forked from mirrors/gecko-dev
		
	 d0f6c7fc66
			
		
	
	
		d0f6c7fc66
		
	
	
	
	
		
			
			Done with: ./mach static-analysis check --checks="-*, readability-redundant-member-init" --fix . https://clang.llvm.org/extra/clang-tidy/checks/readability/redundant-member-init.html Differential Revision: https://phabricator.services.mozilla.com/D190002
		
			
				
	
	
		
			807 lines
		
	
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			807 lines
		
	
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| // See the comment at the top of mfbt/HashTable.h for a comparison between
 | |
| // PLDHashTable and mozilla::HashTable.
 | |
| 
 | |
| #ifndef PLDHashTable_h
 | |
| #define PLDHashTable_h
 | |
| 
 | |
| #include <utility>
 | |
| 
 | |
| #include "mozilla/Assertions.h"
 | |
| #include "mozilla/Atomics.h"
 | |
| #include "mozilla/HashFunctions.h"
 | |
| #include "mozilla/Maybe.h"
 | |
| #include "mozilla/MemoryReporting.h"
 | |
| #include "mozilla/fallible.h"
 | |
| #include "nscore.h"
 | |
| 
 | |
| using PLDHashNumber = mozilla::HashNumber;
 | |
| static const uint32_t kPLDHashNumberBits = mozilla::kHashNumberBits;
 | |
| 
 | |
| #if defined(DEBUG) || defined(FUZZING)
 | |
| #  define MOZ_HASH_TABLE_CHECKS_ENABLED 1
 | |
| #endif
 | |
| 
 | |
| class PLDHashTable;
 | |
| struct PLDHashTableOps;
 | |
| 
 | |
| // Table entry header structure.
 | |
| //
 | |
| // In order to allow in-line allocation of key and value, we do not declare
 | |
| // either here. Instead, the API uses const void *key as a formal parameter.
 | |
| // The key need not be stored in the entry; it may be part of the value, but
 | |
| // need not be stored at all.
 | |
| //
 | |
| // Callback types are defined below and grouped into the PLDHashTableOps
 | |
| // structure, for single static initialization per hash table sub-type.
 | |
| //
 | |
| // Each hash table sub-type should make its entry type a subclass of
 | |
| // PLDHashEntryHdr. PLDHashEntryHdr is merely a common superclass to present a
 | |
| // uniform interface to PLDHashTable clients. The zero-sized base class
 | |
| // optimization, employed by all of our supported C++ compilers, will ensure
 | |
| // that this abstraction does not make objects needlessly larger.
 | |
| struct PLDHashEntryHdr {
 | |
|   PLDHashEntryHdr() = default;
 | |
|   PLDHashEntryHdr(const PLDHashEntryHdr&) = delete;
 | |
|   PLDHashEntryHdr& operator=(const PLDHashEntryHdr&) = delete;
 | |
|   PLDHashEntryHdr(PLDHashEntryHdr&&) = default;
 | |
|   PLDHashEntryHdr& operator=(PLDHashEntryHdr&&) = default;
 | |
| 
 | |
|  private:
 | |
|   friend class PLDHashTable;
 | |
| };
 | |
| 
 | |
| #ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
 | |
| 
 | |
| // This class does three kinds of checking:
 | |
| //
 | |
| // - that calls to one of |mOps| or to an enumerator do not cause re-entry into
 | |
| //   the table in an unsafe way;
 | |
| //
 | |
| // - that multiple threads do not access the table in an unsafe way;
 | |
| //
 | |
| // - that a table marked as immutable is not modified.
 | |
| //
 | |
| // "Safe" here means that multiple concurrent read operations are ok, but a
 | |
| // write operation (i.e. one that can cause the entry storage to be reallocated
 | |
| // or destroyed) cannot safely run concurrently with another read or write
 | |
| // operation. This meaning of "safe" is only partial; for example, it does not
 | |
| // cover whether a single entry in the table is modified by two separate
 | |
| // threads. (Doing such checking would be much harder.)
 | |
| //
 | |
| // It does this with two variables:
 | |
| //
 | |
| // - mState, which embodies a tri-stage tagged union with the following
 | |
| //   variants:
 | |
| //   - Idle
 | |
| //   - Read(n), where 'n' is the number of concurrent read operations
 | |
| //   - Write
 | |
| //
 | |
| // - mIsWritable, which indicates if the table is mutable.
 | |
| //
 | |
| class Checker {
 | |
|  public:
 | |
|   constexpr Checker() : mState(kIdle), mIsWritable(true) {}
 | |
| 
 | |
|   Checker& operator=(Checker&& aOther) {
 | |
|     // Atomic<> doesn't have an |operator=(Atomic<>&&)|.
 | |
|     mState = uint32_t(aOther.mState);
 | |
|     mIsWritable = bool(aOther.mIsWritable);
 | |
| 
 | |
|     aOther.mState = kIdle;
 | |
|     // XXX Shouldn't we set mIsWritable to true here for consistency?
