fune/layout/generic/nsIFrame.cpp
Emilio Cobos Álvarez 9e530f224a Bug 1811834 - Clean up nsWidgetInitData. r=cmartin,geckoview-reviewers,calu
Move it to the mozilla::widget namespace.

Use enum classes for transparency, popup type, popup level, etc.

Mostly automated with sed, but there were a few manual changes required
as well in windows code because they relied on Atomic<TransparencyMode>
working (which now doesn't because TransparencyMode is 1 byte instead of
4 bytes).

Differential Revision: https://phabricator.services.mozilla.com/D167537
2023-01-23 23:58:41 +00:00

13012 lines
472 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* base class of all rendering objects */
#include "nsIFrame.h"
#include <stdarg.h>
#include <algorithm>
#include "gfx2DGlue.h"
#include "gfxUtils.h"
#include "mozilla/Attributes.h"
#include "mozilla/ComputedStyle.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/DisplayPortUtils.h"
#include "mozilla/dom/CSSAnimation.h"
#include "mozilla/dom/CSSTransition.h"
#include "mozilla/dom/ContentVisibilityAutoStateChangeEvent.h"
#include "mozilla/dom/DocumentInlines.h"
#include "mozilla/dom/AncestorIterator.h"
#include "mozilla/dom/ElementInlines.h"
#include "mozilla/dom/ImageTracker.h"
#include "mozilla/dom/Selection.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/PathHelpers.h"
#include "mozilla/intl/BidiEmbeddingLevel.h"
#include "mozilla/Maybe.h"
#include "mozilla/PresShell.h"
#include "mozilla/PresShellInlines.h"
#include "mozilla/ResultExtensions.h"
#include "mozilla/Sprintf.h"
#include "mozilla/StaticAnalysisFunctions.h"
#include "mozilla/StaticPrefs_layout.h"
#include "mozilla/StaticPrefs_print.h"
#include "mozilla/SVGMaskFrame.h"
#include "mozilla/SVGObserverUtils.h"
#include "mozilla/SVGTextFrame.h"
#include "mozilla/SVGIntegrationUtils.h"
#include "mozilla/SVGUtils.h"
#include "mozilla/ToString.h"
#include "mozilla/ViewportUtils.h"
#include "nsCOMPtr.h"
#include "nsFieldSetFrame.h"
#include "nsFlexContainerFrame.h"
#include "nsFocusManager.h"
#include "nsFrameList.h"
#include "nsPlaceholderFrame.h"
#include "nsIBaseWindow.h"
#include "nsIContent.h"
#include "nsIContentInlines.h"
#include "nsContentUtils.h"
#include "nsCSSFrameConstructor.h"
#include "nsCSSProps.h"
#include "nsCSSPseudoElements.h"
#include "nsCSSRendering.h"
#include "nsAtom.h"
#include "nsString.h"
#include "nsReadableUtils.h"
#include "nsTableWrapperFrame.h"
#include "nsView.h"
#include "nsViewManager.h"
#include "nsIScrollableFrame.h"
#include "nsPresContext.h"
#include "nsPresContextInlines.h"
#include "nsStyleConsts.h"
#include "mozilla/Logging.h"
#include "nsLayoutUtils.h"
#include "LayoutLogging.h"
#include "mozilla/RestyleManager.h"
#include "nsImageFrame.h"
#include "nsInlineFrame.h"
#include "nsFrameSelection.h"
#include "nsGkAtoms.h"
#include "nsGridContainerFrame.h"
#include "nsCSSAnonBoxes.h"
#include "nsCanvasFrame.h"
#include "nsFieldSetFrame.h"
#include "nsFrameTraversal.h"
#include "nsRange.h"
#include "nsITextControlFrame.h"
#include "nsNameSpaceManager.h"
#include "nsIPercentBSizeObserver.h"
#include "nsStyleStructInlines.h"
#include "nsBidiPresUtils.h"
#include "RubyUtils.h"
#include "TextOverflow.h"
#include "nsAnimationManager.h"
// For triple-click pref
#include "imgIRequest.h"
#include "nsError.h"
#include "nsContainerFrame.h"
#include "nsBoxLayoutState.h"
#include "nsBlockFrame.h"
#include "nsDisplayList.h"
#include "nsChangeHint.h"
#include "nsSubDocumentFrame.h"
#include "RetainedDisplayListBuilder.h"
#include "gfxContext.h"
#include "nsAbsoluteContainingBlock.h"
#include "ScrollSnap.h"
#include "StickyScrollContainer.h"
#include "nsFontInflationData.h"
#include "nsRegion.h"
#include "nsIFrameInlines.h"
#include "nsStyleChangeList.h"
#include "nsWindowSizes.h"
#ifdef ACCESSIBILITY
# include "nsAccessibilityService.h"
#endif
#include "mozilla/AsyncEventDispatcher.h"
#include "mozilla/CSSClipPathInstance.h"
#include "mozilla/EffectCompositor.h"
#include "mozilla/EffectSet.h"
#include "mozilla/EventListenerManager.h"
#include "mozilla/EventStateManager.h"
#include "mozilla/Preferences.h"
#include "mozilla/LookAndFeel.h"
#include "mozilla/MouseEvents.h"
#include "mozilla/ServoStyleSet.h"
#include "mozilla/ServoStyleSetInlines.h"
#include "mozilla/css/ImageLoader.h"
#include "mozilla/dom/HTMLBodyElement.h"
#include "mozilla/dom/SVGPathData.h"
#include "mozilla/dom/TouchEvent.h"
#include "mozilla/gfx/Tools.h"
#include "mozilla/layers/WebRenderUserData.h"
#include "mozilla/layout/ScrollAnchorContainer.h"
#include "nsPrintfCString.h"
#include "ActiveLayerTracker.h"
#include "nsITheme.h"
using namespace mozilla;
using namespace mozilla::css;
using namespace mozilla::dom;
using namespace mozilla::gfx;
using namespace mozilla::layers;
using namespace mozilla::layout;
typedef nsAbsoluteContainingBlock::AbsPosReflowFlags AbsPosReflowFlags;
using nsStyleTransformMatrix::TransformReferenceBox;
const mozilla::LayoutFrameType nsIFrame::sLayoutFrameTypes[
#define FRAME_ID(...) 1 +
#define ABSTRACT_FRAME_ID(...)
#include "mozilla/FrameIdList.h"
#undef FRAME_ID
#undef ABSTRACT_FRAME_ID
0] = {
#define FRAME_ID(class_, type_, ...) mozilla::LayoutFrameType::type_,
#define ABSTRACT_FRAME_ID(...)
#include "mozilla/FrameIdList.h"
#undef FRAME_ID
#undef ABSTRACT_FRAME_ID
};
const nsIFrame::FrameClassBits nsIFrame::sFrameClassBits[
#define FRAME_ID(...) 1 +
#define ABSTRACT_FRAME_ID(...)
#include "mozilla/FrameIdList.h"
#undef FRAME_ID
#undef ABSTRACT_FRAME_ID
0] = {
#define Leaf eFrameClassBitsLeaf
#define NotLeaf eFrameClassBitsNone
#define DynamicLeaf eFrameClassBitsDynamicLeaf
#define FRAME_ID(class_, type_, leaf_, ...) leaf_,
#define ABSTRACT_FRAME_ID(...)
#include "mozilla/FrameIdList.h"
#undef Leaf
#undef NotLeaf
#undef DynamicLeaf
#undef FRAME_ID
#undef ABSTRACT_FRAME_ID
};
// Struct containing cached metrics for box-wrapped frames.
struct nsBoxLayoutMetrics {
nsSize mPrefSize;
nsSize mMinSize;
nsSize mMaxSize;
nsSize mBlockMinSize;
nsSize mBlockPrefSize;
nscoord mBlockAscent;
nscoord mAscent;
nsSize mLastSize;
};
struct nsContentAndOffset {
nsIContent* mContent = nullptr;
int32_t mOffset = 0;
};
// Some Misc #defines
#define SELECTION_DEBUG 0
#define FORCE_SELECTION_UPDATE 1
#define CALC_DEBUG 0
#include "nsILineIterator.h"
#include "prenv.h"
NS_DECLARE_FRAME_PROPERTY_DELETABLE(BoxMetricsProperty, nsBoxLayoutMetrics)
static void InitBoxMetrics(nsIFrame* aFrame, bool aClear) {
if (aClear) {
aFrame->RemoveProperty(BoxMetricsProperty());
}
nsBoxLayoutMetrics* metrics = new nsBoxLayoutMetrics();
aFrame->SetProperty(BoxMetricsProperty(), metrics);
aFrame->nsIFrame::MarkIntrinsicISizesDirty();
metrics->mBlockAscent = 0;
metrics->mLastSize.SizeTo(0, 0);
}
// Utility function to set a nsRect-valued property table entry on aFrame,
// reusing the existing storage if the property happens to be already set.
template <typename T>
static void SetOrUpdateRectValuedProperty(
nsIFrame* aFrame, FrameProperties::Descriptor<T> aProperty,
const nsRect& aNewValue) {
bool found;
nsRect* rectStorage = aFrame->GetProperty(aProperty, &found);
if (!found) {
rectStorage = new nsRect(aNewValue);
aFrame->AddProperty(aProperty, rectStorage);
} else {
*rectStorage = aNewValue;
}
}
static bool IsXULBoxWrapped(const nsIFrame* aFrame) {
return aFrame->GetParent() && aFrame->GetParent()->IsXULBoxFrame() &&
!aFrame->IsXULBoxFrame();
}
/* static */
void nsIFrame::DestroyAnonymousContent(
nsPresContext* aPresContext, already_AddRefed<nsIContent>&& aContent) {
if (nsCOMPtr<nsIContent> content = aContent) {
aPresContext->EventStateManager()->NativeAnonymousContentRemoved(content);
aPresContext->PresShell()->NativeAnonymousContentRemoved(content);
content->UnbindFromTree();
}
}
// Formerly the nsIFrameDebug interface
std::ostream& operator<<(std::ostream& aStream, const nsReflowStatus& aStatus) {
char complete = 'Y';
if (aStatus.IsIncomplete()) {
complete = 'N';
} else if (aStatus.IsOverflowIncomplete()) {
complete = 'O';
}
char brk = 'N';
if (aStatus.IsInlineBreakBefore()) {
brk = 'B';
} else if (aStatus.IsInlineBreakAfter()) {
brk = 'A';
}
aStream << "["
<< "Complete=" << complete << ","
<< "NIF=" << (aStatus.NextInFlowNeedsReflow() ? 'Y' : 'N') << ","
<< "Break=" << brk << ","
<< "FirstLetter=" << (aStatus.FirstLetterComplete() ? 'Y' : 'N')
<< "]";
return aStream;
}
#ifdef DEBUG
/**
* Note: the log module is created during library initialization which
* means that you cannot perform logging before then.
*/
mozilla::LazyLogModule nsIFrame::sFrameLogModule("frame");
#endif
NS_DECLARE_FRAME_PROPERTY_DELETABLE(AbsoluteContainingBlockProperty,
nsAbsoluteContainingBlock)
bool nsIFrame::HasAbsolutelyPositionedChildren() const {
return IsAbsoluteContainer() &&
GetAbsoluteContainingBlock()->HasAbsoluteFrames();
}
nsAbsoluteContainingBlock* nsIFrame::GetAbsoluteContainingBlock() const {
NS_ASSERTION(IsAbsoluteContainer(),
"The frame is not marked as an abspos container correctly");
nsAbsoluteContainingBlock* absCB =
GetProperty(AbsoluteContainingBlockProperty());
NS_ASSERTION(absCB,
"The frame is marked as an abspos container but doesn't have "
"the property");
return absCB;
}
void nsIFrame::MarkAsAbsoluteContainingBlock() {
MOZ_ASSERT(HasAnyStateBits(NS_FRAME_CAN_HAVE_ABSPOS_CHILDREN));
NS_ASSERTION(!GetProperty(AbsoluteContainingBlockProperty()),
"Already has an abs-pos containing block property?");
NS_ASSERTION(!HasAnyStateBits(NS_FRAME_HAS_ABSPOS_CHILDREN),
"Already has NS_FRAME_HAS_ABSPOS_CHILDREN state bit?");
AddStateBits(NS_FRAME_HAS_ABSPOS_CHILDREN);
SetProperty(AbsoluteContainingBlockProperty(),
new nsAbsoluteContainingBlock(GetAbsoluteListID()));
}
void nsIFrame::MarkAsNotAbsoluteContainingBlock() {
NS_ASSERTION(!HasAbsolutelyPositionedChildren(), "Think of the children!");
NS_ASSERTION(GetProperty(AbsoluteContainingBlockProperty()),
"Should have an abs-pos containing block property");
NS_ASSERTION(HasAnyStateBits(NS_FRAME_HAS_ABSPOS_CHILDREN),
"Should have NS_FRAME_HAS_ABSPOS_CHILDREN state bit");
MOZ_ASSERT(HasAnyStateBits(NS_FRAME_CAN_HAVE_ABSPOS_CHILDREN));
RemoveStateBits(NS_FRAME_HAS_ABSPOS_CHILDREN);
RemoveProperty(AbsoluteContainingBlockProperty());
}
bool nsIFrame::CheckAndClearPaintedState() {
bool result = HasAnyStateBits(NS_FRAME_PAINTED_THEBES);
RemoveStateBits(NS_FRAME_PAINTED_THEBES);
for (const auto& childList : ChildLists()) {
for (nsIFrame* child : childList.mList) {
if (child->CheckAndClearPaintedState()) {
result = true;
}
}
}
return result;
}
bool nsIFrame::CheckAndClearDisplayListState() {
bool result = BuiltDisplayList();
SetBuiltDisplayList(false);
for (const auto& childList : ChildLists()) {
for (nsIFrame* child : childList.mList) {
if (child->CheckAndClearDisplayListState()) {
result = true;
}
}
}
return result;
}
bool nsIFrame::IsVisibleConsideringAncestors(uint32_t aFlags) const {
if (!StyleVisibility()->IsVisible()) {
return false;
}
if (PresShell()->IsUnderHiddenEmbedderElement()) {
return false;
}
const nsIFrame* frame = this;
while (frame) {
nsView* view = frame->GetView();
if (view && view->GetVisibility() == ViewVisibility::Hide) {
return false;
}
if (frame->StyleUIReset()->mMozSubtreeHiddenOnlyVisually) {
return false;
}
// This method is used to determine if a frame is focusable, because it's
// called by nsIFrame::IsFocusable. `content-visibility: auto` should not
// force this frame to be unfocusable, so we only take into account
// `content-visibility: hidden` here.
if (this != frame &&
frame->HidesContent(IncludeContentVisibility::Hidden)) {
return false;
}
if (nsIFrame* parent = frame->GetParent()) {
frame = parent;
} else {
parent = nsLayoutUtils::GetCrossDocParentFrameInProcess(frame);
if (!parent) break;
if ((aFlags & nsIFrame::VISIBILITY_CROSS_CHROME_CONTENT_BOUNDARY) == 0 &&
parent->PresContext()->IsChrome() &&
!frame->PresContext()->IsChrome()) {
break;
}
frame = parent;
}
}
return true;
}
void nsIFrame::FindCloserFrameForSelection(
const nsPoint& aPoint, FrameWithDistance* aCurrentBestFrame) {
if (nsLayoutUtils::PointIsCloserToRect(aPoint, mRect,
aCurrentBestFrame->mXDistance,
aCurrentBestFrame->mYDistance)) {
aCurrentBestFrame->mFrame = this;
}
}
void nsIFrame::ElementStateChanged(mozilla::dom::ElementState aStates) {}
void WeakFrame::Clear(mozilla::PresShell* aPresShell) {
if (aPresShell) {
aPresShell->RemoveWeakFrame(this);
}
mFrame = nullptr;
}
AutoWeakFrame::AutoWeakFrame(const WeakFrame& aOther)
: mPrev(nullptr), mFrame(nullptr) {
Init(aOther.GetFrame());
}
void AutoWeakFrame::Clear(mozilla::PresShell* aPresShell) {
if (aPresShell) {
aPresShell->RemoveAutoWeakFrame(this);
}
mFrame = nullptr;
mPrev = nullptr;
}
AutoWeakFrame::~AutoWeakFrame() {
Clear(mFrame ? mFrame->PresContext()->GetPresShell() : nullptr);
}
void AutoWeakFrame::Init(nsIFrame* aFrame) {
Clear(mFrame ? mFrame->PresContext()->GetPresShell() : nullptr);
mFrame = aFrame;
if (mFrame) {
mozilla::PresShell* presShell = mFrame->PresContext()->GetPresShell();
NS_WARNING_ASSERTION(presShell, "Null PresShell in AutoWeakFrame!");
if (presShell) {
presShell->AddAutoWeakFrame(this);
} else {
mFrame = nullptr;
}
}
}
void WeakFrame::Init(nsIFrame* aFrame) {
Clear(mFrame ? mFrame->PresContext()->GetPresShell() : nullptr);
mFrame = aFrame;
if (mFrame) {
mozilla::PresShell* presShell = mFrame->PresContext()->GetPresShell();
MOZ_ASSERT(presShell, "Null PresShell in WeakFrame!");
if (presShell) {
presShell->AddWeakFrame(this);
} else {
mFrame = nullptr;
}
}
}
nsIFrame* NS_NewEmptyFrame(PresShell* aPresShell, ComputedStyle* aStyle) {
return new (aPresShell) nsIFrame(aStyle, aPresShell->GetPresContext());
}
nsIFrame::~nsIFrame() {
MOZ_COUNT_DTOR(nsIFrame);
MOZ_ASSERT(GetVisibility() != Visibility::ApproximatelyVisible,
"Visible nsFrame is being destroyed");
}
NS_IMPL_FRAMEARENA_HELPERS(nsIFrame)
// Dummy operator delete. Will never be called, but must be defined
// to satisfy some C++ ABIs.
void nsIFrame::operator delete(void*, size_t) {
MOZ_CRASH("nsIFrame::operator delete should never be called");
}
NS_QUERYFRAME_HEAD(nsIFrame)
NS_QUERYFRAME_ENTRY(nsIFrame)
NS_QUERYFRAME_TAIL_INHERITANCE_ROOT
/////////////////////////////////////////////////////////////////////////////
// nsIFrame
static bool IsFontSizeInflationContainer(nsIFrame* aFrame,
const nsStyleDisplay* aStyleDisplay) {
/*
* Font size inflation is built around the idea that we're inflating
* the fonts for a pan-and-zoom UI so that when the user scales up a
* block or other container to fill the width of the device, the fonts
* will be readable. To do this, we need to pick what counts as a
* container.
*
* From a code perspective, the only hard requirement is that frames
* that are line participants
* (nsIFrame::IsFrameOfType(nsIFrame::eLineParticipant)) are never
* containers, since line layout assumes that the inflation is
* consistent within a line.
*
* This is not an imposition, since we obviously want a bunch of text
* (possibly with inline elements) flowing within a block to count the
* block (or higher) as its container.
*
* We also want form controls, including the text in the anonymous
* content inside of them, to match each other and the text next to
* them, so they and their anonymous content should also not be a
* container.
*
* However, because we can't reliably compute sizes across XUL during
* reflow, any XUL frame with a XUL parent is always a container.
*
* There are contexts where it would be nice if some blocks didn't
* count as a container, so that, for example, an indented quotation
* didn't end up with a smaller font size. However, it's hard to
* distinguish these situations where we really do want the indented
* thing to count as a container, so we don't try, and blocks are
* always containers.
*/
// The root frame should always be an inflation container.
if (!aFrame->GetParent()) {
return true;
}
nsIContent* content = aFrame->GetContent();
if (content && content->IsInNativeAnonymousSubtree()) {
// Native anonymous content shouldn't be a font inflation root,
// except for the canvas custom content container.
nsCanvasFrame* canvas = aFrame->PresShell()->GetCanvasFrame();
return canvas && canvas->GetCustomContentContainer() == content;
}
LayoutFrameType frameType = aFrame->Type();
bool isInline =
(nsStyleDisplay::IsInlineFlow(aFrame->GetDisplay()) ||
RubyUtils::IsRubyBox(frameType) ||
(aStyleDisplay->IsFloatingStyle() &&
frameType == LayoutFrameType::Letter) ||
// Given multiple frames for the same node, only the
// outer one should be considered a container.
// (Important, e.g., for nsSelectsAreaFrame.)
(aFrame->GetParent()->GetContent() == content) ||
(content &&
// Form controls shouldn't become inflation containers.
(content->IsAnyOfHTMLElements(
nsGkAtoms::option, nsGkAtoms::optgroup, nsGkAtoms::select,
nsGkAtoms::input, nsGkAtoms::button, nsGkAtoms::textarea)))) &&
!(aFrame->IsXULBoxFrame() && aFrame->GetParent()->IsXULBoxFrame());
NS_ASSERTION(!aFrame->IsFrameOfType(nsIFrame::eLineParticipant) || isInline ||
// br frames and mathml frames report being line
// participants even when their position or display is
// set
aFrame->IsBrFrame() ||
aFrame->IsFrameOfType(nsIFrame::eMathML),
"line participants must not be containers");
return !isInline;
}
static void MaybeScheduleReflowSVGNonDisplayText(nsIFrame* aFrame) {
if (!SVGUtils::IsInSVGTextSubtree(aFrame)) {
return;
}
// We need to ensure that any non-display SVGTextFrames get reflowed when a
// child text frame gets new style. Thus we need to schedule a reflow in
// |DidSetComputedStyle|. We also need to call it from |DestroyFrom|,
// because otherwise we won't get notified when style changes to
// "display:none".
SVGTextFrame* svgTextFrame = static_cast<SVGTextFrame*>(
nsLayoutUtils::GetClosestFrameOfType(aFrame, LayoutFrameType::SVGText));
nsIFrame* anonBlock = svgTextFrame->PrincipalChildList().FirstChild();
// Note that we must check NS_FRAME_FIRST_REFLOW on our SVGTextFrame's
// anonymous block frame rather than our aFrame, since NS_FRAME_FIRST_REFLOW
// may be set on us if we're a new frame that has been inserted after the
// document's first reflow. (In which case this DidSetComputedStyle call may
// be happening under frame construction under a Reflow() call.)
if (!anonBlock || anonBlock->HasAnyStateBits(NS_FRAME_FIRST_REFLOW)) {
return;
}
if (!svgTextFrame->HasAnyStateBits(NS_FRAME_IS_NONDISPLAY) ||
svgTextFrame->HasAnyStateBits(NS_STATE_SVG_TEXT_IN_REFLOW)) {
return;
}
svgTextFrame->ScheduleReflowSVGNonDisplayText(
IntrinsicDirty::FrameAncestorsAndDescendants);
}
bool nsIFrame::IsPrimaryFrameOfRootOrBodyElement() const {
if (!IsPrimaryFrame()) {
return false;
}
nsIContent* content = GetContent();
Document* document = content->OwnerDoc();
return content == document->GetRootElement() ||
content == document->GetBodyElement();
}
bool nsIFrame::IsRenderedLegend() const {
if (auto* parent = GetParent(); parent && parent->IsFieldSetFrame()) {
return static_cast<nsFieldSetFrame*>(parent)->GetLegend() == this;
}
return false;
}
void nsIFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
nsIFrame* aPrevInFlow) {
MOZ_ASSERT(nsQueryFrame::FrameIID(mClass) == GetFrameId());
MOZ_ASSERT(!mContent, "Double-initing a frame?");
NS_ASSERTION(IsFrameOfType(eDEBUGAllFrames) && !IsFrameOfType(eDEBUGNoFrames),
"IsFrameOfType implementation that doesn't call base class");
mContent = aContent;
mParent = aParent;
MOZ_DIAGNOSTIC_ASSERT(!mParent || PresShell() == mParent->PresShell());
if (aPrevInFlow) {
mWritingMode = aPrevInFlow->GetWritingMode();
// Copy some state bits from prev-in-flow (the bits that should apply
// throughout a continuation chain). The bits are sorted according to their
// order in nsFrameStateBits.h.
// clang-format off
AddStateBits(aPrevInFlow->GetStateBits() &
(NS_FRAME_GENERATED_CONTENT |
NS_FRAME_OUT_OF_FLOW |
NS_FRAME_CAN_HAVE_ABSPOS_CHILDREN |
NS_FRAME_INDEPENDENT_SELECTION |
NS_FRAME_PART_OF_IBSPLIT |
NS_FRAME_MAY_BE_TRANSFORMED |
NS_FRAME_HAS_MULTI_COLUMN_ANCESTOR));
// clang-format on
// Copy other bits in nsIFrame from prev-in-flow.
mHasColumnSpanSiblings = aPrevInFlow->HasColumnSpanSiblings();
} else {
PresContext()->ConstructedFrame();
}
if (GetParent()) {
if (MOZ_UNLIKELY(mContent == PresContext()->Document()->GetRootElement() &&
mContent == GetParent()->GetContent())) {
// Our content is the root element and we have the same content as our
// parent. That is, we are the internal anonymous frame of the root
// element. Copy the used mWritingMode from our parent because
// mDocElementContainingBlock gets its mWritingMode from <body>.
mWritingMode = GetParent()->GetWritingMode();
}
// Copy some state bits from our parent (the bits that should apply
// recursively throughout a subtree). The bits are sorted according to their
// order in nsFrameStateBits.h.
// clang-format off
AddStateBits(GetParent()->GetStateBits() &
(NS_FRAME_GENERATED_CONTENT |
NS_FRAME_INDEPENDENT_SELECTION |
NS_FRAME_IS_SVG_TEXT |
NS_FRAME_IN_POPUP |
NS_FRAME_IS_NONDISPLAY));
// clang-format on
if (HasAnyStateBits(NS_FRAME_IN_POPUP) && TrackingVisibility()) {
// Assume all frames in popups are visible.
IncApproximateVisibleCount();
}
}
if (aPrevInFlow) {
mMayHaveOpacityAnimation = aPrevInFlow->MayHaveOpacityAnimation();
mMayHaveTransformAnimation = aPrevInFlow->MayHaveTransformAnimation();
} else if (mContent) {
// It's fine to fetch the EffectSet for the style frame here because in the
// following code we take care of the case where animations may target
// a different frame.
EffectSet* effectSet = EffectSet::GetEffectSetForStyleFrame(this);
if (effectSet) {
mMayHaveOpacityAnimation = effectSet->MayHaveOpacityAnimation();
if (effectSet->MayHaveTransformAnimation()) {
// If we are the inner table frame for display:table content, then
// transform animations should go on our parent frame (the table wrapper
// frame).
//
// We do this when initializing the child frame (table inner frame),
// because when initializng the table wrapper frame, we don't yet have
// access to its children so we can't tell if we have transform
// animations or not.
if (IsFrameOfType(eSupportsCSSTransforms)) {
mMayHaveTransformAnimation = true;
AddStateBits(NS_FRAME_MAY_BE_TRANSFORMED);
} else if (aParent && nsLayoutUtils::GetStyleFrame(aParent) == this) {
MOZ_ASSERT(
aParent->IsFrameOfType(eSupportsCSSTransforms),
"Style frames that don't support transforms should have parents"
" that do");
aParent->mMayHaveTransformAnimation = true;
aParent->AddStateBits(NS_FRAME_MAY_BE_TRANSFORMED);
}
}
}
}
const nsStyleDisplay* disp = StyleDisplay();
if (disp->HasTransform(this)) {
// If 'transform' dynamically changes, RestyleManager takes care of
// updating this bit.
AddStateBits(NS_FRAME_MAY_BE_TRANSFORMED);
}
if (disp->IsContainLayout() && GetContainSizeAxes().IsBoth()) {
// In general, frames that have contain:layout+size can be reflow roots.
// (One exception: table-wrapper frames don't work well as reflow roots,
// because their inner-table ReflowInput init path tries to reuse & deref
// the wrapper's containing block's reflow input, which may be null if we
// initiate reflow from the table-wrapper itself.)
//
// Changes to `contain` force frame reconstructions, so this bit can be set
// for the whole lifetime of this frame.
AddStateBits(NS_FRAME_REFLOW_ROOT);
}
if (nsLayoutUtils::FontSizeInflationEnabled(PresContext()) ||
!GetParent()
#ifdef DEBUG
// We have assertions that check inflation invariants even when
// font size inflation is not enabled.
|| true
#endif
) {
if (IsFontSizeInflationContainer(this, disp)) {
AddStateBits(NS_FRAME_FONT_INFLATION_CONTAINER);
if (!GetParent() ||
// I'd use NS_FRAME_OUT_OF_FLOW, but it's not set yet.
disp->IsFloating(this) || disp->IsAbsolutelyPositioned(this) ||
GetParent()->IsFlexContainerFrame() ||
GetParent()->IsGridContainerFrame()) {
AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT);
}
}
NS_ASSERTION(
GetParent() || HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER),
"root frame should always be a container");
}
if (PresShell()->AssumeAllFramesVisible() && TrackingVisibility()) {
IncApproximateVisibleCount();
}
DidSetComputedStyle(nullptr);
if (::IsXULBoxWrapped(this)) ::InitBoxMetrics(this, false);
// For a newly created frame, we need to update this frame's visibility state.
// Usually we update the state when the frame is restyled and has a
// VisibilityChange change hint but we don't generate any change hints for
// newly created frames.
// Note: We don't need to do this for placeholders since placeholders have
// different styles so that the styles don't have visibility:hidden even if
// the parent has visibility:hidden style. We also don't need to update the
// state when creating continuations because its visibility is the same as its
// prev-in-flow, and the animation code cares only primary frames.
if (!IsPlaceholderFrame() && !aPrevInFlow) {
UpdateVisibleDescendantsState();
}
}
void nsIFrame::InitPrimaryFrame() {
MOZ_ASSERT(IsPrimaryFrame());
const nsStyleDisplay* disp = StyleDisplay();
if (disp->mContainerType != StyleContainerType::Normal) {
PresContext()->RegisterContainerQueryFrame(this);
}
if (StyleDisplay()->ContentVisibility(*this) ==
StyleContentVisibility::Auto) {
PresShell()->RegisterContentVisibilityAutoFrame(this);
auto* element = Element::FromNodeOrNull(GetContent());
MOZ_ASSERT(element);
PresContext()->Document()->ObserveForContentVisibility(*element);
} else if (auto* element = Element::FromNodeOrNull(GetContent())) {
element->ClearContentRelevancy();
}
// TODO(mrobinson): Once bug 1765615 is fixed, this should be called on
// layout changes. In addition, when `content-visibility: auto` is implemented
// this should also be called when scrolling or focus causes content to be
// skipped or unskipped.
UpdateAnimationVisibility();
HandleLastRememberedSize();
}
void nsIFrame::DestroyFrom(nsIFrame* aDestructRoot,
PostDestroyData& aPostDestroyData) {
NS_ASSERTION(!nsContentUtils::IsSafeToRunScript(),
"destroy called on frame while scripts not blocked");
NS_ASSERTION(!GetNextSibling() && !GetPrevSibling(),
"Frames should be removed before destruction.");
NS_ASSERTION(aDestructRoot, "Must specify destruct root");
MOZ_ASSERT(!HasAbsolutelyPositionedChildren());
MOZ_ASSERT(!HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT),
"NS_FRAME_PART_OF_IBSPLIT set on non-nsContainerFrame?");
MaybeScheduleReflowSVGNonDisplayText(this);
SVGObserverUtils::InvalidateDirectRenderingObservers(this);
const auto* disp = StyleDisplay();
if (disp->mPosition == StylePositionProperty::Sticky) {
if (auto* ssc =
StickyScrollContainer::GetStickyScrollContainerForFrame(this)) {
ssc->RemoveFrame(this);
}
}
if (disp->mContainerType != StyleContainerType::Normal) {
PresContext()->UnregisterContainerQueryFrame(this);
}
nsPresContext* presContext = PresContext();
mozilla::PresShell* presShell = presContext->GetPresShell();
if (mState & NS_FRAME_OUT_OF_FLOW) {
nsPlaceholderFrame* placeholder = GetPlaceholderFrame();
NS_ASSERTION(
!placeholder || (aDestructRoot != this),
"Don't call Destroy() on OOFs, call Destroy() on the placeholder.");
NS_ASSERTION(!placeholder || nsLayoutUtils::IsProperAncestorFrame(
aDestructRoot, placeholder),
"Placeholder relationship should have been torn down already; "
"this might mean we have a stray placeholder in the tree.");
if (placeholder) {
placeholder->SetOutOfFlowFrame(nullptr);
}
}
if (IsPrimaryFrame()) {
// This needs to happen before we clear our Properties() table.
ActiveLayerTracker::TransferActivityToContent(this, mContent);
}
ScrollAnchorContainer* anchor = nullptr;
if (IsScrollAnchor(&anchor)) {
anchor->InvalidateAnchor();
}
if (HasCSSAnimations() || HasCSSTransitions() ||
// It's fine to look up the style frame here since if we're destroying the
// frames for display:table content we should be destroying both wrapper
// and inner frame.
EffectSet::GetEffectSetForStyleFrame(this)) {
// If no new frame for this element is created by the end of the
// restyling process, stop animations and transitions for this frame
RestyleManager::AnimationsWithDestroyedFrame* adf =
presContext->RestyleManager()->GetAnimationsWithDestroyedFrame();
// AnimationsWithDestroyedFrame only lives during the restyling process.
if (adf) {
adf->Put(mContent, mComputedStyle);
}
}
if (StyleDisplay()->ContentVisibility(*this) ==
StyleContentVisibility::Auto) {
if (auto* element = Element::FromNodeOrNull(GetContent())) {
PresContext()->Document()->UnobserveForContentVisibility(*element);
}
}
// Disable visibility tracking. Note that we have to do this before we clear
// frame properties and lose track of whether we were previously visible.
// XXX(seth): It'd be ideal to assert that we're already marked nonvisible
// here, but it's unfortunately tricky to guarantee in the face of things like
// frame reconstruction induced by style changes.
DisableVisibilityTracking();
// Ensure that we're not in the approximately visible list anymore.
PresContext()->GetPresShell()->RemoveFrameFromApproximatelyVisibleList(this);
presShell->NotifyDestroyingFrame(this);
if (mState & NS_FRAME_EXTERNAL_REFERENCE) {
presShell->ClearFrameRefs(this);
}
nsView* view = GetView();
if (view) {
view->SetFrame(nullptr);
view->Destroy();
}
// Make sure that our deleted frame can't be returned from GetPrimaryFrame()
if (IsPrimaryFrame()) {
mContent->SetPrimaryFrame(nullptr);
// Pass the root of a generated content subtree (e.g. ::after/::before) to
// aPostDestroyData to unbind it after frame destruction is done.
if (HasAnyStateBits(NS_FRAME_GENERATED_CONTENT) &&
mContent->IsRootOfNativeAnonymousSubtree()) {
aPostDestroyData.AddAnonymousContent(mContent.forget());
}
}
// Remove all properties attached to the frame, to ensure any property
// destructors that need the frame pointer are handled properly.
RemoveAllProperties();
// Must retrieve the object ID before calling destructors, so the
// vtable is still valid.
//
// Note to future tweakers: having the method that returns the
// object size call the destructor will not avoid an indirect call;
// the compiler cannot devirtualize the call to the destructor even
// if it's from a method defined in the same class.
nsQueryFrame::FrameIID id = GetFrameId();
this->~nsIFrame();
#ifdef DEBUG
{
nsIFrame* rootFrame = presShell->GetRootFrame();
MOZ_ASSERT(rootFrame);
if (this != rootFrame) {
auto* builder = nsLayoutUtils::GetRetainedDisplayListBuilder(rootFrame);
auto* data = builder ? builder->Data() : nullptr;
const bool inData =
data && (data->IsModified(this) || data->HasProps(this));
if (inData) {
DL_LOG(LogLevel::Warning, "Frame %p found in retained data", this);
}
MOZ_ASSERT(!inData, "Deleted frame in retained data!");
}
}
#endif
// Now that we're totally cleaned out, we need to add ourselves to
// the presshell's recycler.
presShell->FreeFrame(id, this);
}
std::pair<int32_t, int32_t> nsIFrame::GetOffsets() const {
return std::make_pair(0, 0);
}
static void CompareLayers(
const nsStyleImageLayers* aFirstLayers,
const nsStyleImageLayers* aSecondLayers,
const std::function<void(imgRequestProxy* aReq)>& aCallback) {
NS_FOR_VISIBLE_IMAGE_LAYERS_BACK_TO_FRONT(i, (*aFirstLayers)) {
const auto& image = aFirstLayers->mLayers[i].mImage;
if (!image.IsImageRequestType() || !image.IsResolved()) {
continue;
}
// aCallback is called when the style image in aFirstLayers is thought to
// be different with the corresponded one in aSecondLayers
if (!aSecondLayers || i >= aSecondLayers->mImageCount ||
(!aSecondLayers->mLayers[i].mImage.IsResolved() ||
image.GetImageRequest() !=
aSecondLayers->mLayers[i].mImage.GetImageRequest())) {
if (imgRequestProxy* req = image.GetImageRequest()) {
aCallback(req);
}
}
}
}
static void AddAndRemoveImageAssociations(
ImageLoader& aImageLoader, nsIFrame* aFrame,
const nsStyleImageLayers* aOldLayers,
const nsStyleImageLayers* aNewLayers) {
// If the old context had a background-image image, or mask-image image,
// and new context does not have the same image, clear the image load
// notifier (which keeps the image loading, if it still is) for the frame.
// We want to do this conservatively because some frames paint their
// backgrounds from some other frame's style data, and we don't want
// to clear those notifiers unless we have to. (They'll be reset
// when we paint, although we could miss a notification in that
// interval.)
if (aOldLayers && aFrame->HasImageRequest()) {
CompareLayers(aOldLayers, aNewLayers, [&](imgRequestProxy* aReq) {
aImageLoader.DisassociateRequestFromFrame(aReq, aFrame);
});
}
CompareLayers(aNewLayers, aOldLayers, [&](imgRequestProxy* aReq) {
aImageLoader.AssociateRequestToFrame(aReq, aFrame);
});
}
void nsIFrame::AddDisplayItem(nsDisplayItem* aItem) {
MOZ_DIAGNOSTIC_ASSERT(!mDisplayItems.Contains(aItem));
mDisplayItems.AppendElement(aItem);
}
bool nsIFrame::RemoveDisplayItem(nsDisplayItem* aItem) {
return mDisplayItems.RemoveElement(aItem);
}
bool nsIFrame::HasDisplayItems() { return !mDisplayItems.IsEmpty(); }
bool nsIFrame::HasDisplayItem(nsDisplayItem* aItem) {
return mDisplayItems.Contains(aItem);
}
bool nsIFrame::HasDisplayItem(uint32_t aKey) {
for (nsDisplayItem* i : mDisplayItems) {
if (i->GetPerFrameKey() == aKey) {
return true;
}
}
return false;
}
template <typename Condition>
static void DiscardDisplayItems(nsIFrame* aFrame, Condition aCondition) {
for (nsDisplayItem* i : aFrame->DisplayItems()) {
// Only discard items that are invalidated by this frame, as we're only
// guaranteed to rebuild those items. Table background items are created by
// the relevant table part, but have the cell frame as the primary frame,
// and we don't want to remove them if this is the cell.
if (aCondition(i) && i->FrameForInvalidation() == aFrame) {
i->SetCantBeReused();
}
}
}
static void DiscardOldItems(nsIFrame* aFrame) {
DiscardDisplayItems(aFrame,
[](nsDisplayItem* aItem) { return aItem->IsOldItem(); });
}
void nsIFrame::RemoveDisplayItemDataForDeletion() {
// Destroying a WebRenderUserDataTable can cause destruction of other objects
// which can remove frame properties in their destructor. If we delete a frame
// property it runs the destructor of the stored object in the middle of
// updating the frame property table, so if the destruction of that object
// causes another update to the frame property table it would leave the frame
// property table in an inconsistent state. So we remove it from the table and
// then destroy it. (bug 1530657)
WebRenderUserDataTable* userDataTable =
TakeProperty(WebRenderUserDataProperty::Key());
if (userDataTable) {
for (const auto& data : userDataTable->Values()) {
data->RemoveFromTable();
}
delete userDataTable;
}
if (!nsLayoutUtils::AreRetainedDisplayListsEnabled()) {
// Retained display lists are disabled, no need to update
// RetainedDisplayListData.
return;
}
auto* builder = nsLayoutUtils::GetRetainedDisplayListBuilder(this);
if (!builder) {
MOZ_ASSERT(DisplayItems().IsEmpty());
MOZ_ASSERT(!IsFrameModified());
return;
}
for (nsDisplayItem* i : DisplayItems()) {
if (i->GetDependentFrame() == this && !i->HasDeletedFrame()) {
i->Frame()->MarkNeedsDisplayItemRebuild();
}
i->RemoveFrame(this);
}
DisplayItems().Clear();
nsAutoString name;
#ifdef DEBUG_FRAME_DUMP
if (DL_LOG_TEST(LogLevel::Debug)) {
GetFrameName(name);
}
#endif
DL_LOGV("Removing display item data for frame %p (%s)", this,
NS_ConvertUTF16toUTF8(name).get());
auto* data = builder->Data();
if (MayHaveWillChangeBudget()) {
// Keep the frame in list, so it can be removed from the will-change budget.
data->Flags(this) = RetainedDisplayListData::FrameFlag::HadWillChange;
} else {
data->Remove(this);
}
}
void nsIFrame::MarkNeedsDisplayItemRebuild() {
if (!nsLayoutUtils::AreRetainedDisplayListsEnabled() || IsFrameModified() ||
HasAnyStateBits(NS_FRAME_IN_POPUP)) {
// Skip frames that are already marked modified.
return;
}
if (Type() == LayoutFrameType::Placeholder) {
nsIFrame* oof = static_cast<nsPlaceholderFrame*>(this)->GetOutOfFlowFrame();
if (oof) {
oof->MarkNeedsDisplayItemRebuild();
}
// Do not mark placeholder frames modified.
return;
}
nsIFrame* rootFrame = PresShell()->GetRootFrame();
if (rootFrame->IsFrameModified()) {
// The whole frame tree is modified.
return;
}
auto* builder = nsLayoutUtils::GetRetainedDisplayListBuilder(this);
if (!builder) {
MOZ_ASSERT(DisplayItems().IsEmpty());
return;
}
RetainedDisplayListData* data = builder->Data();
MOZ_ASSERT(data);
if (data->AtModifiedFrameLimit()) {
// This marks the whole frame tree modified.
// See |RetainedDisplayListBuilder::ShouldBuildPartial()|.
data->AddModifiedFrame(rootFrame);
return;
}
nsAutoString name;
#ifdef DEBUG_FRAME_DUMP
if (DL_LOG_TEST(LogLevel::Debug)) {
GetFrameName(name);
}
#endif
DL_LOGV("RDL - Rebuilding display items for frame %p (%s)", this,
NS_ConvertUTF16toUTF8(name).get());
data->AddModifiedFrame(this);
MOZ_ASSERT(
PresContext()->LayoutPhaseCount(nsLayoutPhase::DisplayListBuilding) == 0);
// Hopefully this is cheap, but we could use a frame state bit to note
// the presence of dependencies to speed it up.
for (nsDisplayItem* i : DisplayItems()) {
if (i->HasDeletedFrame() || i->Frame() == this) {
// Ignore the items with deleted frames, and the items with |this| as
// the primary frame.
continue;
}
if (i->GetDependentFrame() == this) {
// For items with |this| as a dependent frame, mark the primary frame
// for rebuild.
i->Frame()->MarkNeedsDisplayItemRebuild();
}
}
}
// Subclass hook for style post processing
/* virtual */
void nsIFrame::DidSetComputedStyle(ComputedStyle* aOldComputedStyle) {
#ifdef ACCESSIBILITY
// Don't notify for reconstructed frames here, since the frame is still being
// constructed at this point and so LocalAccessible::GetFrame() will return
// null. Style changes for reconstructed frames are handled in
// DocAccessible::PruneOrInsertSubtree.
if (aOldComputedStyle) {
if (nsAccessibilityService* accService = GetAccService()) {
accService->NotifyOfComputedStyleChange(PresShell(), mContent);
}
}
#endif
MaybeScheduleReflowSVGNonDisplayText(this);
Document* doc = PresContext()->Document();
ImageLoader* loader = doc->StyleImageLoader();
// Continuing text frame doesn't initialize its continuation pointer before
// reaching here for the first time, so we have to exclude text frames. This
// doesn't affect correctness because text can't match selectors.
//
// FIXME(emilio): We should consider fixing that.
//
// TODO(emilio): Can we avoid doing some / all of the image stuff when
// isNonTextFirstContinuation is false? We should consider doing this just for
// primary frames and pseudos, but the first-line reparenting code makes it
// all bad, should get around to bug 1465474 eventually :(
const bool isNonText = !IsTextFrame();
if (isNonText) {
mComputedStyle->StartImageLoads(*doc, aOldComputedStyle);
}
const nsStyleImageLayers* oldLayers =
aOldComputedStyle ? &aOldComputedStyle->StyleBackground()->mImage
: nullptr;
const nsStyleImageLayers* newLayers = &StyleBackground()->mImage;
AddAndRemoveImageAssociations(*loader, this, oldLayers, newLayers);
oldLayers =
aOldComputedStyle ? &aOldComputedStyle->StyleSVGReset()->mMask : nullptr;
newLayers = &StyleSVGReset()->mMask;
AddAndRemoveImageAssociations(*loader, this, oldLayers, newLayers);
const nsStyleDisplay* disp = StyleDisplay();
bool handleStickyChange = false;
if (aOldComputedStyle) {
// Detect style changes that should trigger a scroll anchor adjustment
// suppression.
// https://drafts.csswg.org/css-scroll-anchoring/#suppression-triggers
bool needAnchorSuppression = false;
// If we detect a change on margin, padding or border, we store the old
// values on the frame itself between now and reflow, so if someone
// calls GetUsed(Margin|Border|Padding)() before the next reflow, we
// can give an accurate answer.
// We don't want to set the property if one already exists.
nsMargin oldValue(0, 0, 0, 0);
nsMargin newValue(0, 0, 0, 0);
const nsStyleMargin* oldMargin = aOldComputedStyle->StyleMargin();
if (oldMargin->GetMargin(oldValue)) {
if (!StyleMargin()->GetMargin(newValue) || oldValue != newValue) {
if (!HasProperty(UsedMarginProperty())) {
AddProperty(UsedMarginProperty(), new nsMargin(oldValue));
}
needAnchorSuppression = true;
}
}
const nsStylePadding* oldPadding = aOldComputedStyle->StylePadding();
if (oldPadding->GetPadding(oldValue)) {
if (!StylePadding()->GetPadding(newValue) || oldValue != newValue) {
if (!HasProperty(UsedPaddingProperty())) {
AddProperty(UsedPaddingProperty(), new nsMargin(oldValue));
}
needAnchorSuppression = true;
}
}
const nsStyleBorder* oldBorder = aOldComputedStyle->StyleBorder();
oldValue = oldBorder->GetComputedBorder();
newValue = StyleBorder()->GetComputedBorder();
if (oldValue != newValue && !HasProperty(UsedBorderProperty())) {
AddProperty(UsedBorderProperty(), new nsMargin(oldValue));
}
const nsStyleDisplay* oldDisp = aOldComputedStyle->StyleDisplay();
if (oldDisp->mOverflowAnchor != disp->mOverflowAnchor) {
if (auto* container = ScrollAnchorContainer::FindFor(this)) {
container->InvalidateAnchor();
}
if (nsIScrollableFrame* scrollableFrame = do_QueryFrame(this)) {
scrollableFrame->Anchor()->InvalidateAnchor();
}
}
if (mInScrollAnchorChain) {
const nsStylePosition* pos = StylePosition();
const nsStylePosition* oldPos = aOldComputedStyle->StylePosition();
if (!needAnchorSuppression &&
(oldPos->mOffset != pos->mOffset || oldPos->mWidth != pos->mWidth ||
oldPos->mMinWidth != pos->mMinWidth ||
oldPos->mMaxWidth != pos->mMaxWidth ||
oldPos->mHeight != pos->mHeight ||
oldPos->mMinHeight != pos->mMinHeight ||
oldPos->mMaxHeight != pos->mMaxHeight ||
oldDisp->mPosition != disp->mPosition ||
oldDisp->mTransform != disp->mTransform)) {
needAnchorSuppression = true;
}
if (needAnchorSuppression &&
StaticPrefs::layout_css_scroll_anchoring_suppressions_enabled()) {
ScrollAnchorContainer::FindFor(this)->SuppressAdjustments();
}
}
if (disp->mPosition != oldDisp->mPosition) {
if (!disp->IsRelativelyOrStickyPositionedStyle() &&
oldDisp->IsRelativelyOrStickyPositionedStyle()) {
RemoveProperty(NormalPositionProperty());
}
handleStickyChange = disp->mPosition == StylePositionProperty::Sticky ||
oldDisp->mPosition == StylePositionProperty::Sticky;
}
if (disp->mScrollSnapAlign != oldDisp->mScrollSnapAlign) {
ScrollSnapUtils::PostPendingResnapFor(this);
}
if (aOldComputedStyle->IsRootElementStyle() &&
disp->mScrollSnapType != oldDisp->mScrollSnapType) {
if (nsIScrollableFrame* scrollableFrame =
PresShell()->GetRootScrollFrameAsScrollable()) {
scrollableFrame->PostPendingResnap();
}
}
if (StyleUIReset()->mMozSubtreeHiddenOnlyVisually &&
!aOldComputedStyle->StyleUIReset()->mMozSubtreeHiddenOnlyVisually) {
PresShell::ClearMouseCapture(this);
}
} else { // !aOldComputedStyle
handleStickyChange = disp->mPosition == StylePositionProperty::Sticky;
}
if (handleStickyChange && !HasAnyStateBits(NS_FRAME_IS_NONDISPLAY) &&
!GetPrevInFlow()) {
// Note that we only add first continuations, but we really only
// want to add first continuation-or-ib-split-siblings. But since we don't
// yet know if we're a later part of a block-in-inline split, we'll just
// add later members of a block-in-inline split here, and then
// StickyScrollContainer will remove them later.
if (auto* ssc =
StickyScrollContainer::GetStickyScrollContainerForFrame(this)) {
if (disp->mPosition == StylePositionProperty::Sticky) {
ssc->AddFrame(this);
} else {
ssc->RemoveFrame(this);
}
}
}
imgIRequest* oldBorderImage =
aOldComputedStyle
? aOldComputedStyle->StyleBorder()->GetBorderImageRequest()
: nullptr;
imgIRequest* newBorderImage = StyleBorder()->GetBorderImageRequest();
// FIXME (Bug 759996): The following is no longer true.
// For border-images, we can't be as conservative (we need to set the
// new loaders if there has been any change) since the CalcDifference
// call depended on the result of GetComputedBorder() and that result
// depends on whether the image has loaded, start the image load now
// so that we'll get notified when it completes loading and can do a
// restyle. Otherwise, the image might finish loading from the
// network before we start listening to its notifications, and then
// we'll never know that it's finished loading. Likewise, we want to
// do this for freshly-created frames to prevent a similar race if the
// image loads between reflow (which can depend on whether the image
// is loaded) and paint. We also don't really care about any callers who try
// to paint borders with a different style, because they won't have the
// correct size for the border either.
if (oldBorderImage != newBorderImage) {
// stop and restart the image loading/notification
if (oldBorderImage && HasImageRequest()) {
RemoveProperty(CachedBorderImageDataProperty());
loader->DisassociateRequestFromFrame(oldBorderImage, this);
}
if (newBorderImage) {
loader->AssociateRequestToFrame(newBorderImage, this);
}
}
auto GetShapeImageRequest = [](const ComputedStyle* aStyle) -> imgIRequest* {
if (!aStyle) {
return nullptr;
}
auto& shape = aStyle->StyleDisplay()->mShapeOutside;
if (!shape.IsImage()) {
return nullptr;
}
return shape.AsImage().GetImageRequest();
};
imgIRequest* oldShapeImage = GetShapeImageRequest(aOldComputedStyle);
imgIRequest* newShapeImage = GetShapeImageRequest(Style());
if (oldShapeImage != newShapeImage) {
if (oldShapeImage && HasImageRequest()) {
loader->DisassociateRequestFromFrame(oldShapeImage, this);
}
if (newShapeImage) {
loader->AssociateRequestToFrame(
newShapeImage, this,
ImageLoader::Flags::
RequiresReflowOnFirstFrameCompleteAndLoadEventBlocking);
}
}
// SVGObserverUtils::GetEffectProperties() asserts that we only invoke it with
// the first continuation so we need to check that in advance.
const bool isNonTextFirstContinuation = isNonText && !GetPrevContinuation();
if (isNonTextFirstContinuation) {
// Kick off loading of external SVG resources referenced from properties if
// any. This currently includes filter, clip-path, and mask.
SVGObserverUtils::InitiateResourceDocLoads(this);
}
// If the page contains markup that overrides text direction, and
// does not contain any characters that would activate the Unicode
// bidi algorithm, we need to call |SetBidiEnabled| on the pres
// context before reflow starts. See bug 115921.
if (StyleVisibility()->mDirection == StyleDirection::Rtl) {
PresContext()->SetBidiEnabled();
}
// The following part is for caching offset-path:path(). We cache the
// flatten gfx path, so we don't have to rebuild and re-flattern it at
// each cycle if we have animations on offset-* with a fixed offset-path.
const StyleOffsetPath* oldPath =
aOldComputedStyle ? &aOldComputedStyle->StyleDisplay()->mOffsetPath
: nullptr;
const StyleOffsetPath& newPath = StyleDisplay()->mOffsetPath;
if (!oldPath || *oldPath != newPath) {
if (newPath.IsPath()) {
// Here we only need to build a valid path for motion path, so
// using the default values of stroke-width, stoke-linecap, and fill-rule
// is fine for now because what we want is to get the point and its normal
// vector along the path, instead of rendering it.
RefPtr<gfx::PathBuilder> builder =
gfxPlatform::GetPlatform()
->ScreenReferenceDrawTarget()
->CreatePathBuilder(gfx::FillRule::FILL_WINDING);
RefPtr<gfx::Path> path =
MotionPathUtils::BuildPath(newPath.AsPath(), builder);
if (path) {
// The newPath could be path('') (i.e. empty path), so its gfx path
// could be nullptr, and so we only set property for a non-empty path.
SetProperty(nsIFrame::OffsetPathCache(), path.forget().take());
} else {
// May have an old cached path, so we have to delete it.
RemoveProperty(nsIFrame::OffsetPathCache());
}
} else if (oldPath) {
RemoveProperty(nsIFrame::OffsetPathCache());
}
}
if (IsPrimaryFrame()) {
HandleLastRememberedSize();
}
RemoveStateBits(NS_FRAME_SIMPLE_EVENT_REGIONS | NS_FRAME_SIMPLE_DISPLAYLIST);
mMayHaveRoundedCorners = true;
}
void nsIFrame::HandleLastRememberedSize() {
MOZ_ASSERT(IsPrimaryFrame());
// Storing a last remembered size requires contain-intrinsic-size, and using
// a previously stored last remembered size requires content-visibility.
if (!StaticPrefs::layout_css_contain_intrinsic_size_enabled() ||
!StaticPrefs::layout_css_content_visibility_enabled()) {
return;
}
auto* element = Element::FromNodeOrNull(mContent);
if (!element) {
return;
}
const WritingMode wm = GetWritingMode();
const nsStylePosition* stylePos = StylePosition();
bool canRememberBSize = stylePos->ContainIntrinsicBSize(wm).IsAutoLength();
bool canRememberISize = stylePos->ContainIntrinsicISize(wm).IsAutoLength();
if (!canRememberBSize) {
element->RemoveLastRememberedBSize();
}
if (!canRememberISize) {
element->RemoveLastRememberedISize();
}
if ((canRememberBSize || canRememberISize) && !HidesContent()) {
bool isNonReplacedInline = IsFrameOfType(nsIFrame::eLineParticipant) &&
!IsFrameOfType(nsIFrame::eReplaced);
if (!isNonReplacedInline) {
PresContext()->Document()->ObserveForLastRememberedSize(*element);
return;
}
}
PresContext()->Document()->UnobserveForLastRememberedSize(*element);
}
#ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
void nsIFrame::AssertNewStyleIsSane(ComputedStyle& aNewStyle) {
MOZ_DIAGNOSTIC_ASSERT(
aNewStyle.GetPseudoType() == mComputedStyle->GetPseudoType() ||
// ::first-line continuations are weird, this should probably be fixed via
// bug 1465474.
