fune/dom/media/MediaInfo.h
Iulian Moraru 8869ba4cf1 Backed out 25 changesets (bug 1858958, bug 1859536, bug 1749044) for causing multiple build bustages on GleanMetricsBinding.cpp. CLOSED TREE
Backed out changeset ef3fdc0aff0b (bug 1749044)
Backed out changeset 1a7064c0b046 (bug 1749044)
Backed out changeset cfeaef572769 (bug 1749044)
Backed out changeset 3c961124ae96 (bug 1749044)
Backed out changeset 9fc353b8689f (bug 1749044)
Backed out changeset b8ef52c64b38 (bug 1749044)
Backed out changeset 4a4df823adf4 (bug 1749044)
Backed out changeset 6236dad2f515 (bug 1749044)
Backed out changeset fb81fa706f77 (bug 1858958)
Backed out changeset 82415829c98e (bug 1749044)
Backed out changeset 604de77ebdb0 (bug 1749044)
Backed out changeset 2766ff1803eb (bug 1749044)
Backed out changeset 51a9560dca83 (bug 1749044)
Backed out changeset 2cc1feaa4278 (bug 1749044)
Backed out changeset c41a5aac3192 (bug 1858958)
Backed out changeset db5ccbbdbbee (bug 1859536)
Backed out changeset 8b9076bc479a (bug 1859536)
Backed out changeset 27b465fe92a3 (bug 1858958)
Backed out changeset 9aa8c8ed1ff7 (bug 1858958)
Backed out changeset 94c203600f2c (bug 1858958)
Backed out changeset 8f0d8d45d132 (bug 1858958)
Backed out changeset eb8c734baad4 (bug 1858958)
Backed out changeset c5b578de93bc (bug 1858958)
Backed out changeset 5e6e4e89d29f (bug 1858958)
Backed out changeset b76bd797f69d (bug 1858958)
2024-03-06 14:15:50 +02:00

752 lines
25 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if !defined(MediaInfo_h)
# define MediaInfo_h
# include "mozilla/UniquePtr.h"
# include "mozilla/RefPtr.h"
# include "mozilla/Variant.h"
# include "nsTHashMap.h"
# include "nsString.h"
# include "nsTArray.h"
# include "AudioConfig.h"
# include "ImageTypes.h"
# include "MediaData.h"
# include "TimeUnits.h"
# include "mozilla/gfx/Point.h" // for gfx::IntSize
# include "mozilla/gfx/Rect.h" // for gfx::IntRect
# include "mozilla/gfx/Types.h" // for gfx::ColorDepth
namespace mozilla {
class AudioInfo;
class VideoInfo;
class TextInfo;
class MetadataTag {
public:
MetadataTag(const nsACString& aKey, const nsACString& aValue)
: mKey(aKey), mValue(aValue) {}
nsCString mKey;
nsCString mValue;
bool operator==(const MetadataTag& rhs) const {
return mKey == rhs.mKey && mValue == rhs.mValue;
}
};
using MetadataTags = nsTHashMap<nsCStringHashKey, nsCString>;
// Start codec specific data structs. If modifying these remember to also
// modify the MediaIPCUtils so that any new members are sent across IPC.
// Generic types, we should prefer a specific type when we can.
// Generic empty type. Prefer to use a specific type but not populate members
// if possible, as that helps with type checking.
struct NoCodecSpecificData {
bool operator==(const NoCodecSpecificData& rhs) const { return true; }
};
// Generic binary blob type. Prefer not to use this structure. It's here to ease
// the transition to codec specific structures in the code.
struct AudioCodecSpecificBinaryBlob {
bool operator==(const AudioCodecSpecificBinaryBlob& rhs) const {
return *mBinaryBlob == *rhs.mBinaryBlob;
}
RefPtr<MediaByteBuffer> mBinaryBlob{new MediaByteBuffer};
};
// End generic types.