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   static bool IsIdle(uint32_t aState) { return aState == kIdle; }
 | |
|   static bool IsRead(uint32_t aState) {
 | |
|     return kRead1 <= aState && aState <= kReadMax;
 | |
|   }
 | |
|   static bool IsRead1(uint32_t aState) { return aState == kRead1; }
 | |
|   static bool IsWrite(uint32_t aState) { return aState == kWrite; }
 | |
| 
 | |
|   bool IsIdle() const { return mState == kIdle; }
 | |
| 
 | |
|   bool IsWritable() const { return mIsWritable; }
 | |
| 
 | |
|   void SetNonWritable() { mIsWritable = false; }
 | |
| 
 | |
|   // NOTE: the obvious way to implement these functions is to (a) check
 | |
|   // |mState| is reasonable, and then (b) update |mState|. But the lack of
 | |
|   // atomicity in such an implementation can cause problems if we get unlucky
 | |
|   // thread interleaving between (a) and (b).
 | |
|   //
 | |
|   // So instead for |mState| we are careful to (a) first get |mState|'s old
 | |
|   // value and assign it a new value in single atomic operation, and only then
 | |
|   // (b) check the old value was reasonable. This ensures we don't have
 | |
|   // interleaving problems.
 | |
|   //
 | |
|   // For |mIsWritable| we don't need to be as careful because it can only in
 | |
|   // transition in one direction (from writable to non-writable).
 | |
| 
 | |
|   void StartReadOp() {
 | |
|     uint32_t oldState = mState++;  // this is an atomic increment
 | |
|     MOZ_RELEASE_ASSERT(IsIdle(oldState) || IsRead(oldState));
 | |
|     MOZ_RELEASE_ASSERT(oldState < kReadMax);  // check for overflow
 | |
|   }
 | |
| 
 | |
|   void EndReadOp() {
 | |
|     uint32_t oldState = mState--;  // this is an atomic decrement
 | |
|     MOZ_RELEASE_ASSERT(IsRead(oldState));
 | |
|   }
 | |
| 
 | |
|   void StartWriteOp() {
 | |
|     MOZ_RELEASE_ASSERT(IsWritable());
 | |
|     uint32_t oldState = mState.exchange(kWrite);
 | |
|     MOZ_RELEASE_ASSERT(IsIdle(oldState));
 | |
|   }
 | |
| 
 | |
|   void EndWriteOp() {
 | |
|     // Check again that the table is writable, in case it was marked as
 | |
|     // non-writable just after the IsWritable() assertion in StartWriteOp()
 | |
|     // occurred.
 | |
|     MOZ_RELEASE_ASSERT(IsWritable());
 | |
|     uint32_t oldState = mState.exchange(kIdle);
 | |
|     MOZ_RELEASE_ASSERT(IsWrite(oldState));
 | |
|   }
 | |
| 
 | |
|   void StartIteratorRemovalOp() {
 | |
|     // When doing removals at the end of iteration, we go from Read1 state to
 | |
|     // Write and then back.
 | |
|     MOZ_RELEASE_ASSERT(IsWritable());
 | |
|     uint32_t oldState = mState.exchange(kWrite);
 | |
|     MOZ_RELEASE_ASSERT(IsRead1(oldState));
 | |
|   }
 | |
| 
 | |
|   void EndIteratorRemovalOp() {
 | |
|     // Check again that the table is writable, in case it was marked as
 | |
|     // non-writable just after the IsWritable() assertion in
 | |
|     // StartIteratorRemovalOp() occurred.
 | |
|     MOZ_RELEASE_ASSERT(IsWritable());
 | |
|     uint32_t oldState = mState.exchange(kRead1);
 | |
|     MOZ_RELEASE_ASSERT(IsWrite(oldState));
 | |
|   }
 | |
| 
 | |
|   void StartDestructorOp() {
 | |
|     // A destructor op is like a write, but the table doesn't need to be
 | |
|     // writable.
 | |
|     uint32_t oldState = mState.exchange(kWrite);
 | |
|     MOZ_RELEASE_ASSERT(IsIdle(oldState));
 | |
|   }
 | |
| 
 | |
|   void EndDestructorOp() {
 | |
|     uint32_t oldState = mState.exchange(kIdle);
 | |
|     MOZ_RELEASE_ASSERT(IsWrite(oldState));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Things of note about the representation of |mState|.
 | |
|   // - The values between kRead1..kReadMax represent valid Read(n) values.
 | |
|   // - kIdle and kRead1 are deliberately chosen so that incrementing the -
 | |
|   //   former gives the latter.
 | |
|   // - 9999 concurrent readers should be enough for anybody.
 | |
|   static const uint32_t kIdle = 0;
 | |
|   static const uint32_t kRead1 = 1;
 | |
|   static const uint32_t kReadMax = 9999;
 | |
|   static const uint32_t kWrite = 10000;
 | |
| 
 | |
|   mozilla::Atomic<uint32_t, mozilla::SequentiallyConsistent> mState;
 | |
|   mozilla::Atomic<bool, mozilla::SequentiallyConsistent> mIsWritable;
 | |
| };
 | |
| #endif
 | |
| 
 | |
| // A PLDHashTable may be allocated on the stack or within another structure or
 | |
| // class. No entry storage is allocated until the first element is added. This
 | |
| // means that empty hash tables are cheap, which is good because they are
 | |
| // common.
