forked from mirrors/gecko-dev
		
	 d0f6c7fc66
			
		
	
	
		d0f6c7fc66
		
	
	
	
	
		
			
			Done with: ./mach static-analysis check --checks="-*, readability-redundant-member-init" --fix . https://clang.llvm.org/extra/clang-tidy/checks/readability/redundant-member-init.html Differential Revision: https://phabricator.services.mozilla.com/D190002
		
			
				
	
	
		
			904 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			904 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| #include "Blur.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "mozilla/CheckedInt.h"
 | |
| #include "NumericTools.h"
 | |
| 
 | |
| #include "2D.h"
 | |
| #include "DataSurfaceHelpers.h"
 | |
| #include "Tools.h"
 | |
| 
 | |
| #ifdef USE_NEON
 | |
| #  include "mozilla/arm.h"
 | |
| #endif
 | |
| 
 | |
| namespace mozilla {
 | |
| namespace gfx {
 | |
| 
 | |
| /**
 | |
|  * Helper function to process each row of the box blur.
 | |
|  * It takes care of transposing the data on input or output depending
 | |
|  * on whether we intend a horizontal or vertical blur, and whether we're
 | |
|  * reading from the initial source or writing to the final destination.
 | |
|  * It allows starting or ending anywhere within the row to accomodate
 | |
|  * a skip rect.
 | |
|  */
 | |
| template <bool aTransposeInput, bool aTransposeOutput>
 | |
| static inline void BoxBlurRow(const uint8_t* aInput, uint8_t* aOutput,
 | |
|                               int32_t aLeftLobe, int32_t aRightLobe,
 | |
|                               int32_t aWidth, int32_t aStride, int32_t aStart,
 | |
|                               int32_t aEnd) {
 | |
|   // If the input or output is transposed, then we will move down a row
 | |
|   // for each step, instead of moving over a column. Since these values
 | |
|   // only depend on a template parameter, they will more easily get
 | |
|   // copy-propagated in the non-transposed case, which is why they
 | |
|   // are not passed as parameters.
 | |
|   const int32_t inputStep = aTransposeInput ? aStride : 1;
 | |
|   const int32_t outputStep = aTransposeOutput ? aStride : 1;
 | |
| 
 | |
|   // We need to sample aLeftLobe pixels to the left and aRightLobe pixels
 | |
|   // to the right of the current position, then average them. So this is
 | |
|   // the size of the total width of this filter.
 | |
|   const int32_t boxSize = aLeftLobe + aRightLobe + 1;
 | |
| 
 | |
|   // Instead of dividing the pixel sum by boxSize to average, we can just
 | |
|   // compute a scale that will normalize the result so that it can be quickly
 | |
|   // shifted into the desired range.
 | |
|   const uint32_t reciprocal = (1 << 24) / boxSize;
 | |
| 
 | |
|   // The shift would normally truncate the result, whereas we would rather
 | |
|   // prefer to round the result to the closest increment. By adding 0.5 units
 | |
|   // to the initial sum, we bias the sum so that it will be rounded by the
 | |
|   // truncation instead.
 | |
|   uint32_t alphaSum = (boxSize + 1) / 2;
 | |
| 
 | |
|   // We process the row with a moving filter, keeping a sum (alphaSum) of
 | |
|   // boxSize pixels. As we move over a pixel, we need to add on a pixel
 | |
|   // from the right extreme of the window that moved into range, and subtract
 | |
|   // off a pixel from the left extreme of window that moved out of range.
 | |
|   // But first, we need to initialization alphaSum to the contents of
 | |
|   // the window before we can get going. If the window moves out of bounds
 | |
|   // of the row, we clamp each sample to be the closest pixel from within
 | |
|   // row bounds, so the 0th and aWidth-1th pixel.
 | |
|   int32_t initLeft = aStart - aLeftLobe;
 | |
|   if (initLeft < 0) {
 | |
|     // If the left lobe samples before the row, add in clamped samples.
 | |
|     alphaSum += -initLeft * aInput[0];
 | |
|     initLeft = 0;
 | |
|   }
 | |
|   int32_t initRight = aStart + boxSize - aLeftLobe;
 | |
|   if (initRight > aWidth) {
 | |
|     // If the right lobe samples after the row, add in clamped samples.
 | |
|     alphaSum += (initRight - aWidth) * aInput[(aWidth - 1) * inputStep];
 | |
|     initRight = aWidth;
 | |
|   }
 | |
|   // Finally, add in all the valid, non-clamped samples to fill up the
 | |
|   // rest of the window.
 | |
|   const uint8_t* src = &aInput[initLeft * inputStep];
 | |
|   const uint8_t* iterEnd = &aInput[initRight * inputStep];
 | |
| 
 | |
| #define INIT_ITER   \
 | |
|   alphaSum += *src; \
 | |
|   src += inputStep;
 | |
| 
 | |
|   // We unroll the per-pixel loop here substantially. The amount of work
 | |
|   // done per sample is so small that the cost of a loop condition check
 | |
|   // and a branch can substantially add to or even dominate the performance
 | |
|   // of the loop.