// Audio codec specific data types.
struct AacCodecSpecificData {
bool operator==(const AacCodecSpecificData& rhs) const {
return *mEsDescriptorBinaryBlob == *rhs.mEsDescriptorBinaryBlob &&
*mDecoderConfigDescriptorBinaryBlob ==
*rhs.mDecoderConfigDescriptorBinaryBlob;
}
// An explanation for the necessity of handling the encoder delay and the
// padding is available here:
// https://developer.apple.com/library/archive/documentation/QuickTime/QTFF/QTFFAppenG/QTFFAppenG.html
// The number of frames that should be skipped from the beginning of the
// decoded stream.
uint32_t mEncoderDelayFrames{0};
// The total number of frames of the media, that is, excluding the encoder
// delay and the padding of the last packet, that must be discarded.
uint64_t mMediaFrameCount{0};
// The bytes of the ES_Descriptor field parsed out of esds box. We store
// this as a blob as some decoders want this.
RefPtr<MediaByteBuffer> mEsDescriptorBinaryBlob{new MediaByteBuffer};
// The bytes of the DecoderConfigDescriptor field within the parsed
// ES_Descriptor. This is a subset of the ES_Descriptor, so it is technically
// redundant to store both. However, some decoders expect this binary blob
// instead of the whole ES_Descriptor, so both are stored for convenience
// and clarity (rather than reparsing the ES_Descriptor).
// TODO(bug 1768562): use a Span to track this rather than duplicating data.
RefPtr<MediaByteBuffer> mDecoderConfigDescriptorBinaryBlob{
new MediaByteBuffer};
};
struct FlacCodecSpecificData {
bool operator==(const FlacCodecSpecificData& rhs) const {
return *mStreamInfoBinaryBlob == *rhs.mStreamInfoBinaryBlob;
}
// A binary blob of the data from the METADATA_BLOCK_STREAMINFO block
// in the flac header.
// See https://xiph.org/flac/format.html#metadata_block_streaminfo
// Consumers of this data (ffmpeg) take a blob, so we don't parse the data,
// just store the blob. For headerless flac files this will be left empty.
RefPtr<MediaByteBuffer> mStreamInfoBinaryBlob{new MediaByteBuffer};
};
struct Mp3CodecSpecificData {
bool operator==(const Mp3CodecSpecificData& rhs) const {
return mEncoderDelayFrames == rhs.mEncoderDelayFrames &&
mEncoderPaddingFrames == rhs.mEncoderPaddingFrames;
}
// The number of frames that should be skipped from the beginning of the
// decoded stream.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=1566389 for more info.
uint32_t mEncoderDelayFrames{0};
// The number of frames that should be skipped from the end of the decoded
// stream.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=1566389 for more info.
uint32_t mEncoderPaddingFrames{0};
};
struct OpusCodecSpecificData {
bool operator==(const OpusCodecSpecificData& rhs) const {
return mContainerCodecDelayFrames == rhs.mContainerCodecDelayFrames &&
*mHeadersBinaryBlob == *rhs.mHeadersBinaryBlob;
}
// The codec delay (aka pre-skip) in audio frames.
// See https://tools.ietf.org/html/rfc7845#section-4.2 for more info.
// This member should store the codec delay parsed from the container file.
// In some cases (such as the ogg container), this information is derived
// from the same headers stored in the header blob, making storing this
// separately redundant. However, other containers store the delay in
// addition to the header blob, in which case we can check this container
// delay against the header delay to ensure they're consistent.
int64_t mContainerCodecDelayFrames{-1};
// A binary blob of opus header data, specifically the Identification Header.
// See https://datatracker.ietf.org/doc/html/rfc7845.html#section-5.1
RefPtr<MediaByteBuffer> mHeadersBinaryBlob{new MediaByteBuffer};
};
struct VorbisCodecSpecificData {
bool operator==(const VorbisCodecSpecificData& rhs) const {
return *mHeadersBinaryBlob == *rhs.mHeadersBinaryBlob;
}
// A binary blob of headers in the 'extradata' format (the format ffmpeg
// expects for packing the extradata field). This is also the format some
// containers use for storing the data. Specifically, this format consists of
// the page_segments field, followed by the segment_table field, followed by
// the three Vorbis header packets, respectively the identification header,
// the comments header, and the setup header, in that order.