(mComputedStyle->GetPseudoType() == PseudoStyleType::firstLine &&
aNewStyle.GetPseudoType() == PseudoStyleType::mozLineFrame) ||
// ::first-letter continuations are broken, in particular floating ones,
// see bug 1490281. The construction code tries to fix this up after the
// fact, then restyling undoes it...
(mComputedStyle->GetPseudoType() == PseudoStyleType::mozText &&
aNewStyle.GetPseudoType() == PseudoStyleType::firstLetterContinuation) ||
(mComputedStyle->GetPseudoType() ==
PseudoStyleType::firstLetterContinuation &&
aNewStyle.GetPseudoType() == PseudoStyleType::mozText));
}
#endif
void nsIFrame::ReparentFrameViewTo(nsViewManager* aViewManager,
nsView* aNewParentView,
nsView* aOldParentView) {
if (HasView()) {
if (IsMenuPopupFrame()) {
// This view must be parented by the root view, don't reparent it.
return;
}
nsView* view = GetView();
// Verify that the current parent view is what we think it is
// nsView* parentView;
// NS_ASSERTION(parentView == aOldParentView, "unexpected parent view");
aViewManager->RemoveChild(view);
// The view will remember the Z-order and other attributes that have been
// set on it.
nsView* insertBefore =
nsLayoutUtils::FindSiblingViewFor(aNewParentView, this);
aViewManager->InsertChild(aNewParentView, view, insertBefore,
insertBefore != nullptr);
} else if (HasAnyStateBits(NS_FRAME_HAS_CHILD_WITH_VIEW)) {
for (const auto& childList : ChildLists()) {
// Iterate the child frames, and check each child frame to see if it has
// a view
for (nsIFrame* child : childList.mList) {
child->ReparentFrameViewTo(aViewManager, aNewParentView,
aOldParentView);
}
}
}
}
void nsIFrame::SyncFrameViewProperties(nsView* aView) {
if (!aView) {
aView = GetView();
if (!aView) {
return;
}
}
nsViewManager* vm = aView->GetViewManager();
// Make sure visibility is correct. This only affects nsSubDocumentFrame.
if (!SupportsVisibilityHidden()) {
// See if the view should be hidden or visible
ComputedStyle* sc = Style();
vm->SetViewVisibility(aView, sc->StyleVisibility()->IsVisible()
? ViewVisibility::Show
: ViewVisibility::Hide);
}
const auto zIndex = ZIndex();
const bool autoZIndex = !zIndex;
vm->SetViewZIndex(aView, autoZIndex, zIndex.valueOr(0));
}
void nsIFrame::CreateView() {
MOZ_ASSERT(!HasView());
nsView* parentView = GetParent()->GetClosestView();
MOZ_ASSERT(parentView, "no parent with view");
nsViewManager* viewManager = parentView->GetViewManager();
MOZ_ASSERT(viewManager, "null view manager");
nsView* view = viewManager->CreateView(GetRect(), parentView);
SyncFrameViewProperties(view);
nsView* insertBefore = nsLayoutUtils::FindSiblingViewFor(parentView, this);
// we insert this view 'above' the insertBefore view, unless insertBefore is
// null, in which case we want to call with aAbove == false to insert at the
// beginning in document order
viewManager->InsertChild(parentView, view, insertBefore,
insertBefore != nullptr);
// REVIEW: Don't create a widget for fixed-pos elements anymore.
// ComputeRepaintRegionForCopy will calculate the right area to repaint
// when we scroll.
// Reparent views on any child frames (or their descendants) to this
// view. We can just call ReparentFrameViewTo on this frame because
// we know this frame has no view, so it will crawl the children. Also,
// we know that any descendants with views must have 'parentView' as their
// parent view.
ReparentFrameViewTo(viewManager, view, parentView);
// Remember our view
SetView(view);
NS_FRAME_LOG(NS_FRAME_TRACE_CALLS,
("nsIFrame::CreateView: frame=%p view=%p", this, view));
}
/* virtual */
nsMargin nsIFrame::GetUsedMargin() const {
nsMargin margin(0, 0, 0, 0);
if (((mState & NS_FRAME_FIRST_REFLOW) && !(mState & NS_FRAME_IN_REFLOW)) ||
SVGUtils::IsInSVGTextSubtree(this))
return margin;
nsMargin* m = GetProperty(UsedMarginProperty());
if (m) {
margin = *m;
} else {
if (!StyleMargin()->GetMargin(margin)) {
// If we get here, our caller probably shouldn't be calling us...
NS_ERROR(
"Returning bogus 0-sized margin, because this margin "
"depends on layout & isn't cached!");
}
}
return margin;
}
/* virtual */
nsMargin nsIFrame::GetUsedBorder() const {
nsMargin border(0, 0, 0, 0);
if (((mState & NS_FRAME_FIRST_REFLOW) && !(mState & NS_FRAME_IN_REFLOW)) ||
SVGUtils::IsInSVGTextSubtree(this))
return border;
// Theme methods don't use const-ness.
nsIFrame* mutable_this = const_cast<nsIFrame*>(this);
const nsStyleDisplay* disp = StyleDisplay();
if (mutable_this->IsThemed(disp)) {
nsPresContext* pc = PresContext();
LayoutDeviceIntMargin widgetBorder = pc->Theme()->GetWidgetBorder(
pc->DeviceContext(), mutable_this, disp->EffectiveAppearance());
border =
LayoutDevicePixel::ToAppUnits(widgetBorder, pc->AppUnitsPerDevPixel());
return border;
}
nsMargin* b = GetProperty(UsedBorderProperty());
if (b) {
border = *b;
} else {
border = StyleBorder()->GetComputedBorder();
}
return border;
}
/* virtual */
nsMargin nsIFrame::GetUsedPadding() const {
nsMargin padding(0, 0, 0, 0);
if (((mState & NS_FRAME_FIRST_REFLOW) && !(mState & NS_FRAME_IN_REFLOW)) ||
SVGUtils::IsInSVGTextSubtree(this))
return padding;
// Theme methods don't use const-ness.
nsIFrame* mutable_this = const_cast<nsIFrame*>(this);
const nsStyleDisplay* disp = StyleDisplay();
if (mutable_this->IsThemed(disp)) {
nsPresContext* pc = PresContext();
LayoutDeviceIntMargin widgetPadding;
if (pc->Theme()->GetWidgetPadding(pc->DeviceContext(), mutable_this,
disp->EffectiveAppearance(),
&widgetPadding)) {
return LayoutDevicePixel::ToAppUnits(widgetPadding,
pc->AppUnitsPerDevPixel());
}
}
nsMargin* p = GetProperty(UsedPaddingProperty());
if (p) {
padding = *p;
} else {
if (!StylePadding()->GetPadding(padding)) {
// If we get here, our caller probably shouldn't be calling us...
NS_ERROR(
"Returning bogus 0-sized padding, because this padding "
"depends on layout & isn't cached!");
}
}
return padding;
}
nsIFrame::Sides nsIFrame::GetSkipSides() const {
if (MOZ_UNLIKELY(StyleBorder()->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Clone) &&
!HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
return Sides();
}
// Convert the logical skip sides to physical sides using the frame's
// writing mode
WritingMode writingMode = GetWritingMode();
LogicalSides logicalSkip = GetLogicalSkipSides();
Sides skip;
if (logicalSkip.BStart()) {
if (writingMode.IsVertical()) {
skip |= writingMode.IsVerticalLR() ? SideBits::eLeft : SideBits::eRight;
} else {
skip |= SideBits::eTop;
}
}
if (logicalSkip.BEnd()) {
if (writingMode.IsVertical()) {
skip |= writingMode.IsVerticalLR() ? SideBits::eRight : SideBits::eLeft;
} else {
skip |= SideBits::eBottom;
}
}
if (logicalSkip.IStart()) {
if (writingMode.IsVertical()) {
skip |= SideBits::eTop;
} else {
skip |= writingMode.IsBidiLTR() ? SideBits::eLeft : SideBits::eRight;
}
}
if (logicalSkip.IEnd()) {
if (writingMode.IsVertical()) {
skip |= SideBits::eBottom;
} else {
skip |= writingMode.IsBidiLTR() ? SideBits::eRight : SideBits::eLeft;
}
}
return skip;
}
nsRect nsIFrame::GetPaddingRectRelativeToSelf() const {
nsMargin border = GetUsedBorder().ApplySkipSides(GetSkipSides());
nsRect r(0, 0, mRect.width, mRect.height);
r.Deflate(border);
return r;
}
nsRect nsIFrame::GetPaddingRect() const {
return GetPaddingRectRelativeToSelf() + GetPosition();
}
WritingMode nsIFrame::WritingModeForLine(WritingMode aSelfWM,
nsIFrame* aSubFrame) const {
MOZ_ASSERT(aSelfWM == GetWritingMode());
WritingMode writingMode = aSelfWM;
if (StyleTextReset()->mUnicodeBidi == StyleUnicodeBidi::Plaintext) {
mozilla::intl::BidiEmbeddingLevel frameLevel =
nsBidiPresUtils::GetFrameBaseLevel(aSubFrame);
writingMode.SetDirectionFromBidiLevel(frameLevel);
}
return writingMode;
}
nsRect nsIFrame::GetMarginRect() const {
return GetMarginRectRelativeToSelf() + GetPosition();
}
nsRect nsIFrame::GetMarginRectRelativeToSelf() const {
nsMargin m = GetUsedMargin().ApplySkipSides(GetSkipSides());
nsRect r(0, 0, mRect.width, mRect.height);
r.Inflate(m);
return r;
}
bool nsIFrame::IsTransformed() const {
if (!HasAnyStateBits(NS_FRAME_MAY_BE_TRANSFORMED)) {
MOZ_ASSERT(!IsCSSTransformed());
MOZ_ASSERT(!IsSVGTransformed());
return false;
}
return IsCSSTransformed() || IsSVGTransformed();
}
bool nsIFrame::IsCSSTransformed() const {
return HasAnyStateBits(NS_FRAME_MAY_BE_TRANSFORMED) &&
(StyleDisplay()->HasTransform(this) || HasAnimationOfTransform());
}
bool nsIFrame::HasAnimationOfTransform() const {
return IsPrimaryFrame() &&
nsLayoutUtils::HasAnimationOfTransformAndMotionPath(this) &&
IsFrameOfType(eSupportsCSSTransforms);
}
bool nsIFrame::ChildrenHavePerspective(
const nsStyleDisplay* aStyleDisplay) const {
MOZ_ASSERT(aStyleDisplay == StyleDisplay());
return aStyleDisplay->HasPerspective(this);
}
bool nsIFrame::HasAnimationOfOpacity(EffectSet* aEffectSet) const {
return ((nsLayoutUtils::IsPrimaryStyleFrame(this) ||
nsLayoutUtils::FirstContinuationOrIBSplitSibling(this)
->IsPrimaryFrame()) &&
nsLayoutUtils::HasAnimationOfPropertySet(
this, nsCSSPropertyIDSet::OpacityProperties(), aEffectSet));
}
bool nsIFrame::HasOpacityInternal(float aThreshold,
const nsStyleDisplay* aStyleDisplay,
const nsStyleEffects* aStyleEffects,
EffectSet* aEffectSet) const {
MOZ_ASSERT(0.0 <= aThreshold && aThreshold <= 1.0, "Invalid argument");
if (aStyleEffects->mOpacity < aThreshold ||
aStyleDisplay->mWillChange.bits & StyleWillChangeBits::OPACITY) {
return true;
}
if (!mMayHaveOpacityAnimation) {
return false;
}
return HasAnimationOfOpacity(aEffectSet);
}
bool nsIFrame::IsSVGTransformed(gfx::Matrix* aOwnTransforms,
gfx::Matrix* aFromParentTransforms) const {
return false;
}
bool nsIFrame::Extend3DContext(const nsStyleDisplay* aStyleDisplay,
const nsStyleEffects* aStyleEffects,
mozilla::EffectSet* aEffectSetForOpacity) const {
if (!(mState & NS_FRAME_MAY_BE_TRANSFORMED)) {
return false;
}
const nsStyleDisplay* disp = StyleDisplayWithOptionalParam(aStyleDisplay);
if (disp->mTransformStyle != StyleTransformStyle::Preserve3d ||
!IsFrameOfType(nsIFrame::eSupportsCSSTransforms)) {
return false;
}
// If we're all scroll frame, then all descendants will be clipped, so we
// can't preserve 3d.
if (IsScrollFrame()) {
return false;
}
const nsStyleEffects* effects = StyleEffectsWithOptionalParam(aStyleEffects);
if (HasOpacity(disp, effects, aEffectSetForOpacity)) {
return false;
}
return ShouldApplyOverflowClipping(disp) == PhysicalAxes::None &&
!GetClipPropClipRect(disp, effects, GetSize()) &&
!SVGIntegrationUtils::UsingEffectsForFrame(this) &&
!effects->HasMixBlendMode() &&
disp->mIsolation != StyleIsolation::Isolate;
}
bool nsIFrame::Combines3DTransformWithAncestors() const {
nsIFrame* parent = GetClosestFlattenedTreeAncestorPrimaryFrame();
if (!parent || !parent->Extend3DContext()) {
return false;
}
return IsCSSTransformed() || BackfaceIsHidden();
}
bool nsIFrame::In3DContextAndBackfaceIsHidden() const {
// While both tests fail most of the time, test BackfaceIsHidden()
// first since it's likely to fail faster.
return BackfaceIsHidden() && Combines3DTransformWithAncestors();
}
bool nsIFrame::HasPerspective() const {
if (!IsCSSTransformed()) {
return false;
}
nsIFrame* parent = GetClosestFlattenedTreeAncestorPrimaryFrame();
if (!parent) {
return false;
}
return parent->ChildrenHavePerspective();
}
nsRect nsIFrame::GetContentRectRelativeToSelf() const {
nsMargin bp = GetUsedBorderAndPadding().ApplySkipSides(GetSkipSides());
nsRect r(0, 0, mRect.width, mRect.height);
r.Deflate(bp);
return r;
}
nsRect nsIFrame::GetContentRect() const {
return GetContentRectRelativeToSelf() + GetPosition();
}
bool nsIFrame::ComputeBorderRadii(const BorderRadius& aBorderRadius,
const nsSize& aFrameSize,
const nsSize& aBorderArea, Sides aSkipSides,
nscoord aRadii[8]) {
// Percentages are relative to whichever side they're on.
for (const auto i : mozilla::AllPhysicalHalfCorners()) {
const LengthPercentage& c = aBorderRadius.Get(i);
nscoord axis = HalfCornerIsX(i) ? aFrameSize.width : aFrameSize.height;
aRadii[i] = std::max(0, c.Resolve(axis));
}
if (aSkipSides.Top()) {
aRadii[eCornerTopLeftX] = 0;
aRadii[eCornerTopLeftY] = 0;
aRadii[eCornerTopRightX] = 0;
aRadii[eCornerTopRightY] = 0;
}
if (aSkipSides.Right()) {
aRadii[eCornerTopRightX] = 0;
aRadii[eCornerTopRightY] = 0;
aRadii[eCornerBottomRightX] = 0;
aRadii[eCornerBottomRightY] = 0;
}
if (aSkipSides.Bottom()) {
aRadii[eCornerBottomRightX] = 0;
aRadii[eCornerBottomRightY] = 0;
aRadii[eCornerBottomLeftX] = 0;
aRadii[eCornerBottomLeftY] = 0;
}
if (aSkipSides.Left()) {
aRadii[eCornerBottomLeftX] = 0;
aRadii[eCornerBottomLeftY] = 0;
aRadii[eCornerTopLeftX] = 0;
aRadii[eCornerTopLeftY] = 0;
}
// css3-background specifies this algorithm for reducing
// corner radii when they are too big.
bool haveRadius = false;
double ratio = 1.0f;
for (const auto side : mozilla::AllPhysicalSides()) {
uint32_t hc1 = SideToHalfCorner(side, false, true);
uint32_t hc2 = SideToHalfCorner(side, true, true);
nscoord length =
SideIsVertical(side) ? aBorderArea.height : aBorderArea.width;
nscoord sum = aRadii[hc1] + aRadii[hc2];
if (sum) {
haveRadius = true;
// avoid floating point division in the normal case
if (length < sum) {
ratio = std::min(ratio, double(length) / sum);
}
}
}
if (ratio < 1.0) {
for (const auto corner : mozilla::AllPhysicalHalfCorners()) {
aRadii[corner] *= ratio;
}
}
return haveRadius;
}
void nsIFrame::AdjustBorderRadii(nscoord aRadii[8], const nsMargin& aOffsets) {
auto AdjustOffset = [](const uint32_t aRadius, const nscoord aOffset) {
// Implement the cubic formula to adjust offset when aOffset > 0 and
// aRadius / aOffset < 1.
// https://drafts.csswg.org/css-shapes/#valdef-shape-box-margin-box
if (aOffset > 0) {
const double ratio = aRadius / double(aOffset);
if (ratio < 1.0) {
return nscoord(aOffset * (1.0 + std::pow(ratio - 1, 3)));
}
}
return aOffset;
};
for (const auto side : mozilla::AllPhysicalSides()) {
const nscoord offset = aOffsets.Side(side);
const uint32_t hc1 = SideToHalfCorner(side, false, false);
const uint32_t hc2 = SideToHalfCorner(side, true, false);
if (aRadii[hc1] > 0) {
const nscoord offset1 = AdjustOffset(aRadii[hc1], offset);
aRadii[hc1] = std::max(0, aRadii[hc1] + offset1);
}
if (aRadii[hc2] > 0) {
const nscoord offset2 = AdjustOffset(aRadii[hc2], offset);
aRadii[hc2] = std::max(0, aRadii[hc2] + offset2);
}
}
}
static inline bool RadiiAreDefinitelyZero(const BorderRadius& aBorderRadius) {
for (const auto corner : mozilla::AllPhysicalHalfCorners()) {
if (!aBorderRadius.Get(corner).IsDefinitelyZero()) {
return false;
}
}
return true;
}
/* virtual */
bool nsIFrame::GetBorderRadii(const nsSize& aFrameSize,
const nsSize& aBorderArea, Sides aSkipSides,
nscoord aRadii[8]) const {
if (!mMayHaveRoundedCorners) {
memset(aRadii, 0, sizeof(nscoord) * 8);
return false;
}
if (IsThemed()) {
// When we're themed, the native theme code draws the border and
// background, and therefore it doesn't make sense to tell other
// code that's interested in border-radius that we have any radii.
//
// In an ideal world, we might have a way for the them to tell us an
// border radius, but since we don't, we're better off assuming
// zero.
for (const auto corner : mozilla::AllPhysicalHalfCorners()) {
aRadii[corner] = 0;
}
return false;
}
const auto& radii = StyleBorder()->mBorderRadius;
const bool hasRadii =
ComputeBorderRadii(radii, aFrameSize, aBorderArea, aSkipSides, aRadii);
if (!hasRadii) {
// TODO(emilio): Maybe we can just remove this bit and do the
// IsDefinitelyZero check unconditionally. That should still avoid most of
// the work, though maybe not the cache miss of going through the style and
// the border struct.
const_cast<nsIFrame*>(this)->mMayHaveRoundedCorners =
!RadiiAreDefinitelyZero(radii);
}
return hasRadii;
}
bool nsIFrame::GetBorderRadii(nscoord aRadii[8]) const {
nsSize sz = GetSize();
return GetBorderRadii(sz, sz, GetSkipSides(), aRadii);
}
bool nsIFrame::GetMarginBoxBorderRadii(nscoord aRadii[8]) const {
return GetBoxBorderRadii(aRadii, GetUsedMargin());
}
bool nsIFrame::GetPaddingBoxBorderRadii(nscoord aRadii[8]) const {
return GetBoxBorderRadii(aRadii, -GetUsedBorder());
}
bool nsIFrame::GetContentBoxBorderRadii(nscoord aRadii[8]) const {
return GetBoxBorderRadii(aRadii, -GetUsedBorderAndPadding());
}
bool nsIFrame::GetBoxBorderRadii(nscoord aRadii[8],
const nsMargin& aOffsets) const {
if (!GetBorderRadii(aRadii)) {
return false;
}
AdjustBorderRadii(aRadii, aOffsets);
for (const auto corner : mozilla::AllPhysicalHalfCorners()) {
if (aRadii[corner]) {
return true;
}
}
return false;
}
bool nsIFrame::GetShapeBoxBorderRadii(nscoord aRadii[8]) const {
using Tag = StyleShapeOutside::Tag;
auto& shapeOutside = StyleDisplay()->mShapeOutside;
auto box = StyleShapeBox::MarginBox;
switch (shapeOutside.tag) {
case Tag::Image:
case Tag::None:
return false;
case Tag::Box:
box = shapeOutside.AsBox();
break;
case Tag::Shape:
box = shapeOutside.AsShape()._1;
break;
}
switch (box) {
case StyleShapeBox::ContentBox:
return GetContentBoxBorderRadii(aRadii);
case StyleShapeBox::PaddingBox:
return GetPaddingBoxBorderRadii(aRadii);
case StyleShapeBox::BorderBox:
return GetBorderRadii(aRadii);
case StyleShapeBox::MarginBox:
return GetMarginBoxBorderRadii(aRadii);
default:
MOZ_ASSERT_UNREACHABLE("Unexpected box value");
return false;
}
}
ComputedStyle* nsIFrame::GetAdditionalComputedStyle(int32_t aIndex) const {
MOZ_ASSERT(aIndex >= 0, "invalid index number");
return nullptr;
}
void nsIFrame::SetAdditionalComputedStyle(int32_t aIndex,
ComputedStyle* aComputedStyle) {
MOZ_ASSERT(aIndex >= 0, "invalid index number");
}
nscoord nsIFrame::GetLogicalBaseline(WritingMode aWritingMode) const {
NS_ASSERTION(!IsSubtreeDirty(), "frame must not be dirty");
// Baseline for inverted line content is the top (block-start) margin edge,
// as the frame is in effect "flipped" for alignment purposes.
if (aWritingMode.IsLineInverted()) {
return -GetLogicalUsedMargin(aWritingMode).BStart(aWritingMode);
}
// Otherwise, the bottom margin edge, per CSS2.1's definition of the
// 'baseline' value of 'vertical-align'.
return BSize(aWritingMode) +
GetLogicalUsedMargin(aWritingMode).BEnd(aWritingMode);
}
const nsFrameList& nsIFrame::GetChildList(ChildListID aListID) const {
if (IsAbsoluteContainer() && aListID == GetAbsoluteListID()) {
return GetAbsoluteContainingBlock()->GetChildList();
} else {
return nsFrameList::EmptyList();
}
}
void nsIFrame::GetChildLists(nsTArray<ChildList>* aLists) const {
if (IsAbsoluteContainer()) {
const nsFrameList& absoluteList =
GetAbsoluteContainingBlock()->GetChildList();
absoluteList.AppendIfNonempty(aLists, GetAbsoluteListID());
}
}
AutoTArray<nsIFrame::ChildList, 4> nsIFrame::CrossDocChildLists() {
AutoTArray<ChildList, 4> childLists;
nsSubDocumentFrame* subdocumentFrame = do_QueryFrame(this);
if (subdocumentFrame) {
// Descend into the subdocument
nsIFrame* root = subdocumentFrame->GetSubdocumentRootFrame();
if (root) {
childLists.EmplaceBack(
nsFrameList(root, nsLayoutUtils::GetLastSibling(root)),
FrameChildListID::Principal);
}
}
GetChildLists(&childLists);
return childLists;
}
const nsAtom* nsIFrame::ComputePageValue() const {
if (!StaticPrefs::layout_css_named_pages_enabled()) {
return nsGkAtoms::_empty;
}
const nsAtom* value = nsGkAtoms::_empty;
const nsIFrame* frame = this;
do {
// If this has a non-auto start value, track that instead.
if (const nsAtom* const startValue = frame->GetStartPageValue()) {
value = startValue;
}
MOZ_ASSERT(value, "Should not have a NULL page value.");
// Get the next frame to read from.
const nsIFrame* firstNonPlaceholderFrame = nullptr;
// If this is a container frame, inspect its in-flow children.
if (const nsContainerFrame* containerFrame = do_QueryFrame(frame)) {
for (const nsIFrame* childFrame : containerFrame->PrincipalChildList()) {
if (!childFrame->IsPlaceholderFrame()) {
firstNonPlaceholderFrame = childFrame;
break;
}
}
}
frame = firstNonPlaceholderFrame;
} while (frame);
return value;
}
Visibility nsIFrame::GetVisibility() const {
if (!HasAnyStateBits(NS_FRAME_VISIBILITY_IS_TRACKED)) {
return Visibility::Untracked;
}
bool isSet = false;
uint32_t visibleCount = GetProperty(VisibilityStateProperty(), &isSet);
MOZ_ASSERT(isSet,
"Should have a VisibilityStateProperty value "
"if NS_FRAME_VISIBILITY_IS_TRACKED is set");
return visibleCount > 0 ? Visibility::ApproximatelyVisible
: Visibility::ApproximatelyNonVisible;
}
void nsIFrame::UpdateVisibilitySynchronously() {
mozilla::PresShell* presShell = PresShell();
if (!presShell) {
return;
}
if (presShell->AssumeAllFramesVisible()) {
presShell->EnsureFrameInApproximatelyVisibleList(this);
return;
}
bool visible = StyleVisibility()->IsVisible();
nsIFrame* f = GetParent();
nsRect rect = GetRectRelativeToSelf();
nsIFrame* rectFrame = this;
while (f && visible) {
nsIScrollableFrame* sf = do_QueryFrame(f);
if (sf) {
nsRect transformedRect =
nsLayoutUtils::TransformFrameRectToAncestor(rectFrame, rect, f);
if (!sf->IsRectNearlyVisible(transformedRect)) {
visible = false;
break;
}
// In this code we're trying to synchronously update *approximate*
// visibility. (In the future we may update precise visibility here as
// well, which is why the method name does not contain 'approximate'.) The
// IsRectNearlyVisible() check above tells us that the rect we're checking
// is approximately visible within the scrollframe, but we still need to
// ensure that, even if it was scrolled into view, it'd be visible when we
// consider the rest of the document. To do that, we move transformedRect
// to be contained in the scrollport as best we can (it might not fit) to
// pretend that it was scrolled into view.
rect = transformedRect.MoveInsideAndClamp(sf->GetScrollPortRect());
rectFrame = f;
}
nsIFrame* parent = f->GetParent();
if (!parent) {
parent = nsLayoutUtils::GetCrossDocParentFrameInProcess(f);
if (parent && parent->PresContext()->IsChrome()) {
break;
}
}
f = parent;
}
if (visible) {
presShell->EnsureFrameInApproximatelyVisibleList(this);
} else {
presShell->RemoveFrameFromApproximatelyVisibleList(this);
}
}
void nsIFrame::EnableVisibilityTracking() {
if (HasAnyStateBits(NS_FRAME_VISIBILITY_IS_TRACKED)) {
return; // Nothing to do.
}
MOZ_ASSERT(!HasProperty(VisibilityStateProperty()),
"Shouldn't have a VisibilityStateProperty value "
"if NS_FRAME_VISIBILITY_IS_TRACKED is not set");
// Add the state bit so we know to track visibility for this frame, and
// initialize the frame property.
AddStateBits(NS_FRAME_VISIBILITY_IS_TRACKED);
SetProperty(VisibilityStateProperty(), 0);
mozilla::PresShell* presShell = PresShell();
if (!presShell) {
return;
}
// Schedule a visibility update. This method will virtually always be called
// when layout has changed anyway, so it's very unlikely that any additional
// visibility updates will be triggered by this, but this way we guarantee
// that if this frame is currently visible we'll eventually find out.
presShell->ScheduleApproximateFrameVisibilityUpdateSoon();
}
void nsIFrame::DisableVisibilityTracking() {
if (!HasAnyStateBits(NS_FRAME_VISIBILITY_IS_TRACKED)) {
return; // Nothing to do.
}
bool isSet = false;
uint32_t visibleCount = TakeProperty(VisibilityStateProperty(), &isSet);
MOZ_ASSERT(isSet,
"Should have a VisibilityStateProperty value "
"if NS_FRAME_VISIBILITY_IS_TRACKED is set");
RemoveStateBits(NS_FRAME_VISIBILITY_IS_TRACKED);
if (visibleCount == 0) {
return; // We were nonvisible.
}
// We were visible, so send an OnVisibilityChange() notification.
OnVisibilityChange(Visibility::ApproximatelyNonVisible);
}
void nsIFrame::DecApproximateVisibleCount(
const Maybe<OnNonvisible>& aNonvisibleAction
/* = Nothing() */) {
MOZ_ASSERT(HasAnyStateBits(NS_FRAME_VISIBILITY_IS_TRACKED));
bool isSet = false;
uint32_t visibleCount = GetProperty(VisibilityStateProperty(), &isSet);
MOZ_ASSERT(isSet,
"Should have a VisibilityStateProperty value "
"if NS_FRAME_VISIBILITY_IS_TRACKED is set");
MOZ_ASSERT(visibleCount > 0,
"Frame is already nonvisible and we're "
"decrementing its visible count?");
visibleCount--;
SetProperty(VisibilityStateProperty(), visibleCount);
if (visibleCount > 0) {
return;
}
// We just became nonvisible, so send an OnVisibilityChange() notification.
OnVisibilityChange(Visibility::ApproximatelyNonVisible, aNonvisibleAction);
}
void nsIFrame::IncApproximateVisibleCount() {
MOZ_ASSERT(HasAnyStateBits(NS_FRAME_VISIBILITY_IS_TRACKED));
bool isSet = false;
uint32_t visibleCount = GetProperty(VisibilityStateProperty(), &isSet);
MOZ_ASSERT(isSet,
"Should have a VisibilityStateProperty value "
"if NS_FRAME_VISIBILITY_IS_TRACKED is set");
visibleCount++;
SetProperty(VisibilityStateProperty(), visibleCount);
if (visibleCount > 1) {
return;
}
// We just became visible, so send an OnVisibilityChange() notification.
OnVisibilityChange(Visibility::ApproximatelyVisible);
}
void nsIFrame::OnVisibilityChange(Visibility aNewVisibility,
const Maybe<OnNonvisible>& aNonvisibleAction
/* = Nothing() */) {
// XXX(seth): In bug 1218990 we'll implement visibility tracking for CSS
// images here.
}
static nsIFrame* GetActiveSelectionFrame(nsPresContext* aPresContext,
nsIFrame* aFrame) {
nsIContent* capturingContent = PresShell::GetCapturingContent();
if (capturingContent) {
nsIFrame* activeFrame = aPresContext->GetPrimaryFrameFor(capturingContent);
return activeFrame ? activeFrame : aFrame;
}
return aFrame;
}
int16_t nsIFrame::DetermineDisplaySelection() {
int16_t selType = nsISelectionController::SELECTION_OFF;
nsCOMPtr<nsISelectionController> selCon;
nsresult result =
GetSelectionController(PresContext(), getter_AddRefs(selCon));
if (NS_SUCCEEDED(result) && selCon) {
result = selCon->GetDisplaySelection(&selType);
if (NS_SUCCEEDED(result) &&
(selType != nsISelectionController::SELECTION_OFF)) {
// Check whether style allows selection.
if (!IsSelectable(nullptr)) {
selType = nsISelectionController::SELECTION_OFF;
}
}
}
return selType;
}
static Element* FindElementAncestorForMozSelection(nsIContent* aContent) {
NS_ENSURE_TRUE(aContent, nullptr);
while (aContent && aContent->IsInNativeAnonymousSubtree()) {
aContent = aContent->GetClosestNativeAnonymousSubtreeRootParent();
}
NS_ASSERTION(aContent, "aContent isn't in non-anonymous tree?");
return aContent ? aContent->GetAsElementOrParentElement() : nullptr;
}
already_AddRefed<ComputedStyle> nsIFrame::ComputeSelectionStyle(
int16_t aSelectionStatus) const {
// Just bail out if not a selection-status that ::selection applies to.
if (aSelectionStatus != nsISelectionController::SELECTION_ON &&
aSelectionStatus != nsISelectionController::SELECTION_DISABLED) {
return nullptr;
}
// When in high-contrast mode, the style system ends up ignoring the color
// declarations, which means that the ::selection style becomes the inherited
// color, and default background. That's no good.
if (PresContext()->ForcingColors()) {
return nullptr;
}
Element* element = FindElementAncestorForMozSelection(GetContent());
if (!element) {
return nullptr;
}
return PresContext()->StyleSet()->ProbePseudoElementStyle(
*element, PseudoStyleType::selection, Style());
}
template <typename SizeOrMaxSize>
static inline bool IsIntrinsicKeyword(const SizeOrMaxSize& aSize) {
// All keywords other than auto/none/-moz-available depend on intrinsic sizes.
return aSize.IsMaxContent() || aSize.IsMinContent() || aSize.IsFitContent() ||
aSize.IsFitContentFunction();
}
bool nsIFrame::CanBeDynamicReflowRoot() const {
if (!StaticPrefs::layout_dynamic_reflow_roots_enabled()) {
return false;
}
auto& display = *StyleDisplay();
if (IsFrameOfType(nsIFrame::eLineParticipant) ||
nsStyleDisplay::IsRubyDisplayType(display.mDisplay) ||
display.DisplayOutside() == StyleDisplayOutside::InternalTable ||
display.DisplayInside() == StyleDisplayInside::Table ||
(GetParent() && GetParent()->IsXULBoxFrame())) {
// We have a display type where 'width' and 'height' don't actually set the
// width or height (i.e., the size depends on content).
MOZ_ASSERT(!HasAnyStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT),
"should not have dynamic reflow root bit");
return false;
}
// We can't serve as a dynamic reflow root if our used 'width' and 'height'
// might be influenced by content.
//
// FIXME: For display:block, we should probably optimize inline-size: auto.
// FIXME: Other flex and grid cases?
auto& pos = *StylePosition();
const auto& width = pos.mWidth;
const auto& height = pos.mHeight;
if (!width.IsLengthPercentage() || width.HasPercent() ||
!height.IsLengthPercentage() || height.HasPercent() ||
IsIntrinsicKeyword(pos.mMinWidth) || IsIntrinsicKeyword(pos.mMaxWidth) ||
IsIntrinsicKeyword(pos.mMinHeight) ||
IsIntrinsicKeyword(pos.mMaxHeight) ||
((pos.mMinWidth.IsAuto() || pos.mMinHeight.IsAuto()) &&
IsFlexOrGridItem())) {
return false;
}
// If our flex-basis is 'auto', it'll defer to 'width' (or 'height') which
// we've already checked. Otherwise, it preempts them, so we need to
// perform the same "could-this-value-be-influenced-by-content" checks that
// we performed for 'width' and 'height' above.
if (IsFlexItem()) {
const auto& flexBasis = pos.mFlexBasis;
if (!flexBasis.IsAuto()) {
if (!flexBasis.IsSize() || !flexBasis.AsSize().IsLengthPercentage() ||
flexBasis.AsSize().HasPercent()) {
return false;
}
}
}
if (!IsFixedPosContainingBlock()) {
// We can't treat this frame as a reflow root, since dynamic changes
// to absolutely-positioned frames inside of it require that we
// reflow the placeholder before we reflow the absolutely positioned
// frame.
// FIXME: Alternatively, we could sort the reflow roots in
// PresShell::ProcessReflowCommands by depth in the tree, from
// deepest to least deep. However, for performance (FIXME) we
// should really be sorting them in the opposite order!
return false;
}
// If we participate in a container's block reflow context, or margins
// can collapse through us, we can't be a dynamic reflow root.
if (IsBlockFrameOrSubclass() &&
!HasAllStateBits(NS_BLOCK_FLOAT_MGR | NS_BLOCK_MARGIN_ROOT)) {
return false;
}
// Subgrids are never reflow roots, but 'contain:layout/paint' prevents
// creating a subgrid in the first place.
if (pos.mGridTemplateColumns.IsSubgrid() ||
pos.mGridTemplateRows.IsSubgrid()) {
// NOTE: we could check that 'display' of our parent's primary frame is
// '[inline-]grid' here but that's probably not worth it in practice.
if (!display.IsContainLayout() && !display.IsContainPaint()) {
return false;
}
}
// If we are split, we can't be a dynamic reflow root. Our reflow status may
// change after reflow, and our parent is responsible to create or delete our
// next-in-flow.
if (GetPrevContinuation() || GetNextContinuation()) {
return false;
}
return true;
}
/********************************************************
* Refreshes each content's frame
*********************************************************/
void nsIFrame::DisplayOutlineUnconditional(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
// Per https://drafts.csswg.org/css-tables-3/#global-style-overrides:
// "All css properties of table-column and table-column-group boxes are
// ignored, except when explicitly specified by this specification."
// CSS outlines fall into this category, so we skip them on these boxes.
MOZ_ASSERT(!IsTableColGroupFrame() && !IsTableColFrame());
const auto& outline = *StyleOutline();
if (!outline.ShouldPaintOutline()) {
return;
}
// Outlines are painted by the table wrapper frame.
if (IsTableFrame()) {
return;
}
if (HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT) &&
ScrollableOverflowRect().IsEmpty()) {
// Skip parts of IB-splits with an empty overflow rect, see bug 434301.
// We may still want to fix some of the overflow area calculations over in
// that bug.
return;
}
// We don't display outline-style: auto on themed frames that have their own
// focus indicators.
if (outline.mOutlineStyle.IsAuto()) {
auto* disp = StyleDisplay();
if (IsThemed(disp) && PresContext()->Theme()->ThemeDrawsFocusForWidget(
this, disp->EffectiveAppearance())) {
return;
}
}
aLists.Outlines()->AppendNewToTop<nsDisplayOutline>(aBuilder, this);
}
void nsIFrame::DisplayOutline(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
if (!IsVisibleForPainting()) return;
DisplayOutlineUnconditional(aBuilder, aLists);
}
void nsIFrame::DisplayInsetBoxShadowUnconditional(
nsDisplayListBuilder* aBuilder, nsDisplayList* aList) {
// XXXbz should box-shadow for rows/rowgroups/columns/colgroups get painted
// just because we're visible? Or should it depend on the cell visibility
// when we're not the whole table?
const auto* effects = StyleEffects();
if (effects->HasBoxShadowWithInset(true)) {
aList->AppendNewToTop<nsDisplayBoxShadowInner>(aBuilder, this);
}
}
void nsIFrame::DisplayInsetBoxShadow(nsDisplayListBuilder* aBuilder,
nsDisplayList* aList) {
if (!IsVisibleForPainting()) return;
DisplayInsetBoxShadowUnconditional(aBuilder, aList);
}
void nsIFrame::DisplayOutsetBoxShadowUnconditional(
nsDisplayListBuilder* aBuilder, nsDisplayList* aList) {
// XXXbz should box-shadow for rows/rowgroups/columns/colgroups get painted
// just because we're visible? Or should it depend on the cell visibility
// when we're not the whole table?
const auto* effects = StyleEffects();
if (effects->HasBoxShadowWithInset(false)) {
aList->AppendNewToTop<nsDisplayBoxShadowOuter>(aBuilder, this);
}
}
void nsIFrame::DisplayOutsetBoxShadow(nsDisplayListBuilder* aBuilder,
nsDisplayList* aList) {
if (!IsVisibleForPainting()) return;
DisplayOutsetBoxShadowUnconditional(aBuilder, aList);
}
void nsIFrame::DisplayCaret(nsDisplayListBuilder* aBuilder,
nsDisplayList* aList) {
if (!IsVisibleForPainting()) return;
aList->AppendNewToTop<nsDisplayCaret>(aBuilder, this);
}
nscolor nsIFrame::GetCaretColorAt(int32_t aOffset) {
return nsLayoutUtils::GetColor(this, &nsStyleUI::mCaretColor);
}
auto nsIFrame::ComputeShouldPaintBackground() const -> ShouldPaintBackground {
nsPresContext* pc = PresContext();
ShouldPaintBackground settings{pc->GetBackgroundColorDraw(),
pc->GetBackgroundImageDraw()};
if (settings.mColor && settings.mImage) {
return settings;
}
if (!HonorPrintBackgroundSettings() ||
StyleVisibility()->mPrintColorAdjust == StylePrintColorAdjust::Exact) {
return {true, true};
}
return settings;
}
bool nsIFrame::DisplayBackgroundUnconditional(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
if (aBuilder->IsForEventDelivery() && !aBuilder->HitTestIsForVisibility()) {
// For hit-testing, we generally just need a light-weight data structure
// like nsDisplayEventReceiver. But if the hit-testing is for visibility,
// then we need to know the opaque region in order to determine whether to
// stop or not.
aLists.BorderBackground()->AppendNewToTop<nsDisplayEventReceiver>(aBuilder,
this);
return false;
}
const AppendedBackgroundType result =
nsDisplayBackgroundImage::AppendBackgroundItemsToTop(
aBuilder, this,
GetRectRelativeToSelf() + aBuilder->ToReferenceFrame(this),
aLists.BorderBackground());
if (result == AppendedBackgroundType::None) {
aBuilder->BuildCompositorHitTestInfoIfNeeded(this,
aLists.BorderBackground());
}
return result == AppendedBackgroundType::ThemedBackground;
}
void nsIFrame::DisplayBorderBackgroundOutline(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
// The visibility check belongs here since child elements have the
// opportunity to override the visibility property and display even if
// their parent is hidden.
if (!IsVisibleForPainting()) {
return;
}
DisplayOutsetBoxShadowUnconditional(aBuilder, aLists.BorderBackground());
bool bgIsThemed = DisplayBackgroundUnconditional(aBuilder, aLists);
DisplayInsetBoxShadowUnconditional(aBuilder, aLists.BorderBackground());
// If there's a themed background, we should not create a border item.
// It won't be rendered.
// Don't paint borders for tables here, since they paint them in a different
// order.
if (!bgIsThemed && StyleBorder()->HasBorder() && !IsTableFrame()) {
aLists.BorderBackground()->AppendNewToTop<nsDisplayBorder>(aBuilder, this);
}
DisplayOutlineUnconditional(aBuilder, aLists);
}
inline static bool IsSVGContentWithCSSClip(const nsIFrame* aFrame) {
// The CSS spec says that the 'clip' property only applies to absolutely
// positioned elements, whereas the SVG spec says that it applies to SVG
// elements regardless of the value of the 'position' property. Here we obey
// the CSS spec for outer-<svg> (since that's what we generally do), but
// obey the SVG spec for other SVG elements to which 'clip' applies.
return aFrame->HasAnyStateBits(NS_FRAME_SVG_LAYOUT) &&
aFrame->GetContent()->IsAnyOfSVGElements(nsGkAtoms::svg,
nsGkAtoms::foreignObject);
}
Maybe<nsRect> nsIFrame::GetClipPropClipRect(const nsStyleDisplay* aDisp,
const nsStyleEffects* aEffects,
const nsSize& aSize) const {
if (aEffects->mClip.IsAuto() ||
!(aDisp->IsAbsolutelyPositioned(this) || IsSVGContentWithCSSClip(this))) {
return Nothing();
}
auto& clipRect = aEffects->mClip.AsRect();
nsRect rect = clipRect.ToLayoutRect();
if (MOZ_LIKELY(StyleBorder()->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Slice)) {
// The clip applies to the joined boxes so it's relative the first
// continuation.
nscoord y = 0;
for (nsIFrame* f = GetPrevContinuation(); f; f = f->GetPrevContinuation()) {
y += f->GetRect().height;
}
rect.MoveBy(nsPoint(0, -y));
}
if (clipRect.right.IsAuto()) {
rect.width = aSize.width - rect.x;
}
if (clipRect.bottom.IsAuto()) {
rect.height = aSize.height - rect.y;
}
return Some(rect);
}
/**
* If the CSS 'overflow' property applies to this frame, and is not
* handled by constructing a dedicated nsHTML/XULScrollFrame, set up clipping
* for that overflow in aBuilder->ClipState() to clip all containing-block
* descendants.
*/
static void ApplyOverflowClipping(
nsDisplayListBuilder* aBuilder, const nsIFrame* aFrame,
nsIFrame::PhysicalAxes aClipAxes,
DisplayListClipState::AutoClipMultiple& aClipState) {
// Only 'clip' is handled here (and 'hidden' for table frames, and any
// non-'visible' value for blocks in a paginated context).
// We allow 'clip' to apply to any kind of frame. This is required by
// comboboxes which make their display text (an inline frame) have clipping.
MOZ_ASSERT(aClipAxes != nsIFrame::PhysicalAxes::None);
MOZ_ASSERT(aFrame->ShouldApplyOverflowClipping(aFrame->StyleDisplay()) ==
aClipAxes);
nsRect clipRect;
bool haveRadii = false;
nscoord radii[8];
auto* disp = aFrame->StyleDisplay();
// Only deflate the padding if we clip to the content-box in that axis.
auto wm = aFrame->GetWritingMode();
bool cbH = (wm.IsVertical() ? disp->mOverflowClipBoxBlock
: disp->mOverflowClipBoxInline) ==
StyleOverflowClipBox::ContentBox;
bool cbV = (wm.IsVertical() ? disp->mOverflowClipBoxInline
: disp->mOverflowClipBoxBlock) ==
StyleOverflowClipBox::ContentBox;
nsMargin boxMargin = -aFrame->GetUsedPadding();
if (!cbH) {
boxMargin.left = boxMargin.right = nscoord(0);
}
if (!cbV) {
boxMargin.top = boxMargin.bottom = nscoord(0);
}
auto clipMargin = aFrame->OverflowClipMargin(aClipAxes);
boxMargin -= aFrame->GetUsedBorder();
boxMargin += nsMargin(clipMargin.height, clipMargin.width, clipMargin.height,
clipMargin.width);
boxMargin.ApplySkipSides(aFrame->GetSkipSides());
nsRect rect(nsPoint(0, 0), aFrame->GetSize());
rect.Inflate(boxMargin);
if (MOZ_UNLIKELY(!(aClipAxes & nsIFrame::PhysicalAxes::Horizontal))) {
// NOTE(mats) We shouldn't be clipping at all in this dimension really,
// but clipping in just one axis isn't supported by our GFX APIs so we
// clip to our visual overflow rect instead.
nsRect o = aFrame->InkOverflowRect();
rect.x = o.x;
rect.width = o.width;
}
if (MOZ_UNLIKELY(!(aClipAxes & nsIFrame::PhysicalAxes::Vertical))) {
// See the note above.
nsRect o = aFrame->InkOverflowRect();
rect.y = o.y;
rect.height = o.height;
}
clipRect = rect + aBuilder->ToReferenceFrame(aFrame);
haveRadii = aFrame->GetBoxBorderRadii(radii, boxMargin);
aClipState.ClipContainingBlockDescendantsExtra(clipRect,
haveRadii ? radii : nullptr);
}
nsSize nsIFrame::OverflowClipMargin(PhysicalAxes aClipAxes) const {
nsSize result;
if (aClipAxes == PhysicalAxes::None) {
return result;
}
const auto& margin = StyleMargin()->mOverflowClipMargin;
if (margin.IsZero()) {
return result;
}
nscoord marginAu = margin.ToAppUnits();
if (aClipAxes & PhysicalAxes::Horizontal) {
result.width = marginAu;
}
if (aClipAxes & PhysicalAxes::Vertical) {
result.height = marginAu;
}
return result;
}
/**
* Returns whether a display item that gets created with the builder's current
* state will have a scrolled clip, i.e. a clip that is scrolled by a scroll
* frame which does not move the item itself.
*/
static bool BuilderHasScrolledClip(nsDisplayListBuilder* aBuilder) {
const DisplayItemClipChain* currentClip =
aBuilder->ClipState().GetCurrentCombinedClipChain(aBuilder);
if (!currentClip) {
return false;
}
const ActiveScrolledRoot* currentClipASR = currentClip->mASR;
const ActiveScrolledRoot* currentASR = aBuilder->CurrentActiveScrolledRoot();
return ActiveScrolledRoot::PickDescendant(currentClipASR, currentASR) !=
currentASR;
}
class AutoSaveRestoreContainsBlendMode {
nsDisplayListBuilder& mBuilder;
bool mSavedContainsBlendMode;
public:
explicit AutoSaveRestoreContainsBlendMode(nsDisplayListBuilder& aBuilder)
: mBuilder(aBuilder),
mSavedContainsBlendMode(aBuilder.ContainsBlendMode()) {}
~AutoSaveRestoreContainsBlendMode() {
mBuilder.SetContainsBlendMode(mSavedContainsBlendMode);
}
};
static bool IsFrameOrAncestorApzAware(nsIFrame* aFrame) {
nsIContent* node = aFrame->GetContent();
if (!node) {
return false;
}
do {
if (node->IsNodeApzAware()) {
return true;
}
nsIContent* shadowRoot = node->GetShadowRoot();
if (shadowRoot && shadowRoot->IsNodeApzAware()) {
return true;
}
// Even if the node owning aFrame doesn't have apz-aware event listeners
// itself, its shadow root or display: contents ancestors (which have no
// frames) might, so we need to account for them too.
} while ((node = node->GetFlattenedTreeParent()) && node->IsElement() &&
node->AsElement()->IsDisplayContents());
return false;
}
static void CheckForApzAwareEventHandlers(nsDisplayListBuilder* aBuilder,
nsIFrame* aFrame) {
if (aBuilder->GetAncestorHasApzAwareEventHandler()) {
return;
}
if (IsFrameOrAncestorApzAware(aFrame)) {
aBuilder->SetAncestorHasApzAwareEventHandler(true);
}
}
static void UpdateCurrentHitTestInfo(nsDisplayListBuilder* aBuilder,
nsIFrame* aFrame) {
if (!aBuilder->BuildCompositorHitTestInfo()) {
// Compositor hit test info is not used.
return;
}
CheckForApzAwareEventHandlers(aBuilder, aFrame);
const CompositorHitTestInfo info = aFrame->GetCompositorHitTestInfo(aBuilder);
aBuilder->SetCompositorHitTestInfo(info);
}
/**
* True if aDescendant participates the context aAncestor participating.
*/
static bool FrameParticipatesIn3DContext(nsIFrame* aAncestor,
nsIFrame* aDescendant) {
MOZ_ASSERT(aAncestor != aDescendant);
MOZ_ASSERT(aAncestor->GetContent() != aDescendant->GetContent());
MOZ_ASSERT(aAncestor->Extend3DContext());
nsIFrame* ancestor = aAncestor->FirstContinuation();
MOZ_ASSERT(ancestor->IsPrimaryFrame());
nsIFrame* frame;
for (frame = aDescendant->GetClosestFlattenedTreeAncestorPrimaryFrame();
frame && ancestor != frame;
frame = frame->GetClosestFlattenedTreeAncestorPrimaryFrame()) {
if (!frame->Extend3DContext()) {
return false;
}
}
MOZ_ASSERT(frame == ancestor);
return true;
}
static bool ItemParticipatesIn3DContext(nsIFrame* aAncestor,
nsDisplayItem* aItem) {
auto type = aItem->GetType();
const bool isContainer = type == DisplayItemType::TYPE_WRAP_LIST ||
type == DisplayItemType::TYPE_CONTAINER;
if (isContainer && aItem->GetChildren()->Length() == 1) {
// If the wraplist has only one child item, use the type of that item.
type = aItem->GetChildren()->GetBottom()->GetType();
}
if (type != DisplayItemType::TYPE_TRANSFORM &&
type != DisplayItemType::TYPE_PERSPECTIVE) {
return false;
}
nsIFrame* transformFrame = aItem->Frame();
if (aAncestor->GetContent() == transformFrame->GetContent()) {
return true;
}
return FrameParticipatesIn3DContext(aAncestor, transformFrame);
}
static void WrapSeparatorTransform(nsDisplayListBuilder* aBuilder,
nsIFrame* aFrame,
nsDisplayList* aNonParticipants,
nsDisplayList* aParticipants, int aIndex,
nsDisplayItem** aSeparator) {
if (aNonParticipants->IsEmpty()) {
return;
}
nsDisplayTransform* item = MakeDisplayItemWithIndex<nsDisplayTransform>(
aBuilder, aFrame, aIndex, aNonParticipants, aBuilder->GetVisibleRect());
if (*aSeparator == nullptr && item) {
*aSeparator = item;
}
aParticipants->AppendToTop(item);
}
// Try to compute a clip rect to bound the contents of the mask item
// that will be built for |aMaskedFrame|. If we're not able to compute
// one, return an empty Maybe.
// The returned clip rect, if there is one, is relative to |aMaskedFrame|.
static Maybe<nsRect> ComputeClipForMaskItem(nsDisplayListBuilder* aBuilder,
nsIFrame* aMaskedFrame) {
const nsStyleSVGReset* svgReset = aMaskedFrame->StyleSVGReset();
SVGUtils::MaskUsage maskUsage;
SVGUtils::DetermineMaskUsage(aMaskedFrame, false, maskUsage);
nsPoint offsetToUserSpace =
nsLayoutUtils::ComputeOffsetToUserSpace(aBuilder, aMaskedFrame);
int32_t devPixelRatio = aMaskedFrame->PresContext()->AppUnitsPerDevPixel();
gfxPoint devPixelOffsetToUserSpace =
nsLayoutUtils::PointToGfxPoint(offsetToUserSpace, devPixelRatio);
CSSToLayoutDeviceScale cssToDevScale =
aMaskedFrame->PresContext()->CSSToDevPixelScale();
nsPoint toReferenceFrame;
aBuilder->FindReferenceFrameFor(aMaskedFrame, &toReferenceFrame);
Maybe<gfxRect> combinedClip;
if (maskUsage.shouldApplyBasicShapeOrPath) {
Maybe<Rect> result =
CSSClipPathInstance::GetBoundingRectForBasicShapeOrPathClip(
aMaskedFrame, svgReset->mClipPath);
if (result) {
combinedClip = Some(ThebesRect(*result));
}
} else if (maskUsage.shouldApplyClipPath) {
gfxRect result = SVGUtils::GetBBox(
aMaskedFrame,
SVGUtils::eBBoxIncludeClipped | SVGUtils::eBBoxIncludeFill |
SVGUtils::eBBoxIncludeMarkers | SVGUtils::eBBoxIncludeStroke |
SVGUtils::eDoNotClipToBBoxOfContentInsideClipPath);
combinedClip = Some(
ThebesRect((CSSRect::FromUnknownRect(ToRect(result)) * cssToDevScale)
.ToUnknownRect()));
} else {
// The code for this case is adapted from ComputeMaskGeometry().
nsRect borderArea(toReferenceFrame, aMaskedFrame->GetSize());
borderArea -= offsetToUserSpace;
// Use an infinite dirty rect to pass into nsCSSRendering::
// GetImageLayerClip() because we don't have an actual dirty rect to
// pass in. This is fine because the only time GetImageLayerClip() will
// not intersect the incoming dirty rect with something is in the "NoClip"
// case, and we handle that specially.
nsRect dirtyRect(nscoord_MIN / 2, nscoord_MIN / 2, nscoord_MAX,
nscoord_MAX);
nsIFrame* firstFrame =
nsLayoutUtils::FirstContinuationOrIBSplitSibling(aMaskedFrame);
nsTArray<SVGMaskFrame*> maskFrames;
// XXX check return value?
