forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			406 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			406 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 | 
						|
 * vim: sw=2 ts=2 et lcs=trail\:.,tab\:>~ :
 | 
						|
 * This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
#include "mozilla/ArrayUtils.h"
 | 
						|
 | 
						|
#include "mozStorageSQLFunctions.h"
 | 
						|
#include "nsUnicharUtils.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
namespace mozilla {
 | 
						|
namespace storage {
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
//// Local Helper Functions
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/**
 | 
						|
 * Performs the LIKE comparison of a string against a pattern.  For more detail
 | 
						|
 * see http://www.sqlite.org/lang_expr.html#like.
 | 
						|
 *
 | 
						|
 * @param aPatternItr
 | 
						|
 *        An iterator at the start of the pattern to check for.
 | 
						|
 * @param aPatternEnd
 | 
						|
 *        An iterator at the end of the pattern to check for.
 | 
						|
 * @param aStringItr
 | 
						|
 *        An iterator at the start of the string to check for the pattern.
 | 
						|
 * @param aStringEnd
 | 
						|
 *        An iterator at the end of the string to check for the pattern.
 | 
						|
 * @param aEscapeChar
 | 
						|
 *        The character to use for escaping symbols in the pattern.
 | 
						|
 * @return 1 if the pattern is found, 0 otherwise.
 | 
						|
 */
 | 
						|
int
 | 
						|
likeCompare(nsAString::const_iterator aPatternItr,
 | 
						|
            nsAString::const_iterator aPatternEnd,
 | 
						|
            nsAString::const_iterator aStringItr,
 | 
						|
            nsAString::const_iterator aStringEnd,
 | 
						|
            char16_t aEscapeChar)
 | 
						|
{
 | 
						|
  const char16_t MATCH_ALL('%');
 | 
						|
  const char16_t MATCH_ONE('_');
 | 
						|
 | 
						|
  bool lastWasEscape = false;
 | 
						|
  while (aPatternItr != aPatternEnd) {
 | 
						|
    /**
 | 
						|
     * What we do in here is take a look at each character from the input
 | 
						|
     * pattern, and do something with it.  There are 4 possibilities:
 | 
						|
     * 1) character is an un-escaped match-all character
 | 
						|
     * 2) character is an un-escaped match-one character
 | 
						|
     * 3) character is an un-escaped escape character
 | 
						|
     * 4) character is not any of the above
 | 
						|
     */
 | 
						|
    if (!lastWasEscape && *aPatternItr == MATCH_ALL) {
 | 
						|
      // CASE 1
 | 
						|
      /**
 | 
						|
       * Now we need to skip any MATCH_ALL or MATCH_ONE characters that follow a
 | 
						|
       * MATCH_ALL character.  For each MATCH_ONE character, skip one character
 | 
						|
       * in the pattern string.
 | 
						|
       */
 | 
						|
      while (*aPatternItr == MATCH_ALL || *aPatternItr == MATCH_ONE) {
 | 
						|
        if (*aPatternItr == MATCH_ONE) {
 | 
						|
          // If we've hit the end of the string we are testing, no match
 | 
						|
          if (aStringItr == aStringEnd)
 | 
						|
            return 0;
 | 
						|
          aStringItr++;
 | 
						|
        }
 | 
						|
        aPatternItr++;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we've hit the end of the pattern string, match
 | 
						|
      if (aPatternItr == aPatternEnd)
 | 
						|
        return 1;
 | 
						|
 | 
						|
      while (aStringItr != aStringEnd) {
 | 
						|
        if (likeCompare(aPatternItr, aPatternEnd, aStringItr, aStringEnd,
 | 
						|
                        aEscapeChar)) {
 | 
						|
          // we've hit a match, so indicate this
 | 
						|
          return 1;
 | 
						|
        }
 | 
						|
        aStringItr++;
 | 
						|
      }
 | 
						|
 | 
						|
      // No match
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    else if (!lastWasEscape && *aPatternItr == MATCH_ONE) {
 | 
						|
      // CASE 2
 | 
						|
      if (aStringItr == aStringEnd) {
 | 
						|
        // If we've hit the end of the string we are testing, no match
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
      aStringItr++;
 | 
						|
      lastWasEscape = false;
 | 
						|
    }
 | 
						|
    else if (!lastWasEscape && *aPatternItr == aEscapeChar) {
 | 
						|
      // CASE 3
 | 
						|
      lastWasEscape = true;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // CASE 4
 | 
						|
      if (::ToUpperCase(*aStringItr) != ::ToUpperCase(*aPatternItr)) {
 | 
						|
        // If we've hit a point where the strings don't match, there is no match
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
      aStringItr++;
 | 
						|
      lastWasEscape = false;
 | 
						|
    }
 | 
						|
 | 
						|
    aPatternItr++;
 | 
						|
  }
 | 
						|
 | 
						|
  return aStringItr == aStringEnd;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Compute the Levenshtein Edit Distance between two strings.