// See also https://xiph.org/vorbis/doc/framing.html and
// https://xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-610004.2
RefPtr<MediaByteBuffer> mHeadersBinaryBlob{new MediaByteBuffer};
};
struct WaveCodecSpecificData {
bool operator==(const WaveCodecSpecificData& rhs) const { return true; }
// Intentionally empty. We don't store any wave specific data, but this
// variant is useful for type checking.
};
using AudioCodecSpecificVariant =
mozilla::Variant<NoCodecSpecificData, AudioCodecSpecificBinaryBlob,
AacCodecSpecificData, FlacCodecSpecificData,
Mp3CodecSpecificData, OpusCodecSpecificData,
VorbisCodecSpecificData, WaveCodecSpecificData>;
// Returns a binary blob representation of the AudioCodecSpecificVariant. This
// does not guarantee that a binary representation exists. Will return an empty
// buffer if no representation exists. Prefer `GetAudioCodecSpecificBlob` which
// asserts if getting a blob is unexpected for a given codec config.
inline already_AddRefed<MediaByteBuffer> ForceGetAudioCodecSpecificBlob(
const AudioCodecSpecificVariant& v) {
return v.match(
[](const NoCodecSpecificData&) {
return RefPtr<MediaByteBuffer>(new MediaByteBuffer).forget();
},
[](const AudioCodecSpecificBinaryBlob& binaryBlob) {
return RefPtr<MediaByteBuffer>(binaryBlob.mBinaryBlob).forget();
},
[](const AacCodecSpecificData& aacData) {
// We return the mDecoderConfigDescriptor blob here, as it is more
// commonly used by decoders at time of writing than the
// ES_Descriptor data. However, consumers of this data should
// prefer getting one or the other specifically, rather than
// calling this.
return RefPtr<MediaByteBuffer>(
aacData.mDecoderConfigDescriptorBinaryBlob)
.forget();
},
[](const FlacCodecSpecificData& flacData) {
return RefPtr<MediaByteBuffer>(flacData.mStreamInfoBinaryBlob).forget();
},
[](const Mp3CodecSpecificData&) {
return RefPtr<MediaByteBuffer>(new MediaByteBuffer).forget();
},
[](const OpusCodecSpecificData& opusData) {
return RefPtr<MediaByteBuffer>(opusData.mHeadersBinaryBlob).forget();
},
[](const VorbisCodecSpecificData& vorbisData) {
return RefPtr<MediaByteBuffer>(vorbisData.mHeadersBinaryBlob).forget();
},
[](const WaveCodecSpecificData&) {
return RefPtr<MediaByteBuffer>(new MediaByteBuffer).forget();
});
}
// Same as `ForceGetAudioCodecSpecificBlob` but with extra asserts to ensure
// we're not trying to get a binary blob from codecs where we don't store the
// information as a blob or where a blob is ambiguous.
inline already_AddRefed<MediaByteBuffer> GetAudioCodecSpecificBlob(
const AudioCodecSpecificVariant& v) {
MOZ_ASSERT(!v.is<NoCodecSpecificData>(),
"NoCodecSpecificData shouldn't be used as a blob");
MOZ_ASSERT(!v.is<AacCodecSpecificData>(),
"AacCodecSpecificData has 2 blobs internally, one should "
"explicitly be selected");
MOZ_ASSERT(!v.is<Mp3CodecSpecificData>(),
"Mp3CodecSpecificData shouldn't be used as a blob");
return ForceGetAudioCodecSpecificBlob(v);
}
// End audio codec specific data types.