SVGObserverUtils::GetAndObserveMasks(firstFrame, &maskFrames);
for (uint32_t i = 0; i < maskFrames.Length(); ++i) {
gfxRect clipArea;
if (maskFrames[i]) {
clipArea = maskFrames[i]->GetMaskArea(aMaskedFrame);
clipArea = ThebesRect(
(CSSRect::FromUnknownRect(ToRect(clipArea)) * cssToDevScale)
.ToUnknownRect());
} else {
const auto& layer = svgReset->mMask.mLayers[i];
if (layer.mClip == StyleGeometryBox::NoClip) {
return Nothing();
}
nsCSSRendering::ImageLayerClipState clipState;
nsCSSRendering::GetImageLayerClip(
layer, aMaskedFrame, *aMaskedFrame->StyleBorder(), borderArea,
dirtyRect, false /* aWillPaintBorder */, devPixelRatio, &clipState);
clipArea = clipState.mDirtyRectInDevPx;
}
combinedClip = UnionMaybeRects(combinedClip, Some(clipArea));
}
}
if (combinedClip) {
if (combinedClip->IsEmpty()) {
// *clipForMask might be empty if all mask references are not resolvable
// or the size of them are empty. We still need to create a transparent
// mask before bug 1276834 fixed, so don't clip ctx by an empty rectangle
// for for now.
return Nothing();
}
// Convert to user space.
*combinedClip += devPixelOffsetToUserSpace;
// Round the clip out. In FrameLayerBuilder we round clips to nearest
// pixels, and if we have a really thin clip here, that can cause the
// clip to become empty if we didn't round out here.
// The rounding happens in coordinates that are relative to the reference
// frame, which matches what FrameLayerBuilder does.
combinedClip->RoundOut();
// Convert to app units.
nsRect result =
nsLayoutUtils::RoundGfxRectToAppRect(*combinedClip, devPixelRatio);
// The resulting clip is relative to the reference frame, but the caller
// expects it to be relative to the masked frame, so adjust it.
result -= toReferenceFrame;
return Some(result);
}
return Nothing();
}
struct AutoCheckBuilder {
explicit AutoCheckBuilder(nsDisplayListBuilder* aBuilder)
: mBuilder(aBuilder) {
aBuilder->Check();
}
~AutoCheckBuilder() { mBuilder->Check(); }
nsDisplayListBuilder* mBuilder;
};
/**
* Tries to reuse a top-level stacking context item from the previous paint.
* Returns true if an item was reused, otherwise false.
*/
bool TryToReuseStackingContextItem(nsDisplayListBuilder* aBuilder,
nsDisplayList* aList, nsIFrame* aFrame) {
if (!aBuilder->IsForPainting() || !aBuilder->IsPartialUpdate() ||
aBuilder->InInvalidSubtree()) {
return false;
}
if (aFrame->IsFrameModified() || aFrame->HasModifiedDescendants()) {
return false;
}
auto& items = aFrame->DisplayItems();
auto* res = std::find_if(
items.begin(), items.end(),
[](nsDisplayItem* aItem) { return aItem->IsPreProcessed(); });
if (res == items.end()) {
return false;
}
nsDisplayItem* container = *res;
MOZ_ASSERT(container->Frame() == aFrame);
DL_LOGD("RDL - Found SC item %p (%s) (frame: %p)", container,
container->Name(), container->Frame());
aList->AppendToTop(container);
aBuilder->ReuseDisplayItem(container);
return true;
}
void nsIFrame::BuildDisplayListForStackingContext(
nsDisplayListBuilder* aBuilder, nsDisplayList* aList,
bool* aCreatedContainerItem) {
#ifdef DEBUG
DL_LOGV("BuildDisplayListForStackingContext (%p) <", this);
ScopeExit e(
[this]() { DL_LOGV("> BuildDisplayListForStackingContext (%p)", this); });
#endif
AutoCheckBuilder check(aBuilder);
if (aBuilder->IsReusingStackingContextItems() &&
TryToReuseStackingContextItem(aBuilder, aList, this)) {
if (aCreatedContainerItem) {
*aCreatedContainerItem = true;
}
return;
}
if (HasAnyStateBits(NS_FRAME_TOO_DEEP_IN_FRAME_TREE)) {
return;
}
const auto& style = *Style();
const nsStyleDisplay* disp = style.StyleDisplay();
const nsStyleEffects* effects = style.StyleEffects();
EffectSet* effectSetForOpacity = EffectSet::GetEffectSetForFrame(
this, nsCSSPropertyIDSet::OpacityProperties());
// We can stop right away if this is a zero-opacity stacking context and
// we're painting, and we're not animating opacity.
bool needHitTestInfo = aBuilder->BuildCompositorHitTestInfo() &&
Style()->PointerEvents() != StylePointerEvents::None;
bool opacityItemForEventsOnly = false;
if (effects->mOpacity == 0.0 && aBuilder->IsForPainting() &&
!(disp->mWillChange.bits & StyleWillChangeBits::OPACITY) &&
!nsLayoutUtils::HasAnimationOfPropertySet(
this, nsCSSPropertyIDSet::OpacityProperties(), effectSetForOpacity)) {
if (needHitTestInfo) {
opacityItemForEventsOnly = true;
} else {
return;
}
}
if (aBuilder->IsForPainting() && disp->mWillChange.bits) {
aBuilder->AddToWillChangeBudget(this, GetSize());
}
// For preserves3d, use the dirty rect already installed on the
// builder, since aDirtyRect maybe distorted for transforms along
// the chain.
nsRect visibleRect = aBuilder->GetVisibleRect();
nsRect dirtyRect = aBuilder->GetDirtyRect();
// We build an opacity item if it's not going to be drawn by SVG content.
// We could in principle skip creating an nsDisplayOpacity item if
// nsDisplayOpacity::NeedsActiveLayer returns false and usingSVGEffects is
// true (the nsDisplayFilter/nsDisplayMasksAndClipPaths could handle the
// opacity). Since SVG has perf issues where we sometimes spend a lot of
// time creating display list items that might be helpful. We'd need to
// restore our mechanism to do that (changed in bug 1482403), and we'd
// need to invalidate the frame if the value that would be return from
// NeedsActiveLayer was to change, which we don't currently do.
const bool useOpacity =
HasVisualOpacity(disp, effects, effectSetForOpacity) &&
!SVGUtils::CanOptimizeOpacity(this);
const bool isTransformed = IsTransformed();
const bool hasPerspective = isTransformed && HasPerspective();
const bool extend3DContext =
Extend3DContext(disp, effects, effectSetForOpacity);
const bool combines3DTransformWithAncestors =
(extend3DContext || isTransformed) && Combines3DTransformWithAncestors();
Maybe<nsDisplayListBuilder::AutoPreserves3DContext> autoPreserves3DContext;
if (extend3DContext && !combines3DTransformWithAncestors) {
// Start a new preserves3d context to keep informations on
// nsDisplayListBuilder.
autoPreserves3DContext.emplace(aBuilder);
// Save dirty rect on the builder to avoid being distorted for
// multiple transforms along the chain.
aBuilder->SavePreserves3DRect();
// We rebuild everything within preserve-3d and don't try
// to retain, so override the dirty rect now.
if (aBuilder->IsRetainingDisplayList()) {
dirtyRect = visibleRect;
aBuilder->SetDisablePartialUpdates(true);
}
}
const bool useBlendMode = effects->mMixBlendMode != StyleBlend::Normal;
if (useBlendMode) {
aBuilder->SetContainsBlendMode(true);
}
// reset blend mode so we can keep track if this stacking context needs have
// a nsDisplayBlendContainer. Set the blend mode back when the routine exits
// so we keep track if the parent stacking context needs a container too.
AutoSaveRestoreContainsBlendMode autoRestoreBlendMode(*aBuilder);
aBuilder->SetContainsBlendMode(false);
// NOTE: When changing this condition make sure to tweak nsGfxScrollFrame as
// well.
bool usingBackdropFilter = effects->HasBackdropFilters() &&
IsVisibleForPainting() &&
!style.IsRootElementStyle();
nsRect visibleRectOutsideTransform = visibleRect;
nsDisplayTransform::PrerenderInfo prerenderInfo;
bool inTransform = aBuilder->IsInTransform();
if (isTransformed) {
prerenderInfo = nsDisplayTransform::ShouldPrerenderTransformedContent(
aBuilder, this, &visibleRect);
switch (prerenderInfo.mDecision) {
case nsDisplayTransform::PrerenderDecision::Full:
case nsDisplayTransform::PrerenderDecision::Partial:
dirtyRect = visibleRect;
break;
case nsDisplayTransform::PrerenderDecision::No: {
// If we didn't prerender an animated frame in a preserve-3d context,
// then we want disable async animations for the rest of the preserve-3d
// (especially ancestors).
if ((extend3DContext || combines3DTransformWithAncestors) &&
prerenderInfo.mHasAnimations) {
aBuilder->SavePreserves3DAllowAsyncAnimation(false);
}
const nsRect overflow = InkOverflowRectRelativeToSelf();
if (overflow.IsEmpty() && !extend3DContext) {
return;
}
// If we're in preserve-3d then grab the dirty rect that was given to
// the root and transform using the combined transform.
if (combines3DTransformWithAncestors) {
visibleRect = dirtyRect = aBuilder->GetPreserves3DRect();
}
float appPerDev = PresContext()->AppUnitsPerDevPixel();
auto transform = nsDisplayTransform::GetResultingTransformMatrix(
this, nsPoint(), appPerDev,
nsDisplayTransform::kTransformRectFlags);
nsRect untransformedDirtyRect;
if (nsDisplayTransform::UntransformRect(dirtyRect, overflow, transform,
appPerDev,
&untransformedDirtyRect)) {
dirtyRect = untransformedDirtyRect;
nsDisplayTransform::UntransformRect(visibleRect, overflow, transform,
appPerDev, &visibleRect);
} else {
// This should only happen if the transform is singular, in which case
// nothing is visible anyway
dirtyRect.SetEmpty();
visibleRect.SetEmpty();
}
}
}
inTransform = true;
} else if (IsFixedPosContainingBlock()) {
// Restict the building area to the overflow rect for these frames, since
// RetainedDisplayListBuilder uses it to know if the size of the stacking
// context changed.
visibleRect.IntersectRect(visibleRect, InkOverflowRect());
dirtyRect.IntersectRect(dirtyRect, InkOverflowRect());
}
bool hasOverrideDirtyRect = false;
// If we're doing a partial build, we're not invalid and we're capable
// of having an override building rect (stacking context and fixed pos
// containing block), then we should assume we have one.
// Either we have an explicit one, or nothing in our subtree changed and
// we have an implicit empty rect.
//
// These conditions should match |CanStoreDisplayListBuildingRect()| in
// RetainedDisplayListBuilder.cpp
if (!aBuilder->IsReusingStackingContextItems() &&
aBuilder->IsPartialUpdate() && !aBuilder->InInvalidSubtree() &&
!IsFrameModified() && IsFixedPosContainingBlock() &&
!GetPrevContinuation() && !GetNextContinuation()) {
dirtyRect = nsRect();
if (HasOverrideDirtyRegion()) {
nsDisplayListBuilder::DisplayListBuildingData* data =
GetProperty(nsDisplayListBuilder::DisplayListBuildingRect());
if (data) {
dirtyRect = data->mDirtyRect.Intersect(visibleRect);
hasOverrideDirtyRect = true;
}
}
}
bool usingFilter = effects->HasFilters() && !style.IsRootElementStyle();
bool usingMask = SVGIntegrationUtils::UsingMaskOrClipPathForFrame(this);
bool usingSVGEffects = usingFilter || usingMask;
nsRect visibleRectOutsideSVGEffects = visibleRect;
nsDisplayList hoistedScrollInfoItemsStorage(aBuilder);
if (usingSVGEffects) {
dirtyRect =
SVGIntegrationUtils::GetRequiredSourceForInvalidArea(this, dirtyRect);
visibleRect =
SVGIntegrationUtils::GetRequiredSourceForInvalidArea(this, visibleRect);
aBuilder->EnterSVGEffectsContents(this, &hoistedScrollInfoItemsStorage);
}
bool useStickyPosition = disp->mPosition == StylePositionProperty::Sticky;
bool useFixedPosition =
disp->mPosition == StylePositionProperty::Fixed &&
(DisplayPortUtils::IsFixedPosFrameInDisplayPort(this) ||
BuilderHasScrolledClip(aBuilder));
nsDisplayListBuilder::AutoBuildingDisplayList buildingDisplayList(
aBuilder, this, visibleRect, dirtyRect, isTransformed);
UpdateCurrentHitTestInfo(aBuilder, this);
// Depending on the effects that are applied to this frame, we can create
// multiple container display items and wrap them around our contents.
// This enum lists all the potential container display items, in the order
// outside to inside.
enum class ContainerItemType : uint8_t {
None = 0,
OwnLayerIfNeeded,
BlendMode,
FixedPosition,
OwnLayerForTransformWithRoundedClip,
Perspective,
Transform,
SeparatorTransforms,
Opacity,
Filter,
BlendContainer
};
nsDisplayListBuilder::AutoContainerASRTracker contASRTracker(aBuilder);
auto cssClip = GetClipPropClipRect(disp, effects, GetSize());
auto ApplyClipProp = [&](DisplayListClipState::AutoSaveRestore& aClipState) {
if (!cssClip) {
return;
}
nsPoint offset = aBuilder->GetCurrentFrameOffsetToReferenceFrame();
aBuilder->IntersectDirtyRect(*cssClip);
aBuilder->IntersectVisibleRect(*cssClip);
aClipState.ClipContentDescendants(*cssClip + offset);
};
// The CSS clip property is effectively inside the transform, but outside the
// filters. So if we're not transformed we can apply it just here for
// simplicity, instead of on each of the places that handle clipCapturedBy.
DisplayListClipState::AutoSaveRestore untransformedCssClip(aBuilder);
if (!isTransformed) {
ApplyClipProp(untransformedCssClip);
}
// If there is a current clip, then depending on the container items we
// create, different things can happen to it. Some container items simply
// propagate the clip to their children and aren't clipped themselves.
// But other container items, especially those that establish a different
// geometry for their contents (e.g. transforms), capture the clip on
// themselves and unset the clip for their contents. If we create more than
// one of those container items, the clip will be captured on the outermost
// one and the inner container items will be unclipped.
ContainerItemType clipCapturedBy = ContainerItemType::None;
if (useFixedPosition) {
clipCapturedBy = ContainerItemType::FixedPosition;
} else if (isTransformed) {
const DisplayItemClipChain* currentClip =
aBuilder->ClipState().GetCurrentCombinedClipChain(aBuilder);
if ((hasPerspective || extend3DContext) &&
(currentClip && currentClip->HasRoundedCorners())) {
// If we're creating an nsDisplayTransform item that is going to combine
// its transform with its children (preserve-3d or perspective), then we
// can't have an intermediate surface. Mask layers force an intermediate
// surface, so if we're going to need both then create a separate
// wrapping layer for the mask.
clipCapturedBy = ContainerItemType::OwnLayerForTransformWithRoundedClip;
} else if (hasPerspective) {
clipCapturedBy = ContainerItemType::Perspective;
} else {
clipCapturedBy = ContainerItemType::Transform;
}
} else if (usingFilter) {
clipCapturedBy = ContainerItemType::Filter;
}
DisplayListClipState::AutoSaveRestore clipState(aBuilder);
if (clipCapturedBy != ContainerItemType::None) {
clipState.Clear();
}
DisplayListClipState::AutoSaveRestore transformedCssClip(aBuilder);
if (isTransformed) {
// FIXME(emilio, bug 1525159): In the case we have a both a transform _and_
// filters, this clips the input to the filters as well, which is not
// correct (clipping by the `clip` property is supposed to happen after
// applying the filter effects, per [1].
//
// This is not a regression though, since we used to do that anyway before
// bug 1514384, and even without the transform we get it wrong.
//
// [1]: https://drafts.fxtf.org/css-masking/#placement
ApplyClipProp(transformedCssClip);
}
nsDisplayListCollection set(aBuilder);
Maybe<nsRect> clipForMask;
{
DisplayListClipState::AutoSaveRestore nestedClipState(aBuilder);
nsDisplayListBuilder::AutoInTransformSetter inTransformSetter(aBuilder,
inTransform);
nsDisplayListBuilder::AutoEnterFilter filterASRSetter(aBuilder,
usingFilter);
nsDisplayListBuilder::AutoInEventsOnly inEventsSetter(
aBuilder, opacityItemForEventsOnly);
// If we have a mask, compute a clip to bound the masked content.
// This is necessary in case the content moves with an ancestor
// ASR of the mask.
// Don't do this if we also have a filter, because then the clip
// would be applied before the filter, violating
// https://www.w3.org/TR/filter-effects-1/#placement.
// Filters are a containing block for fixed and absolute descendants,
// so the masked content cannot move with an ancestor ASR.
if (usingMask && !usingFilter) {
clipForMask = ComputeClipForMaskItem(aBuilder, this);
if (clipForMask) {
aBuilder->IntersectDirtyRect(*clipForMask);
aBuilder->IntersectVisibleRect(*clipForMask);
nestedClipState.ClipContentDescendants(
*clipForMask + aBuilder->GetCurrentFrameOffsetToReferenceFrame());
}
}
// extend3DContext also guarantees that applyAbsPosClipping and
// usingSVGEffects are false We only modify the preserve-3d rect if we are
// the top of a preserve-3d heirarchy
if (extend3DContext) {
// Mark these first so MarkAbsoluteFramesForDisplayList knows if we are
// going to be forced to descend into frames.
aBuilder->MarkPreserve3DFramesForDisplayList(this);
}
aBuilder->AdjustWindowDraggingRegion(this);
MarkAbsoluteFramesForDisplayList(aBuilder);
aBuilder->Check();
BuildDisplayList(aBuilder, set);
SetBuiltDisplayList(true);
aBuilder->Check();
aBuilder->DisplayCaret(this, set.Outlines());
// Blend modes are a real pain for retained display lists. We build a blend
// container item if the built list contains any blend mode items within
// the current stacking context. This can change without an invalidation
// to the stacking context frame, or the blend mode frame (e.g. by moving
// an intermediate frame).
// When we gain/remove a blend container item, we need to mark this frame
// as invalid and have the full display list for merging to track
// the change correctly.
// It seems really hard to track this in advance, as the bookkeeping
// required to note which stacking contexts have blend descendants
// is complex and likely to be buggy.
// Instead we're doing the sad thing, detecting it afterwards, and just
// repeating display list building if it changed.
// We have to repeat building for the entire display list (or at least
// the outer stacking context), since we need to mark this frame as invalid
// to remove any existing content that isn't wrapped in the blend container,
// and then we need to build content infront/behind the blend container
// to get correct positioning during merging.
if ((aBuilder->ContainsBlendMode()) && aBuilder->IsRetainingDisplayList()) {
if (aBuilder->IsPartialUpdate()) {
aBuilder->SetPartialBuildFailed(true);
} else {
aBuilder->SetDisablePartialUpdates(true);
}
}
}
if (aBuilder->IsBackgroundOnly()) {
set.BlockBorderBackgrounds()->DeleteAll(aBuilder);
set.Floats()->DeleteAll(aBuilder);
set.Content()->DeleteAll(aBuilder);
set.PositionedDescendants()->DeleteAll(aBuilder);
set.Outlines()->DeleteAll(aBuilder);
}
if (hasOverrideDirtyRect &&
StaticPrefs::layout_display_list_show_rebuild_area()) {
nsDisplaySolidColor* color = MakeDisplayItem<nsDisplaySolidColor>(
aBuilder, this,
dirtyRect + aBuilder->GetCurrentFrameOffsetToReferenceFrame(),
NS_RGBA(255, 0, 0, 64), false);
if (color) {
color->SetOverrideZIndex(INT32_MAX);
set.PositionedDescendants()->AppendToTop(color);
}
}
nsIContent* content = GetContent();
if (!content) {
content = PresContext()->Document()->GetRootElement();
}
nsDisplayList resultList(aBuilder);
set.SerializeWithCorrectZOrder(&resultList, content);
// Get the ASR to use for the container items that we create here.
const ActiveScrolledRoot* containerItemASR = contASRTracker.GetContainerASR();
bool createdContainer = false;
/* If adding both a nsDisplayBlendContainer and a nsDisplayBlendMode to the
* same list, the nsDisplayBlendContainer should be added first. This only
* happens when the element creating this stacking context has mix-blend-mode
* and also contains a child which has mix-blend-mode.
* The nsDisplayBlendContainer must be added to the list first, so it does not
* isolate the containing element blending as well.
*/
if (aBuilder->ContainsBlendMode()) {
DisplayListClipState::AutoSaveRestore blendContainerClipState(aBuilder);
resultList.AppendToTop(nsDisplayBlendContainer::CreateForMixBlendMode(
aBuilder, this, &resultList, containerItemASR));
createdContainer = true;
}
if (usingBackdropFilter) {
DisplayListClipState::AutoSaveRestore clipState(aBuilder);
nsRect backdropRect =
GetRectRelativeToSelf() + aBuilder->ToReferenceFrame(this);
resultList.AppendNewToTop<nsDisplayBackdropFilters>(
aBuilder, this, &resultList, backdropRect, this);
createdContainer = true;
}
/* If there are any SVG effects, wrap the list up in an SVG effects item
* (which also handles CSS group opacity). Note that we create an SVG effects
* item even if resultList is empty, since a filter can produce graphical
* output even if the element being filtered wouldn't otherwise do so.
*/
if (usingSVGEffects) {
MOZ_ASSERT(usingFilter || usingMask,
"Beside filter & mask/clip-path, what else effect do we have?");
if (clipCapturedBy == ContainerItemType::Filter) {
clipState.Restore();
}
// Revert to the post-filter dirty rect.
aBuilder->SetVisibleRect(visibleRectOutsideSVGEffects);
// Skip all filter effects while generating glyph mask.
if (usingFilter && !aBuilder->IsForGenerateGlyphMask()) {
/* List now emptied, so add the new list to the top. */
resultList.AppendNewToTop<nsDisplayFilters>(aBuilder, this, &resultList,
this, usingBackdropFilter);
createdContainer = true;
}
if (usingMask) {
DisplayListClipState::AutoSaveRestore maskClipState(aBuilder);
// The mask should move with aBuilder->CurrentActiveScrolledRoot(), so
// that's the ASR we prefer to use for the mask item. However, we can
// only do this if the mask if clipped with respect to that ASR, because
// an item always needs to have finite bounds with respect to its ASR.
// If we weren't able to compute a clip for the mask, we fall back to
// using containerItemASR, which is the lowest common ancestor clip of
// the mask's contents. That's not entirely correct, but it satisfies
// the base requirement of the ASR system (that items have finite bounds
// wrt. their ASR).
const ActiveScrolledRoot* maskASR =
clipForMask.isSome() ? aBuilder->CurrentActiveScrolledRoot()
: containerItemASR;
/* List now emptied, so add the new list to the top. */
resultList.AppendNewToTop<nsDisplayMasksAndClipPaths>(
aBuilder, this, &resultList, maskASR, usingBackdropFilter);
createdContainer = true;
}
// TODO(miko): We could probably create a wraplist here and avoid creating
// it later in |BuildDisplayListForChild()|.
createdContainer = false;
// Also add the hoisted scroll info items. We need those for APZ scrolling
// because nsDisplayMasksAndClipPaths items can't build active layers.
aBuilder->ExitSVGEffectsContents();
resultList.AppendToTop(&hoistedScrollInfoItemsStorage);
}
/* If the list is non-empty and there is CSS group opacity without SVG
* effects, wrap it up in an opacity item.
*/
if (useOpacity) {
// Don't clip nsDisplayOpacity items. We clip their descendants instead.
// The clip we would set on an element with opacity would clip
// all descendant content, but some should not be clipped.
DisplayListClipState::AutoSaveRestore opacityClipState(aBuilder);
const bool needsActiveOpacityLayer =
nsDisplayOpacity::NeedsActiveLayer(aBuilder, this);
resultList.AppendNewToTop<nsDisplayOpacity>(
aBuilder, this, &resultList, containerItemASR, opacityItemForEventsOnly,
needsActiveOpacityLayer, usingBackdropFilter);
createdContainer = true;
}
/* If we're going to apply a transformation and don't have preserve-3d set,
* wrap everything in an nsDisplayTransform. If there's nothing in the list,
* don't add anything.
*
* For the preserve-3d case we want to individually wrap every child in the
* list with a separate nsDisplayTransform instead. When the child is already
* an nsDisplayTransform, we can skip this step, as the computed transform
* will already include our own.
*
* We also traverse into sublists created by nsDisplayWrapList, so that we
* find all the correct children.
*/
if (isTransformed && extend3DContext) {
// Install dummy nsDisplayTransform as a leaf containing
// descendants not participating this 3D rendering context.
nsDisplayList nonparticipants(aBuilder);
nsDisplayList participants(aBuilder);
int index = 1;
nsDisplayItem* separator = nullptr;
// TODO: This can be simplified: |participants| is just |resultList|.
for (nsDisplayItem* item : resultList.TakeItems()) {
if (ItemParticipatesIn3DContext(this, item) &&
!item->GetClip().HasClip()) {
// The frame of this item participates the same 3D context.
WrapSeparatorTransform(aBuilder, this, &nonparticipants, &participants,
index++, &separator);
participants.AppendToTop(item);
} else {
// The frame of the item doesn't participate the current
// context, or has no transform.
//
// For items participating but not transformed, they are add
// to nonparticipants to get a separator layer for handling
// clips, if there is, on an intermediate surface.
// \see ContainerLayer::DefaultComputeEffectiveTransforms().
nonparticipants.AppendToTop(item);
}
}
WrapSeparatorTransform(aBuilder, this, &nonparticipants, &participants,
index++, &separator);
if (separator) {
createdContainer = true;
}
resultList.AppendToTop(&participants);
}
if (isTransformed) {
transformedCssClip.Restore();
if (clipCapturedBy == ContainerItemType::Transform) {
// Restore clip state now so nsDisplayTransform is clipped properly.
clipState.Restore();
}
// Revert to the dirtyrect coming in from the parent, without our transform
// taken into account.
aBuilder->SetVisibleRect(visibleRectOutsideTransform);
if (this != aBuilder->RootReferenceFrame()) {
// Revert to the outer reference frame and offset because all display
// items we create from now on are outside the transform.
nsPoint toOuterReferenceFrame;
const nsIFrame* outerReferenceFrame =
aBuilder->FindReferenceFrameFor(GetParent(), &toOuterReferenceFrame);
toOuterReferenceFrame += GetPosition();
buildingDisplayList.SetReferenceFrameAndCurrentOffset(
outerReferenceFrame, toOuterReferenceFrame);
}
// We would like to block async animations for ancestors of ones not
// prerendered in the preserve-3d tree. Now that we've finished processing
// all descendants, update allowAsyncAnimation to take their prerender
// state into account
// FIXME: We don't block async animations for previous siblings because
// their prerender decisions have been made. We may have to figure out a
// better way to rollback their prerender decisions.
// Alternatively we could not block animations for later siblings, and only
// block them for ancestors of a blocked one.
if ((extend3DContext || combines3DTransformWithAncestors) &&
prerenderInfo.CanUseAsyncAnimations() &&
!aBuilder->GetPreserves3DAllowAsyncAnimation()) {
// aBuilder->GetPreserves3DAllowAsyncAnimation() means the inner or
// previous silbing frames are allowed/disallowed for async animations.
prerenderInfo.mDecision = nsDisplayTransform::PrerenderDecision::No;
}
nsDisplayTransform* transformItem = MakeDisplayItem<nsDisplayTransform>(
aBuilder, this, &resultList, visibleRect, prerenderInfo.mDecision);
if (transformItem) {
resultList.AppendToTop(transformItem);
createdContainer = true;
}
if (hasPerspective) {
transformItem->MarkWithAssociatedPerspective();
if (clipCapturedBy == ContainerItemType::Perspective) {
clipState.Restore();
}
resultList.AppendNewToTop<nsDisplayPerspective>(aBuilder, this,
&resultList);
createdContainer = true;
}
}
if (clipCapturedBy ==
ContainerItemType::OwnLayerForTransformWithRoundedClip) {
clipState.Restore();
resultList.AppendNewToTopWithIndex<nsDisplayOwnLayer>(
aBuilder, this,
/* aIndex = */ nsDisplayOwnLayer::OwnLayerForTransformWithRoundedClip,
&resultList, aBuilder->CurrentActiveScrolledRoot(),
nsDisplayOwnLayerFlags::None, ScrollbarData{},
/* aForceActive = */ false, false);
createdContainer = true;
}
/* If we have sticky positioning, wrap it in a sticky position item.
*/
if (useFixedPosition) {
if (clipCapturedBy == ContainerItemType::FixedPosition) {
clipState.Restore();
}
// The ASR for the fixed item should be the ASR of our containing block,
// which has been set as the builder's current ASR, unless this frame is
// invisible and we hadn't saved display item data for it. In that case,
// we need to take the containerItemASR since we might have fixed children.
// For WebRender, we want to the know what |containerItemASR| is for the
// case where the fixed-pos item is not a "real" fixed-pos item (e.g. it's
// nested inside a scrolling transform), so we stash that on the display
// item as well.
const ActiveScrolledRoot* fixedASR = ActiveScrolledRoot::PickAncestor(
containerItemASR, aBuilder->CurrentActiveScrolledRoot());
resultList.AppendNewToTop<nsDisplayFixedPosition>(
aBuilder, this, &resultList, fixedASR, containerItemASR);
createdContainer = true;
} else if (useStickyPosition) {
// For position:sticky, the clip needs to be applied both to the sticky
// container item and to the contents. The container item needs the clip
// because a scrolled clip needs to move independently from the sticky
// contents, and the contents need the clip so that they have finite
// clipped bounds with respect to the container item's ASR. The latter is
// a little tricky in the case where the sticky item has both fixed and
// non-fixed descendants, because that means that the sticky container
// item's ASR is the ASR of the fixed descendant.
// For WebRender display list building, though, we still want to know the
// the ASR that the sticky container item would normally have, so we stash
// that on the display item as the "container ASR" (i.e. the normal ASR of
// the container item, excluding the special behaviour induced by fixed
// descendants).
const ActiveScrolledRoot* stickyASR = ActiveScrolledRoot::PickAncestor(
containerItemASR, aBuilder->CurrentActiveScrolledRoot());
auto* stickyItem = MakeDisplayItem<nsDisplayStickyPosition>(
aBuilder, this, &resultList, stickyASR,
aBuilder->CurrentActiveScrolledRoot(),
clipState.IsClippedToDisplayPort());
bool shouldFlatten = true;
StickyScrollContainer* stickyScrollContainer =
StickyScrollContainer::GetStickyScrollContainerForFrame(this);
if (stickyScrollContainer &&
stickyScrollContainer->ScrollFrame()->IsMaybeAsynchronouslyScrolled()) {
shouldFlatten = false;
}
stickyItem->SetShouldFlatten(shouldFlatten);
resultList.AppendToTop(stickyItem);
createdContainer = true;
// If the sticky element is inside a filter, annotate the scroll frame that
// scrolls the filter as having out-of-flow content inside a filter (this
// inhibits paint skipping).
if (aBuilder->GetFilterASR() && aBuilder->GetFilterASR() == stickyASR) {
aBuilder->GetFilterASR()
->mScrollableFrame->SetHasOutOfFlowContentInsideFilter();
}
}
/* If there's blending, wrap up the list in a blend-mode item. Note
* that opacity can be applied before blending as the blend color is
* not affected by foreground opacity (only background alpha).
*/
if (useBlendMode) {
DisplayListClipState::AutoSaveRestore blendModeClipState(aBuilder);
resultList.AppendNewToTop<nsDisplayBlendMode>(aBuilder, this, &resultList,
effects->mMixBlendMode,
containerItemASR, false);
createdContainer = true;
}
if (aBuilder->IsReusingStackingContextItems()) {
if (resultList.IsEmpty()) {
return;
}
nsDisplayItem* container = resultList.GetBottom();
if (resultList.Length() > 1 || container->Frame() != this) {
container = MakeDisplayItem<nsDisplayContainer>(
aBuilder, this, containerItemASR, &resultList);
} else {
MOZ_ASSERT(resultList.Length() == 1);
resultList.Clear();
}
// Mark the outermost display item as reusable. These display items and
// their chidren can be reused during the next paint if no ancestor or
// descendant frames have been modified.
if (!container->IsReusedItem()) {
container->SetReusable();
}
aList->AppendToTop(container);
createdContainer = true;
} else {
aList->AppendToTop(&resultList);
}
if (aCreatedContainerItem) {
*aCreatedContainerItem = createdContainer;
}
}
static nsDisplayItem* WrapInWrapList(nsDisplayListBuilder* aBuilder,
nsIFrame* aFrame, nsDisplayList* aList,
const ActiveScrolledRoot* aContainerASR,
bool aBuiltContainerItem = false) {
nsDisplayItem* item = aList->GetBottom();
if (!item) {
return nullptr;
}
// We need a wrap list if there are multiple items, or if the single
// item has a different frame. This can change in a partial build depending
// on which items we build, so we need to ensure that we don't transition
// to/from a wrap list without invalidating correctly.
bool needsWrapList =
aList->Length() > 1 || item->Frame() != aFrame || item->GetChildren();
// If we have an explicit container item (that can't change without an
// invalidation) or we're doing a full build and don't need a wrap list, then
// we can skip adding one.
if (aBuiltContainerItem || (!aBuilder->IsPartialUpdate() && !needsWrapList)) {
MOZ_ASSERT(aList->Length() == 1);
aList->Clear();
return item;
}
// If we're doing a partial build and we didn't need a wrap list
// previously then we can try to work from there.
if (aBuilder->IsPartialUpdate() &&
!aFrame->HasDisplayItem(uint32_t(DisplayItemType::TYPE_CONTAINER))) {
// If we now need a wrap list, we must previously have had no display items
// or a single one belonging to this frame. Mark the item itself as
// discarded so that RetainedDisplayListBuilder uses the ones we just built.
// We don't want to mark the frame as modified as that would invalidate
// positioned descendants that might be outside of this list, and might not
// have been rebuilt this time.
if (needsWrapList) {
DiscardOldItems(aFrame);
} else {
MOZ_ASSERT(aList->Length() == 1);
aList->Clear();
return item;
}
}
// The last case we could try to handle is when we previously had a wrap list,
// but no longer need it. Unfortunately we can't differentiate this case from
// a partial build where other children exist but we just didn't build them
// this time.
// TODO:RetainedDisplayListBuilder's merge phase has the full list and
// could strip them out.
return MakeDisplayItem<nsDisplayContainer>(aBuilder, aFrame, aContainerASR,
aList);
}
/**
* Check if a frame should be visited for building display list.
*/
static bool DescendIntoChild(nsDisplayListBuilder* aBuilder,
const nsIFrame* aChild, const nsRect& aVisible,
const nsRect& aDirty) {
if (aChild->HasAnyStateBits(NS_FRAME_FORCE_DISPLAY_LIST_DESCEND_INTO)) {
return true;
}
// If the child is a scrollframe that we want to ignore, then we need
// to descend into it because its scrolled child may intersect the dirty
// area even if the scrollframe itself doesn't.
if (aChild == aBuilder->GetIgnoreScrollFrame()) {
return true;
}
// There are cases where the "ignore scroll frame" on the builder is not set
// correctly, and so we additionally want to catch cases where the child is
// a root scrollframe and we are ignoring scrolling on the viewport.
if (aChild == aBuilder->GetPresShellIgnoreScrollFrame()) {
return true;
}
nsRect overflow = aChild->InkOverflowRect();
// On mobile, there may be a dynamic toolbar. The root content document's
// root scroll frame's ink overflow rect does not include the toolbar
// height, but if the toolbar is hidden, we still want to be able to target
// content underneath the toolbar, so expand the overflow rect here to
// allow display list building to descend into the scroll frame.
if (aBuilder->IsForEventDelivery() &&
aChild == aChild->PresShell()->GetRootScrollFrame() &&
aChild->PresContext()->IsRootContentDocumentCrossProcess() &&
aChild->PresContext()->HasDynamicToolbar()) {
overflow.SizeTo(nsLayoutUtils::ExpandHeightForDynamicToolbar(
aChild->PresContext(), overflow.Size()));
}
if (aDirty.Intersects(overflow)) {
return true;
}
if (aChild->ForceDescendIntoIfVisible() && aVisible.Intersects(overflow)) {
return true;
}
if (aChild->IsFrameOfType(nsIFrame::eTablePart)) {
// Relative positioning and transforms can cause table parts to move, but we
// will still paint the backgrounds for their ancestor parts under them at
// their 'normal' position. That means that we must consider the overflow
// rects at both positions.
// We convert the overflow rect into the nsTableFrame's coordinate
// space, applying the normal position offset at each step. Then we
// compare that against the builder's cached dirty rect in table
// coordinate space.
const nsIFrame* f = aChild;
nsRect normalPositionOverflowRelativeToTable = overflow;
while (f->IsFrameOfType(nsIFrame::eTablePart)) {
normalPositionOverflowRelativeToTable += f->GetNormalPosition();
f = f->GetParent();
}
nsDisplayTableBackgroundSet* tableBGs = aBuilder->GetTableBackgroundSet();
if (tableBGs && tableBGs->GetDirtyRect().Intersects(
normalPositionOverflowRelativeToTable)) {
return true;
}
}
return false;
}
void nsIFrame::BuildDisplayListForSimpleChild(nsDisplayListBuilder* aBuilder,
nsIFrame* aChild,
const nsDisplayListSet& aLists) {
// This is the shortcut for frames been handled along the common
// path, the most common one of THE COMMON CASE mentioned later.
MOZ_ASSERT(aChild->Type() != LayoutFrameType::Placeholder);
MOZ_ASSERT(!aBuilder->GetSelectedFramesOnly() &&
!aBuilder->GetIncludeAllOutOfFlows(),
"It should be held for painting to window");
MOZ_ASSERT(aChild->HasAnyStateBits(NS_FRAME_SIMPLE_DISPLAYLIST));
const nsPoint offset = aChild->GetOffsetTo(this);
const nsRect visible = aBuilder->GetVisibleRect() - offset;
const nsRect dirty = aBuilder->GetDirtyRect() - offset;
if (!DescendIntoChild(aBuilder, aChild, visible, dirty)) {
DL_LOGV("Skipped frame %p", aChild);
return;
}
// Child cannot be transformed since it is not a stacking context.
nsDisplayListBuilder::AutoBuildingDisplayList buildingForChild(
aBuilder, aChild, visible, dirty, false);
UpdateCurrentHitTestInfo(aBuilder, aChild);
aChild->MarkAbsoluteFramesForDisplayList(aBuilder);
aBuilder->AdjustWindowDraggingRegion(aChild);
aBuilder->Check();
aChild->BuildDisplayList(aBuilder, aLists);
aChild->SetBuiltDisplayList(true);
aBuilder->Check();
aBuilder->DisplayCaret(aChild, aLists.Outlines());
}
static bool ShouldSkipFrame(nsDisplayListBuilder* aBuilder,
const nsIFrame* aFrame) {
// If painting is restricted to just the background of the top level frame,
// then we have nothing to do here.
if (aBuilder->IsBackgroundOnly()) {
return true;
}
if (aBuilder->IsForGenerateGlyphMask() &&
(!aFrame->IsTextFrame() && aFrame->IsLeaf())) {
return true;
}
// The placeholder frame should have the same content as the OOF frame.
if (aBuilder->GetSelectedFramesOnly() &&
(aFrame->IsLeaf() && !aFrame->IsSelected())) {
return true;
}
static const nsFrameState skipFlags =
(NS_FRAME_TOO_DEEP_IN_FRAME_TREE | NS_FRAME_IS_NONDISPLAY);
if (aFrame->HasAnyStateBits(skipFlags)) {
return true;
}
return aFrame->StyleUIReset()->mMozSubtreeHiddenOnlyVisually;
}
void nsIFrame::BuildDisplayListForChild(nsDisplayListBuilder* aBuilder,
nsIFrame* aChild,
const nsDisplayListSet& aLists,
DisplayChildFlags aFlags) {
AutoCheckBuilder check(aBuilder);
#ifdef DEBUG
DL_LOGV("BuildDisplayListForChild (%p) <", aChild);
ScopeExit e(
[aChild]() { DL_LOGV("> BuildDisplayListForChild (%p)", aChild); });
#endif
if (ShouldSkipFrame(aBuilder, aChild)) {
return;
}
if (HidesContent()) {
return;
}
// If we're generating a display list for printing, include Link items for
// frames that correspond to HTML link elements so that we can have active
// links in saved PDF output. Note that the state of "within a link" is
// set on the display-list builder, such that all descendants of the link
// element will generate display-list links.
// TODO: we should be able to optimize this so as to avoid creating links
// for the same destination that entirely overlap each other, which adds
// nothing useful to the final PDF.
Maybe<nsDisplayListBuilder::Linkifier> linkifier;
if (StaticPrefs::print_save_as_pdf_links_enabled() &&
aBuilder->IsForPrinting()) {
linkifier.emplace(aBuilder, aChild, aLists.Content());
linkifier->MaybeAppendLink(aBuilder, aChild);
}
nsIFrame* child = aChild;
auto* placeholder = child->IsPlaceholderFrame()
? static_cast<nsPlaceholderFrame*>(child)
: nullptr;
nsIFrame* childOrOutOfFlow =
placeholder ? placeholder->GetOutOfFlowFrame() : child;
nsIFrame* parent = childOrOutOfFlow->GetParent();
const auto* parentDisplay = parent->StyleDisplay();
const auto overflowClipAxes =
parent->ShouldApplyOverflowClipping(parentDisplay);
const bool isPaintingToWindow = aBuilder->IsPaintingToWindow();
const bool doingShortcut =
isPaintingToWindow &&
child->HasAnyStateBits(NS_FRAME_SIMPLE_DISPLAYLIST) &&
// Animations may change the stacking context state.
// ShouldApplyOverflowClipping is affected by the parent style, which does
// not invalidate the NS_FRAME_SIMPLE_DISPLAYLIST bit.
!(overflowClipAxes != PhysicalAxes::None ||
child->MayHaveTransformAnimation() || child->MayHaveOpacityAnimation());
if (aBuilder->IsForPainting()) {
aBuilder->ClearWillChangeBudgetStatus(child);
}
if (StaticPrefs::layout_css_scroll_anchoring_highlight()) {
if (child->FirstContinuation()->IsScrollAnchor()) {
nsRect bounds = child->GetContentRectRelativeToSelf() +
aBuilder->ToReferenceFrame(child);
nsDisplaySolidColor* color = MakeDisplayItem<nsDisplaySolidColor>(
aBuilder, child, bounds, NS_RGBA(255, 0, 255, 64));
if (color) {
color->SetOverrideZIndex(INT32_MAX);
aLists.PositionedDescendants()->AppendToTop(color);
}
}
}
if (doingShortcut) {
BuildDisplayListForSimpleChild(aBuilder, child, aLists);
return;
}
// dirty rect in child-relative coordinates
NS_ASSERTION(aBuilder->GetCurrentFrame() == this, "Wrong coord space!");
const nsPoint offset = child->GetOffsetTo(this);
nsRect visible = aBuilder->GetVisibleRect() - offset;
nsRect dirty = aBuilder->GetDirtyRect() - offset;
nsDisplayListBuilder::OutOfFlowDisplayData* savedOutOfFlowData = nullptr;
if (placeholder) {
if (placeholder->HasAnyStateBits(PLACEHOLDER_FOR_TOPLAYER)) {
// If the out-of-flow frame is in the top layer, the viewport frame
// will paint it. Skip it here. Note that, only out-of-flow frames
// with this property should be skipped, because non-HTML elements
// may stop their children from being out-of-flow. Those frames
// should still be handled in the normal in-flow path.
return;
}
child = childOrOutOfFlow;
if (aBuilder->IsForPainting()) {
aBuilder->ClearWillChangeBudgetStatus(child);
}
// If 'child' is a pushed float then it's owned by a block that's not an
// ancestor of the placeholder, and it will be painted by that block and
// should not be painted through the placeholder. Also recheck
// NS_FRAME_TOO_DEEP_IN_FRAME_TREE and NS_FRAME_IS_NONDISPLAY.
static const nsFrameState skipFlags =
(NS_FRAME_IS_PUSHED_FLOAT | NS_FRAME_TOO_DEEP_IN_FRAME_TREE |
NS_FRAME_IS_NONDISPLAY);
if (child->HasAnyStateBits(skipFlags) || nsLayoutUtils::IsPopup(child)) {
return;
}
MOZ_ASSERT(child->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW));
savedOutOfFlowData = nsDisplayListBuilder::GetOutOfFlowData(child);
if (aBuilder->GetIncludeAllOutOfFlows()) {
visible = child->InkOverflowRect();
dirty = child->InkOverflowRect();
} else if (savedOutOfFlowData) {
visible =
savedOutOfFlowData->GetVisibleRectForFrame(aBuilder, child, &dirty);
} else {
// The out-of-flow frame did not intersect the dirty area. We may still
// need to traverse into it, since it may contain placeholders we need
// to enter to reach other out-of-flow frames that are visible.
visible.SetEmpty();
dirty.SetEmpty();
}
}
NS_ASSERTION(!child->IsPlaceholderFrame(),
"Should have dealt with placeholders already");
if (!DescendIntoChild(aBuilder, child, visible, dirty)) {
DL_LOGV("Skipped frame %p", child);
return;
}
const bool isSVG = child->HasAnyStateBits(NS_FRAME_SVG_LAYOUT);
// This flag is raised if the control flow strays off the common path.
// The common path is the most common one of THE COMMON CASE mentioned later.
bool awayFromCommonPath = !isPaintingToWindow;
// true if this is a real or pseudo stacking context
bool pseudoStackingContext =
aFlags.contains(DisplayChildFlag::ForcePseudoStackingContext);
if (!pseudoStackingContext && !isSVG &&
aFlags.contains(DisplayChildFlag::Inline) &&
!child->IsFrameOfType(eLineParticipant)) {
// child is a non-inline frame in an inline context, i.e.,
// it acts like inline-block or inline-table. Therefore it is a
// pseudo-stacking-context.
pseudoStackingContext = true;
}
const nsStyleDisplay* ourDisp = StyleDisplay();
// REVIEW: Taken from nsBoxFrame::Paint
// Don't paint our children if the theme object is a leaf.
if (IsThemed(ourDisp) && !PresContext()->Theme()->WidgetIsContainer(
ourDisp->EffectiveAppearance())) {
return;
}
// Since we're now sure that we're adding this frame to the display list
// (which means we're painting it, modulo occlusion), mark it as visible
// within the displayport.
if (isPaintingToWindow && child->TrackingVisibility() &&
child->IsVisibleForPainting()) {
child->PresShell()->EnsureFrameInApproximatelyVisibleList(child);
awayFromCommonPath = true;
}
// Child is composited if it's transformed, partially transparent, or has
// SVG effects or a blend mode..
const nsStyleDisplay* disp = child->StyleDisplay();
const nsStyleEffects* effects = child->StyleEffects();
const bool isPositioned = disp->IsPositionedStyle();
const bool isStackingContext =
aFlags.contains(DisplayChildFlag::ForceStackingContext) ||
child->IsStackingContext(disp, effects);
if (pseudoStackingContext || isStackingContext || isPositioned ||
placeholder || (!isSVG && disp->IsFloating(child)) ||
(isSVG && effects->mClip.IsRect() && IsSVGContentWithCSSClip(child))) {
pseudoStackingContext = true;
awayFromCommonPath = true;
}
NS_ASSERTION(!isStackingContext || pseudoStackingContext,
"Stacking contexts must also be pseudo-stacking-contexts");
nsDisplayListBuilder::AutoBuildingDisplayList buildingForChild(
aBuilder, child, visible, dirty);
UpdateCurrentHitTestInfo(aBuilder, child);
DisplayListClipState::AutoClipMultiple clipState(aBuilder);
nsDisplayListBuilder::AutoCurrentActiveScrolledRootSetter asrSetter(aBuilder);
if (savedOutOfFlowData) {
aBuilder->SetBuildingInvisibleItems(false);
clipState.SetClipChainForContainingBlockDescendants(
savedOutOfFlowData->mContainingBlockClipChain);
asrSetter.SetCurrentActiveScrolledRoot(
savedOutOfFlowData->mContainingBlockActiveScrolledRoot);
asrSetter.SetCurrentScrollParentId(savedOutOfFlowData->mScrollParentId);
MOZ_ASSERT(awayFromCommonPath,
"It is impossible when savedOutOfFlowData is true");
} else if (HasAnyStateBits(NS_FRAME_FORCE_DISPLAY_LIST_DESCEND_INTO) &&
placeholder) {
NS_ASSERTION(visible.IsEmpty(), "should have empty visible rect");
// Every item we build from now until we descent into an out of flow that
// does have saved out of flow data should be invisible. This state gets
// restored when AutoBuildingDisplayList gets out of scope.
aBuilder->SetBuildingInvisibleItems(true);
// If we have nested out-of-flow frames and the outer one isn't visible
// then we won't have stored clip data for it. We can just clear the clip
// instead since we know we won't render anything, and the inner out-of-flow
// frame will setup the correct clip for itself.
clipState.SetClipChainForContainingBlockDescendants(nullptr);
}
// Setup clipping for the parent's overflow:clip,
// or overflow:hidden on elements that don't support scrolling (and therefore
// don't create nsHTML/XULScrollFrame). This clipping needs to not clip
// anything directly rendered by the parent, only the rendering of its
// children.
// Don't use overflowClip to restrict the dirty rect, since some of the
// descendants may not be clipped by it. Even if we end up with unnecessary
// display items, they'll be pruned during ComputeVisibility.
//
// FIXME(emilio): Why can't we handle this more similarly to `clip` (on the
// parent, rather than on the children)? Would ClipContentDescendants do what
// we want?
if (overflowClipAxes != PhysicalAxes::None) {
ApplyOverflowClipping(aBuilder, parent, overflowClipAxes, clipState);
awayFromCommonPath = true;
}
nsDisplayList list(aBuilder);
nsDisplayList extraPositionedDescendants(aBuilder);
const ActiveScrolledRoot* wrapListASR;
bool builtContainerItem = false;
if (isStackingContext) {
// True stacking context.
// For stacking contexts, BuildDisplayListForStackingContext handles
// clipping and MarkAbsoluteFramesForDisplayList.
nsDisplayListBuilder::AutoContainerASRTracker contASRTracker(aBuilder);
child->BuildDisplayListForStackingContext(aBuilder, &list,
&builtContainerItem);
wrapListASR = contASRTracker.GetContainerASR();
if (!aBuilder->IsReusingStackingContextItems() &&
aBuilder->GetCaretFrame() == child) {
builtContainerItem = false;
}
} else {
Maybe<nsRect> clipPropClip =
child->GetClipPropClipRect(disp, effects, child->GetSize());
if (clipPropClip) {
aBuilder->IntersectVisibleRect(*clipPropClip);
aBuilder->IntersectDirtyRect(*clipPropClip);
clipState.ClipContentDescendants(*clipPropClip +
aBuilder->ToReferenceFrame(child));
awayFromCommonPath = true;
}
child->MarkAbsoluteFramesForDisplayList(aBuilder);
child->SetBuiltDisplayList(true);
if (!awayFromCommonPath &&
// Some SVG frames might change opacity without invalidating the frame,
// so exclude them from the fast-path.
!child->IsFrameOfType(nsIFrame::eSVG)) {
// The shortcut is available for the child for next time.
child->AddStateBits(NS_FRAME_SIMPLE_DISPLAYLIST);
}
if (!pseudoStackingContext) {
// THIS IS THE COMMON CASE.
// Not a pseudo or real stacking context. Do the simple thing and
// return early.
aBuilder->AdjustWindowDraggingRegion(child);
aBuilder->Check();
child->BuildDisplayList(aBuilder, aLists);
aBuilder->Check();
aBuilder->DisplayCaret(child, aLists.Outlines());
return;
}
// A pseudo-stacking context (e.g., a positioned element with z-index auto).
// We allow positioned descendants of the child to escape to our parent
// stacking context's positioned descendant list, because they might be
// z-index:non-auto
nsDisplayListCollection pseudoStack(aBuilder);
aBuilder->AdjustWindowDraggingRegion(child);
nsDisplayListBuilder::AutoContainerASRTracker contASRTracker(aBuilder);
aBuilder->Check();
child->BuildDisplayList(aBuilder, pseudoStack);
aBuilder->Check();
if (aBuilder->DisplayCaret(child, pseudoStack.Outlines())) {
builtContainerItem = false;
}
wrapListASR = contASRTracker.GetContainerASR();
list.AppendToTop(pseudoStack.BorderBackground());
list.AppendToTop(pseudoStack.BlockBorderBackgrounds());
list.AppendToTop(pseudoStack.Floats());
list.AppendToTop(pseudoStack.Content());
list.AppendToTop(pseudoStack.Outlines());
extraPositionedDescendants.AppendToTop(pseudoStack.PositionedDescendants());
}
buildingForChild.RestoreBuildingInvisibleItemsValue();
if (!list.IsEmpty()) {
if (isPositioned || isStackingContext) {
// Genuine stacking contexts, and positioned pseudo-stacking-contexts,
// go in this level.
nsDisplayItem* item = WrapInWrapList(aBuilder, child, &list, wrapListASR,
builtContainerItem);
if (isSVG) {
aLists.Content()->AppendToTop(item);
} else {
aLists.PositionedDescendants()->AppendToTop(item);
}
} else if (!isSVG && disp->IsFloating(child)) {
aLists.Floats()->AppendToTop(
WrapInWrapList(aBuilder, child, &list, wrapListASR));
} else {
aLists.Content()->AppendToTop(&list);
}
}
// We delay placing the positioned descendants of positioned frames to here,
// because in the absence of z-index this is the correct order for them.
