forked from mirrors/gecko-dev
		
	This patch was generated automatically by the "modeline.py" script, available here: https://github.com/amccreight/moz-source-tools/blob/master/modeline.py For every file that is modified in this patch, the changes are as follows: (1) The patch changes the file to use the exact C++ mode lines from the Mozilla coding style guide, available here: https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style#Mode_Line (2) The patch deletes any blank lines between the mode line & the MPL boilerplate comment. (3) If the file previously had the mode lines and MPL boilerplate in a single contiguous C++ comment, then the patch splits them into separate C++ comments, to match the boilerplate in the coding style. MozReview-Commit-ID: 77D61xpSmIl --HG-- extra : rebase_source : c6162fa3cf539a07177a19838324bf368faa162b
		
			
				
	
	
		
			121 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			121 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | 
						|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | 
						|
/* This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
#include "AxisPhysicsModel.h"
 | 
						|
 | 
						|
namespace mozilla {
 | 
						|
namespace layers {
 | 
						|
 | 
						|
/**
 | 
						|
 * The simulation is advanced forward in time with a fixed time step to ensure
 | 
						|
 * that it remains deterministic given variable framerates.  To determine the
 | 
						|
 * position at any variable time, two samples are interpolated.
 | 
						|
 *
 | 
						|
 * kFixedtimestep is set to 120hz in order to ensure that every frame in a
 | 
						|
 * common 60hz refresh rate display will have at least one physics simulation
 | 
						|
 * sample.  More accuracy can be obtained by reducing kFixedTimestep to smaller
 | 
						|
 * intervals, such as 240hz or 1000hz, at the cost of more CPU cycles.  If
 | 
						|
 * kFixedTimestep is increased to much longer intervals, interpolation will
 | 
						|
 * become less effective at reducing temporal jitter and the simulation will
 | 
						|
 * lose accuracy.
 | 
						|
 */
 | 
						|
const double AxisPhysicsModel::kFixedTimestep = 1.0 / 120.0; // 120hz
 | 
						|
 | 
						|
/**
 | 
						|
 * Constructs an AxisPhysicsModel with initial values for state.
 | 
						|
 *
 | 
						|
 * @param aInitialPosition sets the initial position of the simulation,
 | 
						|
 *        in AppUnits.
 | 
						|
 * @param aInitialVelocity sets the initial velocity of the simulation,
 | 
						|
 *        in AppUnits / second.
 | 
						|
 */
 | 
						|
AxisPhysicsModel::AxisPhysicsModel(double aInitialPosition,
 | 
						|
                                   double aInitialVelocity)
 | 
						|
  : mProgress(1.0)
 | 
						|
  , mPrevState(aInitialPosition, aInitialVelocity)
 | 
						|
  , mNextState(aInitialPosition, aInitialVelocity)
 | 
						|
{
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
AxisPhysicsModel::~AxisPhysicsModel()
 | 
						|
{
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
AxisPhysicsModel::GetVelocity() const
 | 
						|
{
 | 
						|
  return LinearInterpolate(mPrevState.v, mNextState.v, mProgress);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
AxisPhysicsModel::GetPosition() const
 | 
						|
{
 | 
						|
  return LinearInterpolate(mPrevState.p, mNextState.p, mProgress);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
AxisPhysicsModel::SetVelocity(double aVelocity)
 | 
						|
{
 | 
						|
  mNextState.v = aVelocity;
 | 
						|
  mNextState.p = GetPosition();
 | 
						|
  mProgress = 1.0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
AxisPhysicsModel::SetPosition(double aPosition)
 | 
						|
{
 | 
						|
  mNextState.v = GetVelocity();
 | 
						|
  mNextState.p = aPosition;
 | 
						|
  mProgress = 1.0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
AxisPhysicsModel::Simulate(const TimeDuration& aDeltaTime)
 | 
						|
{
 | 
						|
  for(mProgress += aDeltaTime.ToSeconds() / kFixedTimestep;
 | 
						|
      mProgress > 1.0; mProgress -= 1.0) {
 | 
						|
    Integrate(kFixedTimestep);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
AxisPhysicsModel::Integrate(double aDeltaTime)
 | 
						|
{
 | 
						|
  mPrevState = mNextState;
 | 
						|
 | 
						|
  // RK4 (Runge-Kutta method) Integration
 | 
						|
  // http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
 | 
						|
  Derivative a = Evaluate( mNextState, 0.0, Derivative() );
 | 
						|
  Derivative b = Evaluate( mNextState, aDeltaTime * 0.5, a );
 | 
						|
  Derivative c = Evaluate( mNextState, aDeltaTime * 0.5, b );
 | 
						|
  Derivative d = Evaluate( mNextState, aDeltaTime, c );
 | 
						|
 | 
						|
  double dpdt = 1.0 / 6.0 * (a.dp + 2.0 * (b.dp + c.dp) + d.dp);
 | 
						|
  double dvdt = 1.0 / 6.0 * (a.dv + 2.0 * (b.dv + c.dv) + d.dv);
 | 
						|
 | 
						|
  mNextState.p += dpdt * aDeltaTime;
 | 
						|
  mNextState.v += dvdt * aDeltaTime;
 | 
						|
}
 | 
						|
 | 
						|
AxisPhysicsModel::Derivative
 | 
						|
AxisPhysicsModel::Evaluate(const State &aInitState, double aDeltaTime,
 | 
						|
                           const Derivative &aDerivative)
 | 
						|
{
 | 
						|
  State state( aInitState.p + aDerivative.dp*aDeltaTime, aInitState.v + aDerivative.dv*aDeltaTime );
 | 
						|
 | 
						|
  return Derivative( state.v, Acceleration(state) );
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
AxisPhysicsModel::LinearInterpolate(double aV1, double aV2, double aBlend)
 | 
						|
{
 | 
						|
  return aV1 * (1.0 - aBlend) + aV2 * aBlend;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace layers
 | 
						|
} // namespace mozilla
 |