// End codec specific data structs.
class TrackInfo {
public:
enum TrackType { kUndefinedTrack, kAudioTrack, kVideoTrack, kTextTrack };
TrackInfo(TrackType aType, const nsAString& aId, const nsAString& aKind,
const nsAString& aLabel, const nsAString& aLanguage, bool aEnabled,
uint32_t aTrackId)
: mId(aId),
mKind(aKind),
mLabel(aLabel),
mLanguage(aLanguage),
mEnabled(aEnabled),
mTrackId(aTrackId),
mIsRenderedExternally(false),
mType(aType) {
MOZ_COUNT_CTOR(TrackInfo);
}
// Only used for backward compatibility. Do not use in new code.
void Init(const nsAString& aId, const nsAString& aKind,
const nsAString& aLabel, const nsAString& aLanguage,
bool aEnabled) {
mId = aId;
mKind = aKind;
mLabel = aLabel;
mLanguage = aLanguage;
mEnabled = aEnabled;
}
// Fields common with MediaTrack object.
nsString mId;
nsString mKind;
nsString mLabel;
nsString mLanguage;
bool mEnabled;
uint32_t mTrackId;
nsCString mMimeType;
media::TimeUnit mDuration;
media::TimeUnit mMediaTime;
uint32_t mTimeScale = 0;
CryptoTrack mCrypto;
CopyableTArray<MetadataTag> mTags;
// True if the track is gonna be (decrypted)/decoded and
// rendered directly by non-gecko components.
bool mIsRenderedExternally;
virtual AudioInfo* GetAsAudioInfo() { return nullptr; }
virtual VideoInfo* GetAsVideoInfo() { return nullptr; }
virtual TextInfo* GetAsTextInfo() { return nullptr; }
virtual const AudioInfo* GetAsAudioInfo() const { return nullptr; }
virtual const VideoInfo* GetAsVideoInfo() const { return nullptr; }
virtual const TextInfo* GetAsTextInfo() const { return nullptr; }
bool IsAudio() const { return !!GetAsAudioInfo(); }
bool IsVideo() const { return !!GetAsVideoInfo(); }
bool IsText() const { return !!GetAsTextInfo(); }
TrackType GetType() const { return mType; }
nsCString ToString() const;
bool virtual IsValid() const = 0;
virtual UniquePtr<TrackInfo> Clone() const = 0;
MOZ_COUNTED_DTOR_VIRTUAL(TrackInfo)
protected:
TrackInfo(const TrackInfo& aOther) {
mId = aOther.mId;
mKind = aOther.mKind;
mLabel = aOther.mLabel;
mLanguage = aOther.mLanguage;
mEnabled = aOther.mEnabled;
mTrackId = aOther.mTrackId;
mMimeType = aOther.mMimeType;
mDuration = aOther.mDuration;
mMediaTime = aOther.mMediaTime;
mCrypto = aOther.mCrypto;
mIsRenderedExternally = aOther.mIsRenderedExternally;
mType = aOther.mType;
mTags = aOther.mTags.Clone();
MOZ_COUNT_CTOR(TrackInfo);
}
bool IsEqualTo(const TrackInfo& rhs) const;
private:
TrackType mType;
};
// String version of track type.
const char* TrackTypeToStr(TrackInfo::TrackType aTrack);
enum class VideoRotation {
kDegree_0 = 0,
kDegree_90 = 90,
kDegree_180 = 180,
kDegree_270 = 270,
};
// Stores info relevant to presenting media frames.
class VideoInfo : public TrackInfo {
public:
VideoInfo() : VideoInfo(-1, -1) {}
VideoInfo(int32_t aWidth, int32_t aHeight)
: VideoInfo(gfx::IntSize(aWidth, aHeight)) {}
explicit VideoInfo(const gfx::IntSize& aSize)
: TrackInfo(kVideoTrack, u"2"_ns, u"main"_ns, u""_ns, u""_ns, true, 2),
mDisplay(aSize),
mStereoMode(StereoMode::MONO),
mImage(aSize),
mCodecSpecificConfig(new MediaByteBuffer),
mExtraData(new MediaByteBuffer),
mRotation(VideoRotation::kDegree_0) {}
VideoInfo(const VideoInfo& aOther) = default;
bool operator==(const VideoInfo& rhs) const;
bool IsValid() const override {
return mDisplay.width > 0 && mDisplay.height > 0;
}
VideoInfo* GetAsVideoInfo() override { return this; }
const VideoInfo* GetAsVideoInfo() const override { return this; }
UniquePtr<TrackInfo> Clone() const override {
return MakeUnique<VideoInfo>(*this);
}
void SetAlpha(bool aAlphaPresent) { mAlphaPresent = aAlphaPresent; }
bool HasAlpha() const { return mAlphaPresent; }
gfx::IntRect ImageRect() const {
if (!mImageRect) {
return gfx::IntRect(0, 0, mImage.width, mImage.height);
}
return *mImageRect;
}
void SetImageRect(const gfx::IntRect& aRect) { mImageRect = Some(aRect); }
void ResetImageRect() { mImageRect.reset(); }
// Returned the crop rectangle scaled to aWidth/aHeight size relative to
// mImage size.