// This doesn't affect correctness because the positioned descendants list
// is sorted by z-order and content in BuildDisplayListForStackingContext,
// but it means that sort routine needs to do less work.
aLists.PositionedDescendants()->AppendToTop(&extraPositionedDescendants);
}
void nsIFrame::MarkAbsoluteFramesForDisplayList(
nsDisplayListBuilder* aBuilder) {
if (IsAbsoluteContainer()) {
aBuilder->MarkFramesForDisplayList(
this, GetAbsoluteContainingBlock()->GetChildList());
}
}
nsresult nsIFrame::GetContentForEvent(const WidgetEvent* aEvent,
nsIContent** aContent) {
nsIFrame* f = nsLayoutUtils::GetNonGeneratedAncestor(this);
*aContent = f->GetContent();
NS_IF_ADDREF(*aContent);
return NS_OK;
}
void nsIFrame::FireDOMEvent(const nsAString& aDOMEventName,
nsIContent* aContent) {
nsIContent* target = aContent ? aContent : GetContent();
if (target) {
RefPtr<AsyncEventDispatcher> asyncDispatcher = new AsyncEventDispatcher(
target, aDOMEventName, CanBubble::eYes, ChromeOnlyDispatch::eNo);
DebugOnly<nsresult> rv = asyncDispatcher->PostDOMEvent();
NS_ASSERTION(NS_SUCCEEDED(rv), "AsyncEventDispatcher failed to dispatch");
}
}
nsresult nsIFrame::HandleEvent(nsPresContext* aPresContext,
WidgetGUIEvent* aEvent,
nsEventStatus* aEventStatus) {
if (aEvent->mMessage == eMouseMove) {
// XXX If the second argument of HandleDrag() is WidgetMouseEvent,
// the implementation becomes simpler.
return HandleDrag(aPresContext, aEvent, aEventStatus);
}
if ((aEvent->mClass == eMouseEventClass &&
aEvent->AsMouseEvent()->mButton == MouseButton::ePrimary) ||
aEvent->mClass == eTouchEventClass) {
if (aEvent->mMessage == eMouseDown || aEvent->mMessage == eTouchStart) {
HandlePress(aPresContext, aEvent, aEventStatus);
} else if (aEvent->mMessage == eMouseUp || aEvent->mMessage == eTouchEnd) {
HandleRelease(aPresContext, aEvent, aEventStatus);
}
return NS_OK;
}
// When middle button is down, we need to just move selection and focus at
// the clicked point. Note that even if middle click paste is not enabled,
// Chrome moves selection at middle mouse button down. So, we should follow
// the behavior for the compatibility.
if (aEvent->mMessage == eMouseDown) {
WidgetMouseEvent* mouseEvent = aEvent->AsMouseEvent();
if (mouseEvent && mouseEvent->mButton == MouseButton::eMiddle) {
if (*aEventStatus == nsEventStatus_eConsumeNoDefault) {
return NS_OK;
}
return MoveCaretToEventPoint(aPresContext, mouseEvent, aEventStatus);
}
}
return NS_OK;
}
nsresult nsIFrame::GetDataForTableSelection(
const nsFrameSelection* aFrameSelection, mozilla::PresShell* aPresShell,
WidgetMouseEvent* aMouseEvent, nsIContent** aParentContent,
int32_t* aContentOffset, TableSelectionMode* aTarget) {
if (!aFrameSelection || !aPresShell || !aMouseEvent || !aParentContent ||
!aContentOffset || !aTarget)
return NS_ERROR_NULL_POINTER;
*aParentContent = nullptr;
*aContentOffset = 0;
*aTarget = TableSelectionMode::None;
int16_t displaySelection = aPresShell->GetSelectionFlags();
bool selectingTableCells = aFrameSelection->IsInTableSelectionMode();
// DISPLAY_ALL means we're in an editor.
// If already in cell selection mode,
// continue selecting with mouse drag or end on mouse up,
// or when using shift key to extend block of cells
// (Mouse down does normal selection unless Ctrl/Cmd is pressed)
bool doTableSelection =
displaySelection == nsISelectionDisplay::DISPLAY_ALL &&
selectingTableCells &&
(aMouseEvent->mMessage == eMouseMove ||
(aMouseEvent->mMessage == eMouseUp &&
aMouseEvent->mButton == MouseButton::ePrimary) ||
aMouseEvent->IsShift());
if (!doTableSelection) {
// In Browser, special 'table selection' key must be pressed for table
// selection or when just Shift is pressed and we're already in table/cell
// selection mode
#ifdef XP_MACOSX
doTableSelection = aMouseEvent->IsMeta() ||
(aMouseEvent->IsShift() && selectingTableCells);
#else
doTableSelection = aMouseEvent->IsControl() ||
(aMouseEvent->IsShift() && selectingTableCells);
#endif
}
if (!doTableSelection) return NS_OK;
// Get the cell frame or table frame (or parent) of the current content node
nsIFrame* frame = this;
bool foundCell = false;
bool foundTable = false;
// Get the limiting node to stop parent frame search
nsIContent* limiter = aFrameSelection->GetLimiter();
// If our content node is an ancestor of the limiting node,
// we should stop the search right now.
if (limiter && limiter->IsInclusiveDescendantOf(GetContent())) return NS_OK;
// We don't initiate row/col selection from here now,
// but we may in future
// bool selectColumn = false;
// bool selectRow = false;
while (frame) {
// Check for a table cell by querying to a known CellFrame interface
nsITableCellLayout* cellElement = do_QueryFrame(frame);
if (cellElement) {
foundCell = true;
// TODO: If we want to use proximity to top or left border
// for row and column selection, this is the place to do it
break;
} else {
// If not a cell, check for table
// This will happen when starting frame is the table or child of a table,
// such as a row (we were inbetween cells or in table border)
nsTableWrapperFrame* tableFrame = do_QueryFrame(frame);
if (tableFrame) {
foundTable = true;
// TODO: How can we select row when along left table edge
// or select column when along top edge?
break;
} else {
frame = frame->GetParent();
// Stop if we have hit the selection's limiting content node
if (frame && frame->GetContent() == limiter) break;
}
}
}
// We aren't in a cell or table
if (!foundCell && !foundTable) return NS_OK;
nsIContent* tableOrCellContent = frame->GetContent();
if (!tableOrCellContent) return NS_ERROR_FAILURE;
nsCOMPtr<nsIContent> parentContent = tableOrCellContent->GetParent();
if (!parentContent) return NS_ERROR_FAILURE;
const int32_t offset =
parentContent->ComputeIndexOf_Deprecated(tableOrCellContent);
// Not likely?
if (offset < 0) {
return NS_ERROR_FAILURE;
}
// Everything is OK -- set the return values
parentContent.forget(aParentContent);
*aContentOffset = offset;
#if 0
if (selectRow)
*aTarget = TableSelectionMode::Row;
else if (selectColumn)
*aTarget = TableSelectionMode::Column;
else
#endif
if (foundCell) {
*aTarget = TableSelectionMode::Cell;
} else if (foundTable) {
*aTarget = TableSelectionMode::Table;
}
return NS_OK;
}
static bool IsEditingHost(const nsIFrame* aFrame) {
auto* element = nsGenericHTMLElement::FromNodeOrNull(aFrame->GetContent());
return element && element->IsEditableRoot();
}
static StyleUserSelect UsedUserSelect(const nsIFrame* aFrame) {
if (aFrame->IsGeneratedContentFrame()) {
return StyleUserSelect::None;
}
// Per https://drafts.csswg.org/css-ui-4/#content-selection:
//
// The used value is the same as the computed value, except:
//
// 1 - on editable elements where the used value is always 'contain'
// regardless of the computed value
// 2 - when the computed value is auto, in which case the used value is one
// of the other values...
//
// See https://github.com/w3c/csswg-drafts/issues/3344 to see why we do this
// at used-value time instead of at computed-value time.
if (aFrame->IsTextInputFrame() || IsEditingHost(aFrame)) {
// We don't implement 'contain' itself, but we make 'text' behave as
// 'contain' for contenteditable and <input> / <textarea> elements anyway so
// this is ok.
return StyleUserSelect::Text;
}
auto style = aFrame->Style()->UserSelect();
if (style != StyleUserSelect::Auto) {
return style;
}
auto* parent = nsLayoutUtils::GetParentOrPlaceholderFor(aFrame);
return parent ? UsedUserSelect(parent) : StyleUserSelect::Text;
}
bool nsIFrame::IsSelectable(StyleUserSelect* aSelectStyle) const {
auto style = UsedUserSelect(this);
if (aSelectStyle) {
*aSelectStyle = style;
}
return style != StyleUserSelect::None;
}
bool nsIFrame::ShouldHaveLineIfEmpty() const {
if (Style()->IsPseudoOrAnonBox() &&
Style()->GetPseudoType() != PseudoStyleType::scrolledContent) {
return false;
}
return IsEditingHost(this);
}
/**
* Handles the Mouse Press Event for the frame
*/
NS_IMETHODIMP
nsIFrame::HandlePress(nsPresContext* aPresContext, WidgetGUIEvent* aEvent,
nsEventStatus* aEventStatus) {
NS_ENSURE_ARG_POINTER(aEventStatus);
if (nsEventStatus_eConsumeNoDefault == *aEventStatus) {
return NS_OK;
}
NS_ENSURE_ARG_POINTER(aEvent);
if (aEvent->mClass == eTouchEventClass) {
return NS_OK;
}
return MoveCaretToEventPoint(aPresContext, aEvent->AsMouseEvent(),
aEventStatus);
}
nsresult nsIFrame::MoveCaretToEventPoint(nsPresContext* aPresContext,
WidgetMouseEvent* aMouseEvent,
nsEventStatus* aEventStatus) {
MOZ_ASSERT(aPresContext);
MOZ_ASSERT(aMouseEvent);
MOZ_ASSERT(aMouseEvent->mMessage == eMouseDown);
MOZ_ASSERT(aMouseEvent->mButton == MouseButton::ePrimary ||
aMouseEvent->mButton == MouseButton::eMiddle);
MOZ_ASSERT(aEventStatus);
MOZ_ASSERT(nsEventStatus_eConsumeNoDefault != *aEventStatus);
mozilla::PresShell* presShell = aPresContext->GetPresShell();
if (!presShell) {
return NS_ERROR_FAILURE;
}
// We often get out of sync state issues with mousedown events that
// get interrupted by alerts/dialogs.
// Check with the ESM to see if we should process this one
if (!aPresContext->EventStateManager()->EventStatusOK(aMouseEvent)) {
return NS_OK;
}
const nsPoint pt = nsLayoutUtils::GetEventCoordinatesRelativeTo(
aMouseEvent, RelativeTo{this});
// When not using `alt`, and clicking on a draggable, but non-editable
// element, don't do anything, and let d&d handle the event.
//
// See bug 48876, bug 388659 and bug 55921 for context here.
//
// FIXME(emilio): The .Contains(pt) check looks a bit fishy. When would it be
// false given we're the event target? If it is needed, why not checking the
// actual draggable node rect instead?
if (!aMouseEvent->IsAlt() && GetRectRelativeToSelf().Contains(pt)) {
for (nsIContent* content = mContent; content;
content = content->GetFlattenedTreeParent()) {
if (nsContentUtils::ContentIsDraggable(content) &&
!content->IsEditable()) {
return NS_OK;
}
}
}
// If we are in Navigator and the click is in a draggable node, we don't want
// to start selection because we don't want to interfere with a potential
// drag of said node and steal all its glory.
const bool isEditor =
presShell->GetSelectionFlags() == nsISelectionDisplay::DISPLAY_ALL;
// Don't do something if it's middle button down event.
const bool isPrimaryButtonDown =
aMouseEvent->mButton == MouseButton::ePrimary;
// check whether style allows selection
// if not, don't tell selection the mouse event even occurred.
StyleUserSelect selectStyle;
// check for select: none
if (!IsSelectable(&selectStyle)) {
return NS_OK;
}
if (isPrimaryButtonDown) {
// If the mouse is dragged outside the nearest enclosing scrollable area
// while making a selection, the area will be scrolled. To do this, capture
// the mouse on the nearest scrollable frame. If there isn't a scrollable
// frame, or something else is already capturing the mouse, there's no
// reason to capture.
if (!PresShell::GetCapturingContent()) {
nsIScrollableFrame* scrollFrame =
nsLayoutUtils::GetNearestScrollableFrame(
this, nsLayoutUtils::SCROLLABLE_SAME_DOC |
nsLayoutUtils::SCROLLABLE_INCLUDE_HIDDEN);
if (scrollFrame) {
nsIFrame* capturingFrame = do_QueryFrame(scrollFrame);
PresShell::SetCapturingContent(capturingFrame->GetContent(),
CaptureFlags::IgnoreAllowedState);
}
}
}
// XXX This is screwy; it really should use the selection frame, not the
// event frame
const nsFrameSelection* frameselection =
selectStyle == StyleUserSelect::Text ? GetConstFrameSelection()
: presShell->ConstFrameSelection();
if (!frameselection || frameselection->GetDisplaySelection() ==
nsISelectionController::SELECTION_OFF) {
return NS_OK; // nothing to do we cannot affect selection from here
}
#ifdef XP_MACOSX
// If Control key is pressed on macOS, it should be treated as right click.
// So, don't change selection.
if (aMouseEvent->IsControl()) {
return NS_OK;
}
const bool control = aMouseEvent->IsMeta();
#else
const bool control = aMouseEvent->IsControl();
#endif
RefPtr<nsFrameSelection> fc = const_cast<nsFrameSelection*>(frameselection);
if (isPrimaryButtonDown && aMouseEvent->mClickCount > 1) {
// These methods aren't const but can't actually delete anything,
// so no need for AutoWeakFrame.
fc->SetDragState(true);
return HandleMultiplePress(aPresContext, aMouseEvent, aEventStatus,
control);
}
ContentOffsets offsets = GetContentOffsetsFromPoint(pt, SKIP_HIDDEN);
if (!offsets.content) {
return NS_ERROR_FAILURE;
}
if (aMouseEvent->mMessage == eMouseDown &&
aMouseEvent->mButton == MouseButton::eMiddle &&
!offsets.content->IsEditable()) {
// However, some users don't like the Chrome compatible behavior of
// middle mouse click. They want to keep selection after starting
// autoscroll. However, the selection change is important for middle
// mouse past. Therefore, we should allow users to take the traditional
// behavior back by themselves unless middle click paste is enabled or
// autoscrolling is disabled.
if (!Preferences::GetBool("middlemouse.paste", false) &&
Preferences::GetBool("general.autoScroll", false) &&
Preferences::GetBool("general.autoscroll.prevent_to_collapse_selection_"
"by_middle_mouse_down",
false)) {
return NS_OK;
}
}
if (isPrimaryButtonDown) {
// Let Ctrl/Cmd + left mouse down do table selection instead of drag
// initiation.
nsCOMPtr<nsIContent> parentContent;
int32_t contentOffset;
TableSelectionMode target;
nsresult rv = GetDataForTableSelection(
frameselection, presShell, aMouseEvent, getter_AddRefs(parentContent),
&contentOffset, &target);
if (NS_SUCCEEDED(rv) && parentContent) {
fc->SetDragState(true);
return fc->HandleTableSelection(parentContent, contentOffset, target,
aMouseEvent);
}
}
fc->SetDelayedCaretData(0);
if (isPrimaryButtonDown) {
// Check if any part of this frame is selected, and if the user clicked
// inside the selected region, and if it's the left button. If so, we delay
// starting a new selection since the user may be trying to drag the
// selected region to some other app.
if (GetContent() && GetContent()->IsMaybeSelected()) {
bool inSelection = false;
UniquePtr<SelectionDetails> details = frameselection->LookUpSelection(
offsets.content, 0, offsets.EndOffset(), false);
//
// If there are any details, check to see if the user clicked
// within any selected region of the frame.
//
for (SelectionDetails* curDetail = details.get(); curDetail;
curDetail = curDetail->mNext.get()) {
//
// If the user clicked inside a selection, then just
// return without doing anything. We will handle placing
// the caret later on when the mouse is released. We ignore
// the spellcheck, find and url formatting selections.
//
if (curDetail->mSelectionType != SelectionType::eSpellCheck &&
curDetail->mSelectionType != SelectionType::eFind &&
curDetail->mSelectionType != SelectionType::eURLSecondary &&
curDetail->mSelectionType != SelectionType::eURLStrikeout &&
curDetail->mStart <= offsets.StartOffset() &&
offsets.EndOffset() <= curDetail->mEnd) {
inSelection = true;
}
}
if (inSelection) {
fc->SetDragState(false);
fc->SetDelayedCaretData(aMouseEvent);
return NS_OK;
}
}
fc->SetDragState(true);
}
// Do not touch any nsFrame members after this point without adding
// weakFrame checks.
const nsFrameSelection::FocusMode focusMode = [&]() {
// If "Shift" and "Ctrl" are both pressed, "Shift" is given precedence. This
// mimics the old behaviour.
if (aMouseEvent->IsShift()) {
// If clicked in a link when focused content is editable, we should
// collapse selection in the link for compatibility with Blink.
if (isEditor) {
for (Element* element : mContent->InclusiveAncestorsOfType<Element>()) {
if (element->IsLink()) {
return nsFrameSelection::FocusMode::kCollapseToNewPoint;
}
}
}
return nsFrameSelection::FocusMode::kExtendSelection;
}
if (isPrimaryButtonDown && control) {
return nsFrameSelection::FocusMode::kMultiRangeSelection;
}
return nsFrameSelection::FocusMode::kCollapseToNewPoint;
}();
nsresult rv = fc->HandleClick(
MOZ_KnownLive(offsets.content) /* bug 1636889 */, offsets.StartOffset(),
offsets.EndOffset(), focusMode, offsets.associate);
if (NS_FAILED(rv)) {
return rv;
}
// We don't handle mouse button up if it's middle button.
if (isPrimaryButtonDown && offsets.offset != offsets.secondaryOffset) {
fc->MaintainSelection();
}
if (isPrimaryButtonDown && isEditor && !aMouseEvent->IsShift() &&
(offsets.EndOffset() - offsets.StartOffset()) == 1) {
// A single node is selected and we aren't extending an existing selection,
// which means the user clicked directly on an object (either
// `user-select: all` or a non-text node without children). Therefore,
// disable selection extension during mouse moves.
// XXX This is a bit hacky; shouldn't editor be able to deal with this?
fc->SetDragState(false);
}
return NS_OK;
}
nsresult nsIFrame::SelectByTypeAtPoint(nsPresContext* aPresContext,
const nsPoint& aPoint,
nsSelectionAmount aBeginAmountType,
nsSelectionAmount aEndAmountType,
uint32_t aSelectFlags) {
NS_ENSURE_ARG_POINTER(aPresContext);
// No point in selecting if selection is turned off
if (DetermineDisplaySelection() == nsISelectionController::SELECTION_OFF) {
return NS_OK;
}
ContentOffsets offsets = GetContentOffsetsFromPoint(aPoint, SKIP_HIDDEN);
if (!offsets.content) {
return NS_ERROR_FAILURE;
}
int32_t offset;
nsIFrame* frame = nsFrameSelection::GetFrameForNodeOffset(
offsets.content, offsets.offset, offsets.associate, &offset);
if (!frame) {
return NS_ERROR_FAILURE;
}
return frame->PeekBackwardAndForward(aBeginAmountType, aEndAmountType, offset,
aBeginAmountType != eSelectWord,
aSelectFlags);
}
/**
* Multiple Mouse Press -- line or paragraph selection -- for the frame.
* Wouldn't it be nice if this didn't have to be hardwired into Frame code?
*/
NS_IMETHODIMP
nsIFrame::HandleMultiplePress(nsPresContext* aPresContext,
WidgetGUIEvent* aEvent,
nsEventStatus* aEventStatus, bool aControlHeld) {
NS_ENSURE_ARG_POINTER(aEvent);
NS_ENSURE_ARG_POINTER(aEventStatus);
if (nsEventStatus_eConsumeNoDefault == *aEventStatus ||
DetermineDisplaySelection() == nsISelectionController::SELECTION_OFF) {
return NS_OK;
}
// Find out whether we're doing line or paragraph selection.
// If browser.triple_click_selects_paragraph is true, triple-click selects
// paragraph. Otherwise, triple-click selects line, and quadruple-click
// selects paragraph (on platforms that support quadruple-click).
nsSelectionAmount beginAmount, endAmount;
WidgetMouseEvent* mouseEvent = aEvent->AsMouseEvent();
if (!mouseEvent) {
return NS_OK;
}
if (mouseEvent->mClickCount == 4) {
beginAmount = endAmount = eSelectParagraph;
} else if (mouseEvent->mClickCount == 3) {
if (Preferences::GetBool("browser.triple_click_selects_paragraph")) {
beginAmount = endAmount = eSelectParagraph;
} else {
beginAmount = eSelectBeginLine;
endAmount = eSelectEndLine;
}
} else if (mouseEvent->mClickCount == 2) {
// We only want inline frames; PeekBackwardAndForward dislikes blocks
beginAmount = endAmount = eSelectWord;
} else {
return NS_OK;
}
nsPoint relPoint = nsLayoutUtils::GetEventCoordinatesRelativeTo(
mouseEvent, RelativeTo{this});
return SelectByTypeAtPoint(aPresContext, relPoint, beginAmount, endAmount,
(aControlHeld ? SELECT_ACCUMULATE : 0));
}
nsresult nsIFrame::PeekBackwardAndForward(nsSelectionAmount aAmountBack,
nsSelectionAmount aAmountForward,
int32_t aStartPos, bool aJumpLines,
uint32_t aSelectFlags) {
nsIFrame* baseFrame = this;
int32_t baseOffset = aStartPos;
nsresult rv;
if (aAmountBack == eSelectWord) {
// To avoid selecting the previous word when at start of word,
// first move one character forward.
nsPeekOffsetStruct pos(eSelectCharacter, eDirNext, aStartPos, nsPoint(0, 0),
aJumpLines,
true, // limit on scrolled views
false, false, false);
rv = PeekOffset(&pos);
if (NS_SUCCEEDED(rv)) {
baseFrame = pos.mResultFrame;
baseOffset = pos.mContentOffset;
}
}
// Search backward for a boundary.
nsPeekOffsetStruct startpos(aAmountBack, eDirPrevious, baseOffset,
nsPoint(0, 0), aJumpLines,
true, // limit on scrolled views
false, false, false);
rv = baseFrame->PeekOffset(&startpos);
if (NS_FAILED(rv)) {
return rv;
}
// If the backward search stayed within the same frame, search forward from
// that position for the end boundary; but if it crossed out to a sibling or
// ancestor, start from the original position.
if (startpos.mResultFrame == baseFrame) {
baseOffset = startpos.mContentOffset;
} else {
baseFrame = this;
baseOffset = aStartPos;
}
nsPeekOffsetStruct endpos(aAmountForward, eDirNext, baseOffset, nsPoint(0, 0),
aJumpLines,
true, // limit on scrolled views
false, false, false);
rv = baseFrame->PeekOffset(&endpos);
if (NS_FAILED(rv)) {
return rv;
}
// Keep frameSelection alive.
RefPtr<nsFrameSelection> frameSelection = GetFrameSelection();
const nsFrameSelection::FocusMode focusMode =
(aSelectFlags & SELECT_ACCUMULATE)
? nsFrameSelection::FocusMode::kMultiRangeSelection
: nsFrameSelection::FocusMode::kCollapseToNewPoint;
rv = frameSelection->HandleClick(
MOZ_KnownLive(startpos.mResultContent) /* bug 1636889 */,
startpos.mContentOffset, startpos.mContentOffset, focusMode,
CARET_ASSOCIATE_AFTER);
if (NS_FAILED(rv)) {
return rv;
}
rv = frameSelection->HandleClick(
MOZ_KnownLive(endpos.mResultContent) /* bug 1636889 */,
endpos.mContentOffset, endpos.mContentOffset,
nsFrameSelection::FocusMode::kExtendSelection, CARET_ASSOCIATE_BEFORE);
if (NS_FAILED(rv)) {
return rv;
}
if (aAmountBack == eSelectWord) {
frameSelection->SetIsDoubleClickSelection(true);
}
// maintain selection
return frameSelection->MaintainSelection(aAmountBack);
}
NS_IMETHODIMP nsIFrame::HandleDrag(nsPresContext* aPresContext,
WidgetGUIEvent* aEvent,
nsEventStatus* aEventStatus) {
MOZ_ASSERT(aEvent->mClass == eMouseEventClass,
"HandleDrag can only handle mouse event");
NS_ENSURE_ARG_POINTER(aEventStatus);
RefPtr<nsFrameSelection> frameselection = GetFrameSelection();
if (!frameselection) {
return NS_OK;
}
bool mouseDown = frameselection->GetDragState();
if (!mouseDown) {
return NS_OK;
}
nsIFrame* scrollbar =
nsLayoutUtils::GetClosestFrameOfType(this, LayoutFrameType::Scrollbar);
if (!scrollbar) {
// XXX Do we really need to exclude non-selectable content here?
// GetContentOffsetsFromPoint can handle it just fine, although some
// other stuff might not like it.
// NOTE: DetermineDisplaySelection() returns SELECTION_OFF for
// non-selectable frames.
if (DetermineDisplaySelection() == nsISelectionController::SELECTION_OFF) {
return NS_OK;
}
}
frameselection->StopAutoScrollTimer();
// Check if we are dragging in a table cell
nsCOMPtr<nsIContent> parentContent;
int32_t contentOffset;
TableSelectionMode target;
WidgetMouseEvent* mouseEvent = aEvent->AsMouseEvent();
mozilla::PresShell* presShell = aPresContext->PresShell();
nsresult result;
result = GetDataForTableSelection(frameselection, presShell, mouseEvent,
getter_AddRefs(parentContent),
&contentOffset, &target);
AutoWeakFrame weakThis = this;
if (NS_SUCCEEDED(result) && parentContent) {
result = frameselection->HandleTableSelection(parentContent, contentOffset,
target, mouseEvent);
if (NS_WARN_IF(NS_FAILED(result))) {
return result;
}
} else {
nsPoint pt = nsLayoutUtils::GetEventCoordinatesRelativeTo(mouseEvent,
RelativeTo{this});
frameselection->HandleDrag(this, pt);
}
// The frameselection object notifies selection listeners synchronously above
// which might have killed us.
if (!weakThis.IsAlive()) {
return NS_OK;
}
// get the nearest scrollframe
nsIScrollableFrame* scrollFrame = nsLayoutUtils::GetNearestScrollableFrame(
this, nsLayoutUtils::SCROLLABLE_SAME_DOC |
nsLayoutUtils::SCROLLABLE_INCLUDE_HIDDEN);
if (scrollFrame) {
nsIFrame* capturingFrame = scrollFrame->GetScrolledFrame();
if (capturingFrame) {
nsPoint pt = nsLayoutUtils::GetEventCoordinatesRelativeTo(
mouseEvent, RelativeTo{capturingFrame});
frameselection->StartAutoScrollTimer(capturingFrame, pt, 30);
}
}
return NS_OK;
}
/**
* This static method handles part of the nsIFrame::HandleRelease in a way
* which doesn't rely on the nsFrame object to stay alive.
*/
MOZ_CAN_RUN_SCRIPT_BOUNDARY static nsresult HandleFrameSelection(
nsFrameSelection* aFrameSelection, nsIFrame::ContentOffsets& aOffsets,
bool aHandleTableSel, int32_t aContentOffsetForTableSel,
TableSelectionMode aTargetForTableSel,
nsIContent* aParentContentForTableSel, WidgetGUIEvent* aEvent,
const nsEventStatus* aEventStatus) {
if (!aFrameSelection) {
return NS_OK;
}
nsresult rv = NS_OK;
if (nsEventStatus_eConsumeNoDefault != *aEventStatus) {
if (!aHandleTableSel) {
if (!aOffsets.content || !aFrameSelection->HasDelayedCaretData()) {
return NS_ERROR_FAILURE;
}
// We are doing this to simulate what we would have done on HandlePress.
// We didn't do it there to give the user an opportunity to drag
// the text, but since they didn't drag, we want to place the
// caret.
// However, we'll use the mouse position from the release, since:
// * it's easier
// * that's the normal click position to use (although really, in
// the normal case, small movements that don't count as a drag
// can do selection)
aFrameSelection->SetDragState(true);
const nsFrameSelection::FocusMode focusMode =
aFrameSelection->IsShiftDownInDelayedCaretData()
? nsFrameSelection::FocusMode::kExtendSelection
: nsFrameSelection::FocusMode::kCollapseToNewPoint;
rv = aFrameSelection->HandleClick(
MOZ_KnownLive(aOffsets.content) /* bug 1636889 */,
aOffsets.StartOffset(), aOffsets.EndOffset(), focusMode,
aOffsets.associate);
if (NS_FAILED(rv)) {
return rv;
}
} else if (aParentContentForTableSel) {
aFrameSelection->SetDragState(false);
rv = aFrameSelection->HandleTableSelection(
aParentContentForTableSel, aContentOffsetForTableSel,
aTargetForTableSel, aEvent->AsMouseEvent());
if (NS_FAILED(rv)) {
return rv;
}
}
aFrameSelection->SetDelayedCaretData(0);
}
aFrameSelection->SetDragState(false);
aFrameSelection->StopAutoScrollTimer();
return NS_OK;
}
NS_IMETHODIMP nsIFrame::HandleRelease(nsPresContext* aPresContext,
WidgetGUIEvent* aEvent,
nsEventStatus* aEventStatus) {
if (aEvent->mClass != eMouseEventClass) {
return NS_OK;
}
nsIFrame* activeFrame = GetActiveSelectionFrame(aPresContext, this);
nsCOMPtr<nsIContent> captureContent = PresShell::GetCapturingContent();
bool selectionOff =
(DetermineDisplaySelection() == nsISelectionController::SELECTION_OFF);
RefPtr<nsFrameSelection> frameselection;
ContentOffsets offsets;
nsCOMPtr<nsIContent> parentContent;
int32_t contentOffsetForTableSel = 0;
TableSelectionMode targetForTableSel = TableSelectionMode::None;
bool handleTableSelection = true;
if (!selectionOff) {
frameselection = GetFrameSelection();
if (nsEventStatus_eConsumeNoDefault != *aEventStatus && frameselection) {
// Check if the frameselection recorded the mouse going down.
// If not, the user must have clicked in a part of the selection.
// Place the caret before continuing!
if (frameselection->MouseDownRecorded()) {
nsPoint pt = nsLayoutUtils::GetEventCoordinatesRelativeTo(
aEvent, RelativeTo{this});
offsets = GetContentOffsetsFromPoint(pt, SKIP_HIDDEN);
handleTableSelection = false;
} else {
GetDataForTableSelection(frameselection, PresShell(),
aEvent->AsMouseEvent(),
getter_AddRefs(parentContent),
&contentOffsetForTableSel, &targetForTableSel);
}
}
}
// We might be capturing in some other document and the event just happened to
// trickle down here. Make sure that document's frame selection is notified.
// Note, this may cause the current nsFrame object to be deleted, bug 336592.
RefPtr<nsFrameSelection> frameSelection;
if (activeFrame != this && activeFrame->DetermineDisplaySelection() !=
nsISelectionController::SELECTION_OFF) {
frameSelection = activeFrame->GetFrameSelection();
}
// Also check the selection of the capturing content which might be in a
// different document.
if (!frameSelection && captureContent) {
if (Document* doc = captureContent->GetComposedDoc()) {
mozilla::PresShell* capturingPresShell = doc->GetPresShell();
if (capturingPresShell &&
capturingPresShell != PresContext()->GetPresShell()) {
frameSelection = capturingPresShell->FrameSelection();
}
}
}
if (frameSelection) {
AutoWeakFrame wf(this);
frameSelection->SetDragState(false);
frameSelection->StopAutoScrollTimer();
if (wf.IsAlive()) {
nsIScrollableFrame* scrollFrame =
nsLayoutUtils::GetNearestScrollableFrame(
this, nsLayoutUtils::SCROLLABLE_SAME_DOC |
nsLayoutUtils::SCROLLABLE_INCLUDE_HIDDEN);
if (scrollFrame) {
// Perform any additional scrolling needed to maintain CSS snap point
// requirements when autoscrolling is over.
scrollFrame->ScrollSnap();
}
}
}
// Do not call any methods of the current object after this point!!!
// The object is perhaps dead!
return selectionOff ? NS_OK
: HandleFrameSelection(
frameselection, offsets, handleTableSelection,
contentOffsetForTableSel, targetForTableSel,
parentContent, aEvent, aEventStatus);
}
struct MOZ_STACK_CLASS FrameContentRange {
FrameContentRange(nsIContent* aContent, int32_t aStart, int32_t aEnd)
: content(aContent), start(aStart), end(aEnd) {}
nsCOMPtr<nsIContent> content;
int32_t start;
int32_t end;
};
// Retrieve the content offsets of a frame
static FrameContentRange GetRangeForFrame(const nsIFrame* aFrame) {
nsIContent* content = aFrame->GetContent();
if (!content) {
NS_WARNING("Frame has no content");
return FrameContentRange(nullptr, -1, -1);
}
LayoutFrameType type = aFrame->Type();
if (type == LayoutFrameType::Text) {
auto [offset, offsetEnd] = aFrame->GetOffsets();
return FrameContentRange(content, offset, offsetEnd);
}
if (type == LayoutFrameType::Br) {
nsIContent* parent = content->GetParent();
const int32_t beginOffset = parent->ComputeIndexOf_Deprecated(content);
return FrameContentRange(parent, beginOffset, beginOffset);
}
while (content->IsRootOfNativeAnonymousSubtree()) {
content = content->GetParent();
}
nsIContent* parent = content->GetParent();
if (aFrame->IsBlockOutside() || !parent) {
return FrameContentRange(content, 0, content->GetChildCount());
}
// TODO(emilio): Revise this in presence of Shadow DOM / display: contents,
// it's likely that we don't want to just walk the light tree, and we need to
// change the representation of FrameContentRange.
const int32_t index = parent->ComputeIndexOf_Deprecated(content);
MOZ_ASSERT(index >= 0);
return FrameContentRange(parent, index, index + 1);
}
// The FrameTarget represents the closest frame to a point that can be selected
// The frame is the frame represented, frameEdge says whether one end of the
// frame is the result (in which case different handling is needed), and
// afterFrame says which end is represented if frameEdge is true
struct FrameTarget {
explicit operator bool() const { return !!frame; }
nsIFrame* frame = nullptr;
bool frameEdge = false;
bool afterFrame = false;
};
// See function implementation for information
static FrameTarget GetSelectionClosestFrame(nsIFrame* aFrame,
const nsPoint& aPoint,
uint32_t aFlags);
static bool SelfIsSelectable(nsIFrame* aFrame, uint32_t aFlags) {
if ((aFlags & nsIFrame::SKIP_HIDDEN) &&
!aFrame->StyleVisibility()->IsVisible()) {
return false;
}
return !aFrame->IsGeneratedContentFrame() &&
aFrame->Style()->UserSelect() != StyleUserSelect::None;
}
static bool SelectionDescendToKids(nsIFrame* aFrame) {
// If we are only near (not directly over) then don't traverse
// frames with independent selection (e.g. text and list controls, see bug
// 268497). Note that this prevents any of the users of this method from
// entering form controls.
// XXX We might want some way to allow using the up-arrow to go into a form
// control, but the focus didn't work right anyway; it'd probably be enough
// if the left and right arrows could enter textboxes (which I don't believe
// they can at the moment)
if (aFrame->IsTextInputFrame() || aFrame->IsListControlFrame()) {
MOZ_ASSERT(aFrame->HasAnyStateBits(NS_FRAME_INDEPENDENT_SELECTION));
return false;
}
// Failure in this assertion means a new type of frame forms the root of an
// NS_FRAME_INDEPENDENT_SELECTION subtree. In such case, the condition above
// should be changed to handle it.
MOZ_ASSERT_IF(
aFrame->HasAnyStateBits(NS_FRAME_INDEPENDENT_SELECTION),
aFrame->GetParent()->HasAnyStateBits(NS_FRAME_INDEPENDENT_SELECTION));
if (aFrame->IsGeneratedContentFrame()) {
return false;
}
auto style = aFrame->Style()->UserSelect();
return style != StyleUserSelect::All && style != StyleUserSelect::None;
}
static FrameTarget GetSelectionClosestFrameForChild(nsIFrame* aChild,
const nsPoint& aPoint,
uint32_t aFlags) {
nsIFrame* parent = aChild->GetParent();
if (SelectionDescendToKids(aChild)) {
nsPoint pt = aPoint - aChild->GetOffsetTo(parent);
return GetSelectionClosestFrame(aChild, pt, aFlags);
}
return FrameTarget{aChild, false, false};
}
// When the cursor needs to be at the beginning of a block, it shouldn't be
// before the first child. A click on a block whose first child is a block
// should put the cursor in the child. The cursor shouldn't be between the
// blocks, because that's not where it's expected.
// Note that this method is guaranteed to succeed.
static FrameTarget DrillDownToSelectionFrame(nsIFrame* aFrame, bool aEndFrame,
uint32_t aFlags) {
if (SelectionDescendToKids(aFrame)) {
nsIFrame* result = nullptr;
nsIFrame* frame = aFrame->PrincipalChildList().FirstChild();
if (!aEndFrame) {
while (frame && (!SelfIsSelectable(frame, aFlags) || frame->IsEmpty()))
frame = frame->GetNextSibling();
if (frame) result = frame;
} else {
// Because the frame tree is singly linked, to find the last frame,
// we have to iterate through all the frames
// XXX I have a feeling this could be slow for long blocks, although
// I can't find any slowdowns
while (frame) {
if (!frame->IsEmpty() && SelfIsSelectable(frame, aFlags))
result = frame;
frame = frame->GetNextSibling();
}
}
if (result) return DrillDownToSelectionFrame(result, aEndFrame, aFlags);
}
// If the current frame has no targetable children, target the current frame
return FrameTarget{aFrame, true, aEndFrame};
}
// This method finds the closest valid FrameTarget on a given line; if there is
// no valid FrameTarget on the line, it returns a null FrameTarget
static FrameTarget GetSelectionClosestFrameForLine(
nsBlockFrame* aParent, nsBlockFrame::LineIterator aLine,
const nsPoint& aPoint, uint32_t aFlags) {
// Account for end of lines (any iterator from the block is valid)
if (aLine == aParent->LinesEnd())
return DrillDownToSelectionFrame(aParent, true, aFlags);
nsIFrame* frame = aLine->mFirstChild;
nsIFrame* closestFromIStart = nullptr;
nsIFrame* closestFromIEnd = nullptr;
nscoord closestIStart = aLine->IStart(), closestIEnd = aLine->IEnd();
WritingMode wm = aLine->mWritingMode;
LogicalPoint pt(wm, aPoint, aLine->mContainerSize);
bool canSkipBr = false;
bool lastFrameWasEditable = false;
for (int32_t n = aLine->GetChildCount(); n;
--n, frame = frame->GetNextSibling()) {
// Skip brFrames. Can only skip if the line contains at least
// one selectable and non-empty frame before. Also, avoid skipping brs if
// the previous thing had a different editableness than us, since then we
// may end up not being able to select after it if the br is the last thing
// on the line.
if (!SelfIsSelectable(frame, aFlags) || frame->IsEmpty() ||
(canSkipBr && frame->IsBrFrame() &&
lastFrameWasEditable == frame->GetContent()->IsEditable())) {
continue;
}
canSkipBr = true;
lastFrameWasEditable =
frame->GetContent() && frame->GetContent()->IsEditable();
LogicalRect frameRect =
LogicalRect(wm, frame->GetRect(), aLine->mContainerSize);
if (pt.I(wm) >= frameRect.IStart(wm)) {
if (pt.I(wm) < frameRect.IEnd(wm)) {
return GetSelectionClosestFrameForChild(frame, aPoint, aFlags);
}
if (frameRect.IEnd(wm) >= closestIStart) {
closestFromIStart = frame;
closestIStart = frameRect.IEnd(wm);
}
} else {
if (frameRect.IStart(wm) <= closestIEnd) {
closestFromIEnd = frame;
closestIEnd = frameRect.IStart(wm);
}
}
}
if (!closestFromIStart && !closestFromIEnd) {
// We should only get here if there are no selectable frames on a line
// XXX Do we need more elaborate handling here?
return FrameTarget();
}
if (closestFromIStart &&
(!closestFromIEnd ||
(abs(pt.I(wm) - closestIStart) <= abs(pt.I(wm) - closestIEnd)))) {
return GetSelectionClosestFrameForChild(closestFromIStart, aPoint, aFlags);
}
return GetSelectionClosestFrameForChild(closestFromIEnd, aPoint, aFlags);
}
// This method is for the special handling we do for block frames; they're
// special because they represent paragraphs and because they are organized
// into lines, which have bounds that are not stored elsewhere in the
// frame tree. Returns a null FrameTarget for frames which are not
// blocks or blocks with no lines except editable one.
static FrameTarget GetSelectionClosestFrameForBlock(nsIFrame* aFrame,
const nsPoint& aPoint,
uint32_t aFlags) {
nsBlockFrame* bf = do_QueryFrame(aFrame);
if (!bf) {
return FrameTarget();
}
// This code searches for the correct line
nsBlockFrame::LineIterator end = bf->LinesEnd();
nsBlockFrame::LineIterator curLine = bf->LinesBegin();
nsBlockFrame::LineIterator closestLine = end;
if (curLine != end) {
// Convert aPoint into a LogicalPoint in the writing-mode of this block
WritingMode wm = curLine->mWritingMode;
LogicalPoint pt(wm, aPoint, curLine->mContainerSize);
do {
// Check to see if our point lies within the line's block-direction bounds
nscoord BCoord = pt.B(wm) - curLine->BStart();
nscoord BSize = curLine->BSize();
if (BCoord >= 0 && BCoord < BSize) {
closestLine = curLine;
break; // We found the line; stop looking
}
if (BCoord < 0) break;
++curLine;
} while (curLine != end);
if (closestLine == end) {
nsBlockFrame::LineIterator prevLine = curLine.prev();
nsBlockFrame::LineIterator nextLine = curLine;
// Avoid empty lines
while (nextLine != end && nextLine->IsEmpty()) ++nextLine;
while (prevLine != end && prevLine->IsEmpty()) --prevLine;
// This hidden pref dictates whether a point above or below all lines
// comes up with a line or the beginning or end of the frame; 0 on
// Windows, 1 on other platforms by default at the writing of this code
int32_t dragOutOfFrame =
Preferences::GetInt("browser.drag_out_of_frame_style");
if (prevLine == end) {
if (dragOutOfFrame == 1 || nextLine == end)
return DrillDownToSelectionFrame(aFrame, false, aFlags);
closestLine = nextLine;
} else if (nextLine == end) {
if (dragOutOfFrame == 1)
return DrillDownToSelectionFrame(aFrame, true, aFlags);
closestLine = prevLine;
} else { // Figure out which line is closer
if (pt.B(wm) - prevLine->BEnd() < nextLine->BStart() - pt.B(wm))
closestLine = prevLine;
else
closestLine = nextLine;
}
}
}
do {
if (auto target =
GetSelectionClosestFrameForLine(bf, closestLine, aPoint, aFlags)) {
return target;
}
++closestLine;
} while (closestLine != end);
// Fall back to just targeting the last targetable place
return DrillDownToSelectionFrame(aFrame, true, aFlags);
}
// Use frame edge for grid, flex, table, and non-editable images. Choose the
// edge based on the point position past the frame rect. If past the middle,
// caret should be at end, otherwise at start. This behavior matches Blink.
//
// TODO(emilio): Can we use this code path for other replaced elements other
// than images? Or even all other frames? We only get there when we didn't find
// selectable children... At least one XUL test fails if we make this apply to
// XUL labels. Also, editable images need _not_ to use the frame edge, see
// below.
static bool UseFrameEdge(nsIFrame* aFrame) {
if (aFrame->IsFlexOrGridContainer() || aFrame->IsTableFrame()) {
return true;
}
const nsImageFrame* image = do_QueryFrame(aFrame);
if (image && !aFrame->GetContent()->IsEditable()) {
// Editable images are a special-case because editing relies on clicking on
// an editable image selecting it, for it to show resizers.
return true;
}
return false;
}
static FrameTarget LastResortFrameTargetForFrame(nsIFrame* aFrame,
const nsPoint& aPoint) {
if (!UseFrameEdge(aFrame)) {
return {aFrame, false, false};
}
const auto& rect = aFrame->GetRectRelativeToSelf();
nscoord reference;
nscoord middle;
if (aFrame->GetWritingMode().IsVertical()) {
reference = aPoint.y;
middle = rect.Height() / 2;
} else {
reference = aPoint.x;
middle = rect.Width() / 2;
}
const bool afterFrame = reference > middle;
return {aFrame, true, afterFrame};
}
// GetSelectionClosestFrame is the helper function that calculates the closest
// frame to the given point.
// It doesn't completely account for offset styles, so needs to be used in
// restricted environments.
// Cannot handle overlapping frames correctly, so it should receive the output
// of GetFrameForPoint
// Guaranteed to return a valid FrameTarget.
// aPoint is relative to aFrame.
static FrameTarget GetSelectionClosestFrame(nsIFrame* aFrame,
const nsPoint& aPoint,
uint32_t aFlags) {
// Handle blocks; if the frame isn't a block, the method fails
if (auto target = GetSelectionClosestFrameForBlock(aFrame, aPoint, aFlags)) {
return target;
}
if (nsIFrame* kid = aFrame->PrincipalChildList().FirstChild()) {
// Go through all the child frames to find the closest one
nsIFrame::FrameWithDistance closest = {nullptr, nscoord_MAX, nscoord_MAX};
for (; kid; kid = kid->GetNextSibling()) {
if (!SelfIsSelectable(kid, aFlags) || kid->IsEmpty()) continue;
kid->FindCloserFrameForSelection(aPoint, &closest);
}
if (closest.mFrame) {
if (SVGUtils::IsInSVGTextSubtree(closest.mFrame))
return FrameTarget{closest.mFrame, false, false};
return GetSelectionClosestFrameForChild(closest.mFrame, aPoint, aFlags);
}
}
return LastResortFrameTargetForFrame(aFrame, aPoint);
}
static nsIFrame::ContentOffsets OffsetsForSingleFrame(nsIFrame* aFrame,
const nsPoint& aPoint) {
nsIFrame::ContentOffsets offsets;
FrameContentRange range = GetRangeForFrame(aFrame);
offsets.content = range.content;
// If there are continuations (meaning it's not one rectangle), this is the
// best this function can do
if (aFrame->GetNextContinuation() || aFrame->GetPrevContinuation()) {
offsets.offset = range.start;
offsets.secondaryOffset = range.end;
offsets.associate = CARET_ASSOCIATE_AFTER;
return offsets;
}
// Figure out whether the offsets should be over, after, or before the frame
nsRect rect(nsPoint(0, 0), aFrame->GetSize());
bool isBlock = !aFrame->StyleDisplay()->IsInlineFlow();
bool isRtl = (aFrame->StyleVisibility()->mDirection == StyleDirection::Rtl);
if ((isBlock && rect.y < aPoint.y) ||
(!isBlock && ((isRtl && rect.x + rect.width / 2 > aPoint.x) ||
(!isRtl && rect.x + rect.width / 2 < aPoint.x)))) {
offsets.offset = range.end;
if (rect.Contains(aPoint))
offsets.secondaryOffset = range.start;
else
offsets.secondaryOffset = range.end;
} else {
offsets.offset = range.start;
if (rect.Contains(aPoint))
offsets.secondaryOffset = range.end;
else
offsets.secondaryOffset = range.start;
}
offsets.associate = offsets.offset == range.start ? CARET_ASSOCIATE_AFTER
: CARET_ASSOCIATE_BEFORE;
return offsets;
}
static nsIFrame* AdjustFrameForSelectionStyles(nsIFrame* aFrame) {
nsIFrame* adjustedFrame = aFrame;
for (nsIFrame* frame = aFrame; frame; frame = frame->GetParent()) {
// These are the conditions that make all children not able to handle
// a cursor.
auto userSelect = frame->Style()->UserSelect();
if (userSelect != StyleUserSelect::Auto &&
userSelect != StyleUserSelect::All) {
break;
}
if (userSelect == StyleUserSelect::All ||
frame->IsGeneratedContentFrame()) {
adjustedFrame = frame;
}
}
return adjustedFrame;
}
nsIFrame::ContentOffsets nsIFrame::GetContentOffsetsFromPoint(
const nsPoint& aPoint, uint32_t aFlags) {
nsIFrame* adjustedFrame;
if (aFlags & IGNORE_SELECTION_STYLE) {
adjustedFrame = this;
} else {
// This section of code deals with special selection styles. Note that
// -moz-all exists, even though it doesn't need to be explicitly handled.
//
// The offset is forced not to end up in generated content; content offsets
// cannot represent content outside of the document's content tree.
adjustedFrame = AdjustFrameForSelectionStyles(this);
// `user-select: all` needs special handling, because clicking on it should
// lead to the whole frame being selected.
if (adjustedFrame->Style()->UserSelect() == StyleUserSelect::All) {
nsPoint adjustedPoint = aPoint + GetOffsetTo(adjustedFrame);
return OffsetsForSingleFrame(adjustedFrame, adjustedPoint);
}
// For other cases, try to find a closest frame starting from the parent of
// the unselectable frame
if (adjustedFrame != this) {
adjustedFrame = adjustedFrame->GetParent();
}
}
nsPoint adjustedPoint = aPoint + GetOffsetTo(adjustedFrame);
FrameTarget closest =
GetSelectionClosestFrame(adjustedFrame, adjustedPoint, aFlags);
// If the correct offset is at one end of a frame, use offset-based
// calculation method
if (closest.frameEdge) {
ContentOffsets offsets;
FrameContentRange range = GetRangeForFrame(closest.frame);
offsets.content = range.content;
if (closest.afterFrame)
offsets.offset = range.end;
else
offsets.offset = range.start;
offsets.secondaryOffset = offsets.offset;
offsets.associate = offsets.offset == range.start ? CARET_ASSOCIATE_AFTER
: CARET_ASSOCIATE_BEFORE;
return offsets;
}
nsPoint pt;
if (closest.frame != this) {
if (SVGUtils::IsInSVGTextSubtree(closest.frame)) {
pt = nsLayoutUtils::TransformAncestorPointToFrame(
RelativeTo{closest.frame}, aPoint, RelativeTo{this});
} else {
pt = aPoint - closest.frame->GetOffsetTo(this);
}
} else {
pt = aPoint;
}
return closest.frame->CalcContentOffsetsFromFramePoint(pt);
// XXX should I add some kind of offset standardization?
// consider <b>xxxxx</b><i>zzzzz</i>; should any click between the last
// x and first z put the cursor in the same logical position in addition
// to the same visual position?
}
nsIFrame::ContentOffsets nsIFrame::CalcContentOffsetsFromFramePoint(
const nsPoint& aPoint) {
return OffsetsForSingleFrame(this, aPoint);
}
bool nsIFrame::AssociateImage(const StyleImage& aImage) {
imgRequestProxy* req = aImage.GetImageRequest();
if (!req) {
return false;
}
mozilla::css::ImageLoader* loader =
PresContext()->Document()->StyleImageLoader();
loader->AssociateRequestToFrame(req, this);
return true;
}
void nsIFrame::DisassociateImage(const StyleImage& aImage) {
imgRequestProxy* req = aImage.GetImageRequest();
if (!req) {
return;
}
mozilla::css::ImageLoader* loader =
PresContext()->Document()->StyleImageLoader();
loader->DisassociateRequestFromFrame(req, this);
}
StyleImageRendering nsIFrame::UsedImageRendering() const {
ComputedStyle* style;
if (IsCanvasFrame()) {
// XXXdholbert Maybe we should use FindCanvasBackground here (instead of
// FindBackground), since we're inside an IsCanvasFrame check? Though then
// we'd also have to copypaste or abstract-away the multi-part root-frame
// lookup that the canvas-flavored API requires.
style = nsCSSRendering::FindBackground(this);
} else {
style = Style();
}
return style->StyleVisibility()->mImageRendering;
}
// The touch-action CSS property applies to: all elements except: non-replaced
// inline elements, table rows, row groups, table columns, and column groups.
StyleTouchAction nsIFrame::UsedTouchAction() const {
if (IsFrameOfType(eLineParticipant)) {
return StyleTouchAction::AUTO;
}
auto& disp = *StyleDisplay();
if (disp.IsInternalTableStyleExceptCell()) {
return StyleTouchAction::AUTO;
}
return disp.mTouchAction;
}
Maybe<nsIFrame::Cursor> nsIFrame::GetCursor(const nsPoint&) {
StyleCursorKind kind = StyleUI()->Cursor().keyword;
if (kind == StyleCursorKind::Auto) {
// If this is editable, I-beam cursor is better for most elements.
kind = (mContent && mContent->IsEditable()) ? StyleCursorKind::Text
: StyleCursorKind::Default;
}
if (kind == StyleCursorKind::Text && GetWritingMode().IsVertical()) {
// Per CSS UI spec, UA may treat value 'text' as
// 'vertical-text' for vertical text.
kind = StyleCursorKind::VerticalText;
}
return Some(Cursor{kind, AllowCustomCursorImage::Yes});
}
// Resize and incremental reflow
/* virtual */
void nsIFrame::MarkIntrinsicISizesDirty() {
// This version is meant only for what used to be box-to-block adaptors.
// It should not be called by other derived classes.
if (::IsXULBoxWrapped(this)) {
nsBoxLayoutMetrics* metrics = BoxMetrics();
XULSizeNeedsRecalc(metrics->mPrefSize);
XULSizeNeedsRecalc(metrics->mMinSize);
XULSizeNeedsRecalc(metrics->mMaxSize);
XULSizeNeedsRecalc(metrics->mBlockPrefSize);
XULSizeNeedsRecalc(metrics->mBlockMinSize);
XULCoordNeedsRecalc(metrics->mAscent);
}
// If we're a flex item, clear our flex-item-specific cached measurements
// (which likely depended on our now-stale intrinsic isize).
if (IsFlexItem()) {
nsFlexContainerFrame::MarkCachedFlexMeasurementsDirty(this);
}
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT)) {
nsFontInflationData::MarkFontInflationDataTextDirty(this);
}
if (StaticPrefs::layout_css_grid_item_baxis_measurement_enabled()) {
RemoveProperty(nsGridContainerFrame::CachedBAxisMeasurement::Prop());
}
}
void nsIFrame::MarkSubtreeDirty() {
if (HasAnyStateBits(NS_FRAME_IS_DIRTY)) {
return;
}
// Unconditionally mark given frame dirty.
AddStateBits(NS_FRAME_IS_DIRTY);
// Mark all descendants dirty, unless:
// - Already dirty.