 | |
| //
 | |
| // There used to be a long, math-heavy comment here about the merits of
 | |
| // double hashing vs. chaining; it was removed in bug 1058335. In short, double
 | |
| // hashing is more space-efficient unless the element size gets large (in which
 | |
| // case you should keep using double hashing but switch to using pointer
 | |
| // elements). Also, with double hashing, you can't safely hold an entry pointer
 | |
| // and use it after an add or remove operation, unless you sample Generation()
 | |
| // before adding or removing, and compare the sample after, dereferencing the
 | |
| // entry pointer only if Generation() has not changed.
 | |
| class PLDHashTable {
 | |
|  private:
 | |
|   // A slot represents a cached hash value and its associated entry stored in
 | |
|   // the hash table. The hash value and the entry are not stored contiguously.
 | |
|   struct Slot {
 | |
|     Slot(PLDHashEntryHdr* aEntry, PLDHashNumber* aKeyHash)
 | |
|         : mEntry(aEntry), mKeyHash(aKeyHash) {}
 | |
| 
 | |
|     Slot(const Slot&) = default;
 | |
|     Slot(Slot&& aOther) = default;
 | |
| 
 | |
|     Slot& operator=(Slot&& aOther) = default;
 | |
| 
 | |
|     bool operator==(const Slot& aOther) const {
 | |
|       return mEntry == aOther.mEntry;
 | |
|     }
 | |
| 
 | |
|     PLDHashNumber KeyHash() const { return *HashPtr(); }
 | |
|     void SetKeyHash(PLDHashNumber aHash) { *HashPtr() = aHash; }
 | |
| 
 | |
|     PLDHashEntryHdr* ToEntry() const { return mEntry; }
 | |
| 
 | |
|     bool IsFree() const { return KeyHash() == 0; }
 | |
|     bool IsRemoved() const { return KeyHash() == 1; }
 | |
|     bool IsLive() const { return IsLiveHash(KeyHash()); }
 | |
|     static bool IsLiveHash(uint32_t aHash) { return aHash >= 2; }
 | |
| 
 | |
|     void MarkFree() { *HashPtr() = 0; }
 | |
|     void MarkRemoved() { *HashPtr() = 1; }
 | |
|     void MarkColliding() { *HashPtr() |= kCollisionFlag; }
 | |
| 
 | |
|     void Next(uint32_t aEntrySize) {
 | |
|       char* p = reinterpret_cast<char*>(mEntry);
 | |
|       p += aEntrySize;
 | |
|       mEntry = reinterpret_cast<PLDHashEntryHdr*>(p);
 | |
|       mKeyHash++;
 | |
|     }
 | |
|     PLDHashNumber* HashPtr() const { return mKeyHash; }
 | |
| 
 | |
|    private:
 | |
|     PLDHashEntryHdr* mEntry;
 | |
|     PLDHashNumber* mKeyHash;
 | |
|   };
 | |
| 
 | |
|   // This class maintains the invariant that every time the entry store is
 | |
|   // changed, the generation is updated.
 | |
|   //
 | |
|   // The data layout separates the cached hashes of entries and the entries
 | |
|   // themselves to save space. We could store the entries thusly:
 | |
|   //
 | |
|   // +--------+--------+---------+
 | |
|   // | entry0 | entry1 | ...     |
 | |
|   // +--------+--------+---------+
 | |
|   //
 | |
|   // where the entries themselves contain the cached hash stored as their
 | |
|   // first member. PLDHashTable did this for a long time, with entries looking
 | |
|   // like:
 | |
|   //
 | |
|   // class PLDHashEntryHdr
 | |
|   // {
 | |
|   //   PLDHashNumber mKeyHash;
 | |
|   // };
 | |
|   //
 | |
|   // class MyEntry : public PLDHashEntryHdr
 | |
|   // {
 | |
|   //   ...
 | |
|   // };
 | |
|   //
 | |
|   // The problem with this setup is that, depending on the layout of
 | |
|   // `MyEntry`, there may be platform ABI-mandated padding between `mKeyHash`
 | |
|   // and the first member of `MyEntry`. This ABI-mandated padding is wasted
 | |
|   // space, and was surprisingly common, e.g. when MyEntry contained a single
 | |
|   // pointer on 64-bit platforms.
 | |
|   //
 | |
|   // As previously alluded to, the current setup stores things thusly:
 | |
|   //
 | |
|   // +-------+-------+-------+-------+--------+--------+---------+
 | |
|   // | hash0 | hash1 | ..... | hashN | entry0 | entry1 | ...     |
 | |
|   // +-------+-------+-------+-------+--------+--------+---------+
 | |
|   //
 | |
|   // which contains no wasted space between the hashes themselves, and no
 | |
|   // wasted space between the entries themselves. malloc is guaranteed to
 | |
|   // return blocks of memory with at least word alignment on all of our major
 | |
|   // platforms. PLDHashTable mandates that the size of the hash table is
 | |
|   // always a power of two, so the alignment of the memory containing the
 | |
|   // first entry is always at least the alignment of the entire entry store.
 | |
|   // That means the alignment of `entry0` should be its natural alignment.
 | |
|   // Entries may have problems if they contain over-aligned members such as
 | |
|   // SIMD vector types, but this has not been a problem in practice.
 | |
|   //
 | |
|   // Note: It would be natural to store the generation within this class, but
 | |
|   // we can't do that without bloating sizeof(PLDHashTable) on 64-bit machines.
 | |
|   // So instead we store it outside this class, and Set() takes a pointer to it
 | |
|   // and ensures it is updated as necessary.
 | |
|   class EntryStore {
 | |
|    private:
 | |
|     char* mEntryStore;
 | |
| 
 | |
|     static char* Entries(char* aStore, uint32_t aCapacity) {
 | |
|       return aStore + aCapacity * sizeof(PLDHashNumber);
 | |
|     }
 | |
| 
 | |
|     char* Entries(uint32_t aCapacity) const {
 | |
|       return Entries(Get(), aCapacity);
 | |
|     }
 | |
| 
 | |
|    public:
 | |
|     EntryStore() : mEntryStore(nullptr) {}
 | |
| 
 | |
|     ~EntryStore() {
 | |
|       free(mEntryStore);
 | |
|       mEntryStore = nullptr;
 | |
|     }
 | |
| 
 | |
|     char* Get() const { return mEntryStore; }
 | |
|     bool IsAllocated() const { return !!mEntryStore; }
 | |
| 
 | |
|     Slot SlotForIndex(uint32_t aIndex, uint32_t aEntrySize,
 | |
|                       uint32_t aCapacity) const {
 | |
|       char* entries = Entries(aCapacity);
 | |
|       auto entry =
 | |
|           reinterpret_cast<PLDHashEntryHdr*>(entries + aIndex * aEntrySize);
 | |
|       auto hashes = reinterpret_cast<PLDHashNumber*>(Get());
 | |
|       return Slot(entry, &hashes[aIndex]);
 | |
|     }
 | |
| 
 | |
|     Slot SlotForPLDHashEntry(PLDHashEntryHdr* aEntry, uint32_t aCapacity,
 | |
|                              uint32_t aEntrySize) {
 | |
|       char* entries = Entries(aCapacity);
 | |
|       char* entry = reinterpret_cast<char*>(aEntry);
 | |
|       uint32_t entryOffset = entry - entries;
 | |
|       uint32_t slotIndex = entryOffset / aEntrySize;
 | |
|       return SlotForIndex(slotIndex, aEntrySize, aCapacity);
 | |
|     }
 | |
| 
 | |
|     template <typename F>
 | |
|     void ForEachSlot(uint32_t aCapacity, uint32_t aEntrySize, F&& aFunc) {
 | |
|       ForEachSlot(Get(), aCapacity, aEntrySize, std::move(aFunc));
 | |
|     }
 | |
| 
 | |
|     template <typename F>
 | |
|     static void ForEachSlot(char* aStore, uint32_t aCapacity,
 | |
|                             uint32_t aEntrySize, F&& aFunc) {
 | |
|       char* entries = Entries(aStore, aCapacity);
 | |
|       Slot slot(reinterpret_cast<PLDHashEntryHdr*>(entries),
 | |
|                 reinterpret_cast<PLDHashNumber*>(aStore));
 | |
|       for (size_t i = 0; i < aCapacity; ++i) {
 | |
|         aFunc(slot);
 | |
|         slot.Next(aEntrySize);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void Set(char* aEntryStore, uint16_t* aGeneration) {
 | |
|       mEntryStore = aEntryStore;
 | |
|       *aGeneration += 1;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // These fields are packed carefully. On 32-bit platforms,
 | |
|   // sizeof(PLDHashTable) is 20. On 64-bit platforms, sizeof(PLDHashTable) is
 | |
|   // 32; 28 bytes of data followed by 4 bytes of padding for alignment.
 | |
|   const PLDHashTableOps* const mOps;  // Virtual operations; see below.
 | |
|   EntryStore mEntryStore;             // (Lazy) entry storage and generation.
 | |
|   uint16_t mGeneration;               // The storage generation.
 | |
|   uint8_t mHashShift;                 // Multiplicative hash shift.
 | |
|   const uint8_t mEntrySize;           // Number of bytes in an entry.
 | |
|   uint32_t mEntryCount;               // Number of entries in table.
 | |
|   uint32_t mRemovedCount;             // Removed entry sentinels in table.
 | |
| 
 | |
| #ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
 | |
|   mutable Checker mChecker;
 | |
| #endif
 | |
| 
 | |
|  public:
 | |
|   // Table capacity limit; do not exceed. The max capacity used to be 1<<23 but
 | |
|   // that occasionally that wasn't enough. Making it much bigger than 1<<26
 | |
|   // probably isn't worthwhile -- tables that big are kind of ridiculous.
 | |
|   // Also, the growth operation will (deliberately) fail if |capacity *
 | |
|   // mEntrySize| overflows a uint32_t, and mEntrySize is always at least 8
 | |
|   // bytes.
 | |
|   static const uint32_t kMaxCapacity = ((uint32_t)1 << 26);
 | |
| 
 | |
|   static const uint32_t kMinCapacity = 8;
 | |
| 
 | |
|   // Making this half of kMaxCapacity ensures it'll fit. Nobody should need an
 | |
|   // initial length anywhere nearly this large, anyway.