// If aWidth and aHeight are identical to the original
// mImage.width/mImage.height then the scaling ratio will be 1. This is used
// for when the frame size is different from what the container reports. This
// is legal in WebM, and we will preserve the ratio of the crop rectangle as
// it was reported relative to the picture size reported by the container.
gfx::IntRect ScaledImageRect(int64_t aWidth, int64_t aHeight) const {
if ((aWidth == mImage.width && aHeight == mImage.height) || !mImage.width ||
!mImage.height) {
return ImageRect();
}
gfx::IntRect imageRect = ImageRect();
int64_t w = (aWidth * imageRect.Width()) / mImage.width;
int64_t h = (aHeight * imageRect.Height()) / mImage.height;
if (!w || !h) {
return imageRect;
}
imageRect.x = AssertedCast<int>((imageRect.x * aWidth) / mImage.width);
imageRect.y = AssertedCast<int>((imageRect.y * aHeight) / mImage.height);
imageRect.SetWidth(AssertedCast<int>(w));
imageRect.SetHeight(AssertedCast<int>(h));
return imageRect;
}
VideoRotation ToSupportedRotation(int32_t aDegree) const {
switch (aDegree) {
case 90:
return VideoRotation::kDegree_90;
case 180:
return VideoRotation::kDegree_180;
case 270:
return VideoRotation::kDegree_270;
default:
NS_WARNING_ASSERTION(aDegree == 0, "Invalid rotation degree, ignored");
return VideoRotation::kDegree_0;
}
}
nsString ToString() const {
std::array YUVColorSpaceStrings = {"BT601", "BT709", "BT2020", "Identity",
"Default"};
std::array ColorDepthStrings = {
"COLOR_8",
"COLOR_10",
"COLOR_12",
"COLOR_16",
};
std::array TransferFunctionStrings = {
"BT709",
"SRGB",
"PQ",
"HLG",
};
std::array ColorRangeStrings = {
"LIMITED",
"FULL",
};
std::array ColorPrimariesStrings = {"Display",
"UNKNOWN"
"SRGB",
"DISPLAY_P3",
"BT601_525",
"BT709",
"BT601_625"
"BT709",
"BT2020"};
nsString rv;
rv.AppendLiteral(u"VideoInfo: ");
rv.AppendPrintf("display size: %dx%d ", mDisplay.Width(),
mDisplay.Height());
rv.AppendPrintf("stereo mode: %d", static_cast<int>(mStereoMode));
rv.AppendPrintf("image size: %dx%d ", mImage.Width(), mImage.Height());
if (mCodecSpecificConfig) {
rv.AppendPrintf("codec specific config: %zu bytes",
mCodecSpecificConfig->Length());
}
if (mExtraData) {
rv.AppendPrintf("extra data: %zu bytes", mExtraData->Length());
}
rv.AppendPrintf("rotation: %d", static_cast<int>(mRotation));
rv.AppendPrintf("colors: %s", ColorDepthStrings[static_cast<int>(mColorDepth)]);
if (mColorSpace) {
rv.AppendPrintf(
"YUV colorspace: %s ",
YUVColorSpaceStrings[static_cast<int>(mColorSpace.value())]);
}
if (mColorPrimaries) {
rv.AppendPrintf(
"color primaries: %s ",
ColorPrimariesStrings[static_cast<int>(mColorPrimaries.value())]);
}
if (mTransferFunction) {
rv.AppendPrintf(
"transfer function %s ",
TransferFunctionStrings[static_cast<int>(mTransferFunction.value())]);
}
rv.AppendPrintf("color range: %s", ColorRangeStrings[static_cast<int>(mColorRange)]);
if (mImageRect) {
rv.AppendPrintf("image rect: %dx%d", mImageRect->Width(),
mImageRect->Height());
}
rv.AppendPrintf("alpha present: %s", mAlphaPresent ? "true" : "false");
if (mFrameRate) {
rv.AppendPrintf("frame rate: %dHz", mFrameRate.value());
}
return rv;
}
// Size in pixels at which the video is rendered. This is after it has
// been scaled by its aspect ratio.
gfx::IntSize mDisplay;
// Indicates the frame layout for single track stereo videos.