 | 
						|
 *
 | 
						|
 * @param aStringS
 | 
						|
 *        a string
 | 
						|
 * @param aStringT
 | 
						|
 *        another string
 | 
						|
 * @param _result
 | 
						|
 *        an outparam that will receive the edit distance between the arguments
 | 
						|
 * @return a Sqlite result code, e.g. SQLITE_OK, SQLITE_NOMEM, etc.
 | 
						|
 */
 | 
						|
int
 | 
						|
levenshteinDistance(const nsAString &aStringS,
 | 
						|
                    const nsAString &aStringT,
 | 
						|
                    int *_result)
 | 
						|
{
 | 
						|
    // Set the result to a non-sensical value in case we encounter an error.
 | 
						|
    *_result = -1;
 | 
						|
 | 
						|
    const uint32_t sLen = aStringS.Length();
 | 
						|
    const uint32_t tLen = aStringT.Length();
 | 
						|
 | 
						|
    if (sLen == 0) {
 | 
						|
      *_result = tLen;
 | 
						|
      return SQLITE_OK;
 | 
						|
    }
 | 
						|
    if (tLen == 0) {
 | 
						|
      *_result = sLen;
 | 
						|
      return SQLITE_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    // Notionally, Levenshtein Distance is computed in a matrix.  If we
 | 
						|
    // assume s = "span" and t = "spam", the matrix would look like this:
 | 
						|
    //    s -->
 | 
						|
    //  t          s   p   a   n
 | 
						|
    //  |      0   1   2   3   4
 | 
						|
    //  V  s   1   *   *   *   *
 | 
						|
    //     p   2   *   *   *   *
 | 
						|
    //     a   3   *   *   *   *
 | 
						|
    //     m   4   *   *   *   *
 | 
						|
    //
 | 
						|
    // Note that the row width is sLen + 1 and the column height is tLen + 1,
 | 
						|
    // where sLen is the length of the string "s" and tLen is the length of "t".
 | 
						|
    // The first row and the first column are initialized as shown, and
 | 
						|
    // the algorithm computes the remaining cells row-by-row, and
 | 
						|
    // left-to-right within each row.  The computation only requires that
 | 
						|
    // we be able to see the current row and the previous one.
 | 
						|
 | 
						|
    // Allocate memory for two rows.
 | 
						|
    AutoTArray<int, nsAutoString::kStorageSize> row1;
 | 
						|
    AutoTArray<int, nsAutoString::kStorageSize> row2;
 | 
						|
 | 
						|
    // Declare the raw pointers that will actually be used to access the memory.
 | 
						|
    int *prevRow = row1.AppendElements(sLen + 1);
 | 
						|
    int *currRow = row2.AppendElements(sLen + 1);
 | 
						|
 | 
						|
    // Initialize the first row.
 | 
						|
    for (uint32_t i = 0; i <= sLen; i++)
 | 
						|
        prevRow[i] = i;
 | 
						|
 | 
						|
    const char16_t *s = aStringS.BeginReading();
 | 
						|
    const char16_t *t = aStringT.BeginReading();
 | 
						|
 | 
						|
    // Compute the empty cells in the "matrix" row-by-row, starting with
 | 
						|
    // the second row.
 | 
						|
    for (uint32_t ti = 1; ti <= tLen; ti++) {
 | 
						|
 | 
						|
        // Initialize the first cell in this row.
 | 
						|
        currRow[0] = ti;
 | 
						|
 | 
						|
        // Get the character from "t" that corresponds to this row.
 | 
						|
        const char16_t tch = t[ti - 1];
 | 
						|
 | 
						|
        // Compute the remaining cells in this row, left-to-right,
 | 
						|
        // starting at the second column (and first character of "s").
 | 
						|
        for (uint32_t si = 1; si <= sLen; si++) {
 | 
						|
 | 
						|
            // Get the character from "s" that corresponds to this column,
 | 
						|
            // compare it to the t-character, and compute the "cost".