 | |
|   static const uint32_t kMaxInitialLength = kMaxCapacity / 2;
 | |
| 
 | |
|   // This gives a default initial capacity of 8.
 | |
|   static const uint32_t kDefaultInitialLength = 4;
 | |
| 
 | |
|   // Initialize the table with |aOps| and |aEntrySize|. The table's initial
 | |
|   // capacity is chosen such that |aLength| elements can be inserted without
 | |
|   // rehashing; if |aLength| is a power-of-two, this capacity will be
 | |
|   // |2*length|. However, because entry storage is allocated lazily, this
 | |
|   // initial capacity won't be relevant until the first element is added; prior
 | |
|   // to that the capacity will be zero.
 | |
|   //
 | |
|   // This will crash if |aEntrySize| and/or |aLength| are too large.
 | |
|   PLDHashTable(const PLDHashTableOps* aOps, uint32_t aEntrySize,
 | |
|                uint32_t aLength = kDefaultInitialLength);
 | |
| 
 | |
|   PLDHashTable(PLDHashTable&& aOther)
 | |
|       // Initialize fields which are checked by the move assignment operator
 | |
|       // and the destructor (which the move assignment operator calls).
 | |
|       : mOps(nullptr), mGeneration(0), mEntrySize(0) {
 | |
|     *this = std::move(aOther);
 | |
|   }
 | |
| 
 | |
|   PLDHashTable& operator=(PLDHashTable&& aOther);
 | |
| 
 | |
|   ~PLDHashTable();
 | |
| 
 | |
|   // This should be used rarely.
 | |
|   const PLDHashTableOps* Ops() const { return mOps; }
 | |
| 
 | |
|   // Size in entries (gross, not net of free and removed sentinels) for table.
 | |
|   // This can be zero if no elements have been added yet, in which case the
 | |
|   // entry storage will not have yet been allocated.
 | |
|   uint32_t Capacity() const {
 | |
|     return mEntryStore.IsAllocated() ? CapacityFromHashShift() : 0;
 | |
|   }
 | |
| 
 | |
|   uint32_t EntrySize() const { return mEntrySize; }
 | |
|   uint32_t EntryCount() const { return mEntryCount; }
 | |
|   uint32_t Generation() const { return mGeneration; }
 | |
| 
 | |
|   // To search for a |key| in |table|, call:
 | |
|   //
 | |
|   //   entry = table.Search(key);
 | |
|   //
 | |
|   // If |entry| is non-null, |key| was found. If |entry| is null, key was not
 | |
|   // found.
 | |
|   PLDHashEntryHdr* Search(const void* aKey) const;
 | |
| 
 | |
|   // To add an entry identified by |key| to table, call:
 | |
|   //
 | |
|   //   entry = table.Add(key, mozilla::fallible);
 | |
|   //
 | |
|   // If |entry| is null upon return, then the table is severely overloaded and
 | |
|   // memory can't be allocated for entry storage.
 | |
|   //
 | |
|   // Otherwise, if the initEntry hook was provided, |entry| will be
 | |
|   // initialized.  If the initEntry hook was not provided, the caller
 | |
|   // should initialize |entry| as appropriate.
 | |
|   PLDHashEntryHdr* Add(const void* aKey, const mozilla::fallible_t&);
 | |
| 
 | |
|   // This is like the other Add() function, but infallible, and so never
 | |
|   // returns null.
 | |
|   PLDHashEntryHdr* Add(const void* aKey);
 | |
| 
 | |
|   // To remove an entry identified by |key| from table, call:
 | |
|   //
 | |
|   //   table.Remove(key);
 | |
|   //
 | |
|   // If |key|'s entry is found, it is cleared (via table->mOps->clearEntry).
 | |
|   // The table's capacity may be reduced afterwards.
 | |
|   void Remove(const void* aKey);
 | |
| 
 | |
|   // To remove an entry found by a prior search, call:
 | |
|   //
 | |
|   //   table.RemoveEntry(entry);
 | |
|   //
 | |
|   // The entry, which must be present and in use, is cleared (via
 | |
|   // table->mOps->clearEntry). The table's capacity may be reduced afterwards.
 | |
|   void RemoveEntry(PLDHashEntryHdr* aEntry);
 | |
| 
 | |
|   // Remove an entry already accessed via Search() or Add().
 | |
|   //
 | |
|   // NB: this is a "raw" or low-level method. It does not shrink the table if
 | |
|   // it is underloaded. Don't use it unless necessary and you know what you are
 | |
|   // doing, and if so, please explain in a comment why it is necessary instead
 | |
|   // of RemoveEntry().
 | |
|   void RawRemove(PLDHashEntryHdr* aEntry);
 | |
| 
 | |
|   // This function is equivalent to
 | |
|   // ClearAndPrepareForLength(kDefaultInitialLength).
 | |
|   void Clear();
 | |
| 
 | |
|   // This function clears the table's contents and frees its entry storage,
 | |
|   // leaving it in a empty state ready to be used again. Afterwards, when the
 | |
|   // first element is added the entry storage that gets allocated will have a
 | |
|   // capacity large enough to fit |aLength| elements without rehashing.