StereoMode mStereoMode;
// Size of the decoded video's image.
gfx::IntSize mImage;
RefPtr<MediaByteBuffer> mCodecSpecificConfig;
RefPtr<MediaByteBuffer> mExtraData;
// Describing how many degrees video frames should be rotated in clock-wise to
// get correct view.
VideoRotation mRotation;
// Should be 8, 10 or 12. Default value is 8.
gfx::ColorDepth mColorDepth = gfx::ColorDepth::COLOR_8;
// Matrix coefficients (if specified by the video) imply a colorspace.
Maybe<gfx::YUVColorSpace> mColorSpace;
// Color primaries are independent from the coefficients.
Maybe<gfx::ColorSpace2> mColorPrimaries;
// Transfer functions get their own member, which may not be strongly
// correlated to the colorspace.
Maybe<gfx::TransferFunction> mTransferFunction;
// True indicates no restriction on Y, U, V values (otherwise 16-235 for 8
// bits etc)
gfx::ColorRange mColorRange = gfx::ColorRange::LIMITED;
Maybe<int32_t> GetFrameRate() const { return mFrameRate; }
void SetFrameRate(int32_t aRate) { mFrameRate = Some(aRate); }
private:
friend struct IPC::ParamTraits<VideoInfo>;
// mImage may be cropped; currently only used with the WebM container.
// If unset, no cropping is to occur.
Maybe<gfx::IntRect> mImageRect;
// Indicates whether or not frames may contain alpha information.
bool mAlphaPresent = false;
Maybe<int32_t> mFrameRate;
};
class AudioInfo : public TrackInfo {
public:
AudioInfo()
: TrackInfo(kAudioTrack, u"1"_ns, u"main"_ns, u""_ns, u""_ns, true, 1),
mRate(0),
mChannels(0),
mChannelMap(AudioConfig::ChannelLayout::UNKNOWN_MAP),
mBitDepth(0),
mProfile(0),
mExtendedProfile(0) {}
AudioInfo(const AudioInfo& aOther) = default;
bool operator==(const AudioInfo& rhs) const;
static const uint32_t MAX_RATE = 640000;
static const uint32_t MAX_CHANNEL_COUNT = 256;
bool IsValid() const override {
return mChannels > 0 && mChannels <= MAX_CHANNEL_COUNT && mRate > 0 &&
mRate <= MAX_RATE;
}
AudioInfo* GetAsAudioInfo() override { return this; }
const AudioInfo* GetAsAudioInfo() const override { return this; }
nsCString ToString() const;
UniquePtr<TrackInfo> Clone() const override {
return MakeUnique<AudioInfo>(*this);
}
// Sample rate.
uint32_t mRate;
// Number of audio channels.
uint32_t mChannels;
// The AudioConfig::ChannelLayout map. Channels are ordered as per SMPTE
// definition. A value of UNKNOWN_MAP indicates unknown layout.
// ChannelMap is an unsigned bitmap compatible with Windows' WAVE and FFmpeg
// channel map.
AudioConfig::ChannelLayout::ChannelMap mChannelMap;
// Bits per sample.
uint32_t mBitDepth;
// Codec profile.
uint8_t mProfile;
// Extended codec profile.
uint8_t mExtendedProfile;
AudioCodecSpecificVariant mCodecSpecificConfig{NoCodecSpecificData{}};
};
class EncryptionInfo {
public:
EncryptionInfo() : mEncrypted(false) {}
struct InitData {
template <typename AInitDatas>
InitData(const nsAString& aType, AInitDatas&& aInitData)
: mType(aType), mInitData(std::forward<AInitDatas>(aInitData)) {}
// Encryption type to be passed to JS. Usually `cenc'.
nsString mType;
// Encryption data.
