fune/third_party/rust/naga/src/valid/expression.rs
Jim Blandy 6ca282be89 Bug 1769633: Update wgpu to b51fd851. r=jgilbert
Fix Firefox for compute_pass_dispatch functions renamed upstream.

Remove set_index_buffer ffi functions; they're now in wgpu.

Differential Revision: https://phabricator.services.mozilla.com/D146509
2022-05-17 03:09:07 +00:00

1515 lines
68 KiB
Rust

#[cfg(feature = "validate")]
use super::{compose::validate_compose, FunctionInfo, ShaderStages, TypeFlags};
#[cfg(feature = "validate")]
use crate::arena::UniqueArena;
use crate::{
arena::{BadHandle, Handle},
proc::{IndexableLengthError, ResolveError},
};
#[derive(Clone, Debug, thiserror::Error)]
#[cfg_attr(test, derive(PartialEq))]
pub enum ExpressionError {
#[error("Doesn't exist")]
DoesntExist,
#[error("Used by a statement before it was introduced into the scope by any of the dominating blocks")]
NotInScope,
#[error("Depends on {0:?}, which has not been processed yet")]
ForwardDependency(Handle<crate::Expression>),
#[error(transparent)]
BadDependency(#[from] BadHandle),
#[error("Base type {0:?} is not compatible with this expression")]
InvalidBaseType(Handle<crate::Expression>),
#[error("Accessing with index {0:?} can't be done")]
InvalidIndexType(Handle<crate::Expression>),
#[error("Accessing index {1:?} is out of {0:?} bounds")]
IndexOutOfBounds(Handle<crate::Expression>, crate::ScalarValue),
#[error("The expression {0:?} may only be indexed by a constant")]
IndexMustBeConstant(Handle<crate::Expression>),
#[error("Function argument {0:?} doesn't exist")]
FunctionArgumentDoesntExist(u32),
#[error("Loading of {0:?} can't be done")]
InvalidPointerType(Handle<crate::Expression>),
#[error("Array length of {0:?} can't be done")]
InvalidArrayType(Handle<crate::Expression>),
#[error("Splatting {0:?} can't be done")]
InvalidSplatType(Handle<crate::Expression>),
#[error("Swizzling {0:?} can't be done")]
InvalidVectorType(Handle<crate::Expression>),
#[error("Swizzle component {0:?} is outside of vector size {1:?}")]
InvalidSwizzleComponent(crate::SwizzleComponent, crate::VectorSize),
#[error(transparent)]
Compose(#[from] super::ComposeError),
#[error(transparent)]
IndexableLength(#[from] IndexableLengthError),
#[error("Operation {0:?} can't work with {1:?}")]
InvalidUnaryOperandType(crate::UnaryOperator, Handle<crate::Expression>),
#[error("Operation {0:?} can't work with {1:?} and {2:?}")]
InvalidBinaryOperandTypes(
crate::BinaryOperator,
Handle<crate::Expression>,
Handle<crate::Expression>,
),
#[error("Selecting is not possible")]
InvalidSelectTypes,
#[error("Relational argument {0:?} is not a boolean vector")]
InvalidBooleanVector(Handle<crate::Expression>),
#[error("Relational argument {0:?} is not a float")]
InvalidFloatArgument(Handle<crate::Expression>),
#[error("Type resolution failed")]
Type(#[from] ResolveError),
#[error("Not a global variable")]
ExpectedGlobalVariable,
#[error("Not a global variable or a function argument")]
ExpectedGlobalOrArgument,
#[error("Calling an undeclared function {0:?}")]
CallToUndeclaredFunction(Handle<crate::Function>),
#[error("Needs to be an binding array instead of {0:?}")]
ExpectedBindingArrayType(Handle<crate::Type>),
#[error("Needs to be an image instead of {0:?}")]
ExpectedImageType(Handle<crate::Type>),
#[error("Needs to be an image instead of {0:?}")]
ExpectedSamplerType(Handle<crate::Type>),
#[error("Unable to operate on image class {0:?}")]
InvalidImageClass(crate::ImageClass),
#[error("Derivatives can only be taken from scalar and vector floats")]
InvalidDerivative,
#[error("Image array index parameter is misplaced")]
InvalidImageArrayIndex,
#[error("Inappropriate sample or level-of-detail index for texel access")]
InvalidImageOtherIndex,
#[error("Image array index type of {0:?} is not an integer scalar")]
InvalidImageArrayIndexType(Handle<crate::Expression>),
#[error("Image sample or level-of-detail index's type of {0:?} is not an integer scalar")]
InvalidImageOtherIndexType(Handle<crate::Expression>),
#[error("Image coordinate type of {1:?} does not match dimension {0:?}")]
InvalidImageCoordinateType(crate::ImageDimension, Handle<crate::Expression>),
#[error("Comparison sampling mismatch: image has class {image:?}, but the sampler is comparison={sampler}, and the reference was provided={has_ref}")]
ComparisonSamplingMismatch {
image: crate::ImageClass,
sampler: bool,
has_ref: bool,
},
#[error("Sample offset constant {1:?} doesn't match the image dimension {0:?}")]
InvalidSampleOffset(crate::ImageDimension, Handle<crate::Constant>),
#[error("Depth reference {0:?} is not a scalar float")]
InvalidDepthReference(Handle<crate::Expression>),
#[error("Depth sample level can only be Auto or Zero")]
InvalidDepthSampleLevel,
#[error("Gather level can only be Zero")]
InvalidGatherLevel,
#[error("Gather component {0:?} doesn't exist in the image")]
InvalidGatherComponent(crate::SwizzleComponent),
#[error("Gather can't be done for image dimension {0:?}")]
InvalidGatherDimension(crate::ImageDimension),
#[error("Sample level (exact) type {0:?} is not a scalar float")]
InvalidSampleLevelExactType(Handle<crate::Expression>),
#[error("Sample level (bias) type {0:?} is not a scalar float")]
InvalidSampleLevelBiasType(Handle<crate::Expression>),
#[error("Sample level (gradient) of {1:?} doesn't match the image dimension {0:?}")]
InvalidSampleLevelGradientType(crate::ImageDimension, Handle<crate::Expression>),
#[error("Unable to cast")]
InvalidCastArgument,
#[error("Invalid argument count for {0:?}")]
WrongArgumentCount(crate::MathFunction),
#[error("Argument [{1}] to {0:?} as expression {2:?} has an invalid type.")]