 | |
|   //
 | |
|   // It's conceptually the same as calling the destructor and then re-calling
 | |
|   // the constructor with the original |aOps| and |aEntrySize| arguments, and
 | |
|   // a new |aLength| argument.
 | |
|   void ClearAndPrepareForLength(uint32_t aLength);
 | |
| 
 | |
|   // Measure the size of the table's entry storage. If the entries contain
 | |
|   // pointers to other heap blocks, you have to iterate over the table and
 | |
|   // measure those separately; hence the "Shallow" prefix.
 | |
|   size_t ShallowSizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const;
 | |
| 
 | |
|   // Like ShallowSizeOfExcludingThis(), but includes sizeof(*this).
 | |
|   size_t ShallowSizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const;
 | |
| 
 | |
|   // Mark a table as immutable for the remainder of its lifetime. This
 | |
|   // changes the implementation from asserting one set of invariants to
 | |
|   // asserting a different set.
 | |
|   void MarkImmutable() {
 | |
| #ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
 | |
|     mChecker.SetNonWritable();
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // If you use PLDHashEntryStub or a subclass of it as your entry struct, and
 | |
|   // if your entries move via memcpy and clear via memset(0), you can use these
 | |
|   // stub operations.
 | |
|   static const PLDHashTableOps* StubOps();
 | |
| 
 | |
|   // The individual stub operations in StubOps().
 | |
|   static PLDHashNumber HashVoidPtrKeyStub(const void* aKey);
 | |
|   static bool MatchEntryStub(const PLDHashEntryHdr* aEntry, const void* aKey);
 | |
|   static void MoveEntryStub(PLDHashTable* aTable, const PLDHashEntryHdr* aFrom,
 | |
|                             PLDHashEntryHdr* aTo);
 | |
|   static void ClearEntryStub(PLDHashTable* aTable, PLDHashEntryHdr* aEntry);
 | |
| 
 | |
|   // Hash/match operations for tables holding C strings.
 | |
|   static PLDHashNumber HashStringKey(const void* aKey);
 | |
|   static bool MatchStringKey(const PLDHashEntryHdr* aEntry, const void* aKey);
 | |
| 
 | |
|   class EntryHandle {
 | |
|    public:
 | |
|     EntryHandle(EntryHandle&& aOther) noexcept;
 | |
| #ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
 | |
|     ~EntryHandle();
 | |
| #endif
 | |
| 
 | |
|     EntryHandle(const EntryHandle&) = delete;
 | |
|     EntryHandle& operator=(const EntryHandle&) = delete;
 | |
|     EntryHandle& operator=(EntryHandle&& aOther) = delete;
 | |
| 
 | |
|     // Is this slot currently occupied?
 | |
|     bool HasEntry() const { return mSlot.IsLive(); }
 | |
| 
 | |
|     explicit operator bool() const { return HasEntry(); }
 | |
| 
 | |
|     // Get the entry stored in this slot. May not be called unless the slot is
 | |
|     // currently occupied.
 | |
|     PLDHashEntryHdr* Entry() {
 | |
|       MOZ_ASSERT(HasEntry());
 | |
|       return mSlot.ToEntry();
 | |
|     }
 | |
| 
 | |
|     template <class F>
 | |
|     void Insert(F&& aInitEntry) {
 | |
|       MOZ_ASSERT(!HasEntry());
 | |
|       OccupySlot();
 | |
|       std::forward<F>(aInitEntry)(Entry());
 | |
|     }
 | |
| 
 | |
|     // If the slot is currently vacant, the slot is occupied and `initEntry` is
 | |
|     // invoked to initialize the entry. Returns the entry stored in now-occupied
 | |
|     // slot.
 | |
|     template <class F>
 | |
|     PLDHashEntryHdr* OrInsert(F&& aInitEntry) {
 | |
|       if (!HasEntry()) {
 | |
|         Insert(std::forward<F>(aInitEntry));
 | |
|       }
 | |
|       return Entry();
 | |
|     }
 | |
| 
 | |
|     /** Removes the entry. Note that the table won't shrink on destruction of
 | |
|      * the EntryHandle.
 | |
|      *
 | |
|      * \pre HasEntry()
 | |
|      * \post !HasEntry()
 | |
|      */
 | |
|     void Remove();
 | |
| 
 | |
|     /** Removes the entry, if it exists. Note that the table won't shrink on
 | |
|      * destruction of the EntryHandle.
 | |
|      *
 | |
|      * \post !HasEntry()
 | |
|      */
 | |
|     void OrRemove();
 | |
| 
 | |
|    private:
 | |
|     friend class PLDHashTable;
 | |
| 
 | |
|     EntryHandle(PLDHashTable* aTable, PLDHashNumber aKeyHash, Slot aSlot);
 | |
| 
 | |
|     void OccupySlot();
 | |
| 
 | |
|     PLDHashTable* mTable;
 | |
|     PLDHashNumber mKeyHash;
 | |
|     Slot mSlot;
 | |
|   };
 | |
| 
 | |
|   template <class F>
 | |
|   auto WithEntryHandle(const void* aKey, F&& aFunc)
 | |
|       -> std::invoke_result_t<F, EntryHandle&&> {
 | |
|     return std::forward<F>(aFunc)(MakeEntryHandle(aKey));
 | |
|   }
 | |
| 
 | |
|   template <class F>
 | |
|   auto WithEntryHandle(const void* aKey, const mozilla::fallible_t& aFallible,
 | |
|                        F&& aFunc)
 | |
|       -> std::invoke_result_t<F, mozilla::Maybe<EntryHandle>&&> {
 | |
|     return std::forward<F>(aFunc)(MakeEntryHandle(aKey, aFallible));
 | |
|   }
 | |
| 
 | |
|   // This is an iterator for PLDHashtable. Assertions will detect some, but not
 | |
|   // all, mid-iteration table modifications that might invalidate (e.g.
 | |
|   // reallocate) the entry storage.
 | |
|   //
 | |
|   // Any element can be removed during iteration using Remove(). If any
 | |
|   // elements are removed, the table may be resized once iteration ends.
 | |
|   //
 | |
|   // Example usage:
 | |
|   //
 | |
|   //   for (auto iter = table.Iter(); !iter.Done(); iter.Next()) {
 | |
|   //     auto entry = static_cast<FooEntry*>(iter.Get());
 | |
|   //     // ... do stuff with |entry| ...
 | |
|   //     // ... possibly call iter.Remove() once ...
 | |
|   //   }
 | |
|   //
 | |
|   // or:
 | |
|   //
 | |
|   //   for (PLDHashTable::Iterator iter(&table); !iter.Done(); iter.Next()) {
 | |
|   //     auto entry = static_cast<FooEntry*>(iter.Get());
 | |
|   //     // ... do stuff with |entry| ...
 | |
|   //     // ... possibly call iter.Remove() once ...
 | |
|   //   }
 | |
|   //
 | |
|   // The latter form is more verbose but is easier to work with when
 | |
|   // making subclasses of Iterator.
 | |
|   //
 | |
|   class Iterator {
 | |
|    public:
 | |
|     explicit Iterator(PLDHashTable* aTable);
 | |
|     struct EndIteratorTag {};
 | |
|     Iterator(PLDHashTable* aTable, EndIteratorTag aTag);
 | |
|     Iterator(Iterator&& aOther);
 | |
|     ~Iterator();
 | |
| 
 | |
|     // Have we finished?
 | |
|     bool Done() const { return mNexts == mNextsLimit; }
 | |
| 
 | |
|     // Get the current entry.
 | |
|     PLDHashEntryHdr* Get() const {
 | |
|       MOZ_ASSERT(!Done());
 | |
|       MOZ_ASSERT(mCurrent.IsLive());
 | |
|       return mCurrent.ToEntry();
 | |
|     }
 | |
| 
 | |
|     // Advance to the next entry.
 | |
|     void Next();
 | |
| 
 | |
|     // Remove the current entry. Must only be called once per entry, and Get()
 | |
|     // must not be called on that entry afterwards.
 | |
|     void Remove();
 | |
| 
 | |
|     bool operator==(const Iterator& aOther) const {
 | |
|       MOZ_ASSERT(mTable == aOther.mTable);
 | |
|       return mNexts == aOther.mNexts;
 | |
|     }
 | |
| 
 | |
|     Iterator Clone() const { return {*this}; }
 | |
| 
 | |
|    protected:
 | |
|     PLDHashTable* mTable;  // Main table pointer.
 | |
| 
 | |
|    private:
 | |
|     Slot mCurrent;         // Pointer to the current entry.
 | |
|     uint32_t mNexts;       // Number of Next() calls.
 | |
|     uint32_t mNextsLimit;  // Next() call limit.
 | |
| 
 | |
|     bool mHaveRemoved;   // Have any elements been removed?
 | |
|     uint8_t mEntrySize;  // Size of entries.
 | |
| 
 | |
|     bool IsOnNonLiveEntry() const;
 | |
| 
 | |
|     void MoveToNextLiveEntry();
 | |
| 
 | |
|     Iterator() = delete;
 | |
|     Iterator(const Iterator&);
 | |
|     Iterator& operator=(const Iterator&) = delete;
 | |
|     Iterator& operator=(const Iterator&&) = delete;
 | |
|   };
 | |
| 
 | |
|   Iterator Iter() { return Iterator(this); }
 | |
| 
 | |
|   // Use this if you need to initialize an Iterator in a const method. If you
 | |
|   // use this case, you should not call Remove() on the iterator.
 | |
|   Iterator ConstIter() const {
 | |
|     return Iterator(const_cast<PLDHashTable*>(this));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static uint32_t HashShift(uint32_t aEntrySize, uint32_t aLength);
 | |
| 
 | |
|   static const PLDHashNumber kCollisionFlag = 1;
 | |
| 
 | |
|   PLDHashNumber Hash1(PLDHashNumber aHash0) const;
 | |
|   void Hash2(PLDHashNumber aHash, uint32_t& aHash2Out,
 | |
|              uint32_t& aSizeMaskOut) const;
 | |
| 
 | |
|   static bool MatchSlotKeyhash(Slot& aSlot, const PLDHashNumber aHash);
 | |
|   Slot SlotForIndex(uint32_t aIndex) const;
 | |
| 
 | |
|   // We store mHashShift rather than sizeLog2 to optimize the collision-free
 | |
|   // case in SearchTable.