CopyableTArray<uint8_t> mInitData;
};
using InitDatas = CopyableTArray<InitData>;
// True if the stream has encryption metadata
bool IsEncrypted() const { return mEncrypted; }
void Reset() {
mEncrypted = false;
mInitDatas.Clear();
}
template <typename AInitDatas>
void AddInitData(const nsAString& aType, AInitDatas&& aInitData) {
mInitDatas.AppendElement(
InitData(aType, std::forward<AInitDatas>(aInitData)));
mEncrypted = true;
}
void AddInitData(const EncryptionInfo& aInfo) {
mInitDatas.AppendElements(aInfo.mInitDatas);
mEncrypted = !!mInitDatas.Length();
}
// One 'InitData' per encrypted buffer.
InitDatas mInitDatas;
private:
bool mEncrypted;
};
class MediaInfo {
public:
bool HasVideo() const { return mVideo.IsValid(); }
void EnableVideo() {
if (HasVideo()) {
return;
}
// Set dummy values so that HasVideo() will return true;
// See VideoInfo::IsValid()
mVideo.mDisplay = gfx::IntSize(1, 1);
}
bool HasAudio() const { return mAudio.IsValid(); }
void EnableAudio() {
if (HasAudio()) {
return;
}
// Set dummy values so that HasAudio() will return true;
// See AudioInfo::IsValid()
mAudio.mChannels = 2;
mAudio.mRate = 44100;
}
bool IsEncrypted() const {
return (HasAudio() && mAudio.mCrypto.IsEncrypted()) ||
(HasVideo() && mVideo.mCrypto.IsEncrypted());
}
bool HasValidMedia() const { return HasVideo() || HasAudio(); }
// TODO: Store VideoInfo and AudioIndo in arrays to support multi-tracks.
VideoInfo mVideo;
AudioInfo mAudio;
// If the metadata includes a duration, we store it here.
media::NullableTimeUnit mMetadataDuration;
// The Ogg reader tries to kinda-sorta compute the duration by seeking to the
// end and determining the timestamp of the last frame. This isn't useful as
// a duration until we know the start time, so we need to track it separately.
media::NullableTimeUnit mUnadjustedMetadataEndTime;
// True if the media is seekable (i.e. supports random access).
bool mMediaSeekable = true;
// True if the media is only seekable within its buffered ranges.
bool mMediaSeekableOnlyInBufferedRanges = false;
EncryptionInfo mCrypto;
// The minimum of start times of audio and video tracks.
// Use to map the zero time on the media timeline to the first frame.
media::TimeUnit mStartTime;
};
class TrackInfoSharedPtr {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(TrackInfoSharedPtr)
public:
TrackInfoSharedPtr(const TrackInfo& aOriginal, uint32_t aStreamID)
: mInfo(aOriginal.Clone()),
mStreamSourceID(aStreamID),
mMimeType(mInfo->mMimeType) {}
uint32_t GetID() const { return mStreamSourceID; }
operator const TrackInfo*() const { return mInfo.get(); }
const TrackInfo* operator*() const { return mInfo.get(); }
const TrackInfo* operator->() const {
MOZ_ASSERT(mInfo.get(), "dereferencing a UniquePtr containing nullptr");
return mInfo.get();
}
const AudioInfo* GetAsAudioInfo() const {
return mInfo ? mInfo->GetAsAudioInfo() : nullptr;
}
const VideoInfo* GetAsVideoInfo() const {
return mInfo ? mInfo->GetAsVideoInfo() : nullptr;
}
const TextInfo* GetAsTextInfo() const {
return mInfo ? mInfo->GetAsTextInfo() : nullptr;
}
private:
~TrackInfoSharedPtr() = default;
UniquePtr<TrackInfo> mInfo;
// A unique ID, guaranteed to change when changing streams.
uint32_t mStreamSourceID;
public:
const nsCString& mMimeType;
};
} // namespace mozilla
#endif // MediaInfo_h