InvalidArgumentType(crate::MathFunction, u32, Handle<crate::Expression>),
#[error("Atomic result type can't be {0:?} of {1} bytes")]
InvalidAtomicResultType(crate::ScalarKind, crate::Bytes),
#[error("Shader requires capability {0:?}")]
MissingCapabilities(super::Capabilities),
}
#[cfg(feature = "validate")]
struct ExpressionTypeResolver<'a> {
root: Handle<crate::Expression>,
types: &'a UniqueArena<crate::Type>,
info: &'a FunctionInfo,
}
#[cfg(feature = "validate")]
impl<'a> ExpressionTypeResolver<'a> {
fn resolve(
&self,
handle: Handle<crate::Expression>,
) -> Result<&'a crate::TypeInner, ExpressionError> {
if handle < self.root {
Ok(self.info[handle].ty.inner_with(self.types))
} else {
Err(ExpressionError::ForwardDependency(handle))
}
}
}
#[cfg(feature = "validate")]
impl super::Validator {
pub(super) fn validate_expression(
&self,
root: Handle<crate::Expression>,
expression: &crate::Expression,
function: &crate::Function,
module: &crate::Module,
info: &FunctionInfo,
other_infos: &[FunctionInfo],
) -> Result<ShaderStages, ExpressionError> {
use crate::{Expression as E, ScalarKind as Sk, TypeInner as Ti};
let resolver = ExpressionTypeResolver {
root,
types: &module.types,
info,
};
let stages = match *expression {
E::Access { base, index } => {
let base_type = resolver.resolve(base)?;
// See the documentation for `Expression::Access`.
let dynamic_indexing_restricted = match *base_type {
Ti::Vector { .. } => false,
Ti::Matrix { .. } | Ti::Array { .. } => true,
Ti::Pointer { .. }
| Ti::ValuePointer { size: Some(_), .. }
| Ti::BindingArray { .. } => false,
ref other => {
log::error!("Indexing of {:?}", other);
return Err(ExpressionError::InvalidBaseType(base));
}
};
match *resolver.resolve(index)? {
//TODO: only allow one of these
Ti::Scalar {
kind: Sk::Sint | Sk::Uint,
width: _,
} => {}
ref other => {
log::error!("Indexing by {:?}", other);
return Err(ExpressionError::InvalidIndexType(index));
}
}
if dynamic_indexing_restricted
&& function.expressions[index].is_dynamic_index(module)
{
return Err(ExpressionError::IndexMustBeConstant(base));
}
// If we know both the length and the index, we can do the
// bounds check now.
if let crate::proc::IndexableLength::Known(known_length) =
base_type.indexable_length(module)?
{
if let E::Constant(k) = function.expressions[index] {
if let crate::Constant {
// We must treat specializable constants as unknown.
specialization: None,
// Non-scalar indices should have been caught above.
inner: crate::ConstantInner::Scalar { value, .. },
..
} = module.constants[k]
{
match value {
crate::ScalarValue::Uint(u) if u >= known_length as u64 => {
return Err(ExpressionError::IndexOutOfBounds(base, value));
}
crate::ScalarValue::Sint(s)
if s < 0 || s >= known_length as i64 =>
{
return Err(ExpressionError::IndexOutOfBounds(base, value));
}
_ => (),
}
}
}
}
ShaderStages::all()
}
E::AccessIndex { base, index } => {
fn resolve_index_limit(
module: &crate::Module,
top: Handle<crate::Expression>,
ty: &crate::TypeInner,
top_level: bool,
) -> Result<u32, ExpressionError> {
let limit = match *ty {
Ti::Vector { size, .. }
| Ti::ValuePointer {
size: Some(size), ..
} => size as u32,
Ti::Matrix { columns, .. } => columns as u32,
Ti::Array {
size: crate::ArraySize::Constant(handle),
..
} => module.constants[handle].to_array_length().unwrap(),
Ti::Array { .. } | Ti::BindingArray { .. } => !0, // can't statically know, but need run-time checks
Ti::Pointer { base, .. } if top_level => {
resolve_index_limit(module, top, &module.types[base].inner, false)?