// - TableColGroup
// - XULBox
AutoTArray<nsIFrame*, 32> stack;
for (const auto& childLists : ChildLists()) {
for (nsIFrame* kid : childLists.mList) {
stack.AppendElement(kid);
}
}
while (!stack.IsEmpty()) {
nsIFrame* f = stack.PopLastElement();
if (f->HasAnyStateBits(NS_FRAME_IS_DIRTY) || f->IsTableColGroupFrame() ||
f->IsXULBoxFrame()) {
continue;
}
f->AddStateBits(NS_FRAME_IS_DIRTY);
for (const auto& childLists : f->ChildLists()) {
for (nsIFrame* kid : childLists.mList) {
stack.AppendElement(kid);
}
}
}
}
/* virtual */
nscoord nsIFrame::GetMinISize(gfxContext* aRenderingContext) {
nscoord result = 0;
DISPLAY_MIN_INLINE_SIZE(this, result);
return result;
}
/* virtual */
nscoord nsIFrame::GetPrefISize(gfxContext* aRenderingContext) {
nscoord result = 0;
DISPLAY_PREF_INLINE_SIZE(this, result);
return result;
}
/* virtual */
void nsIFrame::AddInlineMinISize(gfxContext* aRenderingContext,
nsIFrame::InlineMinISizeData* aData) {
nscoord isize = nsLayoutUtils::IntrinsicForContainer(
aRenderingContext, this, IntrinsicISizeType::MinISize);
aData->DefaultAddInlineMinISize(this, isize);
}
/* virtual */
void nsIFrame::AddInlinePrefISize(gfxContext* aRenderingContext,
nsIFrame::InlinePrefISizeData* aData) {
nscoord isize = nsLayoutUtils::IntrinsicForContainer(
aRenderingContext, this, IntrinsicISizeType::PrefISize);
aData->DefaultAddInlinePrefISize(isize);
}
void nsIFrame::InlineMinISizeData::DefaultAddInlineMinISize(nsIFrame* aFrame,
nscoord aISize,
bool aAllowBreak) {
auto parent = aFrame->GetParent();
MOZ_ASSERT(parent, "Must have a parent if we get here!");
const bool mayBreak = aAllowBreak && !aFrame->CanContinueTextRun() &&
!parent->Style()->ShouldSuppressLineBreak() &&
parent->StyleText()->WhiteSpaceCanWrap(parent);
if (mayBreak) {
OptionallyBreak();
}
mTrailingWhitespace = 0;
mSkipWhitespace = false;
mCurrentLine += aISize;
mAtStartOfLine = false;
if (mayBreak) {
OptionallyBreak();
}
}
void nsIFrame::InlinePrefISizeData::DefaultAddInlinePrefISize(nscoord aISize) {
mCurrentLine = NSCoordSaturatingAdd(mCurrentLine, aISize);
mTrailingWhitespace = 0;
mSkipWhitespace = false;
mLineIsEmpty = false;
}
void nsIFrame::InlineMinISizeData::ForceBreak() {
mCurrentLine -= mTrailingWhitespace;
mPrevLines = std::max(mPrevLines, mCurrentLine);
mCurrentLine = mTrailingWhitespace = 0;
for (uint32_t i = 0, i_end = mFloats.Length(); i != i_end; ++i) {
nscoord float_min = mFloats[i].Width();
if (float_min > mPrevLines) mPrevLines = float_min;
}
mFloats.Clear();
mSkipWhitespace = true;
}
void nsIFrame::InlineMinISizeData::OptionallyBreak(nscoord aHyphenWidth) {
// If we can fit more content into a smaller width by staying on this
// line (because we're still at a negative offset due to negative
// text-indent or negative margin), don't break. Otherwise, do the
// same as ForceBreak. it doesn't really matter when we accumulate
// floats.
if (mCurrentLine + aHyphenWidth < 0 || mAtStartOfLine) return;
mCurrentLine += aHyphenWidth;
ForceBreak();
}
void nsIFrame::InlinePrefISizeData::ForceBreak(StyleClear aClearType) {
// If this force break is not clearing any float, we can leave all the
// floats to the next force break.
if (!mFloats.IsEmpty() && aClearType != StyleClear::None) {
// preferred widths accumulated for floats that have already
// been cleared past
nscoord floats_done = 0,
// preferred widths accumulated for floats that have not yet
// been cleared past
floats_cur_left = 0, floats_cur_right = 0;
for (const FloatInfo& floatInfo : mFloats) {
const nsStyleDisplay* floatDisp = floatInfo.Frame()->StyleDisplay();
StyleClear clearType = floatDisp->mClear;
if (clearType == StyleClear::Left || clearType == StyleClear::Right ||
clearType == StyleClear::Both) {
nscoord floats_cur =
NSCoordSaturatingAdd(floats_cur_left, floats_cur_right);
if (floats_cur > floats_done) {
floats_done = floats_cur;
}
if (clearType != StyleClear::Right) {
floats_cur_left = 0;
}
if (clearType != StyleClear::Left) {
floats_cur_right = 0;
}
}
StyleFloat floatStyle = floatDisp->mFloat;
nscoord& floats_cur =
floatStyle == StyleFloat::Left ? floats_cur_left : floats_cur_right;
nscoord floatWidth = floatInfo.Width();
// Negative-width floats don't change the available space so they
// shouldn't change our intrinsic line width either.
floats_cur = NSCoordSaturatingAdd(floats_cur, std::max(0, floatWidth));
}
nscoord floats_cur =
NSCoordSaturatingAdd(floats_cur_left, floats_cur_right);
if (floats_cur > floats_done) floats_done = floats_cur;
mCurrentLine = NSCoordSaturatingAdd(mCurrentLine, floats_done);
if (aClearType == StyleClear::Both) {
mFloats.Clear();
} else {
// If the break type does not clear all floats, it means there may
// be some floats whose isize should contribute to the intrinsic
// isize of the next line. The code here scans the current mFloats
// and keeps floats which are not cleared by this break. Note that
// floats may be cleared directly or indirectly. See below.
nsTArray<FloatInfo> newFloats;
MOZ_ASSERT(
aClearType == StyleClear::Left || aClearType == StyleClear::Right,
"Other values should have been handled in other branches");
StyleFloat clearFloatType =
aClearType == StyleClear::Left ? StyleFloat::Left : StyleFloat::Right;
// Iterate the array in reverse so that we can stop when there are
// no longer any floats we need to keep. See below.
for (FloatInfo& floatInfo : Reversed(mFloats)) {
const nsStyleDisplay* floatDisp = floatInfo.Frame()->StyleDisplay();
if (floatDisp->mFloat != clearFloatType) {
newFloats.AppendElement(floatInfo);
} else {
// This is a float on the side that this break directly clears
// which means we're not keeping it in mFloats. However, if
// this float clears floats on the opposite side (via a value
// of either 'both' or one of 'left'/'right'), any remaining
// (earlier) floats on that side would be indirectly cleared
// as well. Thus, we should break out of this loop and stop
// considering earlier floats to be kept in mFloats.
StyleClear clearType = floatDisp->mClear;
if (clearType != aClearType && clearType != StyleClear::None) {
break;
}
}
}
newFloats.Reverse();
mFloats = std::move(newFloats);
}
}
mCurrentLine =
NSCoordSaturatingSubtract(mCurrentLine, mTrailingWhitespace, nscoord_MAX);
mPrevLines = std::max(mPrevLines, mCurrentLine);
mCurrentLine = mTrailingWhitespace = 0;
mSkipWhitespace = true;
mLineIsEmpty = true;
}
static nscoord ResolveMargin(const LengthPercentageOrAuto& aStyle,
nscoord aPercentageBasis) {
if (aStyle.IsAuto()) {
return nscoord(0);
}
return nsLayoutUtils::ResolveToLength<false>(aStyle.AsLengthPercentage(),
aPercentageBasis);
}
static nscoord ResolvePadding(const LengthPercentage& aStyle,
nscoord aPercentageBasis) {
return nsLayoutUtils::ResolveToLength<true>(aStyle, aPercentageBasis);
}
static nsIFrame::IntrinsicSizeOffsetData IntrinsicSizeOffsets(
nsIFrame* aFrame, nscoord aPercentageBasis, bool aForISize) {
nsIFrame::IntrinsicSizeOffsetData result;
WritingMode wm = aFrame->GetWritingMode();
const auto& margin = aFrame->StyleMargin()->mMargin;
bool verticalAxis = aForISize == wm.IsVertical();
if (verticalAxis) {
result.margin += ResolveMargin(margin.Get(eSideTop), aPercentageBasis);
result.margin += ResolveMargin(margin.Get(eSideBottom), aPercentageBasis);
} else {
result.margin += ResolveMargin(margin.Get(eSideLeft), aPercentageBasis);
result.margin += ResolveMargin(margin.Get(eSideRight), aPercentageBasis);
}
const auto& padding = aFrame->StylePadding()->mPadding;
if (verticalAxis) {
result.padding += ResolvePadding(padding.Get(eSideTop), aPercentageBasis);
result.padding +=
ResolvePadding(padding.Get(eSideBottom), aPercentageBasis);
} else {
result.padding += ResolvePadding(padding.Get(eSideLeft), aPercentageBasis);
result.padding += ResolvePadding(padding.Get(eSideRight), aPercentageBasis);
}
const nsStyleBorder* styleBorder = aFrame->StyleBorder();
if (verticalAxis) {
result.border += styleBorder->GetComputedBorderWidth(eSideTop);
result.border += styleBorder->GetComputedBorderWidth(eSideBottom);
} else {
result.border += styleBorder->GetComputedBorderWidth(eSideLeft);
result.border += styleBorder->GetComputedBorderWidth(eSideRight);
}
const nsStyleDisplay* disp = aFrame->StyleDisplay();
if (aFrame->IsThemed(disp)) {
nsPresContext* presContext = aFrame->PresContext();
LayoutDeviceIntMargin border = presContext->Theme()->GetWidgetBorder(
presContext->DeviceContext(), aFrame, disp->EffectiveAppearance());
result.border = presContext->DevPixelsToAppUnits(
verticalAxis ? border.TopBottom() : border.LeftRight());
LayoutDeviceIntMargin padding;
if (presContext->Theme()->GetWidgetPadding(
presContext->DeviceContext(), aFrame, disp->EffectiveAppearance(),
&padding)) {
result.padding = presContext->DevPixelsToAppUnits(
verticalAxis ? padding.TopBottom() : padding.LeftRight());
}
}
return result;
}
/* virtual */ nsIFrame::IntrinsicSizeOffsetData nsIFrame::IntrinsicISizeOffsets(
nscoord aPercentageBasis) {
return IntrinsicSizeOffsets(this, aPercentageBasis, true);
}
nsIFrame::IntrinsicSizeOffsetData nsIFrame::IntrinsicBSizeOffsets(
nscoord aPercentageBasis) {
return IntrinsicSizeOffsets(this, aPercentageBasis, false);
}
/* virtual */
IntrinsicSize nsIFrame::GetIntrinsicSize() {
return IntrinsicSize(); // default is width/height set to eStyleUnit_None
}
AspectRatio nsIFrame::GetAspectRatio() const {
// Per spec, 'aspect-ratio' property applies to all elements except inline
// boxes and internal ruby or table boxes.
// https://drafts.csswg.org/css-sizing-4/#aspect-ratio
// For those frame types that don't support aspect-ratio, they must not have
// the natural ratio, so this early return is fine.
if (!IsFrameOfType(eSupportsAspectRatio)) {
return AspectRatio();
}
const StyleAspectRatio& aspectRatio = StylePosition()->mAspectRatio;
// If aspect-ratio is zero or infinite, it's a degenerate ratio and behaves
// as auto.
// https://drafts.csswg.org/css-sizing-4/#valdef-aspect-ratio-ratio
if (!aspectRatio.BehavesAsAuto()) {
// Non-auto. Return the preferred aspect ratio from the aspect-ratio style.
return aspectRatio.ratio.AsRatio().ToLayoutRatio(UseBoxSizing::Yes);
}
// The rest of the cases are when aspect-ratio has 'auto'.
if (auto intrinsicRatio = GetIntrinsicRatio()) {
return intrinsicRatio;
}
if (aspectRatio.HasRatio()) {
// If it's a degenerate ratio, this returns 0. Just the same as the auto
// case.
return aspectRatio.ratio.AsRatio().ToLayoutRatio(UseBoxSizing::No);
}
return AspectRatio();
}
/* virtual */
AspectRatio nsIFrame::GetIntrinsicRatio() const { return AspectRatio(); }
static bool ShouldApplyAutomaticMinimumOnInlineAxis(
WritingMode aWM, const nsStyleDisplay* aDisplay,
const nsStylePosition* aPosition) {
// Apply the automatic minimum size for aspect ratio:
// Note: The replaced elements shouldn't be here, so we only check the scroll
// container.
// https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum
return !aDisplay->IsScrollableOverflow() && aPosition->MinISize(aWM).IsAuto();
}
struct MinMaxSize {
nscoord mMinSize = 0;
nscoord mMaxSize = NS_UNCONSTRAINEDSIZE;
nscoord ClampSizeToMinAndMax(nscoord aSize) const {
return NS_CSS_MINMAX(aSize, mMinSize, mMaxSize);
}
};
static MinMaxSize ComputeTransferredMinMaxInlineSize(
const WritingMode aWM, const AspectRatio& aAspectRatio,
const MinMaxSize& aMinMaxBSize, const LogicalSize& aBoxSizingAdjustment) {
// Note: the spec mentions that
// 1. This transferred minimum is capped by any definite preferred or maximum
// size in the destination axis.
// 2. This transferred maximum is floored by any definite preferred or minimum
// size in the destination axis
//
// https://drafts.csswg.org/css-sizing-4/#aspect-ratio
//
// The spec requires us to clamp these by the specified size (it calls it the
// preferred size). However, we actually don't need to worry about that,
// because we only use this if the inline size is indefinite.
//
// We do not need to clamp the transferred minimum and maximum as long as we
// always apply the transferred min/max size before the explicit min/max size,
// the result will be identical.
MinMaxSize transferredISize;
if (aMinMaxBSize.mMinSize > 0) {
transferredISize.mMinSize = aAspectRatio.ComputeRatioDependentSize(
LogicalAxis::eLogicalAxisInline, aWM, aMinMaxBSize.mMinSize,
aBoxSizingAdjustment);
}
if (aMinMaxBSize.mMaxSize != NS_UNCONSTRAINEDSIZE) {
transferredISize.mMaxSize = aAspectRatio.ComputeRatioDependentSize(
LogicalAxis::eLogicalAxisInline, aWM, aMinMaxBSize.mMaxSize,
aBoxSizingAdjustment);
}
// Minimum size wins over maximum size.
transferredISize.mMaxSize =
std::max(transferredISize.mMinSize, transferredISize.mMaxSize);
return transferredISize;
}
/* virtual */
nsIFrame::SizeComputationResult nsIFrame::ComputeSize(
gfxContext* aRenderingContext, WritingMode aWM, const LogicalSize& aCBSize,
nscoord aAvailableISize, const LogicalSize& aMargin,
const LogicalSize& aBorderPadding, const StyleSizeOverrides& aSizeOverrides,
ComputeSizeFlags aFlags) {
MOZ_ASSERT(!GetIntrinsicRatio(),
"Please override this method and call "
"nsContainerFrame::ComputeSizeWithIntrinsicDimensions instead.");
LogicalSize result =
ComputeAutoSize(aRenderingContext, aWM, aCBSize, aAvailableISize, aMargin,
aBorderPadding, aSizeOverrides, aFlags);
const nsStylePosition* stylePos = StylePosition();
const nsStyleDisplay* disp = StyleDisplay();
auto aspectRatioUsage = AspectRatioUsage::None;
const auto boxSizingAdjust = stylePos->mBoxSizing == StyleBoxSizing::Border
? aBorderPadding
: LogicalSize(aWM);
nscoord boxSizingToMarginEdgeISize = aMargin.ISize(aWM) +
aBorderPadding.ISize(aWM) -
boxSizingAdjust.ISize(aWM);
const auto& styleISize = aSizeOverrides.mStyleISize
? *aSizeOverrides.mStyleISize
: stylePos->ISize(aWM);
const auto& styleBSize = aSizeOverrides.mStyleBSize
? *aSizeOverrides.mStyleBSize
: stylePos->BSize(aWM);
const auto& aspectRatio = aSizeOverrides.mAspectRatio
? *aSizeOverrides.mAspectRatio
: GetAspectRatio();
auto parentFrame = GetParent();
auto alignCB = parentFrame;
bool isGridItem = IsGridItem();
if (parentFrame && parentFrame->IsTableWrapperFrame() && IsTableFrame()) {
// An inner table frame is sized as a grid item if its table wrapper is,
// because they actually have the same CB (the wrapper's CB).
// @see ReflowInput::InitCBReflowInput
auto tableWrapper = GetParent();
auto grandParent = tableWrapper->GetParent();
isGridItem = grandParent->IsGridContainerFrame() &&
!tableWrapper->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
if (isGridItem) {
// When resolving justify/align-self below, we want to use the grid
// container's justify/align-items value and WritingMode.
alignCB = grandParent;
}
}
const bool isFlexItem =
IsFlexItem() && !parentFrame->HasAnyStateBits(
NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX |
NS_STATE_FLEX_IS_EMULATING_LEGACY_MOZ_BOX);
// This variable only gets set (and used) if isFlexItem is true. It
// indicates which axis (in this frame's own WM) corresponds to its
// flex container's main axis.
LogicalAxis flexMainAxis =
eLogicalAxisInline; // (init to make valgrind happy)
if (isFlexItem) {
flexMainAxis = nsFlexContainerFrame::IsItemInlineAxisMainAxis(this)
? eLogicalAxisInline
: eLogicalAxisBlock;
}
const bool isOrthogonal = aWM.IsOrthogonalTo(alignCB->GetWritingMode());
const bool isAutoISize = styleISize.IsAuto();
const bool isAutoBSize =
nsLayoutUtils::IsAutoBSize(styleBSize, aCBSize.BSize(aWM));
// Compute inline-axis size
if (!isAutoISize) {
auto iSizeResult = ComputeISizeValue(
aRenderingContext, aWM, aCBSize, boxSizingAdjust,
boxSizingToMarginEdgeISize, styleISize, aSizeOverrides, aFlags);
result.ISize(aWM) = iSizeResult.mISize;
aspectRatioUsage = iSizeResult.mAspectRatioUsage;
} else if (MOZ_UNLIKELY(isGridItem) && !IsTrueOverflowContainer()) {
// 'auto' inline-size for grid-level box - fill the CB for 'stretch' /
// 'normal' and clamp it to the CB if requested:
bool stretch = false;
bool mayUseAspectRatio = aspectRatio && !isAutoBSize;
if (!aFlags.contains(ComputeSizeFlag::ShrinkWrap) &&
!StyleMargin()->HasInlineAxisAuto(aWM) &&
!alignCB->IsMasonry(isOrthogonal ? eLogicalAxisBlock
: eLogicalAxisInline)) {
auto inlineAxisAlignment =
isOrthogonal ? StylePosition()->UsedAlignSelf(alignCB->Style())._0
: StylePosition()->UsedJustifySelf(alignCB->Style())._0;
stretch = inlineAxisAlignment == StyleAlignFlags::STRETCH ||
(inlineAxisAlignment == StyleAlignFlags::NORMAL &&
!mayUseAspectRatio);
}
// Apply the preferred aspect ratio for alignments other than *stretch* and
// *normal without aspect ratio*.
// The spec says all other values should size the items as fit-content, and
// the intrinsic size should respect the preferred aspect ratio, so we also
// apply aspect ratio for all other values.
// https://drafts.csswg.org/css-grid/#grid-item-sizing
if (!stretch && mayUseAspectRatio) {
// Note: we don't need to handle aspect ratio for inline axis if both
// width/height are auto. The default ratio-dependent axis is block axis
// in this case, so we can simply get the block size from the non-auto
// |styleBSize|.
auto bSize = nsLayoutUtils::ComputeBSizeValue(
aCBSize.BSize(aWM), boxSizingAdjust.BSize(aWM),
styleBSize.AsLengthPercentage());
result.ISize(aWM) = aspectRatio.ComputeRatioDependentSize(
LogicalAxis::eLogicalAxisInline, aWM, bSize, boxSizingAdjust);
aspectRatioUsage = AspectRatioUsage::ToComputeISize;
}
if (stretch || aFlags.contains(ComputeSizeFlag::IClampMarginBoxMinSize)) {
auto iSizeToFillCB =
std::max(nscoord(0), aCBSize.ISize(aWM) - aBorderPadding.ISize(aWM) -
aMargin.ISize(aWM));
if (stretch || result.ISize(aWM) > iSizeToFillCB) {
result.ISize(aWM) = iSizeToFillCB;
}
}
} else if (aspectRatio && !isAutoBSize) {
auto bSize = nsLayoutUtils::ComputeBSizeValue(
aCBSize.BSize(aWM), boxSizingAdjust.BSize(aWM),
styleBSize.AsLengthPercentage());
result.ISize(aWM) = aspectRatio.ComputeRatioDependentSize(
LogicalAxis::eLogicalAxisInline, aWM, bSize, boxSizingAdjust);
aspectRatioUsage = AspectRatioUsage::ToComputeISize;
}
// Calculate and apply transferred min & max size contraints.
// https://drafts.csswg.org/css-sizing-4/#aspect-ratio-size-transfers
//
// Note: The basic principle is that sizing constraints transfer through the
// aspect-ratio to the other side to preserve the aspect ratio to the extent
// that they can without violating any sizes specified explicitly on that
// affected axis.
//
// FIXME: The spec words may not be correct, so we may have to update this
// tentative solution once this spec issue gets resolved. Here, we clamp the
// flex base size by the transferred min and max sizes, and don't include
// the transferred min & max sizes into its used min & max sizes. So this
// lets us match other browsers' current behaviors.
// https://github.com/w3c/csswg-drafts/issues/6071
//
// Note: This may make more sense if we clamp the flex base size in
// FlexItem::ResolveFlexBaseSizeFromAspectRatio(). However, the result should
// be identical. FlexItem::ResolveFlexBaseSizeFromAspectRatio() only handles
// the case of the definite cross size, and the definite cross size is clamped
// by the min & max cross sizes below in this function. This means its flex
// base size has been clamped by the transferred min & max size already after
// generating the flex items. So here we make the code more general for both
// definite cross size and indefinite cross size.
const bool isDefiniteISize = styleISize.IsLengthPercentage();
const auto& minBSizeCoord = stylePos->MinBSize(aWM);
const auto& maxBSizeCoord = stylePos->MaxBSize(aWM);
const bool isAutoMinBSize =
nsLayoutUtils::IsAutoBSize(minBSizeCoord, aCBSize.BSize(aWM));
const bool isAutoMaxBSize =
nsLayoutUtils::IsAutoBSize(maxBSizeCoord, aCBSize.BSize(aWM));
if (aspectRatio && !isDefiniteISize) {
const MinMaxSize minMaxBSize{
isAutoMinBSize ? 0
: nsLayoutUtils::ComputeBSizeValue(
aCBSize.BSize(aWM), boxSizingAdjust.BSize(aWM),
minBSizeCoord.AsLengthPercentage()),
isAutoMaxBSize ? NS_UNCONSTRAINEDSIZE
: nsLayoutUtils::ComputeBSizeValue(
aCBSize.BSize(aWM), boxSizingAdjust.BSize(aWM),
maxBSizeCoord.AsLengthPercentage())};
MinMaxSize transferredMinMaxISize = ComputeTransferredMinMaxInlineSize(
aWM, aspectRatio, minMaxBSize, boxSizingAdjust);
result.ISize(aWM) =
transferredMinMaxISize.ClampSizeToMinAndMax(result.ISize(aWM));
}
// Flex items ignore their min & max sizing properties in their
// flex container's main-axis. (Those properties get applied later in
// the flexbox algorithm.)
const bool isFlexItemInlineAxisMainAxis =
isFlexItem && flexMainAxis == eLogicalAxisInline;
const auto& maxISizeCoord = stylePos->MaxISize(aWM);
nscoord maxISize = NS_UNCONSTRAINEDSIZE;
if (!maxISizeCoord.IsNone() && !isFlexItemInlineAxisMainAxis) {
maxISize = ComputeISizeValue(aRenderingContext, aWM, aCBSize,
boxSizingAdjust, boxSizingToMarginEdgeISize,
maxISizeCoord, aSizeOverrides, aFlags)
.mISize;
result.ISize(aWM) = std::min(maxISize, result.ISize(aWM));
}
const auto& minISizeCoord = stylePos->MinISize(aWM);
nscoord minISize;
if (!minISizeCoord.IsAuto() && !isFlexItemInlineAxisMainAxis) {
minISize = ComputeISizeValue(aRenderingContext, aWM, aCBSize,
boxSizingAdjust, boxSizingToMarginEdgeISize,
minISizeCoord, aSizeOverrides, aFlags)
.mISize;
} else if (MOZ_UNLIKELY(
aFlags.contains(ComputeSizeFlag::IApplyAutoMinSize))) {
// This implements "Implied Minimum Size of Grid Items".
// https://drafts.csswg.org/css-grid/#min-size-auto
minISize = std::min(maxISize, GetMinISize(aRenderingContext));
if (styleISize.IsLengthPercentage()) {
minISize = std::min(minISize, result.ISize(aWM));
} else if (aFlags.contains(ComputeSizeFlag::IClampMarginBoxMinSize)) {
// "if the grid item spans only grid tracks that have a fixed max track
// sizing function, its automatic minimum size in that dimension is
// further clamped to less than or equal to the size necessary to fit
// its margin box within the resulting grid area (flooring at zero)"
// https://drafts.csswg.org/css-grid/#min-size-auto
auto maxMinISize =
std::max(nscoord(0), aCBSize.ISize(aWM) - aBorderPadding.ISize(aWM) -
aMargin.ISize(aWM));
minISize = std::min(minISize, maxMinISize);
}
} else if (aspectRatioUsage == AspectRatioUsage::ToComputeISize &&
ShouldApplyAutomaticMinimumOnInlineAxis(aWM, disp, stylePos)) {
// This means we successfully applied aspect-ratio and now need to check
// if we need to apply the implied minimum size:
// https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum
MOZ_ASSERT(!IsFrameOfType(eReplacedSizing),
"aspect-ratio minimums should not apply to replaced elements");
// The inline size computed by aspect-ratio shouldn't less than the content
// size.
minISize = GetMinISize(aRenderingContext);
} else {
// Treat "min-width: auto" as 0.
// NOTE: Technically, "auto" is supposed to behave like "min-content" on
// flex items. However, we don't need to worry about that here, because
// flex items' min-sizes are intentionally ignored until the flex
// container explicitly considers them during space distribution.
minISize = 0;
}
result.ISize(aWM) = std::max(minISize, result.ISize(aWM));
// Compute block-axis size
// (but not if we have auto bsize -- then, we'll just stick with the bsize
// that we already calculated in the initial ComputeAutoSize() call. However,
// if we have a valid preferred aspect ratio, we still have to compute the
// block size because aspect ratio affects the intrinsic content size.)
if (!isAutoBSize) {
result.BSize(aWM) = nsLayoutUtils::ComputeBSizeValue(
aCBSize.BSize(aWM), boxSizingAdjust.BSize(aWM),
styleBSize.AsLengthPercentage());
} else if (MOZ_UNLIKELY(isGridItem) && styleBSize.IsAuto() &&
!aFlags.contains(ComputeSizeFlag::IsGridMeasuringReflow) &&
!IsTrueOverflowContainer() &&
!alignCB->IsMasonry(isOrthogonal ? eLogicalAxisInline
: eLogicalAxisBlock)) {
auto cbSize = aCBSize.BSize(aWM);
if (cbSize != NS_UNCONSTRAINEDSIZE) {
// 'auto' block-size for grid-level box - fill the CB for 'stretch' /
// 'normal' and clamp it to the CB if requested:
bool stretch = false;
bool mayUseAspectRatio =
aspectRatio && result.ISize(aWM) != NS_UNCONSTRAINEDSIZE;
if (!StyleMargin()->HasBlockAxisAuto(aWM)) {
auto blockAxisAlignment =
isOrthogonal ? StylePosition()->UsedJustifySelf(alignCB->Style())._0
: StylePosition()->UsedAlignSelf(alignCB->Style())._0;
stretch = blockAxisAlignment == StyleAlignFlags::STRETCH ||
(blockAxisAlignment == StyleAlignFlags::NORMAL &&
!mayUseAspectRatio);
}
// Apply the preferred aspect ratio for alignments other than *stretch*
// and *normal without aspect ratio*.
// The spec says all other values should size the items as fit-content,
// and the intrinsic size should respect the preferred aspect ratio, so
// we also apply aspect ratio for all other values.
// https://drafts.csswg.org/css-grid/#grid-item-sizing
if (!stretch && mayUseAspectRatio) {
result.BSize(aWM) = aspectRatio.ComputeRatioDependentSize(
LogicalAxis::eLogicalAxisBlock, aWM, result.ISize(aWM),
boxSizingAdjust);
MOZ_ASSERT(aspectRatioUsage == AspectRatioUsage::None);
aspectRatioUsage = AspectRatioUsage::ToComputeBSize;
}
if (stretch || aFlags.contains(ComputeSizeFlag::BClampMarginBoxMinSize)) {
auto bSizeToFillCB =
std::max(nscoord(0),
cbSize - aBorderPadding.BSize(aWM) - aMargin.BSize(aWM));
if (stretch || (result.BSize(aWM) != NS_UNCONSTRAINEDSIZE &&
result.BSize(aWM) > bSizeToFillCB)) {
result.BSize(aWM) = bSizeToFillCB;
}
}
}
} else if (aspectRatio) {
// If both inline and block dimensions are auto, the block axis is the
// ratio-dependent axis by default.
// If we have a super large inline size, aspect-ratio should still be
// applied (so aspectRatioUsage flag is set as expected). That's why we
// apply aspect-ratio unconditionally for auto block size here.
result.BSize(aWM) = aspectRatio.ComputeRatioDependentSize(
LogicalAxis::eLogicalAxisBlock, aWM, result.ISize(aWM),
boxSizingAdjust);
MOZ_ASSERT(aspectRatioUsage == AspectRatioUsage::None);
aspectRatioUsage = AspectRatioUsage::ToComputeBSize;
}
if (result.BSize(aWM) != NS_UNCONSTRAINEDSIZE) {
const bool isFlexItemBlockAxisMainAxis =
isFlexItem && flexMainAxis == eLogicalAxisBlock;
if (!isAutoMaxBSize && !isFlexItemBlockAxisMainAxis) {
nscoord maxBSize = nsLayoutUtils::ComputeBSizeValue(
aCBSize.BSize(aWM), boxSizingAdjust.BSize(aWM),
maxBSizeCoord.AsLengthPercentage());
result.BSize(aWM) = std::min(maxBSize, result.BSize(aWM));
}
if (!isAutoMinBSize && !isFlexItemBlockAxisMainAxis) {
nscoord minBSize = nsLayoutUtils::ComputeBSizeValue(
aCBSize.BSize(aWM), boxSizingAdjust.BSize(aWM),
minBSizeCoord.AsLengthPercentage());
result.BSize(aWM) = std::max(minBSize, result.BSize(aWM));
}
}
if (IsThemed(disp)) {
nsPresContext* pc = PresContext();
const LayoutDeviceIntSize widget = pc->Theme()->GetMinimumWidgetSize(
pc, this, disp->EffectiveAppearance());
// Convert themed widget's physical dimensions to logical coords
LogicalSize size(aWM, LayoutDeviceIntSize::ToAppUnits(
widget, pc->AppUnitsPerDevPixel()));
// GetMinimumWidgetSize() returns border-box; we need content-box.
size -= aBorderPadding;
if (size.BSize(aWM) > result.BSize(aWM)) {
result.BSize(aWM) = size.BSize(aWM);
}
if (size.ISize(aWM) > result.ISize(aWM)) {
result.ISize(aWM) = size.ISize(aWM);
}
}
result.ISize(aWM) = std::max(0, result.ISize(aWM));
result.BSize(aWM) = std::max(0, result.BSize(aWM));
return {result, aspectRatioUsage};
}
nsRect nsIFrame::ComputeTightBounds(DrawTarget* aDrawTarget) const {
return InkOverflowRect();
}
/* virtual */
nsresult nsIFrame::GetPrefWidthTightBounds(gfxContext* aContext, nscoord* aX,
nscoord* aXMost) {
return NS_ERROR_NOT_IMPLEMENTED;
}
/* virtual */
LogicalSize nsIFrame::ComputeAutoSize(
gfxContext* aRenderingContext, WritingMode aWM,
const mozilla::LogicalSize& aCBSize, nscoord aAvailableISize,
const mozilla::LogicalSize& aMargin,
const mozilla::LogicalSize& aBorderPadding,
const StyleSizeOverrides& aSizeOverrides, ComputeSizeFlags aFlags) {
// Use basic shrink-wrapping as a default implementation.
LogicalSize result(aWM, 0xdeadbeef, NS_UNCONSTRAINEDSIZE);
// don't bother setting it if the result won't be used
const auto& styleISize = aSizeOverrides.mStyleISize
? *aSizeOverrides.mStyleISize
: StylePosition()->ISize(aWM);
if (styleISize.IsAuto()) {
nscoord availBased =
aAvailableISize - aMargin.ISize(aWM) - aBorderPadding.ISize(aWM);
result.ISize(aWM) = ShrinkISizeToFit(aRenderingContext, availBased, aFlags);
}
return result;
}
nscoord nsIFrame::ShrinkISizeToFit(gfxContext* aRenderingContext,
nscoord aISizeInCB,
ComputeSizeFlags aFlags) {
// If we're a container for font size inflation, then shrink
// wrapping inside of us should not apply font size inflation.
AutoMaybeDisableFontInflation an(this);
nscoord result;
nscoord minISize = GetMinISize(aRenderingContext);
if (minISize > aISizeInCB) {
const bool clamp = aFlags.contains(ComputeSizeFlag::IClampMarginBoxMinSize);
result = MOZ_UNLIKELY(clamp) ? aISizeInCB : minISize;
} else {
nscoord prefISize = GetPrefISize(aRenderingContext);
if (prefISize > aISizeInCB) {
result = aISizeInCB;
} else {
result = prefISize;
}
}
return result;
}
Maybe<nscoord> nsIFrame::ComputeInlineSizeFromAspectRatio(
WritingMode aWM, const LogicalSize& aCBSize,
const LogicalSize& aContentEdgeToBoxSizing,
const StyleSizeOverrides& aSizeOverrides, ComputeSizeFlags aFlags) const {
// FIXME: Bug 1670151: Use GetAspectRatio() to cover replaced elements (and
// then we can drop the check of eSupportsAspectRatio).
const AspectRatio aspectRatio =
aSizeOverrides.mAspectRatio
? *aSizeOverrides.mAspectRatio
: StylePosition()->mAspectRatio.ToLayoutRatio();
if (!IsFrameOfType(eSupportsAspectRatio) || !aspectRatio) {
return Nothing();
}
const StyleSize& styleBSize = aSizeOverrides.mStyleBSize
? *aSizeOverrides.mStyleBSize
: StylePosition()->BSize(aWM);
if (nsLayoutUtils::IsAutoBSize(styleBSize, aCBSize.BSize(aWM))) {
return Nothing();
}
MOZ_ASSERT(styleBSize.IsLengthPercentage());
nscoord bSize = nsLayoutUtils::ComputeBSizeValue(
aCBSize.BSize(aWM), aContentEdgeToBoxSizing.BSize(aWM),
styleBSize.AsLengthPercentage());
return Some(aspectRatio.ComputeRatioDependentSize(
LogicalAxis::eLogicalAxisInline, aWM, bSize, aContentEdgeToBoxSizing));
}
nsIFrame::ISizeComputationResult nsIFrame::ComputeISizeValue(
gfxContext* aRenderingContext, const WritingMode aWM,
const LogicalSize& aContainingBlockSize,
const LogicalSize& aContentEdgeToBoxSizing, nscoord aBoxSizingToMarginEdge,
ExtremumLength aSize, Maybe<nscoord> aAvailableISizeOverride,
const StyleSizeOverrides& aSizeOverrides, ComputeSizeFlags aFlags) {
// If 'this' is a container for font size inflation, then shrink
// wrapping inside of it should not apply font size inflation.
AutoMaybeDisableFontInflation an(this);
// If we have an aspect-ratio and a definite block size, we resolve the
// min-content and max-content size by the aspect-ratio and the block size.
// https://github.com/w3c/csswg-drafts/issues/5032
Maybe<nscoord> intrinsicSizeFromAspectRatio =
aSize == ExtremumLength::MozAvailable
? Nothing()
: ComputeInlineSizeFromAspectRatio(aWM, aContainingBlockSize,
aContentEdgeToBoxSizing,
aSizeOverrides, aFlags);
nscoord result;
switch (aSize) {
case ExtremumLength::MaxContent:
result = intrinsicSizeFromAspectRatio ? *intrinsicSizeFromAspectRatio
: GetPrefISize(aRenderingContext);
NS_ASSERTION(result >= 0, "inline-size less than zero");
return {result, intrinsicSizeFromAspectRatio
? AspectRatioUsage::ToComputeISize
: AspectRatioUsage::None};
case ExtremumLength::MinContent:
result = intrinsicSizeFromAspectRatio ? *intrinsicSizeFromAspectRatio
: GetMinISize(aRenderingContext);
NS_ASSERTION(result >= 0, "inline-size less than zero");
if (MOZ_UNLIKELY(
aFlags.contains(ComputeSizeFlag::IClampMarginBoxMinSize))) {
auto available =
aContainingBlockSize.ISize(aWM) -
(aBoxSizingToMarginEdge + aContentEdgeToBoxSizing.ISize(aWM));
result = std::min(available, result);
}
return {result, intrinsicSizeFromAspectRatio
? AspectRatioUsage::ToComputeISize
: AspectRatioUsage::None};
case ExtremumLength::FitContentFunction:
case ExtremumLength::FitContent: {
nscoord pref = NS_UNCONSTRAINEDSIZE;
nscoord min = 0;
if (intrinsicSizeFromAspectRatio) {
// The min-content and max-content size are identical and equal to the
// size computed from the block size and the aspect ratio.
pref = min = *intrinsicSizeFromAspectRatio;
} else {
pref = GetPrefISize(aRenderingContext);
min = GetMinISize(aRenderingContext);
}
nscoord fill = aAvailableISizeOverride
? *aAvailableISizeOverride
: aContainingBlockSize.ISize(aWM) -
(aBoxSizingToMarginEdge +
aContentEdgeToBoxSizing.ISize(aWM));
if (MOZ_UNLIKELY(
aFlags.contains(ComputeSizeFlag::IClampMarginBoxMinSize))) {
min = std::min(min, fill);
}
result = std::max(min, std::min(pref, fill));
NS_ASSERTION(result >= 0, "inline-size less than zero");
return {result};
}
case ExtremumLength::MozAvailable:
return {aContainingBlockSize.ISize(aWM) -
(aBoxSizingToMarginEdge + aContentEdgeToBoxSizing.ISize(aWM))};
}
MOZ_ASSERT_UNREACHABLE("Unknown extremum length?");
return {};
}
nscoord nsIFrame::ComputeISizeValue(const WritingMode aWM,
const LogicalSize& aContainingBlockSize,
const LogicalSize& aContentEdgeToBoxSizing,
const LengthPercentage& aSize) {
LAYOUT_WARN_IF_FALSE(
aContainingBlockSize.ISize(aWM) != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only result from "
"very large sizes, not attempts at intrinsic inline-size "
"calculation");
NS_ASSERTION(aContainingBlockSize.ISize(aWM) >= 0,
"inline-size less than zero");
nscoord result = aSize.Resolve(aContainingBlockSize.ISize(aWM));
// The result of a calc() expression might be less than 0; we
// should clamp at runtime (below). (Percentages and coords that
// are less than 0 have already been dropped by the parser.)
result -= aContentEdgeToBoxSizing.ISize(aWM);
return std::max(0, result);
}
void nsIFrame::DidReflow(nsPresContext* aPresContext,
const ReflowInput* aReflowInput) {
NS_FRAME_TRACE(NS_FRAME_TRACE_CALLS, ("nsIFrame::DidReflow"));
if (IsHiddenByContentVisibilityOfInFlowParentForLayout()) {
RemoveStateBits(NS_FRAME_IN_REFLOW | NS_FRAME_FIRST_REFLOW);
return;
}
SVGObserverUtils::InvalidateDirectRenderingObservers(
this, SVGObserverUtils::INVALIDATE_REFLOW);
RemoveStateBits(NS_FRAME_IN_REFLOW | NS_FRAME_FIRST_REFLOW |
NS_FRAME_IS_DIRTY | NS_FRAME_HAS_DIRTY_CHILDREN);
// Clear bits that were used in ReflowInput::InitResizeFlags (see
// comment there for why we can't clear it there).
SetHasBSizeChange(false);
SetHasPaddingChange(false);
// Notify the percent bsize observer if there is a percent bsize.
// The observer may be able to initiate another reflow with a computed
// bsize. This happens in the case where a table cell has no computed
// bsize but can fabricate one when the cell bsize is known.
if (aReflowInput && aReflowInput->mPercentBSizeObserver && !GetPrevInFlow()) {
const auto& bsize =
aReflowInput->mStylePosition->BSize(aReflowInput->GetWritingMode());
if (bsize.HasPercent()) {
aReflowInput->mPercentBSizeObserver->NotifyPercentBSize(*aReflowInput);
}
}
aPresContext->ReflowedFrame();
#ifdef ACCESSIBILITY
if (nsAccessibilityService* accService = GetAccService()) {
accService->NotifyOfPossibleBoundsChange(PresShell(), mContent);
}
#endif
}
void nsIFrame::FinishReflowWithAbsoluteFrames(nsPresContext* aPresContext,
ReflowOutput& aDesiredSize,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus,
bool aConstrainBSize) {
ReflowAbsoluteFrames(aPresContext, aDesiredSize, aReflowInput, aStatus,
aConstrainBSize);
FinishAndStoreOverflow(&aDesiredSize, aReflowInput.mStyleDisplay);
}
void nsIFrame::ReflowAbsoluteFrames(nsPresContext* aPresContext,
ReflowOutput& aDesiredSize,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus,
bool aConstrainBSize) {
if (HasAbsolutelyPositionedChildren()) {
nsAbsoluteContainingBlock* absoluteContainer = GetAbsoluteContainingBlock();
// Let the absolutely positioned container reflow any absolutely positioned
// child frames that need to be reflowed
// The containing block for the abs pos kids is formed by our padding edge.
nsMargin usedBorder = GetUsedBorder();
nscoord containingBlockWidth =
std::max(0, aDesiredSize.Width() - usedBorder.LeftRight());
nscoord containingBlockHeight =
std::max(0, aDesiredSize.Height() - usedBorder.TopBottom());
nsContainerFrame* container = do_QueryFrame(this);
NS_ASSERTION(container,
"Abs-pos children only supported on container frames for now");
nsRect containingBlock(0, 0, containingBlockWidth, containingBlockHeight);
AbsPosReflowFlags flags =
AbsPosReflowFlags::CBWidthAndHeightChanged; // XXX could be optimized
if (aConstrainBSize) {
flags |= AbsPosReflowFlags::ConstrainHeight;
}
absoluteContainer->Reflow(container, aPresContext, aReflowInput, aStatus,
containingBlock, flags,
&aDesiredSize.mOverflowAreas);
}
}
/* virtual */
bool nsIFrame::CanContinueTextRun() const {
// By default, a frame will *not* allow a text run to be continued
// through it.
return false;
}
void nsIFrame::Reflow(nsPresContext* aPresContext, ReflowOutput& aDesiredSize,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus) {
MarkInReflow();
DO_GLOBAL_REFLOW_COUNT("nsFrame");
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
aDesiredSize.ClearSize();
}
bool nsIFrame::IsContentDisabled() const {
// FIXME(emilio): Doing this via CSS means callers must ensure the style is up
// to date, and they don't!
if (StyleUI()->UserInput() == StyleUserInput::None) {
return true;
}
auto* element = nsGenericHTMLElement::FromNodeOrNull(GetContent());
return element && element->IsDisabled();
}
bool nsIFrame::IsContentRelevant() const {
MOZ_ASSERT(StyleDisplay()->ContentVisibility(*this) ==
StyleContentVisibility::Auto);
auto* element = Element::FromNodeOrNull(GetContent());
MOZ_ASSERT(element);
Maybe<ContentRelevancy> relevancy = element->GetContentRelevancy();
if (relevancy.isSome()) {
return !relevancy->isEmpty();
}
// If there is no relevancy set, then this frame still has not received had
// the initial visibility callback call. In that case, only rely on whether
// or not it is inside a top layer element which will never change for this
// frame and allows proper rendering of the top layer.
return IsDescendantOfTopLayerElement();
}
bool nsIFrame::HidesContent(
const EnumSet<IncludeContentVisibility>& aInclude) const {
auto effectiveContentVisibility = StyleDisplay()->ContentVisibility(*this);
if (aInclude.contains(IncludeContentVisibility::Hidden) &&
effectiveContentVisibility == StyleContentVisibility::Hidden) {
return true;
}
if (aInclude.contains(IncludeContentVisibility::Auto) &&
effectiveContentVisibility == StyleContentVisibility::Auto) {
return !IsContentRelevant();
}
return false;
}
bool nsIFrame::HidesContentForLayout() const {
return HidesContent() && !PresShell()->IsForcingLayoutForHiddenContent(this);
}
bool nsIFrame::IsHiddenByContentVisibilityOfInFlowParentForLayout() const {
const auto* parent = GetInFlowParent();
return parent && parent->HidesContentForLayout() &&
!(Style()->IsAnonBox() && !IsFrameOfType(nsIFrame::eLineParticipant));
}
bool nsIFrame::IsHiddenByContentVisibilityOnAnyAncestor(
const EnumSet<IncludeContentVisibility>& aInclude) const {
if (!StaticPrefs::layout_css_content_visibility_enabled()) {
return false;
}
bool isAnonymousBlock =
Style()->IsAnonBox() && !IsFrameOfType(nsIFrame::eLineParticipant);
for (nsIFrame* cur = GetInFlowParent(); cur; cur = cur->GetInFlowParent()) {
if (!isAnonymousBlock && cur->HidesContent(aInclude)) {
return true;
}
// Anonymous boxes are not hidden by the content-visibility of their first
// non-anonymous ancestor, but can be hidden by ancestors further up the
// tree.
isAnonymousBlock = false;
}
return false;
}
bool nsIFrame::HasSelectionInSubtree() {
if (IsSelected()) {
return true;
}
RefPtr<nsFrameSelection> frameSelection = GetFrameSelection();
if (!frameSelection) {
return false;
}
const Selection* selection =
frameSelection->GetSelection(SelectionType::eNormal);
if (!selection) {
return false;
}
for (uint32_t i = 0; i < selection->RangeCount(); i++) {
auto* range = selection->GetRangeAt(i);
MOZ_ASSERT(range);
const auto* commonAncestorNode =
range->GetRegisteredClosestCommonInclusiveAncestor();
if (commonAncestorNode->IsInclusiveDescendantOf(GetContent())) {
return true;
}
}
return false;
}
bool nsIFrame::IsDescendantOfTopLayerElement() const {
if (!GetContent()) {
return false;
}
nsTArray<dom::Element*> topLayer = PresContext()->Document()->GetTopLayer();
for (auto* element : topLayer) {
if (GetContent()->IsInclusiveFlatTreeDescendantOf(element)) {
return true;
}
}
return false;
}
void nsIFrame::UpdateIsRelevantContent(
const ContentRelevancy& aRelevancyToUpdate) {
MOZ_ASSERT(StyleDisplay()->ContentVisibility(*this) ==
StyleContentVisibility::Auto);
auto* element = Element::FromNodeOrNull(GetContent());
MOZ_ASSERT(element);
ContentRelevancy newRelevancy;
Maybe<ContentRelevancy> oldRelevancy = element->GetContentRelevancy();
if (oldRelevancy.isSome()) {
newRelevancy = *oldRelevancy;
}
auto setRelevancyValue = [&](ContentRelevancyReason reason, bool value) {
if (value) {
newRelevancy += reason;
} else {
newRelevancy -= reason;
}
};
if (!oldRelevancy ||
aRelevancyToUpdate.contains(ContentRelevancyReason::Visible)) {
Maybe<bool> visible = element->GetVisibleForContentVisibility();
if (visible.isSome()) {
setRelevancyValue(ContentRelevancyReason::Visible, *visible);
}
}
if (!oldRelevancy ||
aRelevancyToUpdate.contains(ContentRelevancyReason::FocusInSubtree)) {
setRelevancyValue(ContentRelevancyReason::FocusInSubtree,
element->State().HasAtLeastOneOfStates(
ElementState::FOCUS_WITHIN | ElementState::FOCUS));
}
if (!oldRelevancy ||
aRelevancyToUpdate.contains(ContentRelevancyReason::Selected)) {
setRelevancyValue(ContentRelevancyReason::Selected,
HasSelectionInSubtree());
}
if (!oldRelevancy ||
aRelevancyToUpdate.contains(
ContentRelevancyReason::DescendantOfTopLayerElement)) {
setRelevancyValue(ContentRelevancyReason::DescendantOfTopLayerElement,
IsDescendantOfTopLayerElement());
}
bool overallRelevancyChanged =
!oldRelevancy || oldRelevancy->isEmpty() != newRelevancy.isEmpty();
if (!oldRelevancy || *oldRelevancy != newRelevancy) {
element->SetContentRelevancy(newRelevancy);
}
if (!overallRelevancyChanged) {
return;
}
HandleLastRememberedSize();
PresShell()->FrameNeedsReflow(
this, IntrinsicDirty::FrameAncestorsAndDescendants, NS_FRAME_IS_DIRTY);
InvalidateFrame();
ContentVisibilityAutoStateChangeEventInit init;
init.mSkipped = newRelevancy.isEmpty();
RefPtr<ContentVisibilityAutoStateChangeEvent> event =
ContentVisibilityAutoStateChangeEvent::Constructor(
element, u"contentvisibilityautostatechange"_ns, init);
// Per
// https://drafts.csswg.org/css-contain/#content-visibility-auto-state-changed
// "This event is dispatched by posting a task at the time when the state
// change occurs."
RefPtr<AsyncEventDispatcher> asyncDispatcher =
new AsyncEventDispatcher(element, event.get());
DebugOnly<nsresult> rv = asyncDispatcher->PostDOMEvent();
NS_ASSERTION(NS_SUCCEEDED(rv), "AsyncEventDispatcher failed to dispatch");
}
nsresult nsIFrame::CharacterDataChanged(const CharacterDataChangeInfo&) {
MOZ_ASSERT_UNREACHABLE("should only be called for text frames");
return NS_OK;
}
nsresult nsIFrame::AttributeChanged(int32_t aNameSpaceID, nsAtom* aAttribute,
int32_t aModType) {
return NS_OK;
}
// Flow member functions
nsIFrame* nsIFrame::GetPrevContinuation() const { return nullptr; }
void nsIFrame::SetPrevContinuation(nsIFrame* aPrevContinuation) {
MOZ_ASSERT(false, "not splittable");
}
nsIFrame* nsIFrame::GetNextContinuation() const { return nullptr; }
void nsIFrame::SetNextContinuation(nsIFrame*) {
MOZ_ASSERT(false, "not splittable");
}
nsIFrame* nsIFrame::GetPrevInFlow() const { return nullptr; }
void nsIFrame::SetPrevInFlow(nsIFrame* aPrevInFlow) {
MOZ_ASSERT(false, "not splittable");
}
nsIFrame* nsIFrame::GetNextInFlow() const { return nullptr; }
void nsIFrame::SetNextInFlow(nsIFrame*) { MOZ_ASSERT(false, "not splittable"); }
nsIFrame* nsIFrame::GetTailContinuation() {
nsIFrame* frame = this;
while (frame->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
frame = frame->GetPrevContinuation();
NS_ASSERTION(frame, "first continuation can't be overflow container");
}
for (nsIFrame* next = frame->GetNextContinuation();
next && !next->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
next = frame->GetNextContinuation()) {
frame = next;
}
MOZ_ASSERT(frame, "illegal state in continuation chain.");
return frame;
}
// Associated view object
void nsIFrame::SetView(nsView* aView) {
if (aView) {
aView->SetFrame(this);
#ifdef DEBUG
LayoutFrameType frameType = Type();
NS_ASSERTION(frameType == LayoutFrameType::SubDocument ||
frameType == LayoutFrameType::ListControl ||
frameType == LayoutFrameType::Viewport ||
frameType == LayoutFrameType::MenuPopup,
"Only specific frame types can have an nsView");
#endif
// Store the view on the frame.
SetViewInternal(aView);
// Set the frame state bit that says the frame has a view
AddStateBits(NS_FRAME_HAS_VIEW);
// Let all of the ancestors know they have a descendant with a view.
for (nsIFrame* f = GetParent();
f && !f->HasAnyStateBits(NS_FRAME_HAS_CHILD_WITH_VIEW);
f = f->GetParent())
f->AddStateBits(NS_FRAME_HAS_CHILD_WITH_VIEW);
} else {
MOZ_ASSERT_UNREACHABLE("Destroying a view while the frame is alive?");
RemoveStateBits(NS_FRAME_HAS_VIEW);
SetViewInternal(nullptr);
}
}
// Find the first geometric parent that has a view
nsIFrame* nsIFrame::GetAncestorWithView() const {
for (nsIFrame* f = GetParent(); nullptr != f; f = f->GetParent()) {
if (f->HasView()) {
return f;
}
}
return nullptr;
}
template <nsPoint (nsIFrame::*PositionGetter)() const>
static nsPoint OffsetCalculator(const nsIFrame* aThis, const nsIFrame* aOther) {
MOZ_ASSERT(aOther, "Must have frame for destination coordinate system!");
NS_ASSERTION(aThis->PresContext() == aOther->PresContext(),
"GetOffsetTo called on frames in different documents");
nsPoint offset(0, 0);
const nsIFrame* f;
for (f = aThis; f != aOther && f; f = f->GetParent()) {
offset += (f->*PositionGetter)();
}
if (f != aOther) {
// Looks like aOther wasn't an ancestor of |this|. So now we have
// the root-frame-relative position of |this| in |offset|. Convert back
// to the coordinates of aOther
while (aOther) {
offset -= (aOther->*PositionGetter)();
aOther = aOther->GetParent();
}
}
return offset;
}
nsPoint nsIFrame::GetOffsetTo(const nsIFrame* aOther) const {
return OffsetCalculator<&nsIFrame::GetPosition>(this, aOther);
}
nsPoint nsIFrame::GetOffsetToIgnoringScrolling(const nsIFrame* aOther) const {
return OffsetCalculator<&nsIFrame::GetPositionIgnoringScrolling>(this,
aOther);
}
nsPoint nsIFrame::GetOffsetToCrossDoc(const nsIFrame* aOther) const {
return GetOffsetToCrossDoc(aOther, PresContext()->AppUnitsPerDevPixel());
}
nsPoint nsIFrame::GetOffsetToCrossDoc(const nsIFrame* aOther,
const int32_t aAPD) const {
MOZ_ASSERT(aOther, "Must have frame for destination coordinate system!");
NS_ASSERTION(PresContext()->GetRootPresContext() ==
aOther->PresContext()->GetRootPresContext(),
"trying to get the offset between frames in different document "
"hierarchies?");
if (PresContext()->GetRootPresContext() !=
aOther->PresContext()->GetRootPresContext()) {
// crash right away, we are almost certainly going to crash anyway.
MOZ_CRASH(
"trying to get the offset between frames in different "
"document hierarchies?");
}
const nsIFrame* root = nullptr;
// offset will hold the final offset
// docOffset holds the currently accumulated offset at the current APD, it
// will be converted and added to offset when the current APD changes.
nsPoint offset(0, 0), docOffset(0, 0);
const nsIFrame* f = this;
int32_t currAPD = PresContext()->AppUnitsPerDevPixel();
while (f && f != aOther) {
docOffset += f->GetPosition();
nsIFrame* parent = f->GetParent();
if (parent) {
f = parent;
} else {
nsPoint newOffset(0, 0);
root = f;
f = nsLayoutUtils::GetCrossDocParentFrameInProcess(f, &newOffset);
int32_t newAPD = f ? f->PresContext()->AppUnitsPerDevPixel() : 0;
if (!f || newAPD != currAPD) {
// Convert docOffset to the right APD and add it to offset.
offset += docOffset.ScaleToOtherAppUnits(currAPD, aAPD);
docOffset.x = docOffset.y = 0;
}
currAPD = newAPD;
docOffset += newOffset;
}
}
if (f == aOther) {
offset += docOffset.ScaleToOtherAppUnits(currAPD, aAPD);
} else {
// Looks like aOther wasn't an ancestor of |this|. So now we have
// the root-document-relative position of |this| in |offset|. Subtract the
// root-document-relative position of |aOther| from |offset|.