 | 
						|
            const char16_t sch = s[si - 1];
 | 
						|
            int cost = (sch == tch) ? 0 : 1;
 | 
						|
 | 
						|
            // ............ We want to calculate the value of cell "d" from
 | 
						|
            // ...ab....... the previously calculated (or initialized) cells
 | 
						|
            // ...cd....... "a", "b", and "c", where d = min(a', b', c').
 | 
						|
            // ............
 | 
						|
            int aPrime = prevRow[si - 1] + cost;
 | 
						|
            int bPrime = prevRow[si] + 1;
 | 
						|
            int cPrime = currRow[si - 1] + 1;
 | 
						|
            currRow[si] = std::min(aPrime, std::min(bPrime, cPrime));
 | 
						|
        }
 | 
						|
 | 
						|
        // Advance to the next row.  The current row becomes the previous
 | 
						|
        // row and we recycle the old previous row as the new current row.
 | 
						|
        // We don't need to re-initialize the new current row since we will
 | 
						|
        // rewrite all of its cells anyway.
 | 
						|
        int *oldPrevRow = prevRow;
 | 
						|
        prevRow = currRow;
 | 
						|
        currRow = oldPrevRow;
 | 
						|
    }
 | 
						|
 | 
						|
    // The final result is the value of the last cell in the last row.
 | 
						|
    // Note that that's now in the "previous" row, since we just swapped them.
 | 
						|
    *_result = prevRow[sLen];
 | 
						|
    return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
// This struct is used only by registerFunctions below, but ISO C++98 forbids
 | 
						|
// instantiating a template dependent on a locally-defined type.  Boo-urns!
 | 
						|
struct Functions {
 | 
						|
  const char *zName;
 | 
						|
  int nArg;
 | 
						|
  int enc;
 | 
						|
  void *pContext;
 | 
						|
  void (*xFunc)(::sqlite3_context*, int, sqlite3_value**);
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
//// Exposed Functions
 | 
						|
 | 
						|
int
 | 
						|
registerFunctions(sqlite3 *aDB)
 | 
						|
{
 | 
						|
  Functions functions[] = {
 | 
						|
    {"lower",
 | 
						|
      1,
 | 
						|
      SQLITE_UTF16,
 | 
						|
      0,
 | 
						|
      caseFunction},
 | 
						|
    {"lower",
 | 
						|
      1,
 | 
						|
      SQLITE_UTF8,
 | 
						|
      0,
 | 
						|
      caseFunction},
 | 
						|
    {"upper",
 | 
						|
      1,
 | 
						|
      SQLITE_UTF16,
 | 
						|
      (void*)1,
 | 
						|
      caseFunction},
 | 
						|
    {"upper",
 | 
						|
      1,
 | 
						|
      SQLITE_UTF8,
 | 
						|
      (void*)1,
 | 
						|
      caseFunction},
 | 
						|
 | 
						|
    {"like",
 | 
						|
      2,
 | 
						|
      SQLITE_UTF16,
 | 
						|
      0,
 | 
						|
      likeFunction},
 | 
						|
    {"like",
 | 
						|
      2,
 | 
						|
      SQLITE_UTF8,
 | 
						|
      0,
 | 
						|
      likeFunction},
 | 
						|
    {"like",
 | 
						|
      3,
 | 
						|
      SQLITE_UTF16,
 | 
						|
      0,
 | 
						|
      likeFunction},
 | 
						|
    {"like",
 | 
						|
      3,
 | 
						|
      SQLITE_UTF8,
 | 
						|
      0,
 | 
						|
      likeFunction},
 | 
						|
 | 
						|
    {"levenshteinDistance",
 | 
						|
      2,
 | 
						|
      SQLITE_UTF16,
 | 
						|
      0,
 | 
						|
      levenshteinDistanceFunction},
 | 
						|
    {"levenshteinDistance",
 | 
						|
      2,
 | 
						|
      SQLITE_UTF8,
 | 
						|
      0,
 | 
						|
      levenshteinDistanceFunction},
 | 
						|
  };
 | 
						|
 | 
						|
  int rv = SQLITE_OK;
 | 
						|
  for (size_t i = 0; SQLITE_OK == rv && i < ArrayLength(functions); ++i) {
 | 
						|
    struct Functions *p = &functions[i];
 | 
						|
    rv = ::sqlite3_create_function(aDB, p->zName, p->nArg, p->enc, p->pContext,
 | 
						|
                                   p->xFunc, nullptr, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  return rv;
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
//// SQL Functions
 | 
						|
 | 
						|
void
 | 
						|
caseFunction(sqlite3_context *aCtx,
 | 
						|
             int aArgc,
 | 
						|
             sqlite3_value **aArgv)
 | 
						|
{
 | 
						|
  NS_ASSERTION(1 == aArgc, "Invalid number of arguments!");
 | 
						|
 | 
						|
  nsAutoString data(static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[0])));
 | 
						|
  bool toUpper = ::sqlite3_user_data(aCtx) ? true : false;
 | 
						|
 | 
						|
  if (toUpper)
 | 
						|
    ::ToUpperCase(data);
 | 
						|
  else
 | 
						|
    ::ToLowerCase(data);
 | 
						|
 | 
						|
  // Set the result.