}
Ti::Struct { ref members, .. } => members.len() as u32,
ref other => {
log::error!("Indexing of {:?}", other);
return Err(ExpressionError::InvalidBaseType(top));
}
};
Ok(limit)
}
let limit = resolve_index_limit(module, base, resolver.resolve(base)?, true)?;
if index >= limit {
return Err(ExpressionError::IndexOutOfBounds(
base,
crate::ScalarValue::Uint(limit as _),
));
}
ShaderStages::all()
}
E::Constant(handle) => {
let _ = module.constants.try_get(handle)?;
ShaderStages::all()
}
E::Splat { size: _, value } => match *resolver.resolve(value)? {
Ti::Scalar { .. } => ShaderStages::all(),
ref other => {
log::error!("Splat scalar type {:?}", other);
return Err(ExpressionError::InvalidSplatType(value));
}
},
E::Swizzle {
size,
vector,
pattern,
} => {
let vec_size = match *resolver.resolve(vector)? {
Ti::Vector { size: vec_size, .. } => vec_size,
ref other => {
log::error!("Swizzle vector type {:?}", other);
return Err(ExpressionError::InvalidVectorType(vector));
}
};
for &sc in pattern[..size as usize].iter() {
if sc as u8 >= vec_size as u8 {
return Err(ExpressionError::InvalidSwizzleComponent(sc, vec_size));
}
}
ShaderStages::all()
}
E::Compose { ref components, ty } => {
for &handle in components {
if handle >= root {
return Err(ExpressionError::ForwardDependency(handle));
}
}
validate_compose(
ty,
&module.constants,
&module.types,
components.iter().map(|&handle| info[handle].ty.clone()),
)?;
ShaderStages::all()
}
E::FunctionArgument(index) => {
if index >= function.arguments.len() as u32 {
return Err(ExpressionError::FunctionArgumentDoesntExist(index));
}
ShaderStages::all()
}
E::GlobalVariable(handle) => {
let _ = module.global_variables.try_get(handle)?;
ShaderStages::all()
}
E::LocalVariable(handle) => {
let _ = function.local_variables.try_get(handle)?;
ShaderStages::all()
}
E::Load { pointer } => {
match *resolver.resolve(pointer)? {
Ti::Pointer { base, .. }
if self.types[base.index()]
.flags
.contains(TypeFlags::SIZED | TypeFlags::DATA) => {}
Ti::ValuePointer { .. } => {}
ref other => {
log::error!("Loading {:?}", other);
return Err(ExpressionError::InvalidPointerType(pointer));
}
}
ShaderStages::all()
}
E::ImageSample {
image,
sampler,
gather,
coordinate,
array_index,
offset,
level,
depth_ref,
} => {
// check the validity of expressions
let image_ty = match function.expressions[image] {
crate::Expression::GlobalVariable(var_handle) => {
module.global_variables[var_handle].ty
}
crate::Expression::FunctionArgument(i) => function.arguments[i as usize].ty,
crate::Expression::Access { base, .. }
| crate::Expression::AccessIndex { base, .. } => {
match function.expressions[base] {
crate::Expression::GlobalVariable(var_handle) => {
let array_ty = module.global_variables[var_handle].ty;
match module.types[array_ty].inner {
Ti::BindingArray { base, .. } => base,
_ => {
return Err(ExpressionError::ExpectedBindingArrayType(
array_ty,
))
}
}
}
_ => return Err(ExpressionError::ExpectedGlobalVariable),
}
}
_ => return Err(ExpressionError::ExpectedGlobalVariable),
};
let sampler_ty = match function.expressions[sampler] {
crate::Expression::GlobalVariable(var_handle) => {
module.global_variables[var_handle].ty
}
crate::Expression::FunctionArgument(i) => function.arguments[i as usize].ty,
crate::Expression::Access { base, .. }
| crate::Expression::AccessIndex { base, .. } => {
match function.expressions[base] {
crate::Expression::GlobalVariable(var_handle) => {
let array_ty = module.global_variables[var_handle].ty;
match module.types[array_ty].inner {
Ti::BindingArray { base, .. } => base,
_ => {
return Err(ExpressionError::ExpectedBindingArrayType(
array_ty,
))
}
}
}
_ => return Err(ExpressionError::ExpectedGlobalVariable),
}
}
_ => return Err(ExpressionError::ExpectedGlobalVariable),
};
let comparison = match module.types[sampler_ty].inner {
Ti::Sampler { comparison } => comparison,
_ => return Err(ExpressionError::ExpectedSamplerType(sampler_ty)),
};
let (class, dim) = match module.types[image_ty].inner {
Ti::Image {
class,
arrayed,
dim,
} => {
// check the array property
if arrayed != array_index.is_some() {
return Err(ExpressionError::InvalidImageArrayIndex);
}
if let Some(expr) = array_index {
match *resolver.resolve(expr)? {
Ti::Scalar {
kind: Sk::Sint,
width: _,
} => {}
_ => return Err(ExpressionError::InvalidImageArrayIndexType(expr)),
}
}
(class, dim)
}
_ => return Err(ExpressionError::ExpectedImageType(image_ty)),
};
// check sampling and comparison properties
let image_depth = match class {
crate::ImageClass::Sampled {
kind: crate::ScalarKind::Float,
multi: false,
} => false,
crate::ImageClass::Depth { multi: false } => true,
_ => return Err(ExpressionError::InvalidImageClass(class)),
};
if comparison != depth_ref.is_some() || (comparison && !image_depth) {
return Err(ExpressionError::ComparisonSamplingMismatch {
image: class,
sampler: comparison,
has_ref: depth_ref.is_some(),
});
}
// check texture coordinates type
let num_components = match dim {
crate::ImageDimension::D1 => 1,
crate::ImageDimension::D2 => 2,
crate::ImageDimension::D3 | crate::ImageDimension::Cube => 3,
};
match *resolver.resolve(coordinate)? {
Ti::Scalar {
kind: Sk::Float, ..
} if num_components == 1 => {}
Ti::Vector {
size,
kind: Sk::Float,
..
} if size as u32 == num_components => {}
_ => return Err(ExpressionError::InvalidImageCoordinateType(dim, coordinate)),
}
// check constant offset
if let Some(const_handle) = offset {
let good = match module.constants[const_handle].inner {
crate::ConstantInner::Scalar {
width: _,
value: crate::ScalarValue::Sint(_),
} => num_components == 1,
crate::ConstantInner::Scalar { .. } => false,
crate::ConstantInner::Composite { ty, .. } => {
match module.types[ty].inner {
Ti::Vector {
size,
kind: Sk::Sint,
..
} => size as u32 == num_components,
_ => false,
}
}
};
if !good {
return Err(ExpressionError::InvalidSampleOffset(dim, const_handle));
}
}
// check depth reference type
if let Some(expr) = depth_ref {
match *resolver.resolve(expr)? {
Ti::Scalar {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidDepthReference(expr)),
}
match level {
crate::SampleLevel::Auto | crate::SampleLevel::Zero => {}
_ => return Err(ExpressionError::InvalidDepthSampleLevel),
}
}
if let Some(component) = gather {
match dim {
crate::ImageDimension::D2 | crate::ImageDimension::Cube => {}
crate::ImageDimension::D1 | crate::ImageDimension::D3 => {
return Err(ExpressionError::InvalidGatherDimension(dim))
}
};
let max_component = match class {
crate::ImageClass::Depth { .. } => crate::SwizzleComponent::X,
_ => crate::SwizzleComponent::W,
};
if component > max_component {
return Err(ExpressionError::InvalidGatherComponent(component));
}
match level {
crate::SampleLevel::Zero => {}
_ => return Err(ExpressionError::InvalidGatherLevel),
}
}
// check level properties
match level {
crate::SampleLevel::Auto => ShaderStages::FRAGMENT,
crate::SampleLevel::Zero => ShaderStages::all(),
crate::SampleLevel::Exact(expr) => {
match *resolver.resolve(expr)? {
Ti::Scalar {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidSampleLevelExactType(expr)),
}
ShaderStages::all()
}
crate::SampleLevel::Bias(expr) => {
match *resolver.resolve(expr)? {
Ti::Scalar {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidSampleLevelBiasType(expr)),
}
ShaderStages::all()
}
crate::SampleLevel::Gradient { x, y } => {
match *resolver.resolve(x)? {
Ti::Scalar {
kind: Sk::Float, ..
} if num_components == 1 => {}
Ti::Vector {
size,
kind: Sk::Float,
..
} if size as u32 == num_components => {}
_ => {
return Err(ExpressionError::InvalidSampleLevelGradientType(dim, x))
}
}
match *resolver.resolve(y)? {
Ti::Scalar {
kind: Sk::Float, ..
} if num_components == 1 => {}
Ti::Vector {
size,
kind: Sk::Float,
..
} if size as u32 == num_components => {}
_ => {
return Err(ExpressionError::InvalidSampleLevelGradientType(dim, y))
}
}
ShaderStages::all()
}
}
}
E::ImageLoad {
image,
coordinate,
array_index,
sample,
level,
} => {
let ty = match function.expressions[image] {
crate::Expression::GlobalVariable(var_handle) => {
module.global_variables[var_handle].ty
}
crate::Expression::FunctionArgument(i) => function.arguments[i as usize].ty,
crate::Expression::Access { base, .. }
| crate::Expression::AccessIndex { base, .. } => {
match function.expressions[base] {
crate::Expression::GlobalVariable(var_handle) => {
let array_ty = module.global_variables[var_handle].ty;
match module.types[array_ty].inner {
Ti::BindingArray { base, .. } => base,
_ => {
return Err(ExpressionError::ExpectedBindingArrayType(
array_ty,
))
}
}
}
_ => return Err(ExpressionError::ExpectedGlobalVariable),
}
}
_ => return Err(ExpressionError::ExpectedGlobalVariable),
};
match module.types[ty].inner {
Ti::Image {
class,
arrayed,
dim,
} => {
match resolver.resolve(coordinate)?.image_storage_coordinates() {
Some(coord_dim) if coord_dim == dim => {}
_ => {
return Err(ExpressionError::InvalidImageCoordinateType(
dim, coordinate,
))
}
};
if arrayed != array_index.is_some() {
return Err(ExpressionError::InvalidImageArrayIndex);
}
if let Some(expr) = array_index {
match *resolver.resolve(expr)? {
Ti::Scalar {
kind: Sk::Sint,
width: _,
} => {}
_ => return Err(ExpressionError::InvalidImageArrayIndexType(expr)),
}
}
match (sample, class.is_multisampled()) {
(None, false) => {}
(Some(sample), true) => {
if resolver.resolve(sample)?.scalar_kind() != Some(Sk::Sint) {
return Err(ExpressionError::InvalidImageOtherIndexType(
sample,
));
}
}
_ => {
return Err(ExpressionError::InvalidImageOtherIndex);
}
}
match (level, class.is_mipmapped()) {
(None, false) => {}
(Some(level), true) => {
if resolver.resolve(level)?.scalar_kind() != Some(Sk::Sint) {
return Err(ExpressionError::InvalidImageOtherIndexType(level));
}
}
_ => {
return Err(ExpressionError::InvalidImageOtherIndex);
}
}
}
_ => return Err(ExpressionError::ExpectedImageType(ty)),
}
ShaderStages::all()
}
E::ImageQuery { image, query } => {
let ty = match function.expressions[image] {
crate::Expression::GlobalVariable(var_handle) => {
module.global_variables[var_handle].ty
}
crate::Expression::FunctionArgument(i) => function.arguments[i as usize].ty,
crate::Expression::Access { base, .. }
| crate::Expression::AccessIndex { base, .. } => {
match function.expressions[base] {
crate::Expression::GlobalVariable(var_handle) => {
let array_ty = module.global_variables[var_handle].ty;
match module.types[array_ty].inner {
Ti::BindingArray { base, .. } => base,
_ => {
return Err(ExpressionError::ExpectedBindingArrayType(
array_ty,
))
}
}
}
_ => return Err(ExpressionError::ExpectedGlobalVariable),
}
}
_ => return Err(ExpressionError::ExpectedGlobalVariable),
};
match module.types[ty].inner {
Ti::Image { class, arrayed, .. } => {
let good = match query {
crate::ImageQuery::NumLayers => arrayed,
crate::ImageQuery::Size { level: None } => true,
crate::ImageQuery::Size { level: Some(_) }
| crate::ImageQuery::NumLevels => class.is_mipmapped(),
crate::ImageQuery::NumSamples => class.is_multisampled(),
};
if !good {
return Err(ExpressionError::InvalidImageClass(class));
}
}
_ => return Err(ExpressionError::ExpectedImageType(ty)),
}
ShaderStages::all()
}
E::Unary { op, expr } => {
use crate::UnaryOperator as Uo;
let inner = resolver.resolve(expr)?;
match (op, inner.scalar_kind()) {
(_, Some(Sk::Sint | Sk::Bool))
//TODO: restrict Negate for bools?
| (Uo::Negate, Some(Sk::Float))
| (Uo::Not, Some(Sk::Uint)) => {}
other => {
log::error!("Op {:?} kind {:?}", op, other);
return Err(ExpressionError::InvalidUnaryOperandType(op, expr));
}
}
ShaderStages::all()
}
E::Binary { op, left, right } => {
use crate::BinaryOperator as Bo;
let left_inner = resolver.resolve(left)?;
let right_inner = resolver.resolve(right)?;
let good = match op {
Bo::Add | Bo::Subtract => match *left_inner {
Ti::Scalar { kind, .. } | Ti::Vector { kind, .. } => match kind {
Sk::Uint | Sk::Sint | Sk::Float => left_inner == right_inner,
Sk::Bool => false,
},
Ti::Matrix { .. } => left_inner == right_inner,
_ => false,
},
Bo::Divide | Bo::Modulo => match *left_inner {
Ti::Scalar { kind, .. } | Ti::Vector { kind, .. } => match kind {
Sk::Uint | Sk::Sint | Sk::Float => left_inner == right_inner,
Sk::Bool => false,
},
_ => false,
},
Bo::Multiply => {
let kind_match = match left_inner.scalar_kind() {
Some(Sk::Uint | Sk::Sint | Sk::Float) => true,
Some(Sk::Bool) | None => false,
};
let types_match = match (left_inner, right_inner) {
(&Ti::Scalar { kind: kind1, .. }, &Ti::Scalar { kind: kind2, .. })
| (&Ti::Vector { kind: kind1, .. }, &Ti::Scalar { kind: kind2, .. })
| (&Ti::Scalar { kind: kind1, .. }, &Ti::Vector { kind: kind2, .. }) => {
kind1 == kind2
}
(
&Ti::Scalar {
kind: Sk::Float, ..
},
&Ti::Matrix { .. },
)
| (
&Ti::Matrix { .. },
&Ti::Scalar {
kind: Sk::Float, ..
},
) => true,
(
&Ti::Vector {
kind: kind1,
size: size1,
..
},
&Ti::Vector {
kind: kind2,
size: size2,
..
},
) => kind1 == kind2 && size1 == size2,
(
&Ti::Matrix { columns, .. },
&Ti::Vector {
kind: Sk::Float,
size,
..
},
) => columns == size,
(
&Ti::Vector {
kind: Sk::Float,
size,
..
},
&Ti::Matrix { rows, .. },
) => size == rows,
(&Ti::Matrix { columns, .. }, &Ti::Matrix { rows, .. }) => {
columns == rows
}
_ => false,
};
let left_width = match *left_inner {
Ti::Scalar { width, .. }
| Ti::Vector { width, .. }
| Ti::Matrix { width, .. } => width,
_ => 0,
};
let right_width = match *right_inner {
Ti::Scalar { width, .. }
| Ti::Vector { width, .. }
| Ti::Matrix { width, .. } => width,
_ => 0,
};
kind_match && types_match && left_width == right_width
}
Bo::Equal | Bo::NotEqual => left_inner.is_sized() && left_inner == right_inner,
Bo::Less | Bo::LessEqual | Bo::Greater | Bo::GreaterEqual => {
match *left_inner {
Ti::Scalar { kind, .. } | Ti::Vector { kind, .. } => match kind {
Sk::Uint | Sk::Sint | Sk::Float => left_inner == right_inner,
Sk::Bool => false,
},
ref other => {
log::error!("Op {:?} left type {:?}", op, other);
false
}
}
}
Bo::LogicalAnd | Bo::LogicalOr => match *left_inner {
Ti::Scalar { kind: Sk::Bool, .. } | Ti::Vector { kind: Sk::Bool, .. } => {
left_inner == right_inner
}
ref other => {
log::error!("Op {:?} left type {:?}", op, other);
false
}
},
Bo::And | Bo::InclusiveOr => match *left_inner {
Ti::Scalar { kind, .. } | Ti::Vector { kind, .. } => match kind {
Sk::Bool | Sk::Sint | Sk::Uint => left_inner == right_inner,
Sk::Float => false,
},
ref other => {
log::error!("Op {:?} left type {:?}", op, other);
false
}
},
Bo::ExclusiveOr => match *left_inner {
Ti::Scalar { kind, .. } | Ti::Vector { kind, .. } => match kind {
Sk::Sint | Sk::Uint => left_inner == right_inner,
Sk::Bool | Sk::Float => false,
},
ref other => {
log::error!("Op {:?} left type {:?}", op, other);
false
}
},
Bo::ShiftLeft | Bo::ShiftRight => {
let (base_size, base_kind) = match *left_inner {
Ti::Scalar { kind, .. } => (Ok(None), kind),
Ti::Vector { size, kind, .. } => (Ok(Some(size)), kind),
ref other => {
log::error!("Op {:?} base type {:?}", op, other);
(Err(()), Sk::Bool)
}
};
let shift_size = match *right_inner {
Ti::Scalar { kind: Sk::Uint, .. } => Ok(None),
Ti::Vector {
size,
kind: Sk::Uint,
..
} => Ok(Some(size)),
ref other => {
log::error!("Op {:?} shift type {:?}", op, other);
Err(())
}
};
match base_kind {
Sk::Sint | Sk::Uint => base_size.is_ok() && base_size == shift_size,
Sk::Float | Sk::Bool => false,
}
}
};
if !good {
log::error!(
"Left: {:?} of type {:?}",
function.expressions[left],
left_inner
);
log::error!(
"Right: {:?} of type {:?}",
function.expressions[right],
right_inner
);
return Err(ExpressionError::InvalidBinaryOperandTypes(op, left, right));
}
ShaderStages::all()
}
E::Select {
condition,
accept,
reject,
} => {
let accept_inner = resolver.resolve(accept)?;
let reject_inner = resolver.resolve(reject)?;
let condition_good = match *resolver.resolve(condition)? {
Ti::Scalar {
kind: Sk::Bool,
width: _,
} => {
// When `condition` is a single boolean, `accept` and
// `reject` can be vectors or scalars.
match *accept_inner {
Ti::Scalar { .. } | Ti::Vector { .. } => true,
_ => false,
}
}
Ti::Vector {
size,
kind: Sk::Bool,
width: _,
} => match *accept_inner {
Ti::Vector {
size: other_size, ..
} => size == other_size,
_ => false,
},
_ => false,
};
if !condition_good || accept_inner != reject_inner {
return Err(ExpressionError::InvalidSelectTypes);
}
ShaderStages::all()
}
E::Derivative { axis: _, expr } => {
match *resolver.resolve(expr)? {
Ti::Scalar {
kind: Sk::Float, ..
}
| Ti::Vector {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidDerivative),
}
ShaderStages::FRAGMENT
}
E::Relational { fun, argument } => {
use crate::RelationalFunction as Rf;
let argument_inner = resolver.resolve(argument)?;
match fun {
Rf::All | Rf::Any => match *argument_inner {
Ti::Vector { kind: Sk::Bool, .. } => {}
ref other => {
log::error!("All/Any of type {:?}", other);
return Err(ExpressionError::InvalidBooleanVector(argument));
}
},
Rf::IsNan | Rf::IsInf | Rf::IsFinite | Rf::IsNormal => match *argument_inner {
Ti::Scalar {
kind: Sk::Float, ..
}
| Ti::Vector {
kind: Sk::Float, ..
} => {}
ref other => {
log::error!("Float test of type {:?}", other);
return Err(ExpressionError::InvalidFloatArgument(argument));
}
},
}
ShaderStages::all()
}
E::Math {
fun,
arg,
arg1,
arg2,
arg3,
} => {
use crate::MathFunction as Mf;
let arg_ty = resolver.resolve(arg)?;
let arg1_ty = arg1.map(|expr| resolver.resolve(expr)).transpose()?;
let arg2_ty = arg2.map(|expr| resolver.resolve(expr)).transpose()?;
let arg3_ty = arg3.map(|expr| resolver.resolve(expr)).transpose()?;
match fun {
Mf::Abs => {
if arg1_ty.is_some() | arg2_ty.is_some() | arg3_ty.is_some() {
return Err(ExpressionError::WrongArgumentCount(fun));
}
let good = match *arg_ty {
Ti::Scalar { kind, .. } | Ti::Vector { kind, .. } => kind != Sk::Bool,
_ => false,
};
if !good {
return Err(ExpressionError::InvalidArgumentType(fun, 0, arg));
}
}
Mf::Min | Mf::Max => {
let arg1_ty = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), None, None) => ty1,
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
let good = match *arg_ty {
Ti::Scalar { kind, .. } | Ti::Vector { kind, .. } => kind != Sk::Bool,
_ => false,
};
if !good {
return Err(ExpressionError::InvalidArgumentType(fun, 0, arg));
}
if arg1_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
}
Mf::Clamp => {
let (arg1_ty, arg2_ty) = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), Some(ty2), None) => (ty1, ty2),
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
let good = match *arg_ty {
Ti::Scalar { kind, .. } | Ti::Vector { kind, .. } => kind != Sk::Bool,
_ => false,
};
if !good {
return Err(ExpressionError::InvalidArgumentType(fun, 0, arg));
}
if arg1_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
if arg2_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
2,
arg2.unwrap(),
));
}
}
Mf::Cos
| Mf::Cosh
| Mf::Sin
| Mf::Sinh
| Mf::Tan
| Mf::Tanh
| Mf::Acos
| Mf::Asin
| Mf::Atan
| Mf::Asinh
| Mf::Acosh
| Mf::Atanh
| Mf::Radians
| Mf::Degrees
| Mf::Ceil
| Mf::Floor
| Mf::Round
| Mf::Fract
| Mf::Trunc
| Mf::Exp
| Mf::Exp2
| Mf::Log
| Mf::Log2
| Mf::Length
| Mf::Sign
| Mf::Sqrt
| Mf::InverseSqrt => {
if arg1_ty.is_some() | arg2_ty.is_some() | arg3_ty.is_some() {
return Err(ExpressionError::WrongArgumentCount(fun));
}
match *arg_ty {
Ti::Scalar {
kind: Sk::Float, ..
}
| Ti::Vector {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
}
Mf::Atan2 | Mf::Pow | Mf::Distance | Mf::Step => {
let arg1_ty = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), None, None) => ty1,
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
match *arg_ty {
Ti::Scalar {
kind: Sk::Float, ..
}
| Ti::Vector {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
if arg1_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
}
Mf::Modf | Mf::Frexp | Mf::Ldexp => {
let arg1_ty = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), None, None) => ty1,
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
let (size0, width0) = match *arg_ty {
Ti::Scalar {
kind: Sk::Float,
width,
} => (None, width),
Ti::Vector {
kind: Sk::Float,
size,
width,
} => (Some(size), width),
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
};
let good = match *arg1_ty {
Ti::Pointer { base, space: _ } => module.types[base].inner == *arg_ty,
Ti::ValuePointer {
size,
kind: Sk::Float,
width,
space: _,
} => size == size0 && width == width0,
_ => false,
};
if !good {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
}
Mf::Dot => {
let arg1_ty = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), None, None) => ty1,
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
match *arg_ty {
Ti::Vector {
kind: Sk::Float | Sk::Sint | Sk::Uint,
..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
if arg1_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
}
Mf::Outer | Mf::Cross | Mf::Reflect => {
let arg1_ty = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), None, None) => ty1,
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
match *arg_ty {
Ti::Vector {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
if arg1_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
}
Mf::Refract => {
let (arg1_ty, arg2_ty) = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), Some(ty2), None) => (ty1, ty2),
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
match *arg_ty {
Ti::Vector {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
if arg1_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
match (arg_ty, arg2_ty) {
(
&Ti::Vector {
width: vector_width,
..
},
&Ti::Scalar {
width: scalar_width,
kind: Sk::Float,
},
) if vector_width == scalar_width => {}
_ => {
return Err(ExpressionError::InvalidArgumentType(
fun,
2,
arg2.unwrap(),
))
}
}
}
Mf::Normalize => {
if arg1_ty.is_some() | arg2_ty.is_some() | arg3_ty.is_some() {
return Err(ExpressionError::WrongArgumentCount(fun));
}
match *arg_ty {
Ti::Vector {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
}
Mf::FaceForward | Mf::Fma | Mf::SmoothStep => {
let (arg1_ty, arg2_ty) = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), Some(ty2), None) => (ty1, ty2),
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
match *arg_ty {
Ti::Scalar {
kind: Sk::Float, ..
}
| Ti::Vector {
kind: Sk::Float, ..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
if arg1_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
if arg2_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
2,
arg2.unwrap(),
));
}
}
Mf::Mix => {
let (arg1_ty, arg2_ty) = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), Some(ty2), None) => (ty1, ty2),
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
let arg_width = match *arg_ty {
Ti::Scalar {
kind: Sk::Float,
width,
}
| Ti::Vector {
kind: Sk::Float,
width,
..
} => width,
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
};
if arg1_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
// the last argument can always be a scalar
match *arg2_ty {
Ti::Scalar {
kind: Sk::Float,
width,
} if width == arg_width => {}
_ if arg2_ty == arg_ty => {}
_ => {
return Err(ExpressionError::InvalidArgumentType(
fun,
2,
arg2.unwrap(),
));
}
}
}
Mf::Inverse | Mf::Determinant => {
if arg1_ty.is_some() | arg2_ty.is_some() | arg3_ty.is_some() {
return Err(ExpressionError::WrongArgumentCount(fun));
}
let good = match *arg_ty {
Ti::Matrix { columns, rows, .. } => columns == rows,
_ => false,
};
if !good {
return Err(ExpressionError::InvalidArgumentType(fun, 0, arg));
}
}
Mf::Transpose => {
if arg1_ty.is_some() | arg2_ty.is_some() | arg3_ty.is_some() {
return Err(ExpressionError::WrongArgumentCount(fun));
}
match *arg_ty {
Ti::Matrix { .. } => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
}
Mf::CountOneBits | Mf::ReverseBits | Mf::FindLsb | Mf::FindMsb => {
if arg1_ty.is_some() | arg2_ty.is_some() | arg3_ty.is_some() {
return Err(ExpressionError::WrongArgumentCount(fun));
}
match *arg_ty {
Ti::Scalar {
kind: Sk::Sint | Sk::Uint,
..
}
| Ti::Vector {
kind: Sk::Sint | Sk::Uint,
..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
}
Mf::InsertBits => {
let (arg1_ty, arg2_ty, arg3_ty) = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), Some(ty2), Some(ty3)) => (ty1, ty2, ty3),
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
match *arg_ty {
Ti::Scalar {
kind: Sk::Sint | Sk::Uint,
..
}
| Ti::Vector {
kind: Sk::Sint | Sk::Uint,
..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
if arg1_ty != arg_ty {
return Err(ExpressionError::InvalidArgumentType(
fun,
1,
arg1.unwrap(),
));
}
match *arg2_ty {
Ti::Scalar { kind: Sk::Uint, .. } => {}
_ => {
return Err(ExpressionError::InvalidArgumentType(
fun,
2,
arg2.unwrap(),
))
}
}
match *arg3_ty {
Ti::Scalar { kind: Sk::Uint, .. } => {}
_ => {
return Err(ExpressionError::InvalidArgumentType(
fun,
2,
arg3.unwrap(),
))
}
}
}
Mf::ExtractBits => {
let (arg1_ty, arg2_ty) = match (arg1_ty, arg2_ty, arg3_ty) {
(Some(ty1), Some(ty2), None) => (ty1, ty2),
_ => return Err(ExpressionError::WrongArgumentCount(fun)),
};
match *arg_ty {
Ti::Scalar {
kind: Sk::Sint | Sk::Uint,
..
}
| Ti::Vector {
kind: Sk::Sint | Sk::Uint,
..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
match *arg1_ty {
Ti::Scalar { kind: Sk::Uint, .. } => {}
_ => {
return Err(ExpressionError::InvalidArgumentType(
fun,
2,
arg1.unwrap(),
))
}
}
match *arg2_ty {
Ti::Scalar { kind: Sk::Uint, .. } => {}
_ => {
return Err(ExpressionError::InvalidArgumentType(
fun,
2,
arg2.unwrap(),
))
}
}
}
Mf::Pack2x16unorm | Mf::Pack2x16snorm | Mf::Pack2x16float => {
if arg1_ty.is_some() | arg2_ty.is_some() | arg3_ty.is_some() {
return Err(ExpressionError::WrongArgumentCount(fun));
}
match *arg_ty {
Ti::Vector {
size: crate::VectorSize::Bi,
kind: Sk::Float,
..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
}
Mf::Pack4x8snorm | Mf::Pack4x8unorm => {
if arg1_ty.is_some() | arg2_ty.is_some() | arg3_ty.is_some() {
return Err(ExpressionError::WrongArgumentCount(fun));
}
match *arg_ty {
Ti::Vector {
size: crate::VectorSize::Quad,
kind: Sk::Float,
..
} => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
}
Mf::Unpack2x16float
| Mf::Unpack2x16snorm
| Mf::Unpack2x16unorm
| Mf::Unpack4x8snorm
| Mf::Unpack4x8unorm => {
if arg1_ty.is_some() | arg2_ty.is_some() | arg3_ty.is_some() {
return Err(ExpressionError::WrongArgumentCount(fun));
}
match *arg_ty {
Ti::Scalar { kind: Sk::Uint, .. } => {}
_ => return Err(ExpressionError::InvalidArgumentType(fun, 0, arg)),
}
}
}
ShaderStages::all()
}
E::As {
expr,
kind,
convert,
} => {
let base_width = match *resolver.resolve(expr)? {
crate::TypeInner::Scalar { width, .. }
| crate::TypeInner::Vector { width, .. }
| crate::TypeInner::Matrix { width, .. } => width,
_ => return Err(ExpressionError::InvalidCastArgument),
};
let width = convert.unwrap_or(base_width);
if !self.check_width(kind, width) {
return Err(ExpressionError::InvalidCastArgument);
}
ShaderStages::all()
}
E::CallResult(function) => other_infos[function.index()].available_stages,
E::AtomicResult {
kind,
width,
comparison: _,
} => {
let good = match kind {
crate::ScalarKind::Uint | crate::ScalarKind::Sint => {
self.check_width(kind, width)
}
_ => false,
};
if !good {
return Err(ExpressionError::InvalidAtomicResultType(kind, width));
}
ShaderStages::all()
}
E::ArrayLength(expr) => match *resolver.resolve(expr)? {
Ti::Pointer { base, .. } => {
let base_ty = resolver.types.get_handle(base)?;
if let Ti::Array {
size: crate::ArraySize::Dynamic,
..
} = base_ty.inner
{
ShaderStages::all()
} else {
return Err(ExpressionError::InvalidArrayType(expr));
}
}
ref other => {
log::error!("Array length of {:?}", other);
return Err(ExpressionError::InvalidArrayType(expr));
}
},
};
Ok(stages)
}
}