// This call won't try to recurse again because root is an ancestor of
// aOther.
nsPoint negOffset = aOther->GetOffsetToCrossDoc(root, aAPD);
offset -= negOffset;
}
return offset;
}
CSSIntRect nsIFrame::GetScreenRect() const {
return CSSIntRect::FromAppUnitsToNearest(GetScreenRectInAppUnits());
}
nsRect nsIFrame::GetScreenRectInAppUnits() const {
nsPresContext* presContext = PresContext();
nsIFrame* rootFrame = presContext->PresShell()->GetRootFrame();
nsPoint rootScreenPos(0, 0);
nsPoint rootFrameOffsetInParent(0, 0);
nsIFrame* rootFrameParent = nsLayoutUtils::GetCrossDocParentFrameInProcess(
rootFrame, &rootFrameOffsetInParent);
if (rootFrameParent) {
nsRect parentScreenRectAppUnits =
rootFrameParent->GetScreenRectInAppUnits();
nsPresContext* parentPresContext = rootFrameParent->PresContext();
double parentScale = double(presContext->AppUnitsPerDevPixel()) /
parentPresContext->AppUnitsPerDevPixel();
nsPoint rootPt =
parentScreenRectAppUnits.TopLeft() + rootFrameOffsetInParent;
rootScreenPos.x = NS_round(parentScale * rootPt.x);
rootScreenPos.y = NS_round(parentScale * rootPt.y);
} else {
nsCOMPtr<nsIWidget> rootWidget =
presContext->PresShell()->GetViewManager()->GetRootWidget();
if (rootWidget) {
LayoutDeviceIntPoint rootDevPx = rootWidget->WidgetToScreenOffset();
rootScreenPos.x = presContext->DevPixelsToAppUnits(rootDevPx.x);
rootScreenPos.y = presContext->DevPixelsToAppUnits(rootDevPx.y);
}
}
return nsRect(rootScreenPos + GetOffsetTo(rootFrame), GetSize());
}
// Returns the offset from this frame to the closest geometric parent that
// has a view. Also returns the containing view or null in case of error
void nsIFrame::GetOffsetFromView(nsPoint& aOffset, nsView** aView) const {
MOZ_ASSERT(nullptr != aView, "null OUT parameter pointer");
nsIFrame* frame = const_cast<nsIFrame*>(this);
*aView = nullptr;
aOffset.MoveTo(0, 0);
do {
aOffset += frame->GetPosition();
frame = frame->GetParent();
} while (frame && !frame->HasView());
if (frame) {
*aView = frame->GetView();
}
}
nsIWidget* nsIFrame::GetNearestWidget() const {
return GetClosestView()->GetNearestWidget(nullptr);
}
nsIWidget* nsIFrame::GetNearestWidget(nsPoint& aOffset) const {
nsPoint offsetToView;
nsPoint offsetToWidget;
nsIWidget* widget =
GetClosestView(&offsetToView)->GetNearestWidget(&offsetToWidget);
aOffset = offsetToView + offsetToWidget;
return widget;
}
Matrix4x4Flagged nsIFrame::GetTransformMatrix(ViewportType aViewportType,
RelativeTo aStopAtAncestor,
nsIFrame** aOutAncestor,
uint32_t aFlags) const {
MOZ_ASSERT(aOutAncestor, "Need a place to put the ancestor!");
/* If we're transformed, we want to hand back the combination
* transform/translate matrix that will apply our current transform, then
* shift us to our parent.
*/
const bool isTransformed = IsTransformed();
const nsIFrame* zoomedContentRoot = nullptr;
if (aStopAtAncestor.mViewportType == ViewportType::Visual) {
zoomedContentRoot = ViewportUtils::IsZoomedContentRoot(this);
if (zoomedContentRoot) {
MOZ_ASSERT(aViewportType != ViewportType::Visual);
}
}
if (isTransformed || zoomedContentRoot) {
Matrix4x4 result;
int32_t scaleFactor =
((aFlags & IN_CSS_UNITS) ? AppUnitsPerCSSPixel()
: PresContext()->AppUnitsPerDevPixel());
/* Compute the delta to the parent, which we need because we are converting
* coordinates to our parent.
*/
if (isTransformed) {
NS_ASSERTION(nsLayoutUtils::GetCrossDocParentFrameInProcess(this),
"Cannot transform the viewport frame!");
result = result * nsDisplayTransform::GetResultingTransformMatrix(
this, nsPoint(0, 0), scaleFactor,
nsDisplayTransform::INCLUDE_PERSPECTIVE |
nsDisplayTransform::OFFSET_BY_ORIGIN);
}
// The offset from a zoomed content root to its parent (e.g. from
// a canvas frame to a scroll frame) is in layout coordinates, so
// apply it before applying any layout-to-visual transform.
*aOutAncestor = nsLayoutUtils::GetCrossDocParentFrameInProcess(this);
nsPoint delta = GetOffsetToCrossDoc(*aOutAncestor);
/* Combine the raw transform with a translation to our parent. */
result.PostTranslate(NSAppUnitsToFloatPixels(delta.x, scaleFactor),
NSAppUnitsToFloatPixels(delta.y, scaleFactor), 0.0f);
if (zoomedContentRoot) {
Matrix4x4 layoutToVisual;
ScrollableLayerGuid::ViewID targetScrollId =
nsLayoutUtils::FindOrCreateIDFor(zoomedContentRoot->GetContent());
if (aFlags & nsIFrame::IN_CSS_UNITS) {
layoutToVisual =
ViewportUtils::GetVisualToLayoutTransform(targetScrollId)
.Inverse()
.ToUnknownMatrix();
} else {
layoutToVisual =
ViewportUtils::GetVisualToLayoutTransform<LayoutDevicePixel>(
targetScrollId)
.Inverse()
.ToUnknownMatrix();
}
result = result * layoutToVisual;
}
return result;
}
*aOutAncestor = nsLayoutUtils::GetCrossDocParentFrameInProcess(this);
/* Otherwise, we're not transformed. In that case, we'll walk up the frame
* tree until we either hit the root frame or something that may be
* transformed. We'll then change coordinates into that frame, since we're
* guaranteed that nothing in-between can be transformed. First, however,
* we have to check to see if we have a parent. If not, we'll set the
* outparam to null (indicating that there's nothing left) and will hand back
* the identity matrix.
*/
if (!*aOutAncestor) return Matrix4x4();
/* Keep iterating while the frame can't possibly be transformed. */
const nsIFrame* current = this;
auto shouldStopAt = [](const nsIFrame* aCurrent, nsIFrame* aAncestor,
uint32_t aFlags) {
return aAncestor->IsTransformed() || nsLayoutUtils::IsPopup(aAncestor) ||
ViewportUtils::IsZoomedContentRoot(aAncestor) ||
((aFlags & STOP_AT_STACKING_CONTEXT_AND_DISPLAY_PORT) &&
(aAncestor->IsStackingContext() ||
DisplayPortUtils::FrameHasDisplayPort(aAncestor, aCurrent)));
};
while (*aOutAncestor != aStopAtAncestor.mFrame &&
!shouldStopAt(current, *aOutAncestor, aFlags)) {
/* If no parent, stop iterating. Otherwise, update the ancestor. */
nsIFrame* parent =
nsLayoutUtils::GetCrossDocParentFrameInProcess(*aOutAncestor);
if (!parent) break;
current = *aOutAncestor;
*aOutAncestor = parent;
}
NS_ASSERTION(*aOutAncestor, "Somehow ended up with a null ancestor...?");
/* Translate from this frame to our ancestor, if it exists. That's the
* entire transform, so we're done.
*/
nsPoint delta = GetOffsetToCrossDoc(*aOutAncestor);
int32_t scaleFactor =
((aFlags & IN_CSS_UNITS) ? AppUnitsPerCSSPixel()
: PresContext()->AppUnitsPerDevPixel());
return Matrix4x4::Translation(NSAppUnitsToFloatPixels(delta.x, scaleFactor),
NSAppUnitsToFloatPixels(delta.y, scaleFactor),
0.0f);
}
static void InvalidateRenderingObservers(nsIFrame* aDisplayRoot,
nsIFrame* aFrame,
bool aFrameChanged = true) {
MOZ_ASSERT(aDisplayRoot == nsLayoutUtils::GetDisplayRootFrame(aFrame));
SVGObserverUtils::InvalidateDirectRenderingObservers(aFrame);
nsIFrame* parent = aFrame;
while (parent != aDisplayRoot &&
(parent = nsLayoutUtils::GetCrossDocParentFrameInProcess(parent)) &&
!parent->HasAnyStateBits(NS_FRAME_DESCENDANT_NEEDS_PAINT)) {
SVGObserverUtils::InvalidateDirectRenderingObservers(parent);
}
if (!aFrameChanged) {
return;
}
aFrame->MarkNeedsDisplayItemRebuild();
}
static void SchedulePaintInternal(
nsIFrame* aDisplayRoot, nsIFrame* aFrame,
nsIFrame::PaintType aType = nsIFrame::PAINT_DEFAULT) {
MOZ_ASSERT(aDisplayRoot == nsLayoutUtils::GetDisplayRootFrame(aFrame));
nsPresContext* pres = aDisplayRoot->PresContext()->GetRootPresContext();
// No need to schedule a paint for an external document since they aren't
// painted directly.
if (!pres || (pres->Document() && pres->Document()->IsResourceDoc())) {
return;
}
if (!pres->GetContainerWeak()) {
NS_WARNING("Shouldn't call SchedulePaint in a detached pres context");
return;
}
pres->PresShell()->ScheduleViewManagerFlush();
if (aType == nsIFrame::PAINT_DEFAULT) {
aDisplayRoot->AddStateBits(NS_FRAME_UPDATE_LAYER_TREE);
}
}
static void InvalidateFrameInternal(nsIFrame* aFrame, bool aHasDisplayItem,
bool aRebuildDisplayItems) {
if (aHasDisplayItem) {
aFrame->AddStateBits(NS_FRAME_NEEDS_PAINT);
}
if (aRebuildDisplayItems) {
aFrame->MarkNeedsDisplayItemRebuild();
}
SVGObserverUtils::InvalidateDirectRenderingObservers(aFrame);
bool needsSchedulePaint = false;
if (nsLayoutUtils::IsPopup(aFrame)) {
needsSchedulePaint = true;
} else {
nsIFrame* parent = nsLayoutUtils::GetCrossDocParentFrameInProcess(aFrame);
while (parent &&
!parent->HasAnyStateBits(NS_FRAME_DESCENDANT_NEEDS_PAINT)) {
if (aHasDisplayItem && !parent->HasAnyStateBits(NS_FRAME_IS_NONDISPLAY)) {
parent->AddStateBits(NS_FRAME_DESCENDANT_NEEDS_PAINT);
}
SVGObserverUtils::InvalidateDirectRenderingObservers(parent);
// If we're inside a popup, then we need to make sure that we
// call schedule paint so that the NS_FRAME_UPDATE_LAYER_TREE
// flag gets added to the popup display root frame.
if (nsLayoutUtils::IsPopup(parent)) {
needsSchedulePaint = true;
break;
}
parent = nsLayoutUtils::GetCrossDocParentFrameInProcess(parent);
}
if (!parent) {
needsSchedulePaint = true;
}
}
if (!aHasDisplayItem) {
return;
}
if (needsSchedulePaint) {
nsIFrame* displayRoot = nsLayoutUtils::GetDisplayRootFrame(aFrame);
SchedulePaintInternal(displayRoot, aFrame);
}
if (aFrame->HasAnyStateBits(NS_FRAME_HAS_INVALID_RECT)) {
aFrame->RemoveProperty(nsIFrame::InvalidationRect());
aFrame->RemoveStateBits(NS_FRAME_HAS_INVALID_RECT);
}
}
void nsIFrame::InvalidateFrameSubtree(bool aRebuildDisplayItems /* = true */) {
InvalidateFrame(0, aRebuildDisplayItems);
if (HasAnyStateBits(NS_FRAME_ALL_DESCENDANTS_NEED_PAINT)) {
return;
}
AddStateBits(NS_FRAME_ALL_DESCENDANTS_NEED_PAINT);
for (const auto& childList : CrossDocChildLists()) {
for (nsIFrame* child : childList.mList) {
// Don't explicitly rebuild display items for our descendants,
// since we should be marked and it implicitly includes all
// descendants.
child->InvalidateFrameSubtree(false);
}
}
}
void nsIFrame::ClearInvalidationStateBits() {
if (HasAnyStateBits(NS_FRAME_DESCENDANT_NEEDS_PAINT)) {
for (const auto& childList : CrossDocChildLists()) {
for (nsIFrame* child : childList.mList) {
child->ClearInvalidationStateBits();
}
}
}
RemoveStateBits(NS_FRAME_NEEDS_PAINT | NS_FRAME_DESCENDANT_NEEDS_PAINT |
NS_FRAME_ALL_DESCENDANTS_NEED_PAINT);
}
bool HasRetainedDataFor(const nsIFrame* aFrame, uint32_t aDisplayItemKey) {
if (RefPtr<WebRenderUserData> data =
GetWebRenderUserData<WebRenderFallbackData>(aFrame,
aDisplayItemKey)) {
return true;
}
return false;
}
void nsIFrame::InvalidateFrame(uint32_t aDisplayItemKey,
bool aRebuildDisplayItems /* = true */) {
bool hasDisplayItem =
!aDisplayItemKey || HasRetainedDataFor(this, aDisplayItemKey);
InvalidateFrameInternal(this, hasDisplayItem, aRebuildDisplayItems);
}
void nsIFrame::InvalidateFrameWithRect(const nsRect& aRect,
uint32_t aDisplayItemKey,
bool aRebuildDisplayItems /* = true */) {
if (aRect.IsEmpty()) {
return;
}
bool hasDisplayItem =
!aDisplayItemKey || HasRetainedDataFor(this, aDisplayItemKey);
bool alreadyInvalid = false;
if (!HasAnyStateBits(NS_FRAME_NEEDS_PAINT)) {
InvalidateFrameInternal(this, hasDisplayItem, aRebuildDisplayItems);
} else {
alreadyInvalid = true;
}
if (!hasDisplayItem) {
return;
}
nsRect* rect;
if (HasAnyStateBits(NS_FRAME_HAS_INVALID_RECT)) {
rect = GetProperty(InvalidationRect());
MOZ_ASSERT(rect);
} else {
if (alreadyInvalid) {
return;
}
rect = new nsRect();
AddProperty(InvalidationRect(), rect);
AddStateBits(NS_FRAME_HAS_INVALID_RECT);
}
*rect = rect->Union(aRect);
}
/*static*/
uint8_t nsIFrame::sLayerIsPrerenderedDataKey;
bool nsIFrame::IsInvalid(nsRect& aRect) {
if (!HasAnyStateBits(NS_FRAME_NEEDS_PAINT)) {
return false;
}
if (HasAnyStateBits(NS_FRAME_HAS_INVALID_RECT)) {
nsRect* rect = GetProperty(InvalidationRect());
NS_ASSERTION(
rect, "Must have an invalid rect if NS_FRAME_HAS_INVALID_RECT is set!");
aRect = *rect;
} else {
aRect.SetEmpty();
}
return true;
}
void nsIFrame::SchedulePaint(PaintType aType, bool aFrameChanged) {
nsIFrame* displayRoot = nsLayoutUtils::GetDisplayRootFrame(this);
InvalidateRenderingObservers(displayRoot, this, aFrameChanged);
SchedulePaintInternal(displayRoot, this, aType);
}
void nsIFrame::SchedulePaintWithoutInvalidatingObservers(PaintType aType) {
nsIFrame* displayRoot = nsLayoutUtils::GetDisplayRootFrame(this);
SchedulePaintInternal(displayRoot, this, aType);
}
void nsIFrame::InvalidateLayer(DisplayItemType aDisplayItemKey,
const nsIntRect* aDamageRect,
const nsRect* aFrameDamageRect,
uint32_t aFlags /* = 0 */) {
NS_ASSERTION(aDisplayItemKey > DisplayItemType::TYPE_ZERO, "Need a key");
nsIFrame* displayRoot = nsLayoutUtils::GetDisplayRootFrame(this);
InvalidateRenderingObservers(displayRoot, this, false);
// Check if frame supports WebRender's async update
if ((aFlags & UPDATE_IS_ASYNC) &&
WebRenderUserData::SupportsAsyncUpdate(this)) {
// WebRender does not use layer, then return nullptr.
return;
}
if (aFrameDamageRect && aFrameDamageRect->IsEmpty()) {
return;
}
// In the bug 930056, dialer app startup but not shown on the
// screen because sometimes we don't have any retainned data
// for remote type displayitem and thus Repaint event is not
// triggered. So, always invalidate in this case.
DisplayItemType displayItemKey = aDisplayItemKey;
if (aDisplayItemKey == DisplayItemType::TYPE_REMOTE) {
displayItemKey = DisplayItemType::TYPE_ZERO;
}
if (aFrameDamageRect) {
InvalidateFrameWithRect(*aFrameDamageRect,
static_cast<uint32_t>(displayItemKey));
} else {
InvalidateFrame(static_cast<uint32_t>(displayItemKey));
}
}
static nsRect ComputeEffectsRect(nsIFrame* aFrame, const nsRect& aOverflowRect,
const nsSize& aNewSize) {
nsRect r = aOverflowRect;
if (aFrame->HasAnyStateBits(NS_FRAME_SVG_LAYOUT)) {
// For SVG frames, we only need to account for filters.
// TODO: We could also take account of clipPath and mask to reduce the
// ink overflow, but that's not essential.
if (aFrame->StyleEffects()->HasFilters()) {
SetOrUpdateRectValuedProperty(aFrame, nsIFrame::PreEffectsBBoxProperty(),
r);
r = SVGUtils::GetPostFilterInkOverflowRect(aFrame, aOverflowRect);
}
return r;
}
// box-shadow
r.UnionRect(r, nsLayoutUtils::GetBoxShadowRectForFrame(aFrame, aNewSize));
// border-image-outset.
// We need to include border-image-outset because it can cause the
// border image to be drawn beyond the border box.
// (1) It's important we not check whether there's a border-image
// since the style hint for a change in border image doesn't cause
// reflow, and that's probably more important than optimizing the
// overflow areas for the silly case of border-image-outset without
// border-image
// (2) It's important that we not check whether the border-image
// is actually loaded, since that would require us to reflow when
// the image loads.
const nsStyleBorder* styleBorder = aFrame->StyleBorder();
nsMargin outsetMargin = styleBorder->GetImageOutset();
if (outsetMargin != nsMargin(0, 0, 0, 0)) {
nsRect outsetRect(nsPoint(0, 0), aNewSize);
outsetRect.Inflate(outsetMargin);
r.UnionRect(r, outsetRect);
}
// Note that we don't remove the outlineInnerRect if a frame loses outline
// style. That would require an extra property lookup for every frame,
// or a new frame state bit to track whether a property had been stored,
// or something like that. It's not worth doing that here. At most it's
// only one heap-allocated rect per frame and it will be cleaned up when
// the frame dies.
if (SVGIntegrationUtils::UsingOverflowAffectingEffects(aFrame)) {
SetOrUpdateRectValuedProperty(aFrame, nsIFrame::PreEffectsBBoxProperty(),
r);
r = SVGIntegrationUtils::ComputePostEffectsInkOverflowRect(aFrame, r);
}
return r;
}
void nsIFrame::MovePositionBy(const nsPoint& aTranslation) {
nsPoint position = GetNormalPosition() + aTranslation;
const nsMargin* computedOffsets = nullptr;
if (IsRelativelyOrStickyPositioned()) {
computedOffsets = GetProperty(nsIFrame::ComputedOffsetProperty());
}
ReflowInput::ApplyRelativePositioning(
this, computedOffsets ? *computedOffsets : nsMargin(), &position);
SetPosition(position);
}
nsRect nsIFrame::GetNormalRect() const {
// It might be faster to first check
// StyleDisplay()->IsRelativelyPositionedStyle().
bool hasProperty;
nsPoint normalPosition = GetProperty(NormalPositionProperty(), &hasProperty);
if (hasProperty) {
return nsRect(normalPosition, GetSize());
}
return GetRect();
}
nsRect nsIFrame::GetBoundingClientRect() {
return nsLayoutUtils::GetAllInFlowRectsUnion(
this, nsLayoutUtils::GetContainingBlockForClientRect(this),
nsLayoutUtils::RECTS_ACCOUNT_FOR_TRANSFORMS);
}
nsPoint nsIFrame::GetPositionIgnoringScrolling() const {
return GetParent() ? GetParent()->GetPositionOfChildIgnoringScrolling(this)
: GetPosition();
}
nsRect nsIFrame::GetOverflowRect(OverflowType aType) const {
// Note that in some cases the overflow area might not have been
// updated (yet) to reflect any outline set on the frame or the area
// of child frames. That's OK because any reflow that updates these
// areas will invalidate the appropriate area, so any (mis)uses of
// this method will be fixed up.
if (mOverflow.mType == OverflowStorageType::Large) {
// there is an overflow rect, and it's not stored as deltas but as
// a separately-allocated rect
return GetOverflowAreasProperty()->Overflow(aType);
}
if (aType == OverflowType::Ink &&
mOverflow.mType != OverflowStorageType::None) {
return InkOverflowFromDeltas();
}
return GetRectRelativeToSelf();
}
OverflowAreas nsIFrame::GetOverflowAreas() const {
if (mOverflow.mType == OverflowStorageType::Large) {
// there is an overflow rect, and it's not stored as deltas but as
// a separately-allocated rect
return *GetOverflowAreasProperty();
}
return OverflowAreas(InkOverflowFromDeltas(),
nsRect(nsPoint(0, 0), GetSize()));
}
OverflowAreas nsIFrame::GetOverflowAreasRelativeToSelf() const {
if (IsTransformed()) {
if (OverflowAreas* preTransformOverflows =
GetProperty(PreTransformOverflowAreasProperty())) {
return *preTransformOverflows;
}
}
return GetOverflowAreas();
}
OverflowAreas nsIFrame::GetOverflowAreasRelativeToParent() const {
return GetOverflowAreas() + GetPosition();
}
OverflowAreas nsIFrame::GetActualAndNormalOverflowAreasRelativeToParent()
const {
if (MOZ_LIKELY(!IsRelativelyOrStickyPositioned())) {
return GetOverflowAreasRelativeToParent();
}
const OverflowAreas overflows = GetOverflowAreas();
OverflowAreas actualAndNormalOverflows = overflows + GetPosition();
actualAndNormalOverflows.UnionWith(overflows + GetNormalPosition());
return actualAndNormalOverflows;
}
nsRect nsIFrame::ScrollableOverflowRectRelativeToParent() const {
return ScrollableOverflowRect() + GetPosition();
}
nsRect nsIFrame::InkOverflowRectRelativeToParent() const {
return InkOverflowRect() + GetPosition();
}
nsRect nsIFrame::ScrollableOverflowRectRelativeToSelf() const {
if (IsTransformed()) {
if (OverflowAreas* preTransformOverflows =
GetProperty(PreTransformOverflowAreasProperty())) {
return preTransformOverflows->ScrollableOverflow();
}
}
return ScrollableOverflowRect();
}
nsRect nsIFrame::InkOverflowRectRelativeToSelf() const {
if (IsTransformed()) {
if (OverflowAreas* preTransformOverflows =
GetProperty(PreTransformOverflowAreasProperty())) {
return preTransformOverflows->InkOverflow();
}
}
return InkOverflowRect();
}
nsRect nsIFrame::PreEffectsInkOverflowRect() const {
nsRect* r = GetProperty(nsIFrame::PreEffectsBBoxProperty());
return r ? *r : InkOverflowRectRelativeToSelf();
}
bool nsIFrame::UpdateOverflow() {
MOZ_ASSERT(FrameMaintainsOverflow(),
"Non-display SVG do not maintain ink overflow rects");
nsRect rect(nsPoint(0, 0), GetSize());
OverflowAreas overflowAreas(rect, rect);
if (!ComputeCustomOverflow(overflowAreas)) {
// If updating overflow wasn't supported by this frame, then it should
// have scheduled any necessary reflows. We can return false to say nothing
// changed, and wait for reflow to correct it.
return false;
}
UnionChildOverflow(overflowAreas);
if (FinishAndStoreOverflow(overflowAreas, GetSize())) {
nsView* view = GetView();
if (view) {
ReflowChildFlags flags = GetXULLayoutFlags();
if (!(flags & ReflowChildFlags::NoSizeView)) {
// Make sure the frame's view is properly sized.
nsViewManager* vm = view->GetViewManager();
vm->ResizeView(view, overflowAreas.InkOverflow(), true);
}
}
return true;
}
// Frames that combine their 3d transform with their ancestors
// only compute a pre-transform overflow rect, and then contribute
// to the normal overflow rect of the preserve-3d root. Always return
// true here so that we propagate changes up to the root for final
// calculation.
return Combines3DTransformWithAncestors();
}
/* virtual */
bool nsIFrame::ComputeCustomOverflow(OverflowAreas& aOverflowAreas) {
return true;
}
/* virtual */
void nsIFrame::UnionChildOverflow(OverflowAreas& aOverflowAreas) {
if (!DoesClipChildrenInBothAxes() &&
!(IsXULCollapsed() && (IsXULBoxFrame() || ::IsXULBoxWrapped(this)))) {
nsLayoutUtils::UnionChildOverflow(this, aOverflowAreas);
}
}
// Return true if this form control element's preferred size property (but not
// percentage max size property) contains a percentage value that should be
// resolved against zero when calculating its min-content contribution in the
// corresponding axis.
//
// For proper replaced elements, the percentage value in both their max size
// property or preferred size property should be resolved against zero. This is
// handled in IsPercentageResolvedAgainstZero().
inline static bool FormControlShrinksForPercentSize(const nsIFrame* aFrame) {
if (!aFrame->IsFrameOfType(nsIFrame::eReplaced)) {
// Quick test to reject most frames.
return false;
}
LayoutFrameType fType = aFrame->Type();
if (fType == LayoutFrameType::Meter || fType == LayoutFrameType::Progress ||
fType == LayoutFrameType::Range) {
// progress, meter and range do have this shrinking behavior
// FIXME: Maybe these should be nsIFormControlFrame?
return true;
}
if (!static_cast<nsIFormControlFrame*>(do_QueryFrame(aFrame))) {
// Not a form control. This includes fieldsets, which do not
// shrink.
return false;
}
if (fType == LayoutFrameType::GfxButtonControl ||
fType == LayoutFrameType::HTMLButtonControl) {
// Buttons don't have this shrinking behavior. (Note that color
// inputs do, even though they inherit from button, so we can't use
// do_QueryFrame here.)
return false;
}
return true;
}
bool nsIFrame::IsPercentageResolvedAgainstZero(
const StyleSize& aStyleSize, const StyleMaxSize& aStyleMaxSize) const {
const bool sizeHasPercent = aStyleSize.HasPercent();
return ((sizeHasPercent || aStyleMaxSize.HasPercent()) &&
IsFrameOfType(nsIFrame::eReplacedSizing)) ||
(sizeHasPercent && FormControlShrinksForPercentSize(this));
}
// Summary of the Cyclic-Percentage Intrinsic Size Contribution Rules:
//
// Element Type | Replaced | Non-replaced
// Contribution Type | min-content max-content | min-content max-content
// ---------------------------------------------------------------------------
// min size | zero zero | zero zero
// max & preferred size | zero initial | initial initial
//
// https://drafts.csswg.org/css-sizing-3/#cyclic-percentage-contribution
bool nsIFrame::IsPercentageResolvedAgainstZero(const LengthPercentage& aSize,
SizeProperty aProperty) const {
// Early return to avoid calling the virtual function, IsFrameOfType().
if (aProperty == SizeProperty::MinSize) {
return true;
}
const bool hasPercentOnReplaced =
aSize.HasPercent() && IsFrameOfType(nsIFrame::eReplacedSizing);
if (aProperty == SizeProperty::MaxSize) {
return hasPercentOnReplaced;
}
MOZ_ASSERT(aProperty == SizeProperty::Size);
return hasPercentOnReplaced ||
(aSize.HasPercent() && FormControlShrinksForPercentSize(this));
}
bool nsIFrame::IsBlockWrapper() const {
auto pseudoType = Style()->GetPseudoType();
return pseudoType == PseudoStyleType::mozBlockInsideInlineWrapper ||
pseudoType == PseudoStyleType::buttonContent ||
pseudoType == PseudoStyleType::cellContent ||
pseudoType == PseudoStyleType::columnSpanWrapper;
}
bool nsIFrame::IsBlockFrameOrSubclass() const {
const nsBlockFrame* thisAsBlock = do_QueryFrame(this);
return !!thisAsBlock;
}
bool nsIFrame::IsImageFrameOrSubclass() const {
const nsImageFrame* asImage = do_QueryFrame(this);
return !!asImage;
}
bool nsIFrame::IsSubgrid() const {
return IsGridContainerFrame() &&
static_cast<const nsGridContainerFrame*>(this)->IsSubgrid();
}
static nsIFrame* GetNearestBlockContainer(nsIFrame* frame) {
// The block wrappers we use to wrap blocks inside inlines aren't
// described in the CSS spec. We need to make them not be containing
// blocks.
// Since the parent of such a block is either a normal block or
// another such pseudo, this shouldn't cause anything bad to happen.
// Also the anonymous blocks inside table cells are not containing blocks.
//
// If we ever start skipping table row groups from being containing blocks,
// you need to remove the StickyScrollContainer hack referencing bug 1421660.
while (frame->IsFrameOfType(nsIFrame::eLineParticipant) ||
frame->IsBlockWrapper() || frame->IsSubgrid() ||
// Table rows are not containing blocks either
frame->IsTableRowFrame()) {
frame = frame->GetParent();
NS_ASSERTION(
frame,
"How come we got to the root frame without seeing a containing block?");
}
return frame;
}
nsIFrame* nsIFrame::GetContainingBlock(
uint32_t aFlags, const nsStyleDisplay* aStyleDisplay) const {
MOZ_ASSERT(aStyleDisplay == StyleDisplay());
if (!GetParent()) {
return nullptr;
}
// MathML frames might have absolute positioning style, but they would
// still be in-flow. So we have to check to make sure that the frame
// is really out-of-flow too.
nsIFrame* f;
if (IsAbsolutelyPositioned(aStyleDisplay)) {
f = GetParent(); // the parent is always the containing block
} else {
f = GetNearestBlockContainer(GetParent());
}
if (aFlags & SKIP_SCROLLED_FRAME && f &&
f->Style()->GetPseudoType() == PseudoStyleType::scrolledContent) {
f = f->GetParent();
}
return f;
}
#ifdef DEBUG_FRAME_DUMP
Maybe<uint32_t> nsIFrame::ContentIndexInContainer(const nsIFrame* aFrame) {
if (nsIContent* content = aFrame->GetContent()) {
return content->ComputeIndexInParentContent();
}
return Nothing();
}
nsAutoCString nsIFrame::ListTag() const {
nsAutoString tmp;
GetFrameName(tmp);
nsAutoCString tag;
tag += NS_ConvertUTF16toUTF8(tmp);
tag += nsPrintfCString("@%p", static_cast<const void*>(this));
return tag;
}
std::string nsIFrame::ConvertToString(const LogicalRect& aRect,
const WritingMode aWM, ListFlags aFlags) {
if (aFlags.contains(ListFlag::DisplayInCSSPixels)) {
// Abuse CSSRect to store all LogicalRect's dimensions in CSS pixels.
return ToString(mozilla::CSSRect(CSSPixel::FromAppUnits(aRect.IStart(aWM)),
CSSPixel::FromAppUnits(aRect.BStart(aWM)),
CSSPixel::FromAppUnits(aRect.ISize(aWM)),
CSSPixel::FromAppUnits(aRect.BSize(aWM))));
}
return ToString(aRect);
}
std::string nsIFrame::ConvertToString(const LogicalSize& aSize,
const WritingMode aWM, ListFlags aFlags) {
if (aFlags.contains(ListFlag::DisplayInCSSPixels)) {
// Abuse CSSSize to store all LogicalSize's dimensions in CSS pixels.
return ToString(CSSSize(CSSPixel::FromAppUnits(aSize.ISize(aWM)),
CSSPixel::FromAppUnits(aSize.BSize(aWM))));
}
return ToString(aSize);
}
// Debugging
void nsIFrame::ListGeneric(nsACString& aTo, const char* aPrefix,
ListFlags aFlags) const {
aTo += aPrefix;
aTo += ListTag();
if (HasView()) {
aTo += nsPrintfCString(" [view=%p]", static_cast<void*>(GetView()));
}
if (GetParent()) {
aTo += nsPrintfCString(" parent=%p", static_cast<void*>(GetParent()));
}
if (GetNextSibling()) {
aTo += nsPrintfCString(" next=%p", static_cast<void*>(GetNextSibling()));
}
if (GetPrevContinuation()) {
bool fluid = GetPrevInFlow() == GetPrevContinuation();
aTo += nsPrintfCString(" prev-%s=%p", fluid ? "in-flow" : "continuation",
static_cast<void*>(GetPrevContinuation()));
}
if (GetNextContinuation()) {
bool fluid = GetNextInFlow() == GetNextContinuation();
aTo += nsPrintfCString(" next-%s=%p", fluid ? "in-flow" : "continuation",
static_cast<void*>(GetNextContinuation()));
}
if (const nsAtom* const autoPageValue =
GetProperty(AutoPageValueProperty())) {
aTo += " AutoPage=";
aTo += nsAtomCString(autoPageValue);
}
if (const nsIFrame::PageValues* const pageValues =
GetProperty(PageValuesProperty())) {
aTo += " PageValues={";
if (pageValues->mStartPageValue) {
aTo += nsAtomCString(pageValues->mStartPageValue);
} else {
aTo += "<null>";
}
aTo += ", ";
if (pageValues->mEndPageValue) {
aTo += nsAtomCString(pageValues->mEndPageValue);
} else {
aTo += "<null>";
}
aTo += "}";
}
void* IBsibling = GetProperty(IBSplitSibling());
if (IBsibling) {
aTo += nsPrintfCString(" IBSplitSibling=%p", IBsibling);
}
void* IBprevsibling = GetProperty(IBSplitPrevSibling());
if (IBprevsibling) {
aTo += nsPrintfCString(" IBSplitPrevSibling=%p", IBprevsibling);
}
if (nsLayoutUtils::FontSizeInflationEnabled(PresContext())) {
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT)) {
aTo += nsPrintfCString(" FFR");
if (nsFontInflationData* data =
nsFontInflationData::FindFontInflationDataFor(this)) {
aTo += nsPrintfCString(
",enabled=%s,UIS=%s", data->InflationEnabled() ? "yes" : "no",
ConvertToString(data->UsableISize(), aFlags).c_str());
}
}
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) {
aTo += nsPrintfCString(" FIC");
}
aTo += nsPrintfCString(" FI=%f", nsLayoutUtils::FontSizeInflationFor(this));
}
aTo += nsPrintfCString(" %s", ConvertToString(mRect, aFlags).c_str());
mozilla::WritingMode wm = GetWritingMode();
if (wm.IsVertical() || wm.IsBidiRTL()) {
aTo +=
nsPrintfCString(" wm=%s logical-size=(%s)", ToString(wm).c_str(),
ConvertToString(GetLogicalSize(), wm, aFlags).c_str());
}
nsIFrame* parent = GetParent();
if (parent) {
WritingMode pWM = parent->GetWritingMode();
if (pWM.IsVertical() || pWM.IsBidiRTL()) {
nsSize containerSize = parent->mRect.Size();
LogicalRect lr(pWM, mRect, containerSize);
aTo += nsPrintfCString(" parent-wm=%s cs=(%s) logical-rect=%s",
ToString(pWM).c_str(),
ConvertToString(containerSize, aFlags).c_str(),
ConvertToString(lr, pWM, aFlags).c_str());
}
}
nsIFrame* f = const_cast<nsIFrame*>(this);
if (f->HasOverflowAreas()) {
nsRect io = f->InkOverflowRect();
if (!io.IsEqualEdges(mRect)) {
aTo += nsPrintfCString(" ink-overflow=%s",
ConvertToString(io, aFlags).c_str());
}
nsRect so = f->ScrollableOverflowRect();
if (!so.IsEqualEdges(mRect)) {
aTo += nsPrintfCString(" scr-overflow=%s",
ConvertToString(so, aFlags).c_str());
}
}
if (OverflowAreas* preTransformOverflows =
f->GetProperty(PreTransformOverflowAreasProperty())) {
nsRect io = preTransformOverflows->InkOverflow();
if (!io.IsEqualEdges(mRect) &&
(!f->HasOverflowAreas() || !io.IsEqualEdges(f->InkOverflowRect()))) {
aTo += nsPrintfCString(" pre-transform-ink-overflow=%s",
ConvertToString(io, aFlags).c_str());
}
nsRect so = preTransformOverflows->ScrollableOverflow();
if (!so.IsEqualEdges(mRect) &&
(!f->HasOverflowAreas() ||
!so.IsEqualEdges(f->ScrollableOverflowRect()))) {
aTo += nsPrintfCString(" pre-transform-scr-overflow=%s",
ConvertToString(so, aFlags).c_str());
}
}
bool hasNormalPosition;
nsPoint normalPosition = GetNormalPosition(&hasNormalPosition);
if (hasNormalPosition) {
aTo += nsPrintfCString(" normal-position=%s",
ConvertToString(normalPosition, aFlags).c_str());
}
if (HasProperty(BidiDataProperty())) {
FrameBidiData bidi = GetBidiData();
aTo += nsPrintfCString(" bidi(%d,%d,%d)", bidi.baseLevel.Value(),
bidi.embeddingLevel.Value(),
bidi.precedingControl.Value());
}
if (IsTransformed()) {
aTo += nsPrintfCString(" transformed");
}
if (ChildrenHavePerspective()) {
aTo += nsPrintfCString(" perspective");
}
if (Extend3DContext()) {
aTo += nsPrintfCString(" extend-3d");
}
if (Combines3DTransformWithAncestors()) {
aTo += nsPrintfCString(" combines-3d-transform-with-ancestors");
}
if (mContent) {
aTo += nsPrintfCString(" [content=%p]", static_cast<void*>(mContent));
}
aTo += nsPrintfCString(" [cs=%p", static_cast<void*>(mComputedStyle));
if (mComputedStyle) {
auto pseudoType = mComputedStyle->GetPseudoType();
aTo += ToString(pseudoType).c_str();
}
aTo += "]";
if (IsFrameModified()) {
aTo += nsPrintfCString(" modified");
}
if (HasModifiedDescendants()) {
aTo += nsPrintfCString(" has-modified-descendants");
}
}
void nsIFrame::List(FILE* out, const char* aPrefix, ListFlags aFlags) const {
nsCString str;
ListGeneric(str, aPrefix, aFlags);
fprintf_stderr(out, "%s\n", str.get());
}
void nsIFrame::ListTextRuns(FILE* out) const {
nsTHashSet<const void*> seen;
ListTextRuns(out, seen);
}
void nsIFrame::ListTextRuns(FILE* out, nsTHashSet<const void*>& aSeen) const {
for (const auto& childList : ChildLists()) {
for (const nsIFrame* kid : childList.mList) {
kid->ListTextRuns(out, aSeen);
}
}
}
void nsIFrame::ListMatchedRules(FILE* out, const char* aPrefix) const {
nsTArray<const RawServoStyleRule*> rawRuleList;
Servo_ComputedValues_GetStyleRuleList(mComputedStyle, &rawRuleList);
for (const RawServoStyleRule* rawRule : rawRuleList) {
nsAutoCString ruleText;
Servo_StyleRule_GetCssText(rawRule, &ruleText);
fprintf_stderr(out, "%s%s\n", aPrefix, ruleText.get());
}
}
void nsIFrame::ListWithMatchedRules(FILE* out, const char* aPrefix) const {
fprintf_stderr(out, "%s%s\n", aPrefix, ListTag().get());
nsCString rulePrefix;
rulePrefix += aPrefix;
rulePrefix += " ";
ListMatchedRules(out, rulePrefix.get());
}
nsresult nsIFrame::GetFrameName(nsAString& aResult) const {
return MakeFrameName(u"Frame"_ns, aResult);
}
nsresult nsIFrame::MakeFrameName(const nsAString& aType,
nsAString& aResult) const {
aResult = aType;
if (mContent && !mContent->IsText()) {
nsAutoString buf;
mContent->NodeInfo()->NameAtom()->ToString(buf);
if (nsAtom* id = mContent->GetID()) {
buf.AppendLiteral(" id=");
buf.Append(nsDependentAtomString(id));
}
if (IsSubDocumentFrame()) {
nsAutoString src;
mContent->AsElement()->GetAttr(kNameSpaceID_None, nsGkAtoms::src, src);
buf.AppendLiteral(" src=");
buf.Append(src);
}
aResult.Append('(');
aResult.Append(buf);
aResult.Append(')');
}
aResult.Append('(');
Maybe<uint32_t> index = ContentIndexInContainer(this);
if (index.isSome()) {
aResult.AppendInt(*index);
} else {
aResult.AppendInt(-1);
}
aResult.Append(')');
return NS_OK;
}
void nsIFrame::DumpFrameTree() const {
PresShell()->GetRootFrame()->List(stderr);
}
void nsIFrame::DumpFrameTreeInCSSPixels() const {
PresShell()->GetRootFrame()->List(stderr, "", ListFlag::DisplayInCSSPixels);
}
void nsIFrame::DumpFrameTreeLimited() const { List(stderr); }
void nsIFrame::DumpFrameTreeLimitedInCSSPixels() const {
List(stderr, "", ListFlag::DisplayInCSSPixels);
}
#endif
bool nsIFrame::IsVisibleForPainting() { return StyleVisibility()->IsVisible(); }
bool nsIFrame::IsVisibleOrCollapsedForPainting() {
return StyleVisibility()->IsVisibleOrCollapsed();
}
/* virtual */
bool nsIFrame::IsEmpty() {
return IsHiddenByContentVisibilityOfInFlowParentForLayout();
}
bool nsIFrame::CachedIsEmpty() {
MOZ_ASSERT(!HasAnyStateBits(NS_FRAME_IS_DIRTY) ||
IsHiddenByContentVisibilityOfInFlowParentForLayout(),
"Must only be called on reflowed lines or those hidden by "
"content-visibility.");
return IsEmpty();
}
/* virtual */
bool nsIFrame::IsSelfEmpty() {
return IsHiddenByContentVisibilityOfInFlowParentForLayout();
}
nsresult nsIFrame::GetSelectionController(nsPresContext* aPresContext,
nsISelectionController** aSelCon) {
if (!aPresContext || !aSelCon) return NS_ERROR_INVALID_ARG;
nsIFrame* frame = this;
while (frame && frame->HasAnyStateBits(NS_FRAME_INDEPENDENT_SELECTION)) {
nsITextControlFrame* tcf = do_QueryFrame(frame);
if (tcf) {
return tcf->GetOwnedSelectionController(aSelCon);
}
frame = frame->GetParent();
}
*aSelCon = do_AddRef(aPresContext->PresShell()).take();
return NS_OK;
}
already_AddRefed<nsFrameSelection> nsIFrame::GetFrameSelection() {
RefPtr<nsFrameSelection> fs =
const_cast<nsFrameSelection*>(GetConstFrameSelection());
return fs.forget();
}
const nsFrameSelection* nsIFrame::GetConstFrameSelection() const {
nsIFrame* frame = const_cast<nsIFrame*>(this);
while (frame && frame->HasAnyStateBits(NS_FRAME_INDEPENDENT_SELECTION)) {
nsITextControlFrame* tcf = do_QueryFrame(frame);
if (tcf) {
return tcf->GetOwnedFrameSelection();
}
frame = frame->GetParent();
}
return PresShell()->ConstFrameSelection();
}
bool nsIFrame::IsFrameSelected() const {
NS_ASSERTION(!GetContent() || GetContent()->IsMaybeSelected(),
"use the public IsSelected() instead");
return GetContent()->IsSelected(0, GetContent()->GetChildCount());
}
nsresult nsIFrame::GetPointFromOffset(int32_t inOffset, nsPoint* outPoint) {
MOZ_ASSERT(outPoint != nullptr, "Null parameter");
nsRect contentRect = GetContentRectRelativeToSelf();
nsPoint pt = contentRect.TopLeft();
if (mContent) {
nsIContent* newContent = mContent->GetParent();
if (newContent) {
const int32_t newOffset = newContent->ComputeIndexOf_Deprecated(mContent);
// Find the direction of the frame from the EmbeddingLevelProperty,
// which is the resolved bidi level set in
// nsBidiPresUtils::ResolveParagraph (odd levels = right-to-left).
// If the embedding level isn't set, just use the CSS direction
// property.
bool hasBidiData;
FrameBidiData bidiData = GetProperty(BidiDataProperty(), &hasBidiData);
bool isRTL = hasBidiData
? bidiData.embeddingLevel.IsRTL()
: StyleVisibility()->mDirection == StyleDirection::Rtl;
if ((!isRTL && inOffset > newOffset) ||
(isRTL && inOffset <= newOffset)) {
pt = contentRect.TopRight();
}
}
}
*outPoint = pt;
return NS_OK;
}
nsresult nsIFrame::GetCharacterRectsInRange(int32_t aInOffset, int32_t aLength,
nsTArray<nsRect>& aOutRect) {
/* no text */
return NS_ERROR_FAILURE;
}
nsresult nsIFrame::GetChildFrameContainingOffset(int32_t inContentOffset,
bool inHint,
int32_t* outFrameContentOffset,
nsIFrame** outChildFrame) {
MOZ_ASSERT(outChildFrame && outFrameContentOffset, "Null parameter");
*outFrameContentOffset = (int32_t)inHint;
// the best frame to reflect any given offset would be a visible frame if
// possible i.e. we are looking for a valid frame to place the blinking caret
nsRect rect = GetRect();
if (!rect.width || !rect.height) {
// if we have a 0 width or height then lets look for another frame that
// possibly has the same content. If we have no frames in flow then just
// let us return 'this' frame
nsIFrame* nextFlow = GetNextInFlow();
if (nextFlow)
return nextFlow->GetChildFrameContainingOffset(
inContentOffset, inHint, outFrameContentOffset, outChildFrame);
}
*outChildFrame = this;
return NS_OK;
}
//
// What I've pieced together about this routine:
// Starting with a block frame (from which a line frame can be gotten)
// and a line number, drill down and get the first/last selectable
// frame on that line, depending on aPos->mDirection.
// aOutSideLimit != 0 means ignore aLineStart, instead work from
// the end (if > 0) or beginning (if < 0).
//
static nsresult GetNextPrevLineFromBlockFrame(nsPeekOffsetStruct* aPos,
nsIFrame* aBlockFrame,
int32_t aLineStart,
int8_t aOutSideLimit) {
MOZ_ASSERT(aPos);
MOZ_ASSERT(aBlockFrame);
nsPresContext* pc = aBlockFrame->PresContext();
// magic numbers: aLineStart will be -1 for end of block, 0 will be start of
// block.
aPos->mResultFrame = nullptr;
aPos->mResultContent = nullptr;
aPos->mAttach = aPos->mDirection == eDirNext ? CARET_ASSOCIATE_AFTER
: CARET_ASSOCIATE_BEFORE;
AutoAssertNoDomMutations guard;
nsILineIterator* it = aBlockFrame->GetLineIterator();
if (!it) {
return NS_ERROR_FAILURE;
}
int32_t searchingLine = aLineStart;
int32_t countLines = it->GetNumLines();
if (aOutSideLimit > 0) { // start at end
searchingLine = countLines;
} else if (aOutSideLimit < 0) { // start at beginning
searchingLine = -1; //"next" will be 0
} else if ((aPos->mDirection == eDirPrevious && searchingLine == 0) ||
(aPos->mDirection == eDirNext &&
searchingLine >= (countLines - 1))) {
// Not found.
return NS_ERROR_FAILURE;
}
nsIFrame* resultFrame = nullptr;
nsIFrame* farStoppingFrame = nullptr; // we keep searching until we find a
// "this" frame then we go to next line
nsIFrame* nearStoppingFrame = nullptr; // if we are backing up from edge,
// stop here
nsIFrame* firstFrame;
nsIFrame* lastFrame;
bool isBeforeFirstFrame, isAfterLastFrame;
bool found = false;
nsresult result = NS_OK;
while (!found) {
if (aPos->mDirection == eDirPrevious)
searchingLine--;
else
searchingLine++;
if ((aPos->mDirection == eDirPrevious && searchingLine < 0) ||
(aPos->mDirection == eDirNext && searchingLine >= countLines)) {
// we need to jump to new block frame.
return NS_ERROR_FAILURE;
}
auto line = it->GetLine(searchingLine).unwrap();
if (!line.mNumFramesOnLine) {
continue;
}
lastFrame = firstFrame = line.mFirstFrameOnLine;
for (int32_t lineFrameCount = line.mNumFramesOnLine; lineFrameCount > 1;
lineFrameCount--) {
lastFrame = lastFrame->GetNextSibling();
if (!lastFrame) {
NS_ERROR("GetLine promised more frames than could be found");
return NS_ERROR_FAILURE;
}
}
nsIFrame::GetLastLeaf(&lastFrame);
if (aPos->mDirection == eDirNext) {
nearStoppingFrame = firstFrame;
farStoppingFrame = lastFrame;
} else {
nearStoppingFrame = lastFrame;
farStoppingFrame = firstFrame;
}
nsPoint offset;
nsView* view; // used for call of get offset from view
aBlockFrame->GetOffsetFromView(offset, &view);
nsPoint newDesiredPos =
aPos->mDesiredCaretPos -
offset; // get desired position into blockframe coords
result = it->FindFrameAt(searchingLine, newDesiredPos, &resultFrame,
&isBeforeFirstFrame, &isAfterLastFrame);
if (NS_FAILED(result)) {
continue;
}
if (resultFrame) {
// check to see if this is ANOTHER blockframe inside the other one if so
// then call into its lines
if (resultFrame->CanProvideLineIterator()) {
aPos->mResultFrame = resultFrame;
return NS_OK;
}
// resultFrame is not a block frame
result = NS_ERROR_FAILURE;
nsCOMPtr<nsIFrameEnumerator> frameTraversal;
result = NS_NewFrameTraversal(getter_AddRefs(frameTraversal), pc,
resultFrame, ePostOrder,
false, // aVisual
aPos->mScrollViewStop,
false, // aFollowOOFs
false // aSkipPopupChecks
);
if (NS_FAILED(result)) {
return result;
}
auto FoundValidFrame = [aPos](const nsIFrame::ContentOffsets& aOffsets,
const nsIFrame* aFrame) {
if (!aOffsets.content) {
return false;
}
if (!aFrame->IsSelectable(nullptr)) {
return false;
}
if (aPos->mForceEditableRegion && !aOffsets.content->IsEditable()) {
return false;
}
return true;
};
nsIFrame* storeOldResultFrame = resultFrame;
while (!found) {
nsPoint point;
nsRect tempRect = resultFrame->GetRect();
nsPoint offset;
nsView* view; // used for call of get offset from view
resultFrame->GetOffsetFromView(offset, &view);
if (!view) {
return NS_ERROR_FAILURE;
}
if (resultFrame->GetWritingMode().IsVertical()) {
point.y = aPos->mDesiredCaretPos.y;
point.x = tempRect.width + offset.x;
} else {
point.y = tempRect.height + offset.y;
point.x = aPos->mDesiredCaretPos.x;
}
if (!resultFrame->HasView()) {
nsView* view;
nsPoint offset;
resultFrame->GetOffsetFromView(offset, &view);
nsIFrame::ContentOffsets offsets =
resultFrame->GetContentOffsetsFromPoint(point - offset);
aPos->mResultContent = offsets.content;
aPos->mContentOffset = offsets.offset;
aPos->mAttach = offsets.associate;
if (FoundValidFrame(offsets, resultFrame)) {
found = true;
break;
}
}
if (aPos->mDirection == eDirPrevious &&
resultFrame == farStoppingFrame) {
break;
}
if (aPos->mDirection == eDirNext && resultFrame == nearStoppingFrame) {
break;
}
// always try previous on THAT line if that fails go the other way
resultFrame = frameTraversal->Traverse(/* aForward = */ false);
if (!resultFrame) {
return NS_ERROR_FAILURE;
}
}
if (!found) {
resultFrame = storeOldResultFrame;
result = NS_NewFrameTraversal(getter_AddRefs(frameTraversal), pc,
resultFrame, eLeaf,
false, // aVisual
aPos->mScrollViewStop,
false, // aFollowOOFs
false // aSkipPopupChecks
);
}
while (!found) {
nsPoint point = aPos->mDesiredCaretPos;
nsView* view;
nsPoint offset;
resultFrame->GetOffsetFromView(offset, &view);
nsIFrame::ContentOffsets offsets =
resultFrame->GetContentOffsetsFromPoint(point - offset);
aPos->mResultContent = offsets.content;
aPos->mContentOffset = offsets.offset;
aPos->mAttach = offsets.associate;
if (FoundValidFrame(offsets, resultFrame)) {
found = true;
if (resultFrame == farStoppingFrame)
aPos->mAttach = CARET_ASSOCIATE_BEFORE;
else
aPos->mAttach = CARET_ASSOCIATE_AFTER;
break;
}
if (aPos->mDirection == eDirPrevious &&
(resultFrame == nearStoppingFrame))
break;
if (aPos->mDirection == eDirNext && (resultFrame == farStoppingFrame))
break;
// previous didnt work now we try "next"
nsIFrame* tempFrame = frameTraversal->Traverse(/* aForward = */ true);
if (!tempFrame) break;
resultFrame = tempFrame;
}
aPos->mResultFrame = resultFrame;
} else {
// we need to jump to new block frame.
aPos->mAmount = eSelectLine;
aPos->mStartOffset = 0;
aPos->mAttach = aPos->mDirection == eDirNext ? CARET_ASSOCIATE_BEFORE
: CARET_ASSOCIATE_AFTER;
if (aPos->mDirection == eDirPrevious)
aPos->mStartOffset = -1; // start from end
return aBlockFrame->PeekOffset(aPos);
}
}
return NS_OK;
}
nsIFrame::CaretPosition nsIFrame::GetExtremeCaretPosition(bool aStart) {
CaretPosition result;
FrameTarget targetFrame = DrillDownToSelectionFrame(this, !aStart, 0);
FrameContentRange range = GetRangeForFrame(targetFrame.frame);
result.mResultContent = range.content;
result.mContentOffset = aStart ? range.start : range.end;
return result;
}
// If this is a preformatted text frame, see if it ends with a newline
static nsContentAndOffset FindLineBreakInText(nsIFrame* aFrame,
nsDirection aDirection) {
nsContentAndOffset result;
if (aFrame->IsGeneratedContentFrame() ||
!aFrame->HasSignificantTerminalNewline()) {
return result;
}
int32_t endOffset = aFrame->GetOffsets().second;
result.mContent = aFrame->GetContent();
result.mOffset = endOffset - (aDirection == eDirPrevious ? 0 : 1);
return result;
}
// Find the first (or last) descendant of the given frame
// which is either a block-level frame or a BRFrame, or some other kind of break
// which stops the line.
static nsContentAndOffset FindLineBreakingFrame(nsIFrame* aFrame,
nsDirection aDirection) {
nsContentAndOffset result;
if (aFrame->IsGeneratedContentFrame()) {
return result;
}
// Treat form controls as inline leaves
// XXX we really need a way to determine whether a frame is inline-level
if (static_cast<nsIFormControlFrame*>(do_QueryFrame(aFrame))) {
return result;
}
// Check the frame itself
// Fall through block-in-inline split frames because their mContent is
// the content of the inline frames they were created from. The
// first/last child of such frames is the real block frame we're
// looking for.
if ((aFrame->IsBlockOutside() &&
!aFrame->HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT)) ||
aFrame->IsBrFrame()) {
nsIContent* content = aFrame->GetContent();
result.mContent = content->GetParent();
// In some cases (bug 310589, bug 370174) we end up here with a null
// content. This probably shouldn't ever happen, but since it sometimes
// does, we want to avoid crashing here.