 | |
|   uint32_t CapacityFromHashShift() const {
 | |
|     return ((uint32_t)1 << (kPLDHashNumberBits - mHashShift));
 | |
|   }
 | |
| 
 | |
|   PLDHashNumber ComputeKeyHash(const void* aKey) const;
 | |
| 
 | |
|   enum SearchReason { ForSearchOrRemove, ForAdd };
 | |
| 
 | |
|   // Avoid using bare `Success` and `Failure`, as those names are commonly
 | |
|   // defined as macros.
 | |
|   template <SearchReason Reason, typename PLDSuccess, typename PLDFailure>
 | |
|   auto SearchTable(const void* aKey, PLDHashNumber aKeyHash,
 | |
|                    PLDSuccess&& aSucess, PLDFailure&& aFailure) const;
 | |
| 
 | |
|   Slot FindFreeSlot(PLDHashNumber aKeyHash) const;
 | |
| 
 | |
|   bool ChangeTable(int aDeltaLog2);
 | |
| 
 | |
|   void RawRemove(Slot& aSlot);
 | |
|   void ShrinkIfAppropriate();
 | |
| 
 | |
|   mozilla::Maybe<EntryHandle> MakeEntryHandle(const void* aKey,
 | |
|                                               const mozilla::fallible_t&);
 | |
| 
 | |
|   EntryHandle MakeEntryHandle(const void* aKey);
 | |
| 
 | |
|   PLDHashTable(const PLDHashTable& aOther) = delete;
 | |
|   PLDHashTable& operator=(const PLDHashTable& aOther) = delete;
 | |
| };
 | |
| 
 | |
| // Compute the hash code for a given key to be looked up, added, or removed.
 | |
| // A hash code may have any PLDHashNumber value.
 | |
| typedef PLDHashNumber (*PLDHashHashKey)(const void* aKey);
 | |
| 
 | |
| // Compare the key identifying aEntry with the provided key parameter. Return
 | |
| // true if keys match, false otherwise.
 | |
| typedef bool (*PLDHashMatchEntry)(const PLDHashEntryHdr* aEntry,
 | |
|                                   const void* aKey);
 | |
| 
 | |
| // Copy the data starting at aFrom to the new entry storage at aTo. Do not add
 | |
| // reference counts for any strong references in the entry, however, as this
 | |
| // is a "move" operation: the old entry storage at from will be freed without
 | |
| // any reference-decrementing callback shortly.
 | |
| typedef void (*PLDHashMoveEntry)(PLDHashTable* aTable,
 | |
|                                  const PLDHashEntryHdr* aFrom,
 | |
|                                  PLDHashEntryHdr* aTo);
 | |
| 
 | |
| // Clear the entry and drop any strong references it holds. This callback is
 | |
| // invoked by Remove(), but only if the given key is found in the table.
 | |
| typedef void (*PLDHashClearEntry)(PLDHashTable* aTable,
 | |
|                                   PLDHashEntryHdr* aEntry);
 | |
| 
 | |
| // Initialize a new entry. This function is called when
 | |
| // Add() finds no existing entry for the given key, and must add a new one.
 | |
| typedef void (*PLDHashInitEntry)(PLDHashEntryHdr* aEntry, const void* aKey);
 | |
| 
 | |
| // Finally, the "vtable" structure for PLDHashTable. The first four hooks
 | |
| // must be provided by implementations; they're called unconditionally by the
 | |
| // generic PLDHashTable.cpp code. Hooks after these may be null.
 | |
| //
 | |
| // Summary of allocation-related hook usage with C++ placement new emphasis:
 | |
| //  initEntry           Call placement new using default key-based ctor.
 | |
| //  moveEntry           Call placement new using copy ctor, run dtor on old
 | |
| //                      entry storage.
 | |
| //  clearEntry          Run dtor on entry.
 | |
| //
 | |
| // Note the reason why initEntry is optional: the default hooks (stubs) clear
 | |
| // entry storage. On a successful Add(tbl, key), the returned entry pointer
 | |
| // addresses an entry struct whose entry members are still clear (null). Add()
 | |
| // callers can test such members to see whether the entry was newly created by
 | |
| // the Add() call that just succeeded. If placement new or similar
 | |
| // initialization is required, define an |initEntry| hook. Of course, the
 | |
| // |clearEntry| hook must zero or null appropriately.
 | |
| //
 | |
| // XXX assumes 0 is null for pointer types.
 | |
| struct PLDHashTableOps {
 | |
|   // Mandatory hooks. All implementations must provide these.
 | |
|   PLDHashHashKey hashKey;
 | |
|   PLDHashMatchEntry matchEntry;
 | |
|   PLDHashMoveEntry moveEntry;
 | |
| 
 | |
|   // Optional hooks start here. If null, these are not called.
 | |
|   PLDHashClearEntry clearEntry;
 | |
|   PLDHashInitEntry initEntry;
 | |
| };
 | |
| 
 | |
| // A minimal entry is a subclass of PLDHashEntryHdr and has a void* key pointer.
 | |
| struct PLDHashEntryStub : public PLDHashEntryHdr {
 | |
|   const void* key;
 | |
| };
 | |
| 
 | |
| #endif /* PLDHashTable_h */
 |