 | |
|   while (src + 16 * inputStep <= iterEnd) {
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|     INIT_ITER;
 | |
|   }
 | |
|   while (src < iterEnd) {
 | |
|     INIT_ITER;
 | |
|   }
 | |
| 
 | |
|   // Now we start moving the window over the row. We will be accessing
 | |
|   // pixels form aStart - aLeftLobe up to aEnd + aRightLobe, which may be
 | |
|   // out of bounds of the row. To avoid having to check within the inner
 | |
|   // loops if we are in bound, we instead compute the points at which
 | |
|   // we will move out of bounds of the row on the left side (splitLeft)
 | |
|   // and right side (splitRight).
 | |
|   int32_t splitLeft = std::min(std::max(aLeftLobe, aStart), aEnd);
 | |
|   int32_t splitRight =
 | |
|       std::min(std::max(aWidth - (boxSize - aLeftLobe), aStart), aEnd);
 | |
|   // If the filter window is actually large than the size of the row,
 | |
|   // there will be a middle area of overlap where the leftmost and rightmost
 | |
|   // pixel of the filter will both be outside the row. In this case, we need
 | |
|   // to invert the splits so that splitLeft <= splitRight.
 | |
|   if (boxSize > aWidth) {
 | |
|     std::swap(splitLeft, splitRight);
 | |
|   }
 | |
| 
 | |
|   // Process all pixels up to splitLeft that would sample before the start of
 | |
|   // the row. Note that because inputStep and outputStep may not be a const 1
 | |
|   // value, it is more performant to increment pointers here for the source and
 | |
|   // destination rather than use a loop counter, since doing so would entail an
 | |
|   // expensive multiplication that significantly slows down the loop.
 | |
|   uint8_t* dst = &aOutput[aStart * outputStep];
 | |
|   iterEnd = &aOutput[splitLeft * outputStep];
 | |
|   src = &aInput[(aStart + boxSize - aLeftLobe) * inputStep];
 | |
|   uint8_t firstVal = aInput[0];
 | |
| 
 | |
| #define LEFT_ITER                       \
 | |
|   *dst = (alphaSum * reciprocal) >> 24; \
 | |
|   alphaSum += *src - firstVal;          \
 | |
|   dst += outputStep;                    \
 | |
|   src += inputStep;
 | |
| 
 | |
|   while (dst + 16 * outputStep <= iterEnd) {
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|     LEFT_ITER;
 | |
|   }
 | |
|   while (dst < iterEnd) {
 | |
|     LEFT_ITER;
 | |
|   }
 | |
| 
 | |
|   // Process all pixels between splitLeft and splitRight.
 | |
|   iterEnd = &aOutput[splitRight * outputStep];
 | |
|   if (boxSize <= aWidth) {
 | |
|     // The filter window is smaller than the row size, so the leftmost and
 | |
|     // rightmost samples are both within row bounds.
 | |
|     src = &aInput[(splitLeft - aLeftLobe) * inputStep];
 | |
|     int32_t boxStep = boxSize * inputStep;
 | |
| 
 | |
| #define CENTER_ITER                     \
 | |
|   *dst = (alphaSum * reciprocal) >> 24; \
 | |
|   alphaSum += src[boxStep] - *src;      \
 | |
|   dst += outputStep;                    \
 | |
|   src += inputStep;
 | |
| 
 | |
|     while (dst + 16 * outputStep <= iterEnd) {
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|       CENTER_ITER;
 | |
|     }
 | |
|     while (dst < iterEnd) {
 | |
|       CENTER_ITER;
 | |
|     }
 | |
|   } else {
 | |
|     // The filter window is larger than the row size, and we're in the area of
 | |
|     // split overlap. So the leftmost and rightmost samples are both out of
 | |
|     // bounds and need to be clamped. We can just precompute the difference here
 | |
|     // consequently.
 | |
|     int32_t firstLastDiff = aInput[(aWidth - 1) * inputStep] - aInput[0];
 | |
|     while (dst < iterEnd) {
 | |
|       *dst = (alphaSum * reciprocal) >> 24;
 | |
|       alphaSum += firstLastDiff;
 | |
|       dst += outputStep;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Process all remaining pixels after splitRight that would sample after the
 | |
|   // row end.
 | |
|   iterEnd = &aOutput[aEnd * outputStep];
 | |
|   src = &aInput[(splitRight - aLeftLobe) * inputStep];
 | |
|   uint8_t lastVal = aInput[(aWidth - 1) * inputStep];
 | |
| 
 | |
| #define RIGHT_ITER                      \
 | |
|   *dst = (alphaSum * reciprocal) >> 24; \
 | |
|   alphaSum += lastVal - *src;           \
 | |
|   dst += outputStep;                    \
 | |
|   src += inputStep;
 | |
| 
 | |
|   while (dst + 16 * outputStep <= iterEnd) {
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|     RIGHT_ITER;
 | |
|   }
 | |
|   while (dst < iterEnd) {
 | |
|     RIGHT_ITER;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Box blur involves looking at one pixel, and setting its value to the average
 | |
|  * of its neighbouring pixels. This is meant to provide a 3-pass approximation
 | |
|  * of a Gaussian blur.
 | |
|  * @param aTranspose Whether to transpose the buffer when reading and writing
 | |
|  *                   to it.
 | |
|  * @param aData The buffer to be blurred.
 | |
|  * @param aLobes The number of pixels to blend on the left and right for each of
 | |
|  *               3 passes.
 | |
|  * @param aWidth The number of columns in the buffers.
 | |
|  * @param aRows The number of rows in the buffers.
 | |
|  * @param aStride The stride of the buffer.
 | |
|  */
 | |
| template <bool aTranspose>
 | |
| static void BoxBlur(uint8_t* aData, const int32_t aLobes[3][2], int32_t aWidth,
 | |
|                     int32_t aRows, int32_t aStride, IntRect aSkipRect) {
 | |
|   if (aTranspose) {
 | |
|     std::swap(aWidth, aRows);
 | |
|     aSkipRect.Swap();
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(aWidth > 0);
 | |
| 
 | |
|   // All three passes of the box blur that approximate the Gaussian are done
 | |
|   // on each row in turn, so we only need two temporary row buffers to process
 | |
|   // each row, instead of a full-sized buffer. Data moves from the source to the
 | |
|   // first temporary, from the first temporary to the second, then from the
 | |
|   // second back to the destination. This way is more cache-friendly than
 | |
|   // processing whe whole buffer in each pass and thus yields a nice speedup.
 | |
|   uint8_t* tmpRow = new (std::nothrow) uint8_t[2 * aWidth];
 | |
|   if (!tmpRow) {
 | |
|     return;
 | |
|   }
 | |
|   uint8_t* tmpRow2 = tmpRow + aWidth;
 | |
| 
 | |
|   const int32_t stride = aTranspose ? 1 : aStride;
 | |
|   bool skipRectCoversWholeRow =
 | |
|       0 >= aSkipRect.X() && aWidth <= aSkipRect.XMost();
 | |
| 
 | |
|   for (int32_t y = 0; y < aRows; y++) {
 | |
|     // Check whether the skip rect intersects this row. If the skip
 | |
|     // rect covers the whole surface in this row, we can avoid
 | |
|     // this row entirely (and any others along the skip rect).
 | |
|     bool inSkipRectY = aSkipRect.ContainsY(y);
 | |
|     if (inSkipRectY && skipRectCoversWholeRow) {
 | |
|       aData += stride * (aSkipRect.YMost() - y);
 | |
|       y = aSkipRect.YMost() - 1;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Read in data from the source transposed if necessary.
 | |
|     BoxBlurRow<aTranspose, false>(aData, tmpRow, aLobes[0][0], aLobes[0][1],
 | |
|                                   aWidth, aStride, 0, aWidth);
 | |
| 
 | |
|     // For the middle pass, the data is already pre-transposed and does not need
 | |
|     // to be post-transposed yet.
 | |
|     BoxBlurRow<false, false>(tmpRow, tmpRow2, aLobes[1][0], aLobes[1][1],
 | |
|                              aWidth, aStride, 0, aWidth);
 | |
| 
 | |
|     // Write back data to the destination transposed if necessary too.
 | |
|     // Make sure not to overwrite the skip rect by only outputting to the
 | |
|     // destination before and after the skip rect, if requested.
 | |
|     int32_t skipStart =
 | |
|         inSkipRectY ? std::min(std::max(aSkipRect.X(), 0), aWidth) : aWidth;
 | |
|     int32_t skipEnd = std::max(skipStart, aSkipRect.XMost());
 | |
|     if (skipStart > 0) {
 | |
|       BoxBlurRow<false, aTranspose>(tmpRow2, aData, aLobes[2][0], aLobes[2][1],
 | |
|                                     aWidth, aStride, 0, skipStart);
 | |
|     }
 | |
|     if (skipEnd < aWidth) {
 | |
|       BoxBlurRow<false, aTranspose>(tmpRow2, aData, aLobes[2][0], aLobes[2][1],
 | |
|                                     aWidth, aStride, skipEnd, aWidth);
 | |
|     }
 | |
| 
 | |
|     aData += stride;
 | |
|   }
 | |
| 
 | |
|   delete[] tmpRow;
 | |
| }
 | |
| 
 | |
| static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2]) {
 | |
|   int32_t major, minor, final;
 | |
| 
 | |
|   /* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for
 | |
|    * some notes about approximating the Gaussian blur with box-blurs.
 | |
|    * The comments below are in the terminology of that page.
 | |
|    */
 | |
|   int32_t z = aRadius / 3;
 | |
|   switch (aRadius % 3) {
 | |
|     case 0:
 | |
|       // aRadius = z*3; choose d = 2*z + 1
 | |
|       major = minor = final = z;
 | |
|       break;
 | |
|     case 1:
 | |
|       // aRadius = z*3 + 1
 | |
|       // This is a tricky case since there is no value of d which will
 | |
|       // yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1
 | |
|       // for some integer k, then the radius will be 3*k. If d is even,
 | |
|       // i.e. d=2*k, then the radius will be 3*k - 1.
 | |
|       // So we have to choose values that don't match the standard
 | |
|       // algorithm.
 | |
|       major = z + 1;
 | |
|       minor = final = z;
 | |
|       break;
 | |
|     case 2:
 | |
|       // aRadius = z*3 + 2; choose d = 2*z + 2
 | |
|       major = final = z + 1;
 | |
|       minor = z;
 | |
|       break;
 | |
|     default:
 | |
|       // Mathematical impossibility!
 | |
|       MOZ_ASSERT(false);
 | |
|       major = minor = final = 0;
 | |
|   }
 | |
|   MOZ_ASSERT(major + minor + final == aRadius);
 | |
| 
 | |
|   aLobes[0][0] = major;
 | |
|   aLobes[0][1] = minor;
 | |
|   aLobes[1][0] = minor;
 | |
|   aLobes[1][1] = major;
 | |
|   aLobes[2][0] = final;
 | |
|   aLobes[2][1] = final;
 | |
| }
 | |
| 
 | |
| static void SpreadHorizontal(uint8_t* aInput, uint8_t* aOutput, int32_t aRadius,
 | |
|                              int32_t aWidth, int32_t aRows, int32_t aStride,
 | |
|                              const IntRect& aSkipRect) {
 | |
|   if (aRadius == 0) {
 | |
|     memcpy(aOutput, aInput, aStride * aRows);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   bool skipRectCoversWholeRow =
 | |
|       0 >= aSkipRect.X() && aWidth <= aSkipRect.XMost();
 | |
|   for (int32_t y = 0; y < aRows; y++) {
 | |
|     // Check whether the skip rect intersects this row. If the skip
 | |
|     // rect covers the whole surface in this row, we can avoid
 | |
|     // this row entirely (and any others along the skip rect).
 | |
|     bool inSkipRectY = aSkipRect.ContainsY(y);
 | |
|     if (inSkipRectY && skipRectCoversWholeRow) {
 | |
|       y = aSkipRect.YMost() - 1;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     for (int32_t x = 0; x < aWidth; x++) {
 | |
|       // Check whether we are within the skip rect. If so, go
 | |
|       // to the next point outside the skip rect.
 | |
|       if (inSkipRectY && aSkipRect.ContainsX(x)) {
 | |
|         x = aSkipRect.XMost();
 | |
|         if (x >= aWidth) break;
 | |
|       }
 | |
| 
 | |
|       int32_t sMin = std::max(x - aRadius, 0);
 | |
|       int32_t sMax = std::min(x + aRadius, aWidth - 1);
 | |
|       int32_t v = 0;
 | |
|       for (int32_t s = sMin; s <= sMax; ++s) {
 | |
|         v = std::max<int32_t>(v, aInput[aStride * y + s]);
 | |
|       }
 | |
|       aOutput[aStride * y + x] = v;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void SpreadVertical(uint8_t* aInput, uint8_t* aOutput, int32_t aRadius,
 | |
|                            int32_t aWidth, int32_t aRows, int32_t aStride,
 | |
|                            const IntRect& aSkipRect) {
 | |
|   if (aRadius == 0) {
 | |
|     memcpy(aOutput, aInput, aStride * aRows);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   bool skipRectCoversWholeColumn =
 | |
|       0 >= aSkipRect.Y() && aRows <= aSkipRect.YMost();
 | |
|   for (int32_t x = 0; x < aWidth; x++) {
 | |
|     bool inSkipRectX = aSkipRect.ContainsX(x);
 | |
|     if (inSkipRectX && skipRectCoversWholeColumn) {
 | |
|       x = aSkipRect.XMost() - 1;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     for (int32_t y = 0; y < aRows; y++) {
 | |
|       // Check whether we are within the skip rect. If so, go
 | |
|       // to the next point outside the skip rect.
 | |
|       if (inSkipRectX && aSkipRect.ContainsY(y)) {
 | |
|         y = aSkipRect.YMost();
 | |
|         if (y >= aRows) break;
 | |
|       }
 | |
| 
 | |
|       int32_t sMin = std::max(y - aRadius, 0);
 | |
|       int32_t sMax = std::min(y + aRadius, aRows - 1);
 | |
|       int32_t v = 0;
 | |
|       for (int32_t s = sMin; s <= sMax; ++s) {
 | |
|         v = std::max<int32_t>(v, aInput[aStride * s + x]);
 | |
|       }
 | |
|       aOutput[aStride * y + x] = v;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| CheckedInt<int32_t> AlphaBoxBlur::RoundUpToMultipleOf4(int32_t aVal) {
 | |
|   CheckedInt<int32_t> val(aVal);
 | |
| 
 | |
|   val += 3;
 | |
|   val /= 4;
 | |
|   val *= 4;
 | |
| 
 | |
|   return val;
 | |
| }
 | |
| 
 | |
| AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, const IntSize& aSpreadRadius,
 | |
|                            const IntSize& aBlurRadius, const Rect* aDirtyRect,
 | |
|                            const Rect* aSkipRect)
 | |
|     : mStride(0), mSurfaceAllocationSize(0) {
 | |
|   Init(aRect, aSpreadRadius, aBlurRadius, aDirtyRect, aSkipRect);
 | |
| }
 | |
| 
 | |
| AlphaBoxBlur::AlphaBoxBlur()
 | |
|     : mStride(0), mSurfaceAllocationSize(0), mHasDirtyRect(false) {}
 | |
| 
 | |
| void AlphaBoxBlur::Init(const Rect& aRect, const IntSize& aSpreadRadius,
 | |
|                         const IntSize& aBlurRadius, const Rect* aDirtyRect,
 | |
|                         const Rect* aSkipRect) {
 | |
|   mSpreadRadius = aSpreadRadius;
 | |
|   mBlurRadius = aBlurRadius;
 | |
| 
 | |
|   Rect rect(aRect);
 | |
|   rect.Inflate(Size(aBlurRadius + aSpreadRadius));
 | |
|   rect.RoundOut();
 | |
| 
 | |
|   if (aDirtyRect) {
 | |
|     // If we get passed a dirty rect from layout, we can minimize the
 | |
|     // shadow size and make painting faster.
 | |
|     mHasDirtyRect = true;
 | |
|     mDirtyRect = *aDirtyRect;
 | |
|     Rect requiredBlurArea = mDirtyRect.Intersect(rect);
 | |
|     requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius));
 | |
|     rect = requiredBlurArea.Intersect(rect);
 | |
|   } else {
 | |
|     mHasDirtyRect = false;
 | |
|   }
 | |
| 
 | |
|   mRect = TruncatedToInt(rect);
 | |
|   if (mRect.IsEmpty()) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (aSkipRect) {
 | |
|     // If we get passed a skip rect, we can lower the amount of
 | |
|     // blurring/spreading we need to do. We convert it to IntRect to avoid
 | |
|     // expensive int<->float conversions if we were to use Rect instead.
 | |
|     Rect skipRect = *aSkipRect;
 | |
|     skipRect.Deflate(Size(aBlurRadius + aSpreadRadius));
 | |
|     mSkipRect = RoundedIn(skipRect);
 | |
|     mSkipRect = mSkipRect.Intersect(mRect);
 | |
|     if (mSkipRect.IsEqualInterior(mRect)) {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     mSkipRect -= mRect.TopLeft();
 | |
|     // Ensure the skip rect is 4-pixel-aligned in the x axis, so that all our
 | |
|     // accesses later are aligned as well, see bug 1622113.
 | |
|     mSkipRect.SetLeftEdge(RoundUpToMultiple(mSkipRect.X(), 4));
 | |
|     mSkipRect.SetRightEdge(RoundDownToMultiple(mSkipRect.XMost(), 4));
 | |
|     if (mSkipRect.IsEmpty()) {
 | |
|       mSkipRect = IntRect();
 | |
|     }
 | |
|   } else {
 | |
|     mSkipRect = IntRect();
 | |
|   }
 | |
| 
 | |
|   CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.Width());
 | |
|   if (stride.isValid()) {
 | |
|     mStride = stride.value();
 | |
| 
 | |
|     // We need to leave room for an additional 3 bytes for a potential overrun
 | |
|     // in our blurring code.
 | |
|     size_t size = BufferSizeFromStrideAndHeight(mStride, mRect.Height(), 3);
 | |
|     if (size != 0) {
 | |
|       mSurfaceAllocationSize = size;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, int32_t aStride, float aSigmaX,
 | |
|                            float aSigmaY)
 | |
|     : mRect(TruncatedToInt(aRect)),
 | |
| 
 | |
|       mBlurRadius(CalculateBlurRadius(Point(aSigmaX, aSigmaY))),
 | |
|       mStride(aStride),
 | |
|       mSurfaceAllocationSize(0),
 | |
|       mHasDirtyRect(false) {
 | |
|   IntRect intRect;
 | |
|   if (aRect.ToIntRect(&intRect)) {
 | |
|     size_t minDataSize =
 | |
|         BufferSizeFromStrideAndHeight(intRect.Width(), intRect.Height());
 | |
|     if (minDataSize != 0) {
 | |
|       mSurfaceAllocationSize = minDataSize;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| AlphaBoxBlur::~AlphaBoxBlur() = default;
 | |
| 
 | |
| IntSize AlphaBoxBlur::GetSize() const {
 | |
|   IntSize size(mRect.Width(), mRect.Height());
 | |
|   return size;
 | |
| }
 | |
| 
 | |
| int32_t AlphaBoxBlur::GetStride() const { return mStride; }
 | |
| 
 | |
| IntRect AlphaBoxBlur::GetRect() const { return mRect; }
 | |
| 
 | |
| Rect* AlphaBoxBlur::GetDirtyRect() {
 | |
|   if (mHasDirtyRect) {
 | |
|     return &mDirtyRect;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| size_t AlphaBoxBlur::GetSurfaceAllocationSize() const {
 | |
|   return mSurfaceAllocationSize;
 | |
| }
 | |
| 
 | |
| void AlphaBoxBlur::Blur(uint8_t* aData) const {
 | |
|   if (!aData) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // no need to do all this if not blurring or spreading
 | |
|   if (mBlurRadius != IntSize(0, 0) || mSpreadRadius != IntSize(0, 0)) {
 | |
|     int32_t stride = GetStride();
 | |
| 
 | |
|     IntSize size = GetSize();
 | |
| 
 | |
|     if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) {
 | |
|       // No need to use CheckedInt here - we have validated it in the
 | |
|       // constructor.
 | |
|       size_t szB = stride * size.height;
 | |
|       uint8_t* tmpData = new (std::nothrow) uint8_t[szB];
 | |
| 
 | |
|       if (!tmpData) {
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       memset(tmpData, 0, szB);
 | |
| 
 | |
|       SpreadHorizontal(aData, tmpData, mSpreadRadius.width, size.width,
 | |
|                        size.height, stride, mSkipRect);
 | |
|       SpreadVertical(tmpData, aData, mSpreadRadius.height, size.width,
 | |
|                      size.height, stride, mSkipRect);
 | |
| 
 | |
|       delete[] tmpData;
 | |
|     }
 | |
| 
 | |
|     int32_t horizontalLobes[3][2];
 | |
|     ComputeLobes(mBlurRadius.width, horizontalLobes);
 | |
|     int32_t verticalLobes[3][2];
 | |
|     ComputeLobes(mBlurRadius.height, verticalLobes);
 | |
| 
 | |
|     // We want to allow for some extra space on the left for alignment reasons.
 | |
|     int32_t maxLeftLobe =
 | |
|         RoundUpToMultipleOf4(horizontalLobes[0][0] + 1).value();
 | |
| 
 | |
|     IntSize integralImageSize(
 | |
|         size.width + maxLeftLobe + horizontalLobes[1][1],
 | |
|         size.height + verticalLobes[0][0] + verticalLobes[1][1] + 1);
 | |
| 
 | |
|     if ((integralImageSize.width * integralImageSize.height) > (1 << 24)) {
 | |
|       // Fallback to old blurring code when the surface is so large it may
 | |
|       // overflow our integral image!
 | |
|       if (mBlurRadius.width > 0) {
 | |
|         BoxBlur<false>(aData, horizontalLobes, size.width, size.height, stride,
 | |
|                        mSkipRect);
 | |
|       }
 | |
|       if (mBlurRadius.height > 0) {
 | |
|         BoxBlur<true>(aData, verticalLobes, size.width, size.height, stride,
 | |
|                       mSkipRect);
 | |
|       }
 | |
|     } else {
 | |
|       size_t integralImageStride =
 | |
|           GetAlignedStride<16>(integralImageSize.width, 4);
 | |
|       if (integralImageStride == 0) {
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // We need to leave room for an additional 12 bytes for a maximum overrun
 | |
|       // of 3 pixels in the blurring code.
 | |
|       size_t bufLen = BufferSizeFromStrideAndHeight(
 | |
|           integralImageStride, integralImageSize.height, 12);
 | |
|       if (bufLen == 0) {
 | |
|         return;
 | |
|       }
 | |
|       // bufLen is a byte count, but here we want a multiple of 32-bit ints, so
 | |
|       // we divide by 4.
 | |
|       AlignedArray<uint32_t> integralImage((bufLen / 4) +
 | |
|                                            ((bufLen % 4) ? 1 : 0));
 | |
| 
 | |
|       if (!integralImage) {
 | |
|         return;
 | |
|       }
 | |
| 
 | |
| #ifdef USE_SSE2
 | |
|       if (Factory::HasSSE2()) {
 | |
|         BoxBlur_SSE2(aData, horizontalLobes[0][0], horizontalLobes[0][1],
 | |
|                      verticalLobes[0][0], verticalLobes[0][1], integralImage,
 | |
|                      integralImageStride);
 | |
|         BoxBlur_SSE2(aData, horizontalLobes[1][0], horizontalLobes[1][1],
 | |
|                      verticalLobes[1][0], verticalLobes[1][1], integralImage,
 | |
|                      integralImageStride);
 | |
|         BoxBlur_SSE2(aData, horizontalLobes[2][0], horizontalLobes[2][1],
 | |
|                      verticalLobes[2][0], verticalLobes[2][1], integralImage,
 | |
|                      integralImageStride);
 | |
|       } else
 | |
| #endif
 | |
| #ifdef USE_NEON
 | |
|           if (mozilla::supports_neon()) {
 | |
|         BoxBlur_NEON(aData, horizontalLobes[0][0], horizontalLobes[0][1],
 | |
|                      verticalLobes[0][0], verticalLobes[0][1], integralImage,
 | |
|                      integralImageStride);
 | |
|         BoxBlur_NEON(aData, horizontalLobes[1][0], horizontalLobes[1][1],
 | |
|                      verticalLobes[1][0], verticalLobes[1][1], integralImage,
 | |
|                      integralImageStride);
 | |
|         BoxBlur_NEON(aData, horizontalLobes[2][0], horizontalLobes[2][1],
 | |
|                      verticalLobes[2][0], verticalLobes[2][1], integralImage,
 | |
|                      integralImageStride);
 | |
|       } else
 | |
| #endif
 | |
|       {
 | |
| #ifdef _MIPS_ARCH_LOONGSON3A
 | |
|         BoxBlur_LS3(aData, horizontalLobes[0][0], horizontalLobes[0][1],
 | |
|                     verticalLobes[0][0], verticalLobes[0][1], integralImage,
 | |
|                     integralImageStride);
 | |
|         BoxBlur_LS3(aData, horizontalLobes[1][0], horizontalLobes[1][1],
 | |
|                     verticalLobes[1][0], verticalLobes[1][1], integralImage,
 | |
|                     integralImageStride);
 | |
|         BoxBlur_LS3(aData, horizontalLobes[2][0], horizontalLobes[2][1],
 | |
|                     verticalLobes[2][0], verticalLobes[2][1], integralImage,
 | |
|                     integralImageStride);
 | |
| #else
 | |
|         BoxBlur_C(aData, horizontalLobes[0][0], horizontalLobes[0][1],
 | |
|                   verticalLobes[0][0], verticalLobes[0][1], integralImage,
 | |
|                   integralImageStride);
 | |
|         BoxBlur_C(aData, horizontalLobes[1][0], horizontalLobes[1][1],
 | |
|                   verticalLobes[1][0], verticalLobes[1][1], integralImage,
 | |
|                   integralImageStride);
 | |
|         BoxBlur_C(aData, horizontalLobes[2][0], horizontalLobes[2][1],
 | |
|                   verticalLobes[2][0], verticalLobes[2][1], integralImage,
 | |
|                   integralImageStride);
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MOZ_ALWAYS_INLINE void GenerateIntegralRow(uint32_t* aDest,
 | |
|                                            const uint8_t* aSource,
 | |
|                                            uint32_t* aPreviousRow,
 | |
|                                            const uint32_t& aSourceWidth,
 | |
|                                            const uint32_t& aLeftInflation,
 | |
|                                            const uint32_t& aRightInflation) {
 | |
|   uint32_t currentRowSum = 0;
 | |
|   uint32_t pixel = aSource[0];
 | |
|   for (uint32_t x = 0; x < aLeftInflation; x++) {
 | |
|     currentRowSum += pixel;
 | |
|     *aDest++ = currentRowSum + *aPreviousRow++;
 | |
|   }
 | |
|   for (uint32_t x = aLeftInflation; x < (aSourceWidth + aLeftInflation);
 | |
|        x += 4) {
 | |
|     uint32_t alphaValues = *(uint32_t*)(aSource + (x - aLeftInflation));
 | |
| #if defined WORDS_BIGENDIAN || defined IS_BIG_ENDIAN || defined __BIG_ENDIAN__
 | |
|     currentRowSum += (alphaValues >> 24) & 0xff;
 | |
|     *aDest++ = *aPreviousRow++ + currentRowSum;
 | |
|     currentRowSum += (alphaValues >> 16) & 0xff;
 | |
|     *aDest++ = *aPreviousRow++ + currentRowSum;
 | |
|     currentRowSum += (alphaValues >> 8) & 0xff;
 | |
|     *aDest++ = *aPreviousRow++ + currentRowSum;
 | |
|     currentRowSum += alphaValues & 0xff;
 | |
|     *aDest++ = *aPreviousRow++ + currentRowSum;
 | |
| #else
 | |
|     currentRowSum += alphaValues & 0xff;
 | |
|     *aDest++ = *aPreviousRow++ + currentRowSum;
 | |
|     alphaValues >>= 8;
 | |
|     currentRowSum += alphaValues & 0xff;
 | |
|     *aDest++ = *aPreviousRow++ + currentRowSum;
 | |
|     alphaValues >>= 8;
 | |
|     currentRowSum += alphaValues & 0xff;
 | |
|     *aDest++ = *aPreviousRow++ + currentRowSum;
 | |
|     alphaValues >>= 8;
 | |
|     currentRowSum += alphaValues & 0xff;
 | |
|     *aDest++ = *aPreviousRow++ + currentRowSum;
 | |
| #endif
 | |
|   }
 | |
|   pixel = aSource[aSourceWidth - 1];
 | |
|   for (uint32_t x = (aSourceWidth + aLeftInflation);
 | |
|        x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
 | |
|     currentRowSum += pixel;
 | |
|     *aDest++ = currentRowSum + *aPreviousRow++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| MOZ_ALWAYS_INLINE void GenerateIntegralImage_C(
 | |
|     int32_t aLeftInflation, int32_t aRightInflation, int32_t aTopInflation,
 | |
|     int32_t aBottomInflation, uint32_t* aIntegralImage,
 | |
|     size_t aIntegralImageStride, uint8_t* aSource, int32_t aSourceStride,
 | |
|     const IntSize& aSize) {
 | |
|   uint32_t stride32bit = aIntegralImageStride / 4;
 | |
| 
 | |
|   IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
 | |
|                             aSize.height + aTopInflation + aBottomInflation);
 | |
| 
 | |
|   memset(aIntegralImage, 0, aIntegralImageStride);
 | |
| 
 | |
|   GenerateIntegralRow(aIntegralImage, aSource, aIntegralImage, aSize.width,
 | |
|                       aLeftInflation, aRightInflation);
 | |
|   for (int y = 1; y < aTopInflation + 1; y++) {
 | |
|     GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource,
 | |
|                         aIntegralImage + (y - 1) * stride32bit, aSize.width,
 | |
|                         aLeftInflation, aRightInflation);
 | |
|   }
 | |
| 
 | |
|   for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
 | |
|     GenerateIntegralRow(aIntegralImage + (y * stride32bit),
 | |
|                         aSource + aSourceStride * (y - aTopInflation),
 | |
|                         aIntegralImage + (y - 1) * stride32bit, aSize.width,
 | |
|                         aLeftInflation, aRightInflation);
 | |
|   }
 | |
| 
 | |
|   if (aBottomInflation) {
 | |
|     for (int y = (aSize.height + aTopInflation); y < integralImageSize.height;
 | |
|          y++) {
 | |
|       GenerateIntegralRow(aIntegralImage + (y * stride32bit),
 | |
|                           aSource + ((aSize.height - 1) * aSourceStride),
 | |
|                           aIntegralImage + (y - 1) * stride32bit, aSize.width,
 | |
|                           aLeftInflation, aRightInflation);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Attempt to do an in-place box blur using an integral image.
 | |
|  */
 | |
| void AlphaBoxBlur::BoxBlur_C(uint8_t* aData, int32_t aLeftLobe,
 | |
|                              int32_t aRightLobe, int32_t aTopLobe,
 | |
|                              int32_t aBottomLobe, uint32_t* aIntegralImage,
 | |
|                              size_t aIntegralImageStride) const {
 | |
|   IntSize size = GetSize();
 | |
| 
 | |
|   MOZ_ASSERT(size.width > 0);
 | |
| 
 | |
|   // Our 'left' or 'top' lobe will include the current pixel. i.e. when
 | |
|   // looking at an integral image the value of a pixel at 'x,y' is calculated
 | |
|   // using the value of the integral image values above/below that.
 | |
|   aLeftLobe++;
 | |
|   aTopLobe++;
 | |
|   int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);
 | |
| 
 | |
|   MOZ_ASSERT(boxSize > 0);
 | |
| 
 | |
|   if (boxSize == 1) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   int32_t stride32bit = aIntegralImageStride / 4;
 | |
| 
 | |
|   int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();
 | |
| 
 | |
|   GenerateIntegralImage_C(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
 | |
|                           aIntegralImage, aIntegralImageStride, aData, mStride,
 | |
|                           size);
 | |
| 
 | |
|   uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
 | |
| 
 | |
|   uint32_t* innerIntegral =
 | |
|       aIntegralImage + (aTopLobe * stride32bit) + leftInflation;
 | |
| 
 | |
|   // Storing these locally makes this about 30% faster! Presumably the compiler
 | |
|   // can't be sure we're not altering the member variables in this loop.
 | |
|   IntRect skipRect = mSkipRect;
 | |
|   uint8_t* data = aData;
 | |
|   int32_t stride = mStride;
 | |
|   for (int32_t y = 0; y < size.height; y++) {
 | |
|     // Not using ContainsY(y) because we do not skip y == skipRect.Y()
 | |
|     // although that may not be done on purpose
 | |
|     bool inSkipRectY = y > skipRect.Y() && y < skipRect.YMost();
 | |
| 
 | |
|     uint32_t* topLeftBase =
 | |
|         innerIntegral + ((y - aTopLobe) * stride32bit - aLeftLobe);
 | |
|     uint32_t* topRightBase =
 | |
|         innerIntegral + ((y - aTopLobe) * stride32bit + aRightLobe);
 | |
|     uint32_t* bottomRightBase =
 | |
|         innerIntegral + ((y + aBottomLobe) * stride32bit + aRightLobe);
 | |
|     uint32_t* bottomLeftBase =
 | |
|         innerIntegral + ((y + aBottomLobe) * stride32bit - aLeftLobe);
 | |
| 
 | |
|     for (int32_t x = 0; x < size.width; x++) {
 | |
|       // Not using ContainsX(x) because we do not skip x == skipRect.X()
 | |
|       // although that may not be done on purpose
 | |
|       if (inSkipRectY && x > skipRect.X() && x < skipRect.XMost()) {
 | |
|         x = skipRect.XMost() - 1;
 | |
|         // Trigger early jump on coming loop iterations, this will be reset
 | |
|         // next line anyway.
 | |
|         inSkipRectY = false;
 | |
|         continue;
 | |
|       }
 | |
|       int32_t topLeft = topLeftBase[x];
 | |
|       int32_t topRight = topRightBase[x];
 | |
|       int32_t bottomRight = bottomRightBase[x];
 | |
|       int32_t bottomLeft = bottomLeftBase[x];
 | |
| 
 | |
|       uint32_t value = bottomRight - topRight - bottomLeft;
 | |
|       value += topLeft;
 | |
| 
 | |
|       data[stride * y + x] =
 | |
|           (uint64_t(reciprocal) * value + (uint64_t(1) << 31)) >> 32;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compute the box blur size (which we're calling the blur radius) from
 | |
|  * the standard deviation.
 | |
|  *
 | |
|  * Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
 | |
|  * approximating a Gaussian using box blurs.  This yields quite a good
 | |
|  * approximation for a Gaussian.  Then we multiply this by 1.5 since our
 | |
|  * code wants the radius of the entire triple-box-blur kernel instead of
 | |
|  * the diameter of an individual box blur.  For more details, see:
 | |
|  *   http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
 | |
|  *   https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
 | |
|  */
 | |
| static const Float GAUSSIAN_SCALE_FACTOR =
 | |
|     Float((3 * sqrt(2 * M_PI) / 4) * 1.5);
 | |
| 
 | |
| IntSize AlphaBoxBlur::CalculateBlurRadius(const Point& aStd) {
 | |
|   IntSize size(
 | |
|       static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5f)),
 | |
|       static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5f)));
 | |
| 
 | |
|   return size;
 | |
| }
 | |
| 
 | |
| Float AlphaBoxBlur::CalculateBlurSigma(int32_t aBlurRadius) {
 | |
|   return aBlurRadius / GAUSSIAN_SCALE_FACTOR;
 | |
| }
 | |
| 
 | |
| }  // namespace gfx
 | |
| }  // namespace mozilla
 |