NS_ASSERTION(result.mContent, "Unexpected orphan content");
if (result.mContent) {
result.mOffset = result.mContent->ComputeIndexOf_Deprecated(content) +
(aDirection == eDirPrevious ? 1 : 0);
}
return result;
}
result = FindLineBreakInText(aFrame, aDirection);
if (result.mContent) {
return result;
}
// Iterate over children and call ourselves recursively
if (aDirection == eDirPrevious) {
nsIFrame* child = aFrame->PrincipalChildList().LastChild();
while (child && !result.mContent) {
result = FindLineBreakingFrame(child, aDirection);
child = child->GetPrevSibling();
}
} else { // eDirNext
nsIFrame* child = aFrame->PrincipalChildList().FirstChild();
while (child && !result.mContent) {
result = FindLineBreakingFrame(child, aDirection);
child = child->GetNextSibling();
}
}
return result;
}
nsresult nsIFrame::PeekOffsetForParagraph(nsPeekOffsetStruct* aPos) {
nsIFrame* frame = this;
nsContentAndOffset blockFrameOrBR;
blockFrameOrBR.mContent = nullptr;
bool reachedLimit = frame->IsBlockOutside() || IsEditingHost(frame);
auto traverse = [&aPos](nsIFrame* current) {
return aPos->mDirection == eDirPrevious ? current->GetPrevSibling()
: current->GetNextSibling();
};
// Go through containing frames until reaching a block frame.
// In each step, search the previous (or next) siblings for the closest
// "stop frame" (a block frame or a BRFrame).
// If found, set it to be the selection boundary and abort.
while (!reachedLimit) {
nsIFrame* parent = frame->GetParent();
// Treat a frame associated with the root content as if it were a block
// frame.
if (!frame->mContent || !frame->mContent->GetParent()) {
reachedLimit = true;
break;
}
if (aPos->mDirection == eDirNext) {
// Try to find our own line-break before looking at our siblings.
blockFrameOrBR = FindLineBreakInText(frame, eDirNext);
}
nsIFrame* sibling = traverse(frame);
while (sibling && !blockFrameOrBR.mContent) {
blockFrameOrBR = FindLineBreakingFrame(sibling, aPos->mDirection);
sibling = traverse(sibling);
}
if (blockFrameOrBR.mContent) {
aPos->mResultContent = blockFrameOrBR.mContent;
aPos->mContentOffset = blockFrameOrBR.mOffset;
break;
}
frame = parent;
reachedLimit = frame && (frame->IsBlockOutside() || IsEditingHost(frame));
}
if (reachedLimit) { // no "stop frame" found
aPos->mResultContent = frame->GetContent();
if (aPos->mDirection == eDirPrevious) {
aPos->mContentOffset = 0;
} else if (aPos->mResultContent) {
aPos->mContentOffset = aPos->mResultContent->GetChildCount();
}
}
return NS_OK;
}
// Determine movement direction relative to frame
static bool IsMovingInFrameDirection(const nsIFrame* frame,
nsDirection aDirection, bool aVisual) {
bool isReverseDirection =
aVisual && nsBidiPresUtils::IsReversedDirectionFrame(frame);
return aDirection == (isReverseDirection ? eDirPrevious : eDirNext);
}
// Determines "are we looking for a boundary between whitespace and
// non-whitespace (in the direction we're moving in)". It is true when moving
// forward and looking for a beginning of a word, or when moving backwards and
// looking for an end of a word.
static bool ShouldWordSelectionEatSpace(const nsPeekOffsetStruct& aPos) {
if (aPos.mWordMovementType != eDefaultBehavior) {
// aPos->mWordMovementType possible values:
// eEndWord: eat the space if we're moving backwards
// eStartWord: eat the space if we're moving forwards
return (aPos.mWordMovementType == eEndWord) ==
(aPos.mDirection == eDirPrevious);
}
// Use the hidden preference which is based on operating system
// behavior. This pref only affects whether moving forward by word
// should go to the end of this word or start of the next word. When
// going backwards, the start of the word is always used, on every
// operating system.
return aPos.mDirection == eDirNext &&
StaticPrefs::layout_word_select_eat_space_to_next_word();
}
enum class OffsetIsAtLineEdge : bool { No, Yes };
static void SetPeekResultFromFrame(nsPeekOffsetStruct& aPos, nsIFrame* aFrame,
int32_t aOffset,
OffsetIsAtLineEdge aAtLineEdge) {
FrameContentRange range = GetRangeForFrame(aFrame);
aPos.mResultFrame = aFrame;
aPos.mResultContent = range.content;
// Output offset is relative to content, not frame
aPos.mContentOffset =
aOffset < 0 ? range.end + aOffset + 1 : range.start + aOffset;
if (aAtLineEdge == OffsetIsAtLineEdge::Yes) {
aPos.mAttach = aPos.mContentOffset == range.start ? CARET_ASSOCIATE_AFTER
: CARET_ASSOCIATE_BEFORE;
}
}
void nsIFrame::SelectablePeekReport::TransferTo(
nsPeekOffsetStruct& aPos) const {
return SetPeekResultFromFrame(aPos, mFrame, mOffset, OffsetIsAtLineEdge::No);
}
nsIFrame::SelectablePeekReport::SelectablePeekReport(
const mozilla::GenericErrorResult<nsresult>&& aErr) {
MOZ_ASSERT(NS_FAILED(aErr.operator nsresult()));
// Return an empty report
}
nsresult nsIFrame::PeekOffsetForCharacter(nsPeekOffsetStruct* aPos,
int32_t aOffset) {
SelectablePeekReport current{this, aOffset};
nsIFrame::FrameSearchResult peekSearchState = CONTINUE;
while (peekSearchState != FOUND) {
bool movingInFrameDirection = IsMovingInFrameDirection(
current.mFrame, aPos->mDirection, aPos->mVisual);
if (current.mJumpedLine) {
// If we jumped lines, it's as if we found a character, but we still need
// to eat non-renderable content on the new line.
peekSearchState = current.PeekOffsetNoAmount(movingInFrameDirection);
} else {
PeekOffsetCharacterOptions options;
options.mRespectClusters = aPos->mAmount == eSelectCluster;
peekSearchState =
current.PeekOffsetCharacter(movingInFrameDirection, options);
}
current.mMovedOverNonSelectableText |=
peekSearchState == CONTINUE_UNSELECTABLE;
if (peekSearchState != FOUND) {
SelectablePeekReport next = current.mFrame->GetFrameFromDirection(*aPos);
if (next.Failed()) {
return NS_ERROR_FAILURE;
}
next.mJumpedLine |= current.mJumpedLine;
next.mMovedOverNonSelectableText |= current.mMovedOverNonSelectableText;
next.mHasSelectableFrame |= current.mHasSelectableFrame;
current = next;
}
// Found frame, but because we moved over non selectable text we want
// the offset to be at the frame edge. Note that if we are extending the
// selection, this doesn't matter.
if (peekSearchState == FOUND && current.mMovedOverNonSelectableText &&
(!aPos->mExtend || current.mHasSelectableFrame)) {
auto [start, end] = current.mFrame->GetOffsets();
current.mOffset = aPos->mDirection == eDirNext ? 0 : end - start;
}
}
// Set outputs
current.TransferTo(*aPos);
// If we're dealing with a text frame and moving backward positions us at
// the end of that line, decrease the offset by one to make sure that
// we're placed before the linefeed character on the previous line.
if (current.mOffset < 0 && current.mJumpedLine &&
aPos->mDirection == eDirPrevious &&
current.mFrame->HasSignificantTerminalNewline() &&
!current.mIgnoredBrFrame) {
--aPos->mContentOffset;
}
return NS_OK;
}
nsresult nsIFrame::PeekOffsetForWord(nsPeekOffsetStruct* aPos,
int32_t aOffset) {
SelectablePeekReport current{this, aOffset};
bool shouldStopAtHardBreak =
aPos->mWordMovementType == eDefaultBehavior &&
StaticPrefs::layout_word_select_eat_space_to_next_word();
bool wordSelectEatSpace = ShouldWordSelectionEatSpace(*aPos);
PeekWordState state;
while (true) {
bool movingInFrameDirection = IsMovingInFrameDirection(
current.mFrame, aPos->mDirection, aPos->mVisual);
FrameSearchResult searchResult = current.mFrame->PeekOffsetWord(
movingInFrameDirection, wordSelectEatSpace, aPos->mIsKeyboardSelect,
&current.mOffset, &state, aPos->mTrimSpaces);
if (searchResult == FOUND) {
break;
}
SelectablePeekReport next = current.mFrame->GetFrameFromDirection(*aPos);
if (next.Failed()) {
// If we've crossed the line boundary, check to make sure that we
// have not consumed a trailing newline as whitespace if it's
// significant.
if (next.mJumpedLine && wordSelectEatSpace &&
current.mFrame->HasSignificantTerminalNewline() &&
current.mFrame->StyleText()->mWhiteSpace !=
StyleWhiteSpace::PreLine) {
current.mOffset -= 1;
}
break;
}
if (next.mJumpedLine && !wordSelectEatSpace && state.mSawBeforeType) {
// We can't jump lines if we're looking for whitespace following
// non-whitespace, and we already encountered non-whitespace.
break;
}
if (shouldStopAtHardBreak && next.mJumpedHardBreak) {
/**
* Prev, always: Jump and stop right there
* Next, saw inline: just stop
* Next, no inline: Jump and consume whitespaces
*/
if (aPos->mDirection == eDirPrevious) {
// Try moving to the previous line if exists
current.TransferTo(*aPos);
current.mFrame->PeekOffsetForCharacter(aPos, current.mOffset);
return NS_OK;
}
if (state.mSawInlineCharacter || current.mJumpedHardBreak) {
if (current.mFrame->HasSignificantTerminalNewline()) {
current.mOffset -= 1;
}
current.TransferTo(*aPos);
return NS_OK;
}
// Mark the state as whitespace and continue
state.Update(false, true);
}
if (next.mJumpedLine) {
state.mContext.Truncate();
}
current = next;
// Jumping a line is equivalent to encountering whitespace
// This affects only when it already met an actual character
if (wordSelectEatSpace && next.mJumpedLine) {
state.SetSawBeforeType();
}
}
// Set outputs
current.TransferTo(*aPos);
return NS_OK;
}
static nsIFrame* GetFirstSelectableDescendantWithLineIterator(
nsIFrame* aParentFrame, bool aForceEditableRegion) {
auto FoundValidFrame = [aForceEditableRegion](const nsIFrame* aFrame) {
if (!aFrame->IsSelectable(nullptr)) {
return false;
}
if (aForceEditableRegion && !aFrame->GetContent()->IsEditable()) {
return false;
}
return true;
};
for (nsIFrame* child : aParentFrame->PrincipalChildList()) {
// some children may not be selectable, e.g. :before / :after pseudoelements
// content with user-select: none, or contenteditable="false"
// we need to skip them
if (child->CanProvideLineIterator() && FoundValidFrame(child)) {
return child;
}
if (nsIFrame* nested = GetFirstSelectableDescendantWithLineIterator(
child, aForceEditableRegion)) {
return nested;
}
}
return nullptr;
}
nsresult nsIFrame::PeekOffsetForLine(nsPeekOffsetStruct* aPos) {
nsIFrame* blockFrame = this;
nsresult result = NS_ERROR_FAILURE;
// outer loop
// moving to a next block when no more blocks are available in a subtree
AutoAssertNoDomMutations guard;
while (NS_FAILED(result)) {
auto [newBlock, lineFrame] =
blockFrame->GetContainingBlockForLine(aPos->mScrollViewStop);
if (!newBlock) {
return NS_ERROR_FAILURE;
}
blockFrame = newBlock;
nsILineIterator* iter = blockFrame->GetLineIterator();
int32_t thisLine = iter->FindLineContaining(lineFrame);
if (NS_WARN_IF(thisLine < 0)) {
return NS_ERROR_FAILURE;
}
int8_t edgeCase = 0; // no edge case. This should look at thisLine
// this part will find a frame or a block frame. If it's a block frame
// it will "drill down" to find a viable frame or it will return an
// error.
nsIFrame* lastFrame = this;
// inner loop - crawling the frames within a specific block subtree
while (true) {
result =
GetNextPrevLineFromBlockFrame(aPos, blockFrame, thisLine, edgeCase);
// we came back to same spot! keep going
if (NS_SUCCEEDED(result) &&
(!aPos->mResultFrame || aPos->mResultFrame == lastFrame)) {
aPos->mResultFrame = nullptr;
lastFrame = nullptr;
if (aPos->mDirection == eDirPrevious) {
thisLine--;
} else {
thisLine++;
}
continue;
}
if (NS_FAILED(result)) {
break;
}
lastFrame = aPos->mResultFrame; // set last frame
/* SPECIAL CHECK FOR NAVIGATION INTO TABLES
* when we hit a frame which doesn't have line iterator, we need to
* drill down and find a child with the line iterator to prevent the
* crawling process to prematurely finish. Note that this is only sound if
* we're guaranteed to not have multiple children implementing
* LineIterator.
*
* So far known cases are:
* 1) table wrapper (drill down into table row group)
* 2) table cell (drill down into its only anon child)
*/
const bool shouldDrillIntoChildren =
aPos->mResultFrame->IsTableWrapperFrame() ||
aPos->mResultFrame->IsTableCellFrame();
if (shouldDrillIntoChildren) {
nsIFrame* child = GetFirstSelectableDescendantWithLineIterator(
aPos->mResultFrame, aPos->mForceEditableRegion);
if (child) {
aPos->mResultFrame = child;
}
}
if (!aPos->mResultFrame->CanProvideLineIterator()) {
// no more selectable content at this level
break;
}
if (aPos->mResultFrame == blockFrame) {
// Make sure block element is not the same as the one we had before.
break;
}
// we've struck another block element with selectable content!
if (aPos->mDirection == eDirPrevious) {
edgeCase = 1; // far edge, search from end backwards
} else {
edgeCase = -1; // near edge search from beginning onwards
}
thisLine = 0; // this line means nothing now.
// everything else means something so keep looking "inside" the
// block
blockFrame = aPos->mResultFrame;
}
}
return result;
}
nsresult nsIFrame::PeekOffsetForLineEdge(nsPeekOffsetStruct* aPos) {
// Adjusted so that the caret can't get confused when content changes
nsIFrame* frame = AdjustFrameForSelectionStyles(this);
Element* editingHost = frame->GetContent()->GetEditingHost();
auto [blockFrame, lineFrame] =
frame->GetContainingBlockForLine(aPos->mScrollViewStop);
if (!blockFrame) {
return NS_ERROR_FAILURE;
}
AutoAssertNoDomMutations guard;
nsILineIterator* it = blockFrame->GetLineIterator();
int32_t thisLine = it->FindLineContaining(lineFrame);
if (thisLine < 0) {
return NS_ERROR_FAILURE;
}
nsIFrame* baseFrame = nullptr;
bool endOfLine = eSelectEndLine == aPos->mAmount;
if (aPos->mVisual && PresContext()->BidiEnabled()) {
nsIFrame* firstFrame;
bool isReordered;
nsIFrame* lastFrame;
MOZ_TRY(
it->CheckLineOrder(thisLine, &isReordered, &firstFrame, &lastFrame));
baseFrame = endOfLine ? lastFrame : firstFrame;
} else {
auto line = it->GetLine(thisLine).unwrap();
nsIFrame* frame = line.mFirstFrameOnLine;
bool lastFrameWasEditable = false;
for (int32_t count = line.mNumFramesOnLine; count;
--count, frame = frame->GetNextSibling()) {
if (frame->IsGeneratedContentFrame()) {
continue;
}
// When jumping to the end of the line with the "end" key,
// try to skip over brFrames
if (endOfLine && line.mNumFramesOnLine > 1 && frame->IsBrFrame() &&
lastFrameWasEditable == frame->GetContent()->IsEditable()) {
continue;
}
lastFrameWasEditable =
frame->GetContent() && frame->GetContent()->IsEditable();
baseFrame = frame;
if (!endOfLine) {
break;
}
}
}
if (!baseFrame) {
return NS_ERROR_FAILURE;
}
// Make sure we are not leaving our inline editing host if exists
if (editingHost) {
if (nsIFrame* frame = editingHost->GetPrimaryFrame()) {
if (frame->IsInlineOutside() &&
!editingHost->Contains(baseFrame->GetContent())) {
baseFrame = frame;
if (endOfLine) {
baseFrame = baseFrame->LastContinuation();
}
}
}
}
FrameTarget targetFrame = DrillDownToSelectionFrame(baseFrame, endOfLine, 0);
SetPeekResultFromFrame(*aPos, targetFrame.frame, endOfLine ? -1 : 0,
OffsetIsAtLineEdge::Yes);
if (endOfLine && targetFrame.frame->HasSignificantTerminalNewline()) {
// Do not position the caret after the terminating newline if we're
// trying to move to the end of line (see bug 596506)
--aPos->mContentOffset;
}
if (!aPos->mResultContent) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsresult nsIFrame::PeekOffset(nsPeekOffsetStruct* aPos) {
MOZ_ASSERT(aPos);
if (NS_WARN_IF(HasAnyStateBits(NS_FRAME_IS_DIRTY))) {
// FIXME(Bug 1654362): <caption> currently can remain dirty.
return NS_ERROR_UNEXPECTED;
}
// Translate content offset to be relative to frame
int32_t offset = aPos->mStartOffset - GetRangeForFrame(this).start;
switch (aPos->mAmount) {
case eSelectCharacter:
case eSelectCluster:
return PeekOffsetForCharacter(aPos, offset);
case eSelectWordNoSpace:
// eSelectWordNoSpace means that we should not be eating any whitespace
// when moving to the adjacent word. This means that we should set aPos->
// mWordMovementType to eEndWord if we're moving forwards, and to
// eStartWord if we're moving backwards.
if (aPos->mDirection == eDirPrevious) {
aPos->mWordMovementType = eStartWord;
} else {
aPos->mWordMovementType = eEndWord;
}
// Intentionally fall through the eSelectWord case.
[[fallthrough]];
case eSelectWord:
return PeekOffsetForWord(aPos, offset);
case eSelectLine:
return PeekOffsetForLine(aPos);
case eSelectBeginLine:
case eSelectEndLine:
return PeekOffsetForLineEdge(aPos);
case eSelectParagraph:
return PeekOffsetForParagraph(aPos);
default: {
NS_ASSERTION(false, "Invalid amount");
return NS_ERROR_FAILURE;
}
}
}
nsIFrame::FrameSearchResult nsIFrame::PeekOffsetNoAmount(bool aForward,
int32_t* aOffset) {
NS_ASSERTION(aOffset && *aOffset <= 1, "aOffset out of range");
// Sure, we can stop right here.
return FOUND;
}
nsIFrame::FrameSearchResult nsIFrame::PeekOffsetCharacter(
bool aForward, int32_t* aOffset, PeekOffsetCharacterOptions aOptions) {
NS_ASSERTION(aOffset && *aOffset <= 1, "aOffset out of range");
int32_t startOffset = *aOffset;
// A negative offset means "end of frame", which in our case means offset 1.
if (startOffset < 0) startOffset = 1;
if (aForward == (startOffset == 0)) {
// We're before the frame and moving forward, or after it and moving
// backwards: skip to the other side and we're done.
*aOffset = 1 - startOffset;
return FOUND;
}
return CONTINUE;
}
nsIFrame::FrameSearchResult nsIFrame::PeekOffsetWord(
bool aForward, bool aWordSelectEatSpace, bool aIsKeyboardSelect,
int32_t* aOffset, PeekWordState* aState, bool /*aTrimSpaces*/) {
NS_ASSERTION(aOffset && *aOffset <= 1, "aOffset out of range");
int32_t startOffset = *aOffset;
// This isn't text, so truncate the context
aState->mContext.Truncate();
if (startOffset < 0) startOffset = 1;
if (aForward == (startOffset == 0)) {
// We're before the frame and moving forward, or after it and moving
// backwards. If we're looking for non-whitespace, we found it (without
// skipping this frame).
if (!aState->mAtStart) {
if (aState->mLastCharWasPunctuation) {
// We're not punctuation, so this is a punctuation boundary.
if (BreakWordBetweenPunctuation(aState, aForward, false, false,
aIsKeyboardSelect))
return FOUND;
} else {
// This is not a punctuation boundary.
if (aWordSelectEatSpace && aState->mSawBeforeType) return FOUND;
}
}
// Otherwise skip to the other side and note that we encountered
// non-whitespace.
*aOffset = 1 - startOffset;
aState->Update(false, // not punctuation
false // not whitespace
);
if (!aWordSelectEatSpace) aState->SetSawBeforeType();
}
return CONTINUE;
}
// static
bool nsIFrame::BreakWordBetweenPunctuation(const PeekWordState* aState,
bool aForward, bool aPunctAfter,
bool aWhitespaceAfter,
bool aIsKeyboardSelect) {
NS_ASSERTION(aPunctAfter != aState->mLastCharWasPunctuation,
"Call this only at punctuation boundaries");
if (aState->mLastCharWasWhitespace) {
// We always stop between whitespace and punctuation
return true;
}
if (!StaticPrefs::layout_word_select_stop_at_punctuation()) {
// When this pref is false, we never stop at a punctuation boundary unless
// it's followed by whitespace (in the relevant direction).
return aWhitespaceAfter;
}
if (!aIsKeyboardSelect) {
// mouse caret movement (e.g. word selection) always stops at every
// punctuation boundary
return true;
}
bool afterPunct = aForward ? aState->mLastCharWasPunctuation : aPunctAfter;
if (!afterPunct) {
// keyboard caret movement only stops after punctuation (in content order)
return false;
}
// Stop only if we've seen some non-punctuation since the last whitespace;
// don't stop after punctuation that follows whitespace.
return aState->mSeenNonPunctuationSinceWhitespace;
}
std::pair<nsIFrame*, nsIFrame*> nsIFrame::GetContainingBlockForLine(
bool aLockScroll) const {
const nsIFrame* parentFrame = this;
const nsIFrame* frame;
while (parentFrame) {
frame = parentFrame;
if (frame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
// if we are searching for a frame that is not in flow we will not find
// it. we must instead look for its placeholder
if (frame->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
// abspos continuations don't have placeholders, get the fif
frame = frame->FirstInFlow();
}
frame = frame->GetPlaceholderFrame();
if (!frame) {
return std::pair(nullptr, nullptr);
}
}
parentFrame = frame->GetParent();
if (parentFrame) {
if (aLockScroll && parentFrame->IsScrollFrame()) {
return std::pair(nullptr, nullptr);
}
if (parentFrame->CanProvideLineIterator()) {
return std::pair(const_cast<nsIFrame*>(parentFrame),
const_cast<nsIFrame*>(frame));
}
}
}
return std::pair(nullptr, nullptr);
}
Result<bool, nsresult> nsIFrame::IsVisuallyAtLineEdge(
nsILineIterator* aLineIterator, int32_t aLine, nsDirection aDirection) {
nsIFrame* firstFrame;
nsIFrame* lastFrame;
const bool lineIsRTL = aLineIterator->IsLineIteratorFlowRTL();
bool isReordered;
MOZ_TRY(aLineIterator->CheckLineOrder(aLine, &isReordered, &firstFrame,
&lastFrame));
nsIFrame** framePtr = aDirection == eDirPrevious ? &firstFrame : &lastFrame;
if (!*framePtr) {
return true;
}
bool frameIsRTL = (nsBidiPresUtils::FrameDirection(*framePtr) ==
mozilla::intl::BidiDirection::RTL);
if ((frameIsRTL == lineIsRTL) == (aDirection == eDirPrevious)) {
nsIFrame::GetFirstLeaf(framePtr);
} else {
nsIFrame::GetLastLeaf(framePtr);
}
return *framePtr == this;
}
Result<bool, nsresult> nsIFrame::IsLogicallyAtLineEdge(
nsILineIterator* aLineIterator, int32_t aLine, nsDirection aDirection) {
auto line = aLineIterator->GetLine(aLine).unwrap();
if (aDirection == eDirPrevious) {
nsIFrame* firstFrame = line.mFirstFrameOnLine;
nsIFrame::GetFirstLeaf(&firstFrame);
return firstFrame == this;
}
// eDirNext
nsIFrame* lastFrame = line.mFirstFrameOnLine;
for (int32_t lineFrameCount = line.mNumFramesOnLine; lineFrameCount > 1;
lineFrameCount--) {
lastFrame = lastFrame->GetNextSibling();
if (!lastFrame) {
NS_ERROR("should not be reached nsIFrame");
return Err(NS_ERROR_FAILURE);
}
}
nsIFrame::GetLastLeaf(&lastFrame);
return lastFrame == this;
}
nsIFrame::SelectablePeekReport nsIFrame::GetFrameFromDirection(
nsDirection aDirection, bool aVisual, bool aJumpLines, bool aScrollViewStop,
bool aForceEditableRegion) {
SelectablePeekReport result;
nsPresContext* presContext = PresContext();
bool needsVisualTraversal = aVisual && presContext->BidiEnabled();
nsCOMPtr<nsIFrameEnumerator> frameTraversal;
MOZ_TRY(NS_NewFrameTraversal(getter_AddRefs(frameTraversal), presContext,
this, eLeaf, needsVisualTraversal,
aScrollViewStop,
true, // aFollowOOFs
false // aSkipPopupChecks
));
// Find the prev/next selectable frame
bool selectable = false;
nsIFrame* traversedFrame = this;
AutoAssertNoDomMutations guard;
while (!selectable) {
auto [blockFrame, lineFrame] =
traversedFrame->GetContainingBlockForLine(aScrollViewStop);
if (!blockFrame) {
return result;
}
nsILineIterator* it = blockFrame->GetLineIterator();
int32_t thisLine = it->FindLineContaining(lineFrame);
if (thisLine < 0) {
return result;
}
bool atLineEdge;
MOZ_TRY_VAR(
atLineEdge,
needsVisualTraversal
? traversedFrame->IsVisuallyAtLineEdge(it, thisLine, aDirection)
: traversedFrame->IsLogicallyAtLineEdge(it, thisLine, aDirection));
if (atLineEdge) {
result.mJumpedLine = true;
if (!aJumpLines) {
return result; // we are done. cannot jump lines
}
int32_t lineToCheckWrap =
aDirection == eDirPrevious ? thisLine - 1 : thisLine;
if (lineToCheckWrap < 0 ||
!it->GetLine(lineToCheckWrap).unwrap().mIsWrapped) {
result.mJumpedHardBreak = true;
}
}
traversedFrame = frameTraversal->Traverse(aDirection == eDirNext);
if (!traversedFrame) {
return result;
}
auto IsSelectable = [aForceEditableRegion](const nsIFrame* aFrame) {
if (!aFrame->IsSelectable(nullptr)) {
return false;
}
return !aForceEditableRegion || aFrame->GetContent()->IsEditable();
};
// Skip br frames, but only if we can select something before hitting the
// end of the line or a non-selectable region.
if (atLineEdge && aDirection == eDirPrevious &&
traversedFrame->IsBrFrame()) {
for (nsIFrame* current = traversedFrame->GetPrevSibling(); current;
current = current->GetPrevSibling()) {
if (!current->IsBlockOutside() && IsSelectable(current)) {
if (!current->IsBrFrame()) {
result.mIgnoredBrFrame = true;
}
break;
}
}
if (result.mIgnoredBrFrame) {
continue;
}
}
selectable = IsSelectable(traversedFrame);
if (!selectable) {
if (traversedFrame->IsSelectable(nullptr)) {
result.mHasSelectableFrame = true;
}
result.mMovedOverNonSelectableText = true;
}
} // while (!selectable)
result.mOffset = (aDirection == eDirNext) ? 0 : -1;
if (aVisual && nsBidiPresUtils::IsReversedDirectionFrame(traversedFrame)) {
// The new frame is reverse-direction, go to the other end
result.mOffset = -1 - result.mOffset;
}
result.mFrame = traversedFrame;
return result;
}
nsIFrame::SelectablePeekReport nsIFrame::GetFrameFromDirection(
const nsPeekOffsetStruct& aPos) {
return GetFrameFromDirection(aPos.mDirection, aPos.mVisual, aPos.mJumpLines,
aPos.mScrollViewStop, aPos.mForceEditableRegion);
}
nsView* nsIFrame::GetClosestView(nsPoint* aOffset) const {
nsPoint offset(0, 0);
for (const nsIFrame* f = this; f; f = f->GetParent()) {
if (f->HasView()) {
if (aOffset) *aOffset = offset;
return f->GetView();
}
offset += f->GetPosition();
}
MOZ_ASSERT_UNREACHABLE("No view on any parent? How did that happen?");
return nullptr;
}
/* virtual */
void nsIFrame::ChildIsDirty(nsIFrame* aChild) {
MOZ_ASSERT_UNREACHABLE(
"should never be called on a frame that doesn't "
"inherit from nsContainerFrame");
}
#ifdef ACCESSIBILITY
a11y::AccType nsIFrame::AccessibleType() {
if (IsTableCaption() && !GetRect().IsEmpty()) {
return a11y::eHTMLCaptionType;
}
return a11y::eNoType;
}
#endif
bool nsIFrame::ClearOverflowRects() {
if (mOverflow.mType == OverflowStorageType::None) {
return false;
}
if (mOverflow.mType == OverflowStorageType::Large) {
RemoveProperty(OverflowAreasProperty());
}
mOverflow.mType = OverflowStorageType::None;
return true;
}
bool nsIFrame::SetOverflowAreas(const OverflowAreas& aOverflowAreas) {
if (mOverflow.mType == OverflowStorageType::Large) {
OverflowAreas* overflow = GetOverflowAreasProperty();
bool changed = *overflow != aOverflowAreas;
*overflow = aOverflowAreas;
// Don't bother with converting to the deltas form if we already
// have a property.
return changed;
}
const nsRect& vis = aOverflowAreas.InkOverflow();
uint32_t l = -vis.x, // left edge: positive delta is leftwards
t = -vis.y, // top: positive is upwards
r = vis.XMost() - mRect.width, // right: positive is rightwards
b = vis.YMost() - mRect.height; // bottom: positive is downwards
if (aOverflowAreas.ScrollableOverflow().IsEqualEdges(
nsRect(nsPoint(0, 0), GetSize())) &&
l <= InkOverflowDeltas::kMax && t <= InkOverflowDeltas::kMax &&
r <= InkOverflowDeltas::kMax && b <= InkOverflowDeltas::kMax &&
// we have to check these against zero because we *never* want to
// set a frame as having no overflow in this function. This is
// because FinishAndStoreOverflow calls this function prior to
// SetRect based on whether the overflow areas match aNewSize.
// In the case where the overflow areas exactly match mRect but
// do not match aNewSize, we need to store overflow in a property
// so that our eventual SetRect/SetSize will know that it has to
// reset our overflow areas.
(l | t | r | b) != 0) {
InkOverflowDeltas oldDeltas = mOverflow.mInkOverflowDeltas;
// It's a "small" overflow area so we store the deltas for each edge
// directly in the frame, rather than allocating a separate rect.
// If they're all zero, that's fine; we're setting things to
// no-overflow.
mOverflow.mInkOverflowDeltas.mLeft = l;
mOverflow.mInkOverflowDeltas.mTop = t;
mOverflow.mInkOverflowDeltas.mRight = r;
mOverflow.mInkOverflowDeltas.mBottom = b;
// There was no scrollable overflow before, and there isn't now.
return oldDeltas != mOverflow.mInkOverflowDeltas;
} else {
bool changed =
!aOverflowAreas.ScrollableOverflow().IsEqualEdges(
nsRect(nsPoint(0, 0), GetSize())) ||
!aOverflowAreas.InkOverflow().IsEqualEdges(InkOverflowFromDeltas());
// it's a large overflow area that we need to store as a property
mOverflow.mType = OverflowStorageType::Large;
AddProperty(OverflowAreasProperty(), new OverflowAreas(aOverflowAreas));
return changed;
}
}
enum class ApplyTransform : bool { No, Yes };
/**
* Compute the outline inner rect (so without outline-width and outline-offset)
* of aFrame, maybe iterating over its descendants, in aFrame's coordinate space
* or its post-transform coordinate space (depending on aApplyTransform).
*/
static nsRect ComputeOutlineInnerRect(
nsIFrame* aFrame, ApplyTransform aApplyTransform, bool& aOutValid,
const nsSize* aSizeOverride = nullptr,
const OverflowAreas* aOverflowOverride = nullptr) {
const nsRect bounds(nsPoint(0, 0),
aSizeOverride ? *aSizeOverride : aFrame->GetSize());
// The SVG container frames besides SVGTextFrame do not maintain
// an accurate mRect. It will make the outline be larger than
// we expect, we need to make them narrow to their children's outline.
// aOutValid is set to false if the returned nsRect is not valid
// and should not be included in the outline rectangle.
aOutValid = !aFrame->HasAnyStateBits(NS_FRAME_SVG_LAYOUT) ||
!aFrame->IsFrameOfType(nsIFrame::eSVGContainer) ||
aFrame->IsSVGTextFrame();
nsRect u;
if (!aFrame->FrameMaintainsOverflow()) {
return u;
}
// Start from our border-box, transformed. See comment below about
// transform of children.
bool doTransform =
aApplyTransform == ApplyTransform::Yes && aFrame->IsTransformed();
TransformReferenceBox boundsRefBox(nullptr, bounds);
if (doTransform) {
u = nsDisplayTransform::TransformRect(bounds, aFrame, boundsRefBox);
} else {
u = bounds;
}
if (aOutValid && !StaticPrefs::layout_outline_include_overflow()) {
return u;
}
// Only iterate through the children if the overflow areas suggest
// that we might need to, and if the frame doesn't clip its overflow
// anyway.
if (aOverflowOverride) {
if (!doTransform && bounds.IsEqualEdges(aOverflowOverride->InkOverflow()) &&
bounds.IsEqualEdges(aOverflowOverride->ScrollableOverflow())) {
return u;
}
} else {
if (!doTransform && bounds.IsEqualEdges(aFrame->InkOverflowRect()) &&
bounds.IsEqualEdges(aFrame->ScrollableOverflowRect())) {
return u;
}
}
const nsStyleDisplay* disp = aFrame->StyleDisplay();
LayoutFrameType fType = aFrame->Type();
if (fType == LayoutFrameType::Scroll ||
fType == LayoutFrameType::ListControl ||
fType == LayoutFrameType::SVGOuterSVG) {
return u;
}
auto overflowClipAxes = aFrame->ShouldApplyOverflowClipping(disp);
auto overflowClipMargin = aFrame->OverflowClipMargin(overflowClipAxes);
if (overflowClipAxes == nsIFrame::PhysicalAxes::Both &&
overflowClipMargin == nsSize()) {
return u;
}
const nsStyleEffects* effects = aFrame->StyleEffects();
Maybe<nsRect> clipPropClipRect =
aFrame->GetClipPropClipRect(disp, effects, bounds.Size());
// Iterate over all children except pop-up, absolutely-positioned,
// float, and overflow ones.
const FrameChildListIDs skip = {
FrameChildListID::Popup, FrameChildListID::Absolute,
FrameChildListID::Fixed, FrameChildListID::Float,
FrameChildListID::Overflow};
for (const auto& [list, listID] : aFrame->ChildLists()) {
if (skip.contains(listID)) {
continue;
}
for (nsIFrame* child : list) {
if (child->IsPlaceholderFrame()) {
continue;
}
// Note that passing ApplyTransform::Yes when
// child->Combines3DTransformWithAncestors() returns true is incorrect if
// our aApplyTransform is No... but the opposite would be as well.
// This is because elements within a preserve-3d scene are always
// transformed up to the top of the scene. This means we don't have a
// mechanism for getting a transform up to an intermediate point within
// the scene. We choose to over-transform rather than under-transform
// because this is consistent with other overflow areas.
bool validRect = true;
nsRect childRect =
ComputeOutlineInnerRect(child, ApplyTransform::Yes, validRect) +
child->GetPosition();
if (!validRect) {
continue;
}
if (clipPropClipRect) {
// Intersect with the clip before transforming.
childRect.IntersectRect(childRect, *clipPropClipRect);
}
// Note that we transform each child separately according to
// aFrame's transform, and then union, which gives a different
// (smaller) result from unioning and then transforming the
// union. This doesn't match the way we handle overflow areas
// with 2-D transforms, though it does match the way we handle
// overflow areas in preserve-3d 3-D scenes.
if (doTransform && !child->Combines3DTransformWithAncestors()) {
childRect =
nsDisplayTransform::TransformRect(childRect, aFrame, boundsRefBox);
}
// If a SVGContainer has a non-SVGContainer child, we assign
// its child's outline to this SVGContainer directly.
if (!aOutValid && validRect) {
u = childRect;
aOutValid = true;
} else {
u = u.UnionEdges(childRect);
}
}
}
if (overflowClipAxes != nsIFrame::PhysicalAxes::None) {
OverflowAreas::ApplyOverflowClippingOnRect(u, bounds, overflowClipAxes,
overflowClipMargin);
}
return u;
}
static void ComputeAndIncludeOutlineArea(nsIFrame* aFrame,
OverflowAreas& aOverflowAreas,
const nsSize& aNewSize) {
const nsStyleOutline* outline = aFrame->StyleOutline();
if (!outline->ShouldPaintOutline()) {
return;
}
// When the outline property is set on a :-moz-block-inside-inline-wrapper
// pseudo-element, it inherited that outline from the inline that was broken
// because it contained a block. In that case, we don't want a really wide
// outline if the block inside the inline is narrow, so union the actual
// contents of the anonymous blocks.
nsIFrame* frameForArea = aFrame;
do {
PseudoStyleType pseudoType = frameForArea->Style()->GetPseudoType();
if (pseudoType != PseudoStyleType::mozBlockInsideInlineWrapper) break;
// If we're done, we really want it and all its later siblings.
frameForArea = frameForArea->PrincipalChildList().FirstChild();
NS_ASSERTION(frameForArea, "anonymous block with no children?");
} while (frameForArea);
// Find the union of the border boxes of all descendants, or in
// the block-in-inline case, all descendants we care about.
//
// Note that the interesting perspective-related cases are taken
// care of by the code that handles those issues for overflow
// calling FinishAndStoreOverflow again, which in turn calls this
// function again. We still need to deal with preserve-3d a bit.
nsRect innerRect;
bool validRect = false;
if (frameForArea == aFrame) {
innerRect = ComputeOutlineInnerRect(aFrame, ApplyTransform::No, validRect,
&aNewSize, &aOverflowAreas);
} else {
for (; frameForArea; frameForArea = frameForArea->GetNextSibling()) {
nsRect r =
ComputeOutlineInnerRect(frameForArea, ApplyTransform::Yes, validRect);
// Adjust for offsets transforms up to aFrame's pre-transform
// (i.e., normal) coordinate space; see comments in
// UnionBorderBoxes for some of the subtlety here.
for (nsIFrame *f = frameForArea, *parent = f->GetParent();
/* see middle of loop */; f = parent, parent = f->GetParent()) {
r += f->GetPosition();
if (parent == aFrame) {
break;
}
if (parent->IsTransformed() && !f->Combines3DTransformWithAncestors()) {
TransformReferenceBox refBox(parent);
r = nsDisplayTransform::TransformRect(r, parent, refBox);
}
}
innerRect.UnionRect(innerRect, r);
}
}
// Keep this code in sync with nsDisplayOutline::GetInnerRect.
if (innerRect == aFrame->GetRectRelativeToSelf()) {
aFrame->RemoveProperty(nsIFrame::OutlineInnerRectProperty());
} else {
SetOrUpdateRectValuedProperty(aFrame, nsIFrame::OutlineInnerRectProperty(),
innerRect);
}
const nscoord offset = outline->mOutlineOffset.ToAppUnits();
nsRect outerRect(innerRect);
if (outline->mOutlineStyle.IsAuto()) {
nsPresContext* pc = aFrame->PresContext();
outerRect.Inflate(offset);
pc->Theme()->GetWidgetOverflow(pc->DeviceContext(), aFrame,
StyleAppearance::FocusOutline, &outerRect);
} else {
nscoord width = outline->GetOutlineWidth();
outerRect.Inflate(width + offset);
}
nsRect& vo = aOverflowAreas.InkOverflow();
vo = vo.UnionEdges(innerRect.Union(outerRect));
}
bool nsIFrame::FinishAndStoreOverflow(OverflowAreas& aOverflowAreas,
nsSize aNewSize, nsSize* aOldSize,
const nsStyleDisplay* aStyleDisplay) {
MOZ_ASSERT(FrameMaintainsOverflow(),
"Don't call - overflow rects not maintained on these SVG frames");
const nsStyleDisplay* disp = StyleDisplayWithOptionalParam(aStyleDisplay);
bool hasTransform = IsTransformed();
nsRect bounds(nsPoint(0, 0), aNewSize);
// Store the passed in overflow area if we are a preserve-3d frame or we have
// a transform, and it's not just the frame bounds.
if (hasTransform || Combines3DTransformWithAncestors()) {
if (!aOverflowAreas.InkOverflow().IsEqualEdges(bounds) ||
!aOverflowAreas.ScrollableOverflow().IsEqualEdges(bounds)) {
OverflowAreas* initial = GetProperty(nsIFrame::InitialOverflowProperty());
if (!initial) {
AddProperty(nsIFrame::InitialOverflowProperty(),
new OverflowAreas(aOverflowAreas));
} else if (initial != &aOverflowAreas) {
*initial = aOverflowAreas;
}
} else {
RemoveProperty(nsIFrame::InitialOverflowProperty());
}
#ifdef DEBUG
SetProperty(nsIFrame::DebugInitialOverflowPropertyApplied(), true);
#endif
} else {
#ifdef DEBUG
RemoveProperty(nsIFrame::DebugInitialOverflowPropertyApplied());
#endif
}
nsSize oldSize = mRect.Size();
bool sizeChanged = ((aOldSize ? *aOldSize : oldSize) != aNewSize);
// Our frame size may not have been computed and set yet, but code under
// functions such as ComputeEffectsRect (which we're about to call) use the
// values that are stored in our frame rect to compute their results. We
// need the results from those functions to be based on the frame size that
// we *will* have, so we temporarily set our frame size here before calling
// those functions.
//
// XXX Someone should document here why we revert the frame size before we
// return rather than just leaving it set.
//
// We pass false here to avoid invalidating display items for this temporary
// change. We sometimes reflow frames multiple times, with the final size
// being the same as the initial. The single call to SetSize after reflow is
// done will take care of invalidating display items if the size has actually
// changed.
SetSize(aNewSize, false);
const auto overflowClipAxes = ShouldApplyOverflowClipping(disp);
if (ChildrenHavePerspective(disp) && sizeChanged) {
RecomputePerspectiveChildrenOverflow(this);
if (overflowClipAxes != PhysicalAxes::Both) {
aOverflowAreas.SetAllTo(bounds);
DebugOnly<bool> ok = ComputeCustomOverflow(aOverflowAreas);
// ComputeCustomOverflow() should not return false, when
// FrameMaintainsOverflow() returns true.
MOZ_ASSERT(ok, "FrameMaintainsOverflow() != ComputeCustomOverflow()");
UnionChildOverflow(aOverflowAreas);
}
}
// This is now called FinishAndStoreOverflow() instead of
// StoreOverflow() because frame-generic ways of adding overflow
// can happen here, e.g. CSS2 outline and native theme.
// If the overflow area width or height is nscoord_MAX, then a
// saturating union may have encounted an overflow, so the overflow may not
// contain the frame border-box. Don't warn in that case.
// Don't warn for SVG either, since SVG doesn't need the overflow area
// to contain the frame bounds.
for (const auto otype : AllOverflowTypes()) {
DebugOnly<nsRect*> r = &aOverflowAreas.Overflow(otype);
NS_ASSERTION(aNewSize.width == 0 || aNewSize.height == 0 ||
r->width == nscoord_MAX || r->height == nscoord_MAX ||
(mState & NS_FRAME_SVG_LAYOUT) ||
r->Contains(nsRect(nsPoint(0, 0), aNewSize)),
"Computed overflow area must contain frame bounds");
}
// Overflow area must always include the frame's top-left and bottom-right,
// even if the frame rect is empty (so we can scroll to those positions).
const bool shouldIncludeBounds = [&] {
if (aNewSize.width == 0 && IsInlineFrame()) {
// Pending a real fix for bug 426879, don't do this for inline frames with
// zero width.
return false;
}
if (HasAnyStateBits(NS_FRAME_SVG_LAYOUT)) {
// Do not do this for SVG either, since it will usually massively increase
// the area unnecessarily (except for SVG that applies clipping, since
// that's the pre-existing behavior, and breaks pre-rendering otherwise).
// FIXME(bug 1770704): This check most likely wants to be removed or check
// for specific frame types at least.
return overflowClipAxes != PhysicalAxes::None;
}
return true;
}();
if (shouldIncludeBounds) {
for (const auto otype : AllOverflowTypes()) {
nsRect& o = aOverflowAreas.Overflow(otype);
o = o.UnionEdges(bounds);
}
}
// If we clip our children, clear accumulated overflow area in the affected
// dimension(s). The children are actually clipped to the padding-box, but
// since the overflow area should include the entire border-box, just set it
// to the border-box size here.
if (overflowClipAxes != PhysicalAxes::None) {
aOverflowAreas.ApplyClipping(bounds, overflowClipAxes,
OverflowClipMargin(overflowClipAxes));
}
// Note that StyleOverflow::Clip doesn't clip the frame
// background, so we add theme background overflow here so it's not clipped.
if (!::IsXULBoxWrapped(this) && IsThemed(disp)) {
nsRect r(bounds);
nsPresContext* presContext = PresContext();
if (presContext->Theme()->GetWidgetOverflow(
presContext->DeviceContext(), this, disp->EffectiveAppearance(),
&r)) {
nsRect& vo = aOverflowAreas.InkOverflow();
vo = vo.UnionEdges(r);
}
}
ComputeAndIncludeOutlineArea(this, aOverflowAreas, aNewSize);
// Nothing in here should affect scrollable overflow.
aOverflowAreas.InkOverflow() =
ComputeEffectsRect(this, aOverflowAreas.InkOverflow(), aNewSize);
// Absolute position clipping
const nsStyleEffects* effects = StyleEffects();
Maybe<nsRect> clipPropClipRect = GetClipPropClipRect(disp, effects, aNewSize);
if (clipPropClipRect) {
for (const auto otype : AllOverflowTypes()) {
nsRect& o = aOverflowAreas.Overflow(otype);
o.IntersectRect(o, *clipPropClipRect);
}
}
/* If we're transformed, transform the overflow rect by the current
* transformation. */
if (hasTransform) {
SetProperty(nsIFrame::PreTransformOverflowAreasProperty(),
new OverflowAreas(aOverflowAreas));
if (Combines3DTransformWithAncestors()) {
/* If we're a preserve-3d leaf frame, then our pre-transform overflow
* should be correct. Our post-transform overflow is empty though, because
* we only contribute to the overflow area of the preserve-3d root frame.
* If we're an intermediate frame then the pre-transform overflow should
* contain all our non-preserve-3d children, which is what we want. Again
* we have no post-transform overflow.
*/
aOverflowAreas.SetAllTo(nsRect());
} else {
TransformReferenceBox refBox(this);
for (const auto otype : AllOverflowTypes()) {
nsRect& o = aOverflowAreas.Overflow(otype);
o = nsDisplayTransform::TransformRect(o, this, refBox);
}
/* If we're the root of the 3d context, then we want to include the
* overflow areas of all the participants. This won't have happened yet as
* the code above set their overflow area to empty. Manually collect these
* overflow areas now.
*/
if (Extend3DContext(disp, effects)) {
ComputePreserve3DChildrenOverflow(aOverflowAreas);
}
}
} else {
RemoveProperty(nsIFrame::PreTransformOverflowAreasProperty());
}
/* Revert the size change in case some caller is depending on this. */
SetSize(oldSize, false);
bool anyOverflowChanged;
if (aOverflowAreas != OverflowAreas(bounds, bounds)) {
anyOverflowChanged = SetOverflowAreas(aOverflowAreas);
} else {
anyOverflowChanged = ClearOverflowRects();
}
if (anyOverflowChanged) {
SVGObserverUtils::InvalidateDirectRenderingObservers(this);
if (nsBlockFrame* block = do_QueryFrame(this)) {
// NOTE(emilio): we need to use BeforeReflow::Yes, because we want to
// invalidate in cases where we _used_ to have an overflow marker and no
// longer do.
if (TextOverflow::CanHaveOverflowMarkers(
block, TextOverflow::BeforeReflow::Yes)) {
DiscardDisplayItems(this, [](nsDisplayItem* aItem) {
return aItem->GetType() == DisplayItemType::TYPE_TEXT_OVERFLOW;
});
SchedulePaint(PAINT_DEFAULT);
}
}
}
return anyOverflowChanged;
}
void nsIFrame::RecomputePerspectiveChildrenOverflow(
const nsIFrame* aStartFrame) {
for (const auto& childList : ChildLists()) {
for (nsIFrame* child : childList.mList) {
if (!child->FrameMaintainsOverflow()) {
continue; // frame does not maintain overflow rects
}
if (child->HasPerspective()) {
OverflowAreas* overflow =
child->GetProperty(nsIFrame::InitialOverflowProperty());
nsRect bounds(nsPoint(0, 0), child->GetSize());
if (overflow) {
OverflowAreas overflowCopy = *overflow;
child->FinishAndStoreOverflow(overflowCopy, bounds.Size());
} else {
OverflowAreas boundsOverflow;
boundsOverflow.SetAllTo(bounds);
child->FinishAndStoreOverflow(boundsOverflow, bounds.Size());
}
} else if (child->GetContent() == aStartFrame->GetContent() ||
child->GetClosestFlattenedTreeAncestorPrimaryFrame() ==
aStartFrame) {
// If a frame is using perspective, then the size used to compute
// perspective-origin is the size of the frame belonging to its parent
// style. We must find any descendant frames using our size
// (by recursing into frames that have the same containing block)
// to update their overflow rects too.
child->RecomputePerspectiveChildrenOverflow(aStartFrame);
}
}
}
}
void nsIFrame::ComputePreserve3DChildrenOverflow(
OverflowAreas& aOverflowAreas) {
// Find all descendants that participate in the 3d context, and include their
// overflow. These descendants have an empty overflow, so won't have been
// included in the normal overflow calculation. Any children that don't
// participate have normal overflow, so will have been included already.
nsRect childVisual;
nsRect childScrollable;
for (const auto& childList : ChildLists()) {
for (nsIFrame* child : childList.mList) {
// If this child participates in the 3d context, then take the
// pre-transform region (which contains all descendants that aren't
// participating in the 3d context) and transform it into the 3d context
// root coordinate space.
if (child->Combines3DTransformWithAncestors()) {
OverflowAreas childOverflow = child->GetOverflowAreasRelativeToSelf();
TransformReferenceBox refBox(child);
for (const auto otype : AllOverflowTypes()) {
nsRect& o = childOverflow.Overflow(otype);
o = nsDisplayTransform::TransformRect(o, child, refBox);
}
aOverflowAreas.UnionWith(childOverflow);
// If this child also extends the 3d context, then recurse into it
// looking for more participants.
if (child->Extend3DContext()) {
child->ComputePreserve3DChildrenOverflow(aOverflowAreas);
}
}
}
}
}
bool nsIFrame::ZIndexApplies() const {
return StyleDisplay()->IsPositionedStyle() || IsFlexOrGridItem() ||
IsMenuPopupFrame();
}
Maybe<int32_t> nsIFrame::ZIndex() const {
if (!ZIndexApplies()) {
return Nothing();
}
const auto& zIndex = StylePosition()->mZIndex;
if (zIndex.IsAuto()) {
return Nothing();
}
return Some(zIndex.AsInteger());
}
bool nsIFrame::IsScrollAnchor(ScrollAnchorContainer** aOutContainer) {
if (!mInScrollAnchorChain) {
return false;
}
nsIFrame* f = this;
// FIXME(emilio, bug 1629280): We should find a non-null anchor if we have the
// flag set, but bug 1629280 makes it so that we cannot really assert it /
// make this just a `while (true)`, and uncomment the below assertion.
while (auto* container = ScrollAnchorContainer::FindFor(f)) {
// MOZ_ASSERT(f->IsInScrollAnchorChain());
if (nsIFrame* anchor = container->AnchorNode()) {
if (anchor != this) {
return false;
}
if (aOutContainer) {
*aOutContainer = container;
}
return true;
}
f = container->Frame();
}
return false;
}
bool nsIFrame::IsInScrollAnchorChain() const { return mInScrollAnchorChain; }
void nsIFrame::SetInScrollAnchorChain(bool aInChain) {
mInScrollAnchorChain = aInChain;
}
uint32_t nsIFrame::GetDepthInFrameTree() const {
uint32_t result = 0;
for (nsContainerFrame* ancestor = GetParent(); ancestor;
ancestor = ancestor->GetParent()) {
result++;
}
return result;
}
/**
* This function takes a frame that is part of a block-in-inline split,
* and _if_ that frame is an anonymous block created by an ib split it
* returns the block's preceding inline. This is needed because the
* split inline's style is the parent of the anonymous block's style.
*
* If aFrame is not an anonymous block, null is returned.
*/
static nsIFrame* GetIBSplitSiblingForAnonymousBlock(const nsIFrame* aFrame) {
MOZ_ASSERT(aFrame, "Must have a non-null frame!");
NS_ASSERTION(aFrame->HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT),
"GetIBSplitSibling should only be called on ib-split frames");
if (aFrame->Style()->GetPseudoType() !=
PseudoStyleType::mozBlockInsideInlineWrapper) {
// it's not an anonymous block
return nullptr;
}
// Find the first continuation of the frame. (Ugh. This ends up
// being O(N^2) when it is called O(N) times.)
aFrame = aFrame->FirstContinuation();
/*
* Now look up the nsGkAtoms::IBSplitPrevSibling
* property.
*/
nsIFrame* ibSplitSibling =
aFrame->GetProperty(nsIFrame::IBSplitPrevSibling());
NS_ASSERTION(ibSplitSibling, "Broken frame tree?");
return ibSplitSibling;
}
/**
* Get the parent, corrected for the mangled frame tree resulting from
* having a block within an inline. The result only differs from the
* result of |GetParent| when |GetParent| returns an anonymous block
* that was created for an element that was 'display: inline' because
* that element contained a block.
*
* Also skip anonymous scrolled-content parents; inherit directly from the
* outer scroll frame.
*
* Also skip NAC parents if the child frame is NAC.
