forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			104 lines
		
	
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| // Copyright (c) 2011-2016 Google Inc.
 | |
| // Use of this source code is governed by a BSD-style license that can be
 | |
| // found in the gfx/skia/LICENSE file.
 | |
| 
 | |
| #include "SkConvolver.h"
 | |
| #include <immintrin.h>
 | |
| 
 | |
| namespace skia {
 | |
| 
 | |
| void convolve_vertically_avx2(
 | |
|     const SkConvolutionFilter1D::ConvolutionFixed* filter, int filterLen,
 | |
|     unsigned char* const* srcRows, int width, unsigned char* out,
 | |
|     bool hasAlpha) {
 | |
|   // It's simpler to work with the output array in terms of 4-byte pixels.
 | |
|   auto* dst = (int*)out;
 | |
| 
 | |
|   // Output up to eight pixels per iteration.
 | |
|   for (int x = 0; x < width; x += 8) {
 | |
|     // Accumulated result for 4 (non-adjacent) pairs of pixels,
 | |
|     // with each channel in signed 17.14 fixed point.
 | |
|     auto accum04 = _mm256_setzero_si256(), accum15 = _mm256_setzero_si256(),
 | |
|          accum26 = _mm256_setzero_si256(), accum37 = _mm256_setzero_si256();
 | |
| 
 | |
|     // Convolve with the filter.  (This inner loop is where we spend ~all our
 | |
|     // time.) While we can, we consume 2 filter coefficients and 2 rows of 8
 | |
|     // pixels each at a time.
 | |
|     auto convolve_16_pixels = [&](__m256i interlaced_coeffs,
 | |
|                                   __m256i pixels_01234567,
 | |
|                                   __m256i pixels_89ABCDEF) {
 | |
|       // Interlaced R0R8 G0G8 B0B8 A0A8 R1R9 G1G9... 32 8-bit values each.
 | |
|       auto _08194C5D = _mm256_unpacklo_epi8(pixels_01234567, pixels_89ABCDEF),
 | |
|            _2A3B6E7F = _mm256_unpackhi_epi8(pixels_01234567, pixels_89ABCDEF);
 | |
| 
 | |
|       // Still interlaced R0R8 G0G8... as above, each channel expanded to 16-bit
 | |
|       // lanes.
 | |
|       auto _084C = _mm256_unpacklo_epi8(_08194C5D, _mm256_setzero_si256()),
 | |
|            _195D = _mm256_unpackhi_epi8(_08194C5D, _mm256_setzero_si256()),
 | |
|            _2A6E = _mm256_unpacklo_epi8(_2A3B6E7F, _mm256_setzero_si256()),
 | |
|            _3B7F = _mm256_unpackhi_epi8(_2A3B6E7F, _mm256_setzero_si256());
 | |
| 
 | |
|       // accum0_R += R0*coeff0 + R8*coeff1, etc.
 | |
|       accum04 = _mm256_add_epi32(accum04,
 | |
|                                  _mm256_madd_epi16(_084C, interlaced_coeffs));
 | |
|       accum15 = _mm256_add_epi32(accum15,
 | |
|                                  _mm256_madd_epi16(_195D, interlaced_coeffs));
 | |
|       accum26 = _mm256_add_epi32(accum26,
 | |
|                                  _mm256_madd_epi16(_2A6E, interlaced_coeffs));
 | |
|       accum37 = _mm256_add_epi32(accum37,
 | |
|                                  _mm256_madd_epi16(_3B7F, interlaced_coeffs));
 | |
|     };
 | |
| 
 | |
|     int i = 0;
 | |
|     for (; i < filterLen / 2 * 2; i += 2) {
 | |
|       convolve_16_pixels(
 | |
|           _mm256_set1_epi32(*(const int32_t*)(filter + i)),
 | |
|           _mm256_loadu_si256((const __m256i*)(srcRows[i + 0] + x * 4)),
 | |
|           _mm256_loadu_si256((const __m256i*)(srcRows[i + 1] + x * 4)));
 | |
|     }
 | |
|     if (i < filterLen) {
 | |
|       convolve_16_pixels(
 | |
|           _mm256_set1_epi32(*(const int16_t*)(filter + i)),
 | |
|           _mm256_loadu_si256((const __m256i*)(srcRows[i] + x * 4)),
 | |
|           _mm256_setzero_si256());
 | |
|     }
 | |
| 
 | |
|     // Trim the fractional parts off the accumulators.
 | |
|     accum04 = _mm256_srai_epi32(accum04, 14);
 | |
|     accum15 = _mm256_srai_epi32(accum15, 14);
 | |
|     accum26 = _mm256_srai_epi32(accum26, 14);
 | |
|     accum37 = _mm256_srai_epi32(accum37, 14);
 | |
| 
 | |
|     // Pack back down to 8-bit channels.
 | |
|     auto pixels = _mm256_packus_epi16(_mm256_packs_epi32(accum04, accum15),
 | |
|                                       _mm256_packs_epi32(accum26, accum37));
 | |
| 
 | |
|     if (hasAlpha) {
 | |
|       // Clamp alpha to the max of r,g,b to make sure we stay premultiplied.
 | |
|       __m256i max_rg = _mm256_max_epu8(pixels, _mm256_srli_epi32(pixels, 8)),
 | |
|               max_rgb = _mm256_max_epu8(max_rg, _mm256_srli_epi32(pixels, 16));
 | |
|       pixels = _mm256_max_epu8(pixels, _mm256_slli_epi32(max_rgb, 24));
 | |
|     } else {
 | |
|       // Force opaque.
 | |
|       pixels = _mm256_or_si256(pixels, _mm256_set1_epi32(0xff000000));
 | |
|     }
 | |
| 
 | |
|     // Normal path to store 8 pixels.
 | |
|     if (x + 8 <= width) {
 | |
|       _mm256_storeu_si256((__m256i*)dst, pixels);
 | |
|       dst += 8;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Store one pixel at a time on the last iteration.
 | |
|     for (int i = x; i < width; i++) {
 | |
|       *dst++ = _mm_cvtsi128_si32(_mm256_castsi256_si128(pixels));
 | |
|       pixels = _mm256_permutevar8x32_epi32(
 | |
|           pixels, _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 0));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace skia
 | 