 | 
						|
  ::sqlite3_result_text16(aCtx, data.get(), -1, SQLITE_TRANSIENT);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * This implements the like() SQL function.  This is used by the LIKE operator.
 | 
						|
 * The SQL statement 'A LIKE B' is implemented as 'like(B, A)', and if there is
 | 
						|
 * an escape character, say E, it is implemented as 'like(B, A, E)'.
 | 
						|
 */
 | 
						|
void
 | 
						|
likeFunction(sqlite3_context *aCtx,
 | 
						|
             int aArgc,
 | 
						|
             sqlite3_value **aArgv)
 | 
						|
{
 | 
						|
  NS_ASSERTION(2 == aArgc || 3 == aArgc, "Invalid number of arguments!");
 | 
						|
 | 
						|
  if (::sqlite3_value_bytes(aArgv[0]) > SQLITE_MAX_LIKE_PATTERN_LENGTH) {
 | 
						|
    ::sqlite3_result_error(aCtx, "LIKE or GLOB pattern too complex",
 | 
						|
                           SQLITE_TOOBIG);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!::sqlite3_value_text16(aArgv[0]) || !::sqlite3_value_text16(aArgv[1]))
 | 
						|
    return;
 | 
						|
 | 
						|
  nsDependentString A(static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[1])));
 | 
						|
  nsDependentString B(static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[0])));
 | 
						|
  NS_ASSERTION(!B.IsEmpty(), "LIKE string must not be null!");
 | 
						|
 | 
						|
  char16_t E = 0;
 | 
						|
  if (3 == aArgc)
 | 
						|
    E = static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[2]))[0];
 | 
						|
 | 
						|
  nsAString::const_iterator itrString, endString;
 | 
						|
  A.BeginReading(itrString);
 | 
						|
  A.EndReading(endString);
 | 
						|
  nsAString::const_iterator itrPattern, endPattern;
 | 
						|
  B.BeginReading(itrPattern);
 | 
						|
  B.EndReading(endPattern);
 | 
						|
  ::sqlite3_result_int(aCtx, likeCompare(itrPattern, endPattern, itrString,
 | 
						|
                                         endString, E));
 | 
						|
}
 | 
						|
 | 
						|
void levenshteinDistanceFunction(sqlite3_context *aCtx,
 | 
						|
                                 int aArgc,
 | 
						|
                                 sqlite3_value **aArgv)
 | 
						|
{
 | 
						|
  NS_ASSERTION(2 == aArgc, "Invalid number of arguments!");
 | 
						|
 | 
						|
  // If either argument is a SQL NULL, then return SQL NULL.
 | 
						|
  if (::sqlite3_value_type(aArgv[0]) == SQLITE_NULL ||
 | 
						|
      ::sqlite3_value_type(aArgv[1]) == SQLITE_NULL) {
 | 
						|
    ::sqlite3_result_null(aCtx);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  int aLen = ::sqlite3_value_bytes16(aArgv[0]) / sizeof(char16_t);
 | 
						|
  const char16_t *a = static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[0]));
 | 
						|
 | 
						|
  int bLen = ::sqlite3_value_bytes16(aArgv[1]) / sizeof(char16_t);
 | 
						|
  const char16_t *b = static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[1]));
 | 
						|
 | 
						|
  // Compute the Levenshtein Distance, and return the result (or error).
 | 
						|
  int distance = -1;
 | 
						|
  const nsDependentString A(a, aLen);
 | 
						|
  const nsDependentString B(b, bLen);
 | 
						|
  int status = levenshteinDistance(A, B, &distance);
 | 
						|
  if (status == SQLITE_OK) {
 | 
						|
    ::sqlite3_result_int(aCtx, distance);
 | 
						|
  }
 | 
						|
  else if (status == SQLITE_NOMEM) {
 | 
						|
    ::sqlite3_result_error_nomem(aCtx);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    ::sqlite3_result_error(aCtx, "User function returned error code", -1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // namespace storage
 | 
						|
} // namespace mozilla
 |