*/
static nsIFrame* GetCorrectedParent(const nsIFrame* aFrame) {
nsIFrame* parent = aFrame->GetParent();
if (!parent) {
return nullptr;
}
// For a table caption we want the _inner_ table frame (unless it's anonymous)
// as the style parent.
if (aFrame->IsTableCaption()) {
nsIFrame* innerTable = parent->PrincipalChildList().FirstChild();
if (!innerTable->Style()->IsAnonBox()) {
return innerTable;
}
}
// Table wrappers are always anon boxes; if we're in here for an outer
// table, that actually means its the _inner_ table that wants to
// know its parent. So get the pseudo of the inner in that case.
auto pseudo = aFrame->Style()->GetPseudoType();
if (pseudo == PseudoStyleType::tableWrapper) {
pseudo =
aFrame->PrincipalChildList().FirstChild()->Style()->GetPseudoType();
}
// Prevent a NAC pseudo-element from inheriting from its NAC parent, and
// inherit from the NAC generator element instead.
if (pseudo != PseudoStyleType::NotPseudo) {
MOZ_ASSERT(aFrame->GetContent());
Element* element = Element::FromNode(aFrame->GetContent());
// Make sure to avoid doing the fixup for non-element-backed pseudos like
// ::first-line and such.
if (element && !element->IsRootOfNativeAnonymousSubtree() &&
element->GetPseudoElementType() == aFrame->Style()->GetPseudoType()) {
while (parent->GetContent() &&
!parent->GetContent()->IsRootOfNativeAnonymousSubtree()) {
parent = parent->GetInFlowParent();
}
parent = parent->GetInFlowParent();
}
}
return nsIFrame::CorrectStyleParentFrame(parent, pseudo);
}
/* static */
nsIFrame* nsIFrame::CorrectStyleParentFrame(nsIFrame* aProspectiveParent,
PseudoStyleType aChildPseudo) {
MOZ_ASSERT(aProspectiveParent, "Must have a prospective parent");
if (aChildPseudo != PseudoStyleType::NotPseudo) {
// Non-inheriting anon boxes have no style parent frame at all.
if (PseudoStyle::IsNonInheritingAnonBox(aChildPseudo)) {
return nullptr;
}
// Other anon boxes are parented to their actual parent already, except
// for non-elements. Those should not be treated as an anon box.
if (PseudoStyle::IsAnonBox(aChildPseudo) &&
!nsCSSAnonBoxes::IsNonElement(aChildPseudo)) {
NS_ASSERTION(aChildPseudo != PseudoStyleType::mozBlockInsideInlineWrapper,
"Should have dealt with kids that have "
"NS_FRAME_PART_OF_IBSPLIT elsewhere");
return aProspectiveParent;
}
}
// Otherwise, walk up out of all anon boxes. For placeholder frames, walk out
// of all pseudo-elements as well. Otherwise ReparentComputedStyle could
// cause style data to be out of sync with the frame tree.
nsIFrame* parent = aProspectiveParent;
do {
if (parent->HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT)) {
nsIFrame* sibling = GetIBSplitSiblingForAnonymousBlock(parent);
if (sibling) {
// |parent| was a block in an {ib} split; use the inline as
// |the style parent.
parent = sibling;
}
}
if (!parent->Style()->IsPseudoOrAnonBox()) {
return parent;
}
if (!parent->Style()->IsAnonBox() && aChildPseudo != PseudoStyleType::MAX) {
// nsPlaceholderFrame passes in PseudoStyleType::MAX for
// aChildPseudo (even though that's not a valid pseudo-type) just to
// trigger this behavior of walking up to the nearest non-pseudo
// ancestor.
return parent;
}
parent = parent->GetInFlowParent();
} while (parent);
if (aProspectiveParent->Style()->GetPseudoType() ==
PseudoStyleType::viewportScroll) {
// aProspectiveParent is the scrollframe for a viewport
// and the kids are the anonymous scrollbars
return aProspectiveParent;
}
// We can get here if the root element is absolutely positioned.
// We can't test for this very accurately, but it can only happen
// when the prospective parent is a canvas frame.
NS_ASSERTION(aProspectiveParent->IsCanvasFrame(),
"Should have found a parent before this");
return nullptr;
}
ComputedStyle* nsIFrame::DoGetParentComputedStyle(
nsIFrame** aProviderFrame) const {
*aProviderFrame = nullptr;
// Handle display:contents and the root frame, when there's no parent frame
// to inherit from.
if (MOZ_LIKELY(mContent)) {
Element* parentElement = mContent->GetFlattenedTreeParentElement();
if (MOZ_LIKELY(parentElement)) {
auto pseudo = Style()->GetPseudoType();
if (pseudo == PseudoStyleType::NotPseudo || !mContent->IsElement() ||
(!PseudoStyle::IsAnonBox(pseudo) &&
// Ensure that we don't return the display:contents style
// of the parent content for pseudos that have the same content
// as their primary frame (like -moz-list-bullets do):
IsPrimaryFrame()) ||
/* if next is true then it's really a request for the table frame's
parent context, see nsTable[Outer]Frame::GetParentComputedStyle. */
pseudo == PseudoStyleType::tableWrapper) {
// In some edge cases involving display: contents, we may end up here
// for something that's pending to be reframed. In this case we return
// the wrong style from here (because we've already lost track of it!),
// but it's not a big deal as we're going to be reframed anyway.
if (MOZ_LIKELY(parentElement->HasServoData()) &&
Servo_Element_IsDisplayContents(parentElement)) {
RefPtr<ComputedStyle> style =
ServoStyleSet::ResolveServoStyle(*parentElement);
// NOTE(emilio): we return a weak reference because the element also
// holds the style context alive. This is a bit silly (we could've
// returned a weak ref directly), but it's probably not worth
// optimizing, given this function has just one caller which is rare,
// and this path is rare itself.
return style;
}
}
} else {
if (Style()->GetPseudoType() == PseudoStyleType::NotPseudo) {
// We're a frame for the root. We have no style parent.
return nullptr;
}
}
}
if (!(mState & NS_FRAME_OUT_OF_FLOW)) {
/*
* If this frame is an anonymous block created when an inline with a block
* inside it got split, then the parent style is on its preceding inline. We
* can get to it using GetIBSplitSiblingForAnonymousBlock.
*/
if (mState & NS_FRAME_PART_OF_IBSPLIT) {
nsIFrame* ibSplitSibling = GetIBSplitSiblingForAnonymousBlock(this);
if (ibSplitSibling) {
return (*aProviderFrame = ibSplitSibling)->Style();
}
}
// If this frame is one of the blocks that split an inline, we must
// return the "special" inline parent, i.e., the parent that this
// frame would have if we didn't mangle the frame structure.
*aProviderFrame = GetCorrectedParent(this);
return *aProviderFrame ? (*aProviderFrame)->Style() : nullptr;
}
// We're an out-of-flow frame. For out-of-flow frames, we must
// resolve underneath the placeholder's parent. The placeholder is
// reached from the first-in-flow.
nsPlaceholderFrame* placeholder = FirstInFlow()->GetPlaceholderFrame();
if (!placeholder) {
MOZ_ASSERT_UNREACHABLE("no placeholder frame for out-of-flow frame");
*aProviderFrame = GetCorrectedParent(this);
return *aProviderFrame ? (*aProviderFrame)->Style() : nullptr;
}
return placeholder->GetParentComputedStyleForOutOfFlow(aProviderFrame);
}
void nsIFrame::GetLastLeaf(nsIFrame** aFrame) {
if (!aFrame || !*aFrame) return;
nsIFrame* child = *aFrame;
// if we are a block frame then go for the last line of 'this'
while (1) {
child = child->PrincipalChildList().FirstChild();
if (!child) return; // nothing to do
nsIFrame* siblingFrame;
nsIContent* content;
// ignore anonymous elements, e.g. mozTableAdd* mozTableRemove*
// see bug 278197 comment #12 #13 for details
while ((siblingFrame = child->GetNextSibling()) &&
(content = siblingFrame->GetContent()) &&
!content->IsRootOfNativeAnonymousSubtree())
child = siblingFrame;
*aFrame = child;
}
}
void nsIFrame::GetFirstLeaf(nsIFrame** aFrame) {
if (!aFrame || !*aFrame) return;
nsIFrame* child = *aFrame;
while (1) {
child = child->PrincipalChildList().FirstChild();
if (!child) return; // nothing to do
*aFrame = child;
}
}
bool nsIFrame::IsFocusableDueToScrollFrame() {
if (!IsScrollFrame()) {
if (nsFieldSetFrame* fieldset = do_QueryFrame(this)) {
// TODO: Do we have similar special-cases like this where we can have
// anonymous scrollable boxes hanging off a primary frame?
if (nsIFrame* inner = fieldset->GetInner()) {
return inner->IsFocusableDueToScrollFrame();
}
}
return false;
}
if (!mContent->IsHTMLElement()) {
return false;
}
if (mContent->IsRootOfNativeAnonymousSubtree()) {
return false;
}
if (!mContent->GetParent()) {
return false;
}
if (mContent->AsElement()->HasAttr(nsGkAtoms::tabindex)) {
return false;
}
// Elements with scrollable view are focusable with script & tabbable
// Otherwise you couldn't scroll them with keyboard, which is an accessibility
// issue (e.g. Section 508 rules) However, we don't make them to be focusable
// with the mouse, because the extra focus outlines are considered
// unnecessarily ugly. When clicked on, the selection position within the
// element will be enough to make them keyboard scrollable.
nsIScrollableFrame* scrollFrame = do_QueryFrame(this);
if (!scrollFrame) {
return false;
}
if (scrollFrame->IsForTextControlWithNoScrollbars()) {
return false;
}
if (scrollFrame->GetScrollStyles().IsHiddenInBothDirections()) {
return false;
}
if (scrollFrame->GetScrollRange().IsEqualEdges(nsRect(0, 0, 0, 0))) {
return false;
}
return true;
}
nsIFrame::Focusable nsIFrame::IsFocusable(bool aWithMouse) {
// cannot focus content in print preview mode. Only the root can be focused,
// but that's handled elsewhere.
if (PresContext()->Type() == nsPresContext::eContext_PrintPreview) {
return {};
}
if (!mContent || !mContent->IsElement()) {
return {};
}
if (!IsVisibleConsideringAncestors()) {
return {};
}
const nsStyleUI& ui = *StyleUI();
if (ui.IsInert()) {
return {};
}
PseudoStyleType pseudo = Style()->GetPseudoType();
if (pseudo == PseudoStyleType::anonymousItem) {
return {};
}
int32_t tabIndex = -1;
if (ui.UserFocus() != StyleUserFocus::Ignore &&
ui.UserFocus() != StyleUserFocus::None) {
// Pass in default tabindex of -1 for nonfocusable and 0 for focusable
tabIndex = 0;
}
if (mContent->IsFocusable(&tabIndex, aWithMouse)) {
// If the content is focusable, then we're done.
return {true, tabIndex};
}
// If we're focusing with the mouse we never focus scroll areas.
if (!aWithMouse && IsFocusableDueToScrollFrame()) {
return {true, 0};
}
return {false, tabIndex};
}
/**
* @return true if this text frame ends with a newline character which is
* treated as preformatted. It should return false if this is not a text frame.
*/
bool nsIFrame::HasSignificantTerminalNewline() const { return false; }
static StyleVerticalAlignKeyword ConvertSVGDominantBaselineToVerticalAlign(
StyleDominantBaseline aDominantBaseline) {
// Most of these are approximate mappings.
switch (aDominantBaseline) {
case StyleDominantBaseline::Hanging:
case StyleDominantBaseline::TextBeforeEdge:
return StyleVerticalAlignKeyword::TextTop;
case StyleDominantBaseline::TextAfterEdge:
case StyleDominantBaseline::Ideographic:
return StyleVerticalAlignKeyword::TextBottom;
case StyleDominantBaseline::Central:
case StyleDominantBaseline::Middle:
case StyleDominantBaseline::Mathematical:
return StyleVerticalAlignKeyword::Middle;
case StyleDominantBaseline::Auto:
case StyleDominantBaseline::Alphabetic:
return StyleVerticalAlignKeyword::Baseline;
default:
MOZ_ASSERT_UNREACHABLE("unexpected aDominantBaseline value");
return StyleVerticalAlignKeyword::Baseline;
}
}
Maybe<StyleVerticalAlignKeyword> nsIFrame::VerticalAlignEnum() const {
if (SVGUtils::IsInSVGTextSubtree(this)) {
StyleDominantBaseline dominantBaseline = StyleSVG()->mDominantBaseline;
return Some(ConvertSVGDominantBaselineToVerticalAlign(dominantBaseline));
}
const auto& verticalAlign = StyleDisplay()->mVerticalAlign;
if (verticalAlign.IsKeyword()) {
return Some(verticalAlign.AsKeyword());
}
return Nothing();
}
NS_IMETHODIMP
nsIFrame::RefreshSizeCache(nsBoxLayoutState& aState) {
// XXXbz this comment needs some rewriting to make sense in the
// post-reflow-branch world.
// Ok we need to compute our minimum, preferred, and maximum sizes.
// 1) Maximum size. This is easy. Its infinite unless it is overloaded by CSS.
// 2) Preferred size. This is a little harder. This is the size the
// block would be if it were laid out on an infinite canvas. So we can
// get this by reflowing the block with and INTRINSIC width and height. We
// can also do a nice optimization for incremental reflow. If the reflow is
// incremental then we can pass a flag to have the block compute the
// preferred width for us! Preferred height can just be the minimum height;
// 3) Minimum size. This is a toughy. We can pass the block a flag asking for
// the max element size. That would give us the width. Unfortunately you
// can only ask for a maxElementSize during an incremental reflow. So on
// other reflows we will just have to use 0. The min height on the other
// hand is fairly easy we need to get the largest line height. This can be
// done with the line iterator.
// if we do have a rendering context
gfxContext* rendContext = aState.GetRenderingContext();
if (rendContext) {
nsPresContext* presContext = aState.PresContext();
// If we don't have any HTML constraints and it's a resize, then nothing in
// the block could have changed, so no refresh is necessary.
nsBoxLayoutMetrics* metrics = BoxMetrics();
if (!XULNeedsRecalc(metrics->mBlockPrefSize)) {
return NS_OK;
}
// the rect we plan to size to.
nsRect rect = GetRect();
nsMargin bp(0, 0, 0, 0);
GetXULBorderAndPadding(bp);
{
// If we're a container for font size inflation, then shrink
// wrapping inside of us should not apply font size inflation.
AutoMaybeDisableFontInflation an(this);
metrics->mBlockPrefSize.width =
GetPrefISize(rendContext) + bp.LeftRight();
metrics->mBlockMinSize.width = GetMinISize(rendContext) + bp.LeftRight();
}
// do the nasty.
const WritingMode wm = aState.OuterReflowInput()
? aState.OuterReflowInput()->GetWritingMode()
: GetWritingMode();
ReflowOutput desiredSize(wm);
BoxReflow(aState, presContext, desiredSize, rendContext, rect.x, rect.y,
metrics->mBlockPrefSize.width, NS_UNCONSTRAINEDSIZE);
metrics->mBlockMinSize.height = 0;
// ok we need the max ascent of the items on the line. So to do this
// ask the block for its line iterator. Get the max ascent.
AutoAssertNoDomMutations guard;
if (IsBlockFrameOrSubclass()) {
nsILineIterator* lines = GetLineIterator();
MOZ_ASSERT(lines);
metrics->mBlockMinSize.height = 0;
int32_t lineCount = lines->GetNumLines();
for (int32_t i = 0; i < lineCount; ++i) {
auto line = lines->GetLine(i).unwrap();
if (line.mLineBounds.height > metrics->mBlockMinSize.height) {
metrics->mBlockMinSize.height = line.mLineBounds.height;
}
}
} else {
metrics->mBlockMinSize.height = desiredSize.Height();
}
metrics->mBlockPrefSize.height = metrics->mBlockMinSize.height;
if (desiredSize.BlockStartAscent() == ReflowOutput::ASK_FOR_BASELINE) {
if (!nsLayoutUtils::GetFirstLineBaseline(wm, this,
&metrics->mBlockAscent))
metrics->mBlockAscent = GetLogicalBaseline(wm);
} else {
metrics->mBlockAscent = desiredSize.BlockStartAscent();
}
#ifdef DEBUG_adaptor
printf("min=(%d,%d), pref=(%d,%d), ascent=%d\n",
metrics->mBlockMinSize.width, metrics->mBlockMinSize.height,
metrics->mBlockPrefSize.width, metrics->mBlockPrefSize.height,
metrics->mBlockAscent);
#endif
}
return NS_OK;
}
nsSize nsIFrame::GetXULPrefSize(nsBoxLayoutState& aState) {
nsSize size(0, 0);
DISPLAY_PREF_SIZE(this, size);
// If the size is cached, and there are no HTML constraints that we might
// be depending on, then we just return the cached size.
nsBoxLayoutMetrics* metrics = BoxMetrics();
if (!XULNeedsRecalc(metrics->mPrefSize)) {
size = metrics->mPrefSize;
return size;
}
if (IsXULCollapsed()) return size;
// get our size in CSS.
bool widthSet, heightSet;
bool completelyRedefined =
nsIFrame::AddXULPrefSize(this, size, widthSet, heightSet);
// Refresh our caches with new sizes.
if (!completelyRedefined) {
RefreshSizeCache(aState);
nsSize blockSize = metrics->mBlockPrefSize;
// notice we don't need to add our borders or padding
// in. That's because the block did it for us.
if (!widthSet) size.width = blockSize.width;
if (!heightSet) size.height = blockSize.height;
}
metrics->mPrefSize = size;
return size;
}
nsSize nsIFrame::GetXULMinSize(nsBoxLayoutState& aState) {
nsSize size(0, 0);
DISPLAY_MIN_SIZE(this, size);
// Don't use the cache if we have HTMLReflowInput constraints --- they might
// have changed
nsBoxLayoutMetrics* metrics = BoxMetrics();
if (!XULNeedsRecalc(metrics->mMinSize)) {
size = metrics->mMinSize;
return size;
}
if (IsXULCollapsed()) return size;
// get our size in CSS.
bool widthSet, heightSet;
bool completelyRedefined =
nsIFrame::AddXULMinSize(this, size, widthSet, heightSet);
// Refresh our caches with new sizes.
if (!completelyRedefined) {
RefreshSizeCache(aState);
nsSize blockSize = metrics->mBlockMinSize;
if (!widthSet) size.width = blockSize.width;
if (!heightSet) size.height = blockSize.height;
}
metrics->mMinSize = size;
return size;
}
nsSize nsIFrame::GetXULMaxSize(nsBoxLayoutState& aState) {
nsSize size(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
DISPLAY_MAX_SIZE(this, size);
// Don't use the cache if we have HTMLReflowInput constraints --- they might
// have changed
nsBoxLayoutMetrics* metrics = BoxMetrics();
if (!XULNeedsRecalc(metrics->mMaxSize)) {
size = metrics->mMaxSize;
return size;
}
if (IsXULCollapsed()) return size;
size = nsIFrame::GetUncachedXULMaxSize(aState);
metrics->mMaxSize = size;
return size;
}
int32_t nsIFrame::GetXULFlex() const {
return clamped(int32_t(StyleXUL()->mBoxFlex), 0, nscoord_MAX - 1);
}
nscoord nsIFrame::GetXULBoxAscent(nsBoxLayoutState& aState) {
nsBoxLayoutMetrics* metrics = BoxMetrics();
if (!XULNeedsRecalc(metrics->mAscent)) {
return metrics->mAscent;
}
if (IsXULCollapsed()) {
metrics->mAscent = 0;
} else {
// Refresh our caches with new sizes.
RefreshSizeCache(aState);
metrics->mAscent = metrics->mBlockAscent;
}
return metrics->mAscent;
}
nsresult nsIFrame::DoXULLayout(nsBoxLayoutState& aState) {
nsRect ourRect(mRect);
gfxContext* rendContext = aState.GetRenderingContext();
nsPresContext* presContext = aState.PresContext();
WritingMode ourWM = GetWritingMode();
const WritingMode outerWM = aState.OuterReflowInput()
? aState.OuterReflowInput()->GetWritingMode()
: ourWM;
ReflowOutput desiredSize(outerWM);
LogicalSize ourSize = GetLogicalSize(outerWM);
if (rendContext) {
BoxReflow(aState, presContext, desiredSize, rendContext, ourRect.x,
ourRect.y, ourRect.width, ourRect.height);
if (IsXULCollapsed()) {
SetSize(nsSize(0, 0));
} else {
// if our child needs to be bigger. This might happend with
// wrapping text. There is no way to predict its height until we
// reflow it. Now that we know the height reshuffle upward.
if (desiredSize.ISize(outerWM) > ourSize.ISize(outerWM) ||
desiredSize.BSize(outerWM) > ourSize.BSize(outerWM)) {
#ifdef DEBUG_GROW
XULDumpBox(stdout);
printf(" GREW from (%d,%d) -> (%d,%d)\n", ourSize.ISize(outerWM),
ourSize.BSize(outerWM), desiredSize.ISize(outerWM),
desiredSize.BSize(outerWM));
#endif
if (desiredSize.ISize(outerWM) > ourSize.ISize(outerWM)) {
ourSize.ISize(outerWM) = desiredSize.ISize(outerWM);
}
if (desiredSize.BSize(outerWM) > ourSize.BSize(outerWM)) {
ourSize.BSize(outerWM) = desiredSize.BSize(outerWM);
}
}
// ensure our size is what we think is should be. Someone could have
// reset the frame to be smaller or something dumb like that.
SetSize(ourSize.ConvertTo(ourWM, outerWM));
}
}
// Should we do this if IsXULCollapsed() is true?
LogicalSize size(GetLogicalSize(outerWM));
desiredSize.ISize(outerWM) = size.ISize(outerWM);
desiredSize.BSize(outerWM) = size.BSize(outerWM);
desiredSize.UnionOverflowAreasWithDesiredBounds();
if (HasAbsolutelyPositionedChildren()) {
// Set up a |reflowInput| to pass into ReflowAbsoluteFrames
ReflowInput reflowInput(aState.PresContext(), this,
aState.GetRenderingContext(),
LogicalSize(ourWM, ISize(), NS_UNCONSTRAINEDSIZE),
ReflowInput::InitFlag::DummyParentReflowInput);
AddStateBits(NS_FRAME_IN_REFLOW);
// Set up a |reflowStatus| to pass into ReflowAbsoluteFrames
// (just a dummy value; hopefully that's OK)
nsReflowStatus reflowStatus;
ReflowAbsoluteFrames(aState.PresContext(), desiredSize, reflowInput,
reflowStatus);
RemoveStateBits(NS_FRAME_IN_REFLOW);
}
nsSize oldSize(ourRect.Size());
FinishAndStoreOverflow(desiredSize.mOverflowAreas,
size.GetPhysicalSize(outerWM), &oldSize);
SyncXULLayout(aState);
return NS_OK;
}
void nsIFrame::BoxReflow(nsBoxLayoutState& aState, nsPresContext* aPresContext,
ReflowOutput& aDesiredSize,
gfxContext* aRenderingContext, nscoord aX, nscoord aY,
nscoord aWidth, nscoord aHeight, bool aMoveFrame) {
DO_GLOBAL_REFLOW_COUNT("nsBoxToBlockAdaptor");
nsBoxLayoutMetrics* metrics = BoxMetrics();
if (MOZ_UNLIKELY(!metrics)) {
// Can't proceed without BoxMetrics. This should only happen if something
// is seriously broken, e.g. if we try to do XUL layout on a non-XUL frame.
// (If this is a content process, we'll abort even in release builds,
// because XUL layout mixup is extra surprising in content, and aborts are
// less catastrophic in content vs. in chrome.)
MOZ_RELEASE_ASSERT(!XRE_IsContentProcess(),
"Starting XUL BoxReflow w/o BoxMetrics (in content)?");
MOZ_ASSERT_UNREACHABLE("Starting XUL BoxReflow w/o BoxMetrics?");
return;
}
nsReflowStatus status;
bool needsReflow = IsSubtreeDirty();
// if we don't need a reflow then
// lets see if we are already that size. Yes? then don't even reflow. We are
// done.
if (!needsReflow) {
if (aWidth != NS_UNCONSTRAINEDSIZE && aHeight != NS_UNCONSTRAINEDSIZE) {
// if the new calculated size has a 0 width or a 0 height
if ((metrics->mLastSize.width == 0 || metrics->mLastSize.height == 0) &&
(aWidth == 0 || aHeight == 0)) {
needsReflow = false;
aDesiredSize.Width() = aWidth;
aDesiredSize.Height() = aHeight;
SetSize(aDesiredSize.Size(GetWritingMode()));
} else {
aDesiredSize.Width() = metrics->mLastSize.width;
aDesiredSize.Height() = metrics->mLastSize.height;
// remove the margin. The rect of our child does not include it but our
// calculated size does. don't reflow if we are already the right size
if (metrics->mLastSize.width == aWidth &&
metrics->mLastSize.height == aHeight)
needsReflow = false;
else
needsReflow = true;
}
} else {
// if the width or height are intrinsic alway reflow because
// we don't know what it should be.
needsReflow = true;
}
}
// ok now reflow the child into the spacers calculated space
if (needsReflow) {
aDesiredSize.ClearSize();
// create a reflow input to tell our child to flow at the given size.
// Construct a bogus parent reflow input so that there's a usable reflow
// input for the containing block.
nsMargin margin(0, 0, 0, 0);
GetXULMargin(margin);
nsSize parentSize(aWidth, aHeight);
if (parentSize.height != NS_UNCONSTRAINEDSIZE)
parentSize.height += margin.TopBottom();
if (parentSize.width != NS_UNCONSTRAINEDSIZE)
parentSize.width += margin.LeftRight();
nsIFrame* parentFrame = GetParent();
WritingMode parentWM = parentFrame->GetWritingMode();
ReflowInput parentReflowInput(
aPresContext, parentFrame, aRenderingContext,
LogicalSize(parentWM, parentSize),
ReflowInput::InitFlag::DummyParentReflowInput);
// This may not do very much useful, but it's probably worth trying.
if (parentSize.width != NS_UNCONSTRAINEDSIZE)
parentReflowInput.SetComputedWidth(std::max(parentSize.width, 0));
if (parentSize.height != NS_UNCONSTRAINEDSIZE)
parentReflowInput.SetComputedHeight(std::max(parentSize.height, 0));
parentReflowInput.SetComputedLogicalMargin(parentWM,
LogicalMargin(parentWM));
// XXX use box methods
nsMargin padding;
parentFrame->GetXULPadding(padding);
parentReflowInput.SetComputedLogicalPadding(
parentWM, LogicalMargin(parentWM, padding));
nsMargin border;
parentFrame->GetXULBorder(border);
parentReflowInput.SetComputedLogicalBorderPadding(
parentWM, LogicalMargin(parentWM, border + padding));
// Construct the parent chain manually since constructing it normally
// messes up dimensions.
const ReflowInput* outerReflowInput = aState.OuterReflowInput();
NS_ASSERTION(!outerReflowInput || outerReflowInput->mFrame != this,
"in and out of XUL on a single frame?");
const ReflowInput* parentRI;
if (outerReflowInput && outerReflowInput->mFrame == parentFrame) {
// We're a frame (such as a text control frame) that jumps into
// box reflow and then straight out of it on the child frame.
// This means we actually have a real parent reflow input.
// nsLayoutUtils::InflationMinFontSizeFor used to need this to be
// linked up correctly for text control frames, so do so here).
parentRI = outerReflowInput;
} else {
parentRI = &parentReflowInput;
}
// XXX Is it OK that this reflow input has only one ancestor?
// (It used to have a bogus parent, skipping all the boxes).
WritingMode wm = GetWritingMode();
LogicalSize logicalSize(wm, nsSize(aWidth, aHeight));
logicalSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
ReflowInput reflowInput(aPresContext, *parentRI, this, logicalSize,
Nothing(),
ReflowInput::InitFlag::DummyParentReflowInput);
// XXX_jwir3: This is somewhat fishy. If this is actually changing the value
// here (which it might be), then we should make sure that it's
// correct the first time around, rather than changing it later.
reflowInput.mCBReflowInput = parentRI;
reflowInput.mReflowDepth = aState.GetReflowDepth();
// mComputedWidth and mComputedHeight are content-box, not
// border-box
if (aWidth != NS_UNCONSTRAINEDSIZE) {
nscoord computedWidth =
aWidth - reflowInput.ComputedPhysicalBorderPadding().LeftRight();
computedWidth = std::max(computedWidth, 0);
reflowInput.SetComputedWidth(computedWidth);
}
// Most child frames of box frames (e.g. subdocument or scroll frames)
// need to be constrained to the provided size and overflow as necessary.
// The one exception are block frames, because we need to know their
// natural height excluding any overflow area which may be caused by
// various CSS effects such as shadow or outline.
if (!IsBlockFrameOrSubclass()) {
if (aHeight != NS_UNCONSTRAINEDSIZE) {
nscoord computedHeight =
aHeight - reflowInput.ComputedPhysicalBorderPadding().TopBottom();
computedHeight = std::max(computedHeight, 0);
reflowInput.SetComputedHeight(computedHeight);
} else {
reflowInput.SetComputedHeight(
ComputeSize(
aRenderingContext, wm, logicalSize, logicalSize.ISize(wm),
reflowInput.ComputedLogicalMargin(wm).Size(wm),
reflowInput.ComputedLogicalBorderPadding(wm).Size(wm), {}, {})
.mLogicalSize.Height(wm));
}
}
// Box layout calls SetRect before XULLayout, whereas non-box layout
// calls SetRect after Reflow.
// XXX Perhaps we should be doing this by twiddling the rect back to
// mLastSize before calling Reflow and then switching it back, but
// However, mLastSize can also be the size passed to BoxReflow by
// RefreshSizeCache, so that doesn't really make sense.
if (metrics->mLastSize.width != aWidth) {
reflowInput.SetHResize(true);
// When font size inflation is enabled, a horizontal resize
// requires a full reflow. See ReflowInput::InitResizeFlags
// for more details.
if (nsLayoutUtils::FontSizeInflationEnabled(aPresContext)) {
this->MarkSubtreeDirty();
}
}
if (metrics->mLastSize.height != aHeight) {
reflowInput.SetVResize(true);
}
// place the child and reflow
Reflow(aPresContext, aDesiredSize, reflowInput, status);
NS_ASSERTION(status.IsComplete(), "bad status");
ReflowChildFlags layoutFlags = aState.LayoutFlags();
nsContainerFrame::FinishReflowChild(
this, aPresContext, aDesiredSize, &reflowInput, aX, aY,
layoutFlags | ReflowChildFlags::NoMoveFrame);
// Save the ascent. (bug 103925)
if (IsXULCollapsed()) {
metrics->mAscent = 0;
} else {
if (aDesiredSize.BlockStartAscent() == ReflowOutput::ASK_FOR_BASELINE) {
if (!nsLayoutUtils::GetFirstLineBaseline(wm, this, &metrics->mAscent))
metrics->mAscent = GetLogicalBaseline(wm);
} else
metrics->mAscent = aDesiredSize.BlockStartAscent();
}
} else {
aDesiredSize.SetBlockStartAscent(metrics->mBlockAscent);
}
metrics->mLastSize.width = aDesiredSize.Width();
metrics->mLastSize.height = aDesiredSize.Height();
}
nsBoxLayoutMetrics* nsIFrame::BoxMetrics() const {
nsBoxLayoutMetrics* metrics = GetProperty(BoxMetricsProperty());
NS_ASSERTION(
metrics,
"A box layout method was called but InitBoxMetrics was never called");
return metrics;
}
void nsIFrame::UpdateStyleOfChildAnonBox(nsIFrame* aChildFrame,
ServoRestyleState& aRestyleState) {
#ifdef DEBUG
nsIFrame* parent = aChildFrame->GetInFlowParent();
if (aChildFrame->IsTableFrame()) {
parent = parent->GetParent();
}
if (parent->IsLineFrame()) {
parent = parent->GetParent();
}
MOZ_ASSERT(nsLayoutUtils::FirstContinuationOrIBSplitSibling(parent) == this,
"This should only be used for children!");
#endif // DEBUG
MOZ_ASSERT(!GetContent() || !aChildFrame->GetContent() ||
aChildFrame->GetContent() == GetContent(),
"What content node is it a frame for?");
MOZ_ASSERT(!aChildFrame->GetPrevContinuation(),
"Only first continuations should end up here");
// We could force the caller to pass in the pseudo, since some callers know it
// statically... But this API is a bit nicer.
auto pseudo = aChildFrame->Style()->GetPseudoType();
MOZ_ASSERT(PseudoStyle::IsAnonBox(pseudo), "Child is not an anon box?");
MOZ_ASSERT(!PseudoStyle::IsNonInheritingAnonBox(pseudo),
"Why did the caller bother calling us?");
// Anon boxes inherit from their parent; that's us.
RefPtr<ComputedStyle> newContext =
aRestyleState.StyleSet().ResolveInheritingAnonymousBoxStyle(pseudo,
Style());
nsChangeHint childHint =
UpdateStyleOfOwnedChildFrame(aChildFrame, newContext, aRestyleState);
// Now that we've updated the style on aChildFrame, check whether it itself
// has anon boxes to deal with.
ServoRestyleState childrenState(*aChildFrame, aRestyleState, childHint,
ServoRestyleState::Type::InFlow);
aChildFrame->UpdateStyleOfOwnedAnonBoxes(childrenState);
// Assuming anon boxes don't have ::backdrop associated with them... if that
// ever changes, we'd need to handle that here, like we do in
// RestyleManager::ProcessPostTraversal
// We do need to handle block pseudo-elements here, though. Especially list
// bullets.
if (nsBlockFrame* block = do_QueryFrame(aChildFrame)) {
block->UpdatePseudoElementStyles(childrenState);
}
}
/* static */
nsChangeHint nsIFrame::UpdateStyleOfOwnedChildFrame(
nsIFrame* aChildFrame, ComputedStyle* aNewComputedStyle,
ServoRestyleState& aRestyleState,
const Maybe<ComputedStyle*>& aContinuationComputedStyle) {
MOZ_ASSERT(!aChildFrame->GetAdditionalComputedStyle(0),
"We don't handle additional styles here");
// Figure out whether we have an actual change. It's important that we do
// this, for several reasons:
//
// 1) Even if all the child's changes are due to properties it inherits from
// us, it's possible that no one ever asked us for those style structs and
// hence changes to them aren't reflected in the changes handled at all.
//
// 2) Content can change stylesheets that change the styles of pseudos, and
// extensions can add/remove stylesheets that change the styles of
// anonymous boxes directly.
uint32_t equalStructs; // Not used, actually.
nsChangeHint childHint = aChildFrame->Style()->CalcStyleDifference(
*aNewComputedStyle, &equalStructs);
// If aChildFrame is out of flow, then aRestyleState's "changes handled by the
// parent" doesn't apply to it, because it may have some other parent in the
// frame tree.
if (!aChildFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
childHint = NS_RemoveSubsumedHints(
childHint, aRestyleState.ChangesHandledFor(aChildFrame));
}
if (childHint) {
if (childHint & nsChangeHint_ReconstructFrame) {
// If we generate a reconstruct here, remove any non-reconstruct hints we
// may have already generated for this content.
aRestyleState.ChangeList().PopChangesForContent(
aChildFrame->GetContent());
}
aRestyleState.ChangeList().AppendChange(
aChildFrame, aChildFrame->GetContent(), childHint);
}
aChildFrame->SetComputedStyle(aNewComputedStyle);
ComputedStyle* continuationStyle = aContinuationComputedStyle
? *aContinuationComputedStyle
: aNewComputedStyle;
for (nsIFrame* kid = aChildFrame->GetNextContinuation(); kid;
kid = kid->GetNextContinuation()) {
MOZ_ASSERT(!kid->GetAdditionalComputedStyle(0));
kid->SetComputedStyle(continuationStyle);
}
return childHint;
}
/* static */
void nsIFrame::AddInPopupStateBitToDescendants(nsIFrame* aFrame) {
if (!aFrame->HasAnyStateBits(NS_FRAME_IN_POPUP) &&
aFrame->TrackingVisibility()) {
// Assume all frames in popups are visible.
aFrame->IncApproximateVisibleCount();
}
aFrame->AddStateBits(NS_FRAME_IN_POPUP);
for (const auto& childList : aFrame->CrossDocChildLists()) {
for (nsIFrame* child : childList.mList) {
AddInPopupStateBitToDescendants(child);
}
}
}
/* static */
void nsIFrame::RemoveInPopupStateBitFromDescendants(nsIFrame* aFrame) {
if (!aFrame->HasAnyStateBits(NS_FRAME_IN_POPUP) ||
nsLayoutUtils::IsPopup(aFrame)) {
return;
}
aFrame->RemoveStateBits(NS_FRAME_IN_POPUP);
if (aFrame->TrackingVisibility()) {
// We assume all frames in popups are visible, so this decrement balances
// out the increment in AddInPopupStateBitToDescendants above.
aFrame->DecApproximateVisibleCount();
}
for (const auto& childList : aFrame->CrossDocChildLists()) {
for (nsIFrame* child : childList.mList) {
RemoveInPopupStateBitFromDescendants(child);
}
}
}
void nsIFrame::SetParent(nsContainerFrame* aParent) {
// If our parent is a wrapper anon box, our new parent should be too. We
// _can_ change parent if our parent is a wrapper anon box, because some
// wrapper anon boxes can have continuations.
MOZ_ASSERT_IF(ParentIsWrapperAnonBox(),
aParent->Style()->IsInheritingAnonBox());
// Note that the current mParent may already be destroyed at this point.
mParent = aParent;
MOZ_DIAGNOSTIC_ASSERT(!mParent || PresShell() == mParent->PresShell());
if (::IsXULBoxWrapped(this)) {
::InitBoxMetrics(this, true);
} else {
// We could call Properties().Delete(BoxMetricsProperty()); here but
// that's kind of slow and re-parenting in such a way that we were
// IsXULBoxWrapped() before but not now should be very rare, so we'll just
// keep this unused frame property until this frame dies instead.
}
if (HasAnyStateBits(NS_FRAME_HAS_VIEW | NS_FRAME_HAS_CHILD_WITH_VIEW)) {
for (nsIFrame* f = aParent;
f && !f->HasAnyStateBits(NS_FRAME_HAS_CHILD_WITH_VIEW);
f = f->GetParent()) {
f->AddStateBits(NS_FRAME_HAS_CHILD_WITH_VIEW);
}
}
if (HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
for (nsIFrame* f = aParent; f; f = f->GetParent()) {
if (f->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
break;
}
f->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
}
if (HasAnyStateBits(NS_FRAME_DESCENDANT_INTRINSIC_ISIZE_DEPENDS_ON_BSIZE)) {
for (nsIFrame* f = aParent; f; f = f->GetParent()) {
if (f->HasAnyStateBits(
NS_FRAME_DESCENDANT_INTRINSIC_ISIZE_DEPENDS_ON_BSIZE)) {
break;
}
f->AddStateBits(NS_FRAME_DESCENDANT_INTRINSIC_ISIZE_DEPENDS_ON_BSIZE);
}
}
if (HasInvalidFrameInSubtree()) {
for (nsIFrame* f = aParent;
f && !f->HasAnyStateBits(NS_FRAME_DESCENDANT_NEEDS_PAINT |
NS_FRAME_IS_NONDISPLAY);
f = nsLayoutUtils::GetCrossDocParentFrameInProcess(f)) {
f->AddStateBits(NS_FRAME_DESCENDANT_NEEDS_PAINT);
}
}
if (aParent->HasAnyStateBits(NS_FRAME_IN_POPUP)) {
AddInPopupStateBitToDescendants(this);
} else {
RemoveInPopupStateBitFromDescendants(this);
}
// If our new parent only has invalid children, then we just invalidate
// ourselves too. This is probably faster than clearing the flag all
// the way up the frame tree.
if (aParent->HasAnyStateBits(NS_FRAME_ALL_DESCENDANTS_NEED_PAINT)) {
InvalidateFrame();
} else {
SchedulePaint();
}
}
bool nsIFrame::IsStackingContext(const nsStyleDisplay* aStyleDisplay,
const nsStyleEffects* aStyleEffects) {
// Properties that influence the output of this function should be handled in
// change_bits_for_longhand as well.
if (HasOpacity(aStyleDisplay, aStyleEffects, nullptr)) {
return true;
}
if (IsTransformed()) {
return true;
}
auto willChange = aStyleDisplay->mWillChange.bits;
if (aStyleDisplay->IsContainPaint() || aStyleDisplay->IsContainLayout() ||
willChange & StyleWillChangeBits::CONTAIN) {
if (IsFrameOfType(eSupportsContainLayoutAndPaint)) {
return true;
}
}
// strictly speaking, 'perspective' doesn't require visual atomicity,
// but the spec says it acts like the rest of these
if (aStyleDisplay->HasPerspectiveStyle() ||
willChange & StyleWillChangeBits::PERSPECTIVE) {
if (IsFrameOfType(eSupportsCSSTransforms)) {
return true;
}
}
if (!StylePosition()->mZIndex.IsAuto() ||
willChange & StyleWillChangeBits::Z_INDEX) {
if (ZIndexApplies()) {
return true;
}
}
return aStyleEffects->mMixBlendMode != StyleBlend::Normal ||
SVGIntegrationUtils::UsingEffectsForFrame(this) ||
aStyleDisplay->IsPositionForcingStackingContext() ||
aStyleDisplay->mIsolation != StyleIsolation::Auto ||
willChange & StyleWillChangeBits::STACKING_CONTEXT_UNCONDITIONAL;
}
bool nsIFrame::IsStackingContext() {
return IsStackingContext(StyleDisplay(), StyleEffects());
}
static bool IsFrameScrolledOutOfView(const nsIFrame* aTarget,
const nsRect& aTargetRect,
const nsIFrame* aParent) {
// The ancestor frame we are checking if it clips out aTargetRect relative to
// aTarget.
nsIFrame* clipParent = nullptr;
// find the first scrollable frame or root frame if we are in a fixed pos
// subtree
for (nsIFrame* f = const_cast<nsIFrame*>(aParent); f;
f = nsLayoutUtils::GetCrossDocParentFrameInProcess(f)) {
nsIScrollableFrame* scrollableFrame = do_QueryFrame(f);
if (scrollableFrame) {
clipParent = f;
break;
}
if (f->StyleDisplay()->mPosition == StylePositionProperty::Fixed &&
nsLayoutUtils::IsReallyFixedPos(f)) {
clipParent = f->GetParent();
break;
}
}
if (!clipParent) {
// Even if we couldn't find the nearest scrollable frame, it might mean we
// are in an out-of-process iframe, try to see if |aTarget| frame is
// scrolled out of view in an scrollable frame in a cross-process ancestor
// document.
return nsLayoutUtils::FrameIsScrolledOutOfViewInCrossProcess(aTarget);
}
nsRect clipRect = clipParent->InkOverflowRectRelativeToSelf();
// We consider that the target is scrolled out if the scrollable (or root)
// frame is empty.
if (clipRect.IsEmpty()) {
return true;
}
nsRect transformedRect = nsLayoutUtils::TransformFrameRectToAncestor(
aTarget, aTargetRect, clipParent);
if (transformedRect.IsEmpty()) {
// If the transformed rect is empty it represents a line or a point that we
// should check is outside the the scrollable rect.
if (transformedRect.x > clipRect.XMost() ||
transformedRect.y > clipRect.YMost() ||
clipRect.x > transformedRect.XMost() ||
clipRect.y > transformedRect.YMost()) {
return true;
}
} else if (!transformedRect.Intersects(clipRect)) {
return true;
}
nsIFrame* parent = clipParent->GetParent();
if (!parent) {
return false;
}
return IsFrameScrolledOutOfView(aTarget, aTargetRect, parent);
}
bool nsIFrame::IsScrolledOutOfView() const {
nsRect rect = InkOverflowRectRelativeToSelf();
return IsFrameScrolledOutOfView(this, rect, this);
}
gfx::Matrix nsIFrame::ComputeWidgetTransform() {
const nsStyleUIReset* uiReset = StyleUIReset();
if (uiReset->mMozWindowTransform.IsNone()) {
return gfx::Matrix();
}
TransformReferenceBox refBox(nullptr, nsRect(nsPoint(), GetSize()));
nsPresContext* presContext = PresContext();
int32_t appUnitsPerDevPixel = presContext->AppUnitsPerDevPixel();
gfx::Matrix4x4 matrix = nsStyleTransformMatrix::ReadTransforms(
uiReset->mMozWindowTransform, refBox, float(appUnitsPerDevPixel));
// Apply the -moz-window-transform-origin translation to the matrix.
const StyleTransformOrigin& origin = uiReset->mWindowTransformOrigin;
Point transformOrigin = nsStyleTransformMatrix::Convert2DPosition(
origin.horizontal, origin.vertical, refBox, appUnitsPerDevPixel);
matrix.ChangeBasis(Point3D(transformOrigin.x, transformOrigin.y, 0));
gfx::Matrix result2d;
if (!matrix.CanDraw2D(&result2d)) {
// FIXME: It would be preferable to reject non-2D transforms at parse time.
NS_WARNING(
"-moz-window-transform does not describe a 2D transform, "
"but only 2d transforms are supported");
return gfx::Matrix();
}
return result2d;
}
void nsIFrame::DoUpdateStyleOfOwnedAnonBoxes(ServoRestyleState& aRestyleState) {
// As a special case, we check for {ib}-split block frames here, rather
// than have an nsInlineFrame::AppendDirectlyOwnedAnonBoxes implementation
// that returns them.
//
// (If we did handle them in AppendDirectlyOwnedAnonBoxes, we would have to
// return *all* of the in-flow {ib}-split block frames, not just the first
// one. For restyling, we really just need the first in flow, and the other
// user of the AppendOwnedAnonBoxes API, AllChildIterator, doesn't need to
// know about them at all, since these block frames never create NAC. So we
// avoid any unncessary hashtable lookups for the {ib}-split frames by calling
// UpdateStyleOfOwnedAnonBoxesForIBSplit directly here.)
if (IsInlineFrame()) {
if (HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT)) {
static_cast<nsInlineFrame*>(this)->UpdateStyleOfOwnedAnonBoxesForIBSplit(
aRestyleState);
}
return;
}
AutoTArray<OwnedAnonBox, 4> frames;
AppendDirectlyOwnedAnonBoxes(frames);
for (OwnedAnonBox& box : frames) {
if (box.mUpdateStyleFn) {
box.mUpdateStyleFn(this, box.mAnonBoxFrame, aRestyleState);
} else {
UpdateStyleOfChildAnonBox(box.mAnonBoxFrame, aRestyleState);
}
}
}
/* virtual */
void nsIFrame::AppendDirectlyOwnedAnonBoxes(nsTArray<OwnedAnonBox>& aResult) {
MOZ_ASSERT(!HasAnyStateBits(NS_FRAME_OWNS_ANON_BOXES));
MOZ_ASSERT(false, "Why did this get called?");
}
void nsIFrame::DoAppendOwnedAnonBoxes(nsTArray<OwnedAnonBox>& aResult) {
size_t i = aResult.Length();
AppendDirectlyOwnedAnonBoxes(aResult);
// After appending the directly owned anonymous boxes of this frame to
// aResult above, we need to check each of them to see if they own
// any anonymous boxes themselves. Note that we keep progressing
// through aResult, looking for additional entries in aResult from these
// subsequent AppendDirectlyOwnedAnonBoxes calls. (Thus we can't
// use a ranged for loop here.)
while (i < aResult.Length()) {
nsIFrame* f = aResult[i].mAnonBoxFrame;
if (f->HasAnyStateBits(NS_FRAME_OWNS_ANON_BOXES)) {
f->AppendDirectlyOwnedAnonBoxes(aResult);
}
++i;
}
}
nsIFrame::CaretPosition::CaretPosition() : mContentOffset(0) {}
nsIFrame::CaretPosition::~CaretPosition() = default;
bool nsIFrame::HasCSSAnimations() {
auto collection =
AnimationCollection<CSSAnimation>::GetAnimationCollection(this);
return collection && collection->mAnimations.Length() > 0;
}
bool nsIFrame::HasCSSTransitions() {
auto collection =
AnimationCollection<CSSTransition>::GetAnimationCollection(this);
return collection && collection->mAnimations.Length() > 0;
}
void nsIFrame::AddSizeOfExcludingThisForTree(nsWindowSizes& aSizes) const {
aSizes.mLayoutFramePropertiesSize +=
mProperties.SizeOfExcludingThis(aSizes.mState.mMallocSizeOf);
// We don't do this for Gecko because this stuff is stored in the nsPresArena
// and so measured elsewhere.
if (!aSizes.mState.HaveSeenPtr(mComputedStyle)) {
mComputedStyle->AddSizeOfIncludingThis(aSizes,
&aSizes.mLayoutComputedValuesNonDom);
}
// And our additional styles.
int32_t index = 0;
while (auto* extra = GetAdditionalComputedStyle(index++)) {
if (!aSizes.mState.HaveSeenPtr(extra)) {
extra->AddSizeOfIncludingThis(aSizes,
&aSizes.mLayoutComputedValuesNonDom);
}
}
for (const auto& childList : ChildLists()) {
for (const nsIFrame* f : childList.mList) {
f->AddSizeOfExcludingThisForTree(aSizes);
}
}
}
nsRect nsIFrame::GetCompositorHitTestArea(nsDisplayListBuilder* aBuilder) {
nsRect area;
nsIScrollableFrame* scrollFrame = nsLayoutUtils::GetScrollableFrameFor(this);
if (scrollFrame) {
// If the frame is content of a scrollframe, then we need to pick up the
// area corresponding to the overflow rect as well. Otherwise the parts of
// the overflow that are not occupied by descendants get skipped and the
// APZ code sends touch events to the content underneath instead.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=1127773#c15.
area = ScrollableOverflowRect();
} else {
area = GetRectRelativeToSelf();
}
if (!area.IsEmpty()) {
return area + aBuilder->ToReferenceFrame(this);
}
return area;
}
CompositorHitTestInfo nsIFrame::GetCompositorHitTestInfo(
nsDisplayListBuilder* aBuilder) {
CompositorHitTestInfo result = CompositorHitTestInvisibleToHit;
if (aBuilder->IsInsidePointerEventsNoneDoc()) {
// Somewhere up the parent document chain is a subdocument with pointer-
// events:none set on it.
return result;
}
if (!GetParent()) {
MOZ_ASSERT(IsViewportFrame());
// Viewport frames are never event targets, other frames, like canvas
// frames, are the event targets for any regions viewport frames may cover.
return result;
}
if (Style()->PointerEvents() == StylePointerEvents::None) {
return result;
}
if (!StyleVisibility()->IsVisible()) {
return result;
}
// Anything that didn't match the above conditions is visible to hit-testing.
result = CompositorHitTestFlags::eVisibleToHitTest;
if (SVGIntegrationUtils::UsingMaskOrClipPathForFrame(this)) {
// If WebRender is enabled, simple clip-paths can be converted into WR
// clips that WR knows how to hit-test against, so we don't need to mark
// it as an irregular area.
if (!SVGIntegrationUtils::UsingSimpleClipPathForFrame(this)) {
result += CompositorHitTestFlags::eIrregularArea;
}
}
if (aBuilder->IsBuildingNonLayerizedScrollbar()) {
// Scrollbars may be painted into a layer below the actual layer they will
// scroll, and therefore wheel events may be dispatched to the outer frame
// instead of the intended scrollframe. To address this, we force a d-t-c
// region on scrollbar frames that won't be placed in their own layer. See
// bug 1213324 for details.
result += CompositorHitTestFlags::eInactiveScrollframe;
} else if (aBuilder->GetAncestorHasApzAwareEventHandler()) {
result += CompositorHitTestFlags::eApzAwareListeners;
} else if (IsRangeFrame()) {
// Range frames handle touch events directly without having a touch listener
// so we need to let APZ know that this area cares about events.
result += CompositorHitTestFlags::eApzAwareListeners;
}
if (aBuilder->IsTouchEventPrefEnabledDoc()) {
// Inherit the touch-action flags from the parent, if there is one. We do
// this because of how the touch-action on a frame combines the touch-action
// from ancestor DOM elements. Refer to the documentation in
// TouchActionHelper.cpp for details; this code is meant to be equivalent to
// that code, but woven into the top-down recursive display list building
// process.
CompositorHitTestInfo inheritedTouchAction =
aBuilder->GetCompositorHitTestInfo() & CompositorHitTestTouchActionMask;
nsIFrame* touchActionFrame = this;
if (nsIScrollableFrame* scrollFrame =
nsLayoutUtils::GetScrollableFrameFor(this)) {
ScrollStyles ss = scrollFrame->GetScrollStyles();
if (ss.mVertical != StyleOverflow::Hidden ||
ss.mHorizontal != StyleOverflow::Hidden) {
touchActionFrame = do_QueryFrame(scrollFrame);
// On scrollframes, stop inheriting the pan-x and pan-y flags; instead,
// reset them back to zero to allow panning on the scrollframe unless we
// encounter an element that disables it that's inside the scrollframe.
// This is equivalent to the |considerPanning| variable in
// TouchActionHelper.cpp, but for a top-down traversal.
CompositorHitTestInfo panMask(
CompositorHitTestFlags::eTouchActionPanXDisabled,
CompositorHitTestFlags::eTouchActionPanYDisabled);
inheritedTouchAction -= panMask;
}
}
result += inheritedTouchAction;
const StyleTouchAction touchAction = touchActionFrame->UsedTouchAction();
// The CSS allows the syntax auto | none | [pan-x || pan-y] | manipulation
// so we can eliminate some combinations of things.
if (touchAction == StyleTouchAction::AUTO) {
// nothing to do
} else if (touchAction & StyleTouchAction::MANIPULATION) {
result += CompositorHitTestFlags::eTouchActionDoubleTapZoomDisabled;
} else {
// This path handles the cases none | [pan-x || pan-y || pinch-zoom] so
// double-tap is disabled in here.
if (!(touchAction & StyleTouchAction::PINCH_ZOOM)) {
result += CompositorHitTestFlags::eTouchActionPinchZoomDisabled;
}
result += CompositorHitTestFlags::eTouchActionDoubleTapZoomDisabled;
if (!(touchAction & StyleTouchAction::PAN_X)) {
result += CompositorHitTestFlags::eTouchActionPanXDisabled;
}
if (!(touchAction & StyleTouchAction::PAN_Y)) {
result += CompositorHitTestFlags::eTouchActionPanYDisabled;
}
if (touchAction & StyleTouchAction::NONE) {
// all the touch-action disabling flags will already have been set above
MOZ_ASSERT(result.contains(CompositorHitTestTouchActionMask));
}
}
}
const Maybe<ScrollDirection> scrollDirection =
aBuilder->GetCurrentScrollbarDirection();
if (scrollDirection.isSome()) {
if (GetContent()->IsXULElement(nsGkAtoms::thumb)) {
const bool thumbGetsLayer = aBuilder->GetCurrentScrollbarTarget() !=
layers::ScrollableLayerGuid::NULL_SCROLL_ID;
if (thumbGetsLayer) {
result += CompositorHitTestFlags::eScrollbarThumb;
} else {
result += CompositorHitTestFlags::eInactiveScrollframe;
}
}
if (*scrollDirection == ScrollDirection::eVertical) {
result += CompositorHitTestFlags::eScrollbarVertical;
}
// includes the ScrollbarFrame, SliderFrame, anything else that
// might be inside the xul:scrollbar
result += CompositorHitTestFlags::eScrollbar;
}
return result;
}
// Returns true if we can guarantee there is no visible descendants.
static bool HasNoVisibleDescendants(const nsIFrame* aFrame) {
for (const auto& childList : aFrame->ChildLists()) {
for (nsIFrame* f : childList.mList) {
if (nsPlaceholderFrame::GetRealFrameFor(f)
->IsVisibleOrMayHaveVisibleDescendants()) {
return false;
}
}
}
return true;
}
void nsIFrame::UpdateVisibleDescendantsState() {
if (StyleVisibility()->IsVisible()) {
// Notify invisible ancestors that a visible descendant exists now.
nsIFrame* ancestor;
for (ancestor = GetInFlowParent();
ancestor && !ancestor->StyleVisibility()->IsVisible();
ancestor = ancestor->GetInFlowParent()) {
ancestor->mAllDescendantsAreInvisible = false;
}
} else {
mAllDescendantsAreInvisible = HasNoVisibleDescendants(this);
}
}
void nsIFrame::UpdateAnimationVisibility() {
auto* animationCollection =
AnimationCollection<CSSAnimation>::GetAnimationCollection(this);
auto* transitionCollection =
AnimationCollection<CSSTransition>::GetAnimationCollection(this);
if ((!animationCollection || animationCollection->mAnimations.IsEmpty()) &&
(!transitionCollection || transitionCollection->mAnimations.IsEmpty())) {
return;
}
bool hidden = IsHiddenByContentVisibilityOnAnyAncestor();
if (animationCollection) {
for (auto& animation : animationCollection->mAnimations) {
animation->SetHiddenByContentVisibility(hidden);
}
}
if (transitionCollection) {
for (auto& transition : transitionCollection->mAnimations) {
transition->SetHiddenByContentVisibility(hidden);
}
}
}
nsIFrame::PhysicalAxes nsIFrame::ShouldApplyOverflowClipping(
const nsStyleDisplay* aDