulting in a crash or a never-ending wait), or a
|
|
// deadlock between any two mutexes. So we must return `true` for any of:
|
|
// - The main profiler mutex, used by most functions, and/or
|
|
// - The buffer mutex, used directly in some functions without locking the
|
|
// main mutex, e.g., marker-related functions.
|
|
// - The ProfilerParent or ProfilerChild mutex, used to store and process
|
|
// buffer chunk updates.
|
|
return PSAutoLock::IsLockedOnCurrentThread() ||
|
|
ThreadRegistry::IsRegistryMutexLockedOnCurrentThread() ||
|
|
ThreadRegistration::IsDataMutexLockedOnCurrentThread() ||
|
|
CorePS::CoreBuffer().IsThreadSafeAndLockedOnCurrentThread() ||
|
|
ProfilerParent::IsLockedOnCurrentThread() ||
|
|
ProfilerChild::IsLockedOnCurrentThread();
|
|
}
|
|
|
|
void profiler_set_js_context(JSContext* aCx) {
|
|
MOZ_ASSERT(aCx);
|
|
ThreadRegistration::WithOnThreadRef(
|
|
[&](ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
// The profiler mutex must be locked before the ThreadRegistration's.
|
|
PSAutoLock lock;
|
|
aOnThreadRef.WithLockedRWOnThread(
|
|
[&](ThreadRegistration::LockedRWOnThread& aThreadData) {
|
|
aThreadData.SetJSContext(aCx);
|
|
|
|
if (!ActivePS::Exists(lock) || !ActivePS::FeatureJS(lock)) {
|
|
return;
|
|
}
|
|
|
|
// This call is on-thread, so we can call PollJSSampling() to
|
|
// start JS sampling immediately.
|
|
aThreadData.PollJSSampling();
|
|
|
|
if (ProfiledThreadData* profiledThreadData =
|
|
aThreadData.GetProfiledThreadData(lock);
|
|
profiledThreadData) {
|
|
profiledThreadData->NotifyReceivedJSContext(
|
|
ActivePS::Buffer(lock).BufferRangeEnd());
|
|
}
|
|
});
|
|
});
|
|
}
|
|
|
|
void profiler_clear_js_context() {
|
|
MOZ_RELEASE_ASSERT(CorePS::Exists());
|
|
|
|
ThreadRegistration::WithOnThreadRef(
|
|
[](ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
JSContext* cx =
|
|
aOnThreadRef.UnlockedReaderAndAtomicRWOnThreadCRef().GetJSContext();
|
|
if (!cx) {
|
|
return;
|
|
}
|
|
|
|
// The profiler mutex must be locked before the ThreadRegistration's.
|
|
PSAutoLock lock;
|
|
ThreadRegistration::OnThreadRef::RWOnThreadWithLock lockedThreadData =
|
|
aOnThreadRef.LockedRWOnThread();
|
|
|
|
if (ProfiledThreadData* profiledThreadData =
|
|
lockedThreadData->GetProfiledThreadData(lock);
|
|
profiledThreadData && ActivePS::Exists(lock) &&
|
|
ActivePS::FeatureJS(lock)) {
|
|
profiledThreadData->NotifyAboutToLoseJSContext(
|
|
cx, CorePS::ProcessStartTime(), ActivePS::Buffer(lock));
|
|
|
|
// Notify the JS context that profiling for this context has
|
|
// stopped. Do this by calling StopJSSampling and PollJSSampling
|
|
// before nulling out the JSContext.
|
|
lockedThreadData->StopJSSampling();
|
|
lockedThreadData->PollJSSampling();
|
|
|
|
lockedThreadData->ClearJSContext();
|
|
|
|
// Tell the thread that we'd like to have JS sampling on this
|
|
// thread again, once it gets a new JSContext (if ever).
|
|
lockedThreadData->StartJSSampling(ActivePS::JSFlags(lock));
|
|
} else {
|
|
// This thread is not being profiled or JS profiling is off, we only
|
|
// need to clear the context pointer.
|
|
lockedThreadData->ClearJSContext();
|
|
}
|
|
});
|
|
}
|
|
|
|
static void profiler_suspend_and_sample_thread(
|
|
const PSAutoLock* aLockIfAsynchronousSampling,
|
|
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
|
|
JsFrame* aJsFrames, uint32_t aFeatures, ProfilerStackCollector& aCollector,
|
|
bool aSampleNative) {
|
|
const ThreadRegistrationInfo& info = aThreadData.Info();
|
|
|
|
if (info.IsMainThread()) {
|
|
aCollector.SetIsMainThread();
|
|
}
|
|
|
|
// Allocate the space for the native stack
|
|
NativeStack nativeStack;
|
|
|
|
auto collectStack = [&](const Registers& aRegs, const TimeStamp& aNow) {
|
|
// The target thread is now suspended. Collect a native backtrace,
|
|
// and call the callback.
|
|
StackWalkControl* stackWalkControlIfSupported = nullptr;
|
|
#if defined(HAVE_FASTINIT_NATIVE_UNWIND)
|
|
StackWalkControl stackWalkControl;
|
|
if constexpr (StackWalkControl::scIsSupported) {
|
|
if (aSampleNative) {
|
|
stackWalkControlIfSupported = &stackWalkControl;
|
|
}
|
|
}
|
|
#endif
|
|
const uint32_t jsFramesCount =
|
|
aJsFrames ? ExtractJsFrames(!aLockIfAsynchronousSampling, aThreadData,
|
|
aRegs, aCollector, aJsFrames,
|
|
stackWalkControlIfSupported)
|
|
: 0;
|
|
|
|
#if defined(HAVE_FASTINIT_NATIVE_UNWIND)
|
|
if (aSampleNative) {
|
|
// We can only use FramePointerStackWalk or MozStackWalk from
|
|
// suspend_and_sample_thread as other stackwalking methods may not be
|
|
// initialized.
|
|
# if defined(USE_FRAME_POINTER_STACK_WALK)
|
|
DoFramePointerBacktrace(aThreadData, aRegs, nativeStack,
|
|
stackWalkControlIfSupported);
|
|
# elif defined(USE_MOZ_STACK_WALK)
|
|
DoMozStackWalkBacktrace(aThreadData, aRegs, nativeStack,
|
|
stackWalkControlIfSupported);
|
|
# else
|
|
# error "Invalid configuration"
|
|
# endif
|
|
|
|
MergeStacks(aFeatures, !aLockIfAsynchronousSampling, aThreadData, aRegs,
|
|
nativeStack, aCollector, aJsFrames, jsFramesCount);
|
|
} else
|
|
#endif
|
|
{
|
|
MergeStacks(aFeatures, !aLockIfAsynchronousSampling, aThreadData, aRegs,
|
|
nativeStack, aCollector, aJsFrames, jsFramesCount);
|
|
|
|
if (ProfilerFeature::HasLeaf(aFeatures)) {
|
|
aCollector.CollectNativeLeafAddr((void*)aRegs.mPC);
|
|
}
|
|
}
|
|
};
|
|
|
|
if (!aLockIfAsynchronousSampling) {
|
|
// Sampling the current thread, do NOT suspend it!
|
|
Registers regs;
|
|
#if defined(HAVE_NATIVE_UNWIND)
|
|
regs.SyncPopulate();
|
|
#else
|
|
regs.Clear();
|
|
#endif
|
|
collectStack(regs, TimeStamp::Now());
|
|
} else {
|
|
// Suspend, sample, and then resume the target thread.
|
|
Sampler sampler(*aLockIfAsynchronousSampling);
|
|
TimeStamp now = TimeStamp::Now();
|
|
sampler.SuspendAndSampleAndResumeThread(*aLockIfAsynchronousSampling,
|
|
aThreadData, now, collectStack);
|
|
|
|
// NOTE: Make sure to disable the sampler before it is destroyed, in
|
|
// case the profiler is running at the same time.
|
|
sampler.Disable(*aLockIfAsynchronousSampling);
|
|
}
|
|
}
|
|
|
|
// NOTE: aCollector's methods will be called while the target thread is paused.
|
|
// Doing things in those methods like allocating -- which may try to claim
|
|
// locks -- is a surefire way to deadlock.
|
|
void profiler_suspend_and_sample_thread(ProfilerThreadId aThreadId,
|
|
uint32_t aFeatures,
|
|
ProfilerStackCollector& aCollector,
|
|
bool aSampleNative /* = true */) {
|
|
if (!aThreadId.IsSpecified() || aThreadId == profiler_current_thread_id()) {
|
|
// Sampling the current thread. Get its information from the TLS (no locking
|
|
// required.)
|
|
ThreadRegistration::WithOnThreadRef(
|
|
[&](ThreadRegistration::OnThreadRef aOnThreadRef) {
|
|
aOnThreadRef.WithUnlockedReaderAndAtomicRWOnThread(
|
|
[&](const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread&
|
|
aThreadData) {
|
|
if (!aThreadData.GetJSContext()) {
|
|
// No JSContext, there is no JS frame buffer (and no need for
|
|
// it).
|
|
profiler_suspend_and_sample_thread(
|
|
/* aLockIfAsynchronousSampling = */ nullptr, aThreadData,
|
|
/* aJsFrames = */ nullptr, aFeatures, aCollector,
|
|
aSampleNative);
|
|
} else {
|
|
// JSContext is present, we need to lock the thread data to
|
|
// access the JS frame buffer.
|
|
aOnThreadRef.WithConstLockedRWOnThread(
|
|
[&](const ThreadRegistration::LockedRWOnThread&
|
|
aLockedThreadData) {
|
|
profiler_suspend_and_sample_thread(
|
|
/* aLockIfAsynchronousSampling = */ nullptr,
|
|
aThreadData, aLockedThreadData.GetJsFrameBuffer(),
|
|
aFeatures, aCollector, aSampleNative);
|
|
});
|
|
}
|
|
});
|
|
});
|
|
} else {
|
|
// Lock the profiler before accessing the ThreadRegistry.
|
|
PSAutoLock lock;
|
|
ThreadRegistry::WithOffThreadRef(
|
|
aThreadId, [&](ThreadRegistry::OffThreadRef aOffThreadRef) {
|
|
aOffThreadRef.WithLockedRWFromAnyThread(
|
|
[&](const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread&
|
|
aThreadData) {
|
|
JsFrameBuffer& jsFrames = CorePS::JsFrames(lock);
|
|
profiler_suspend_and_sample_thread(&lock, aThreadData, jsFrames,
|
|
aFeatures, aCollector,
|
|
aSampleNative);
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
// END externally visible functions
|
|
////////////////////////////////////////////////////////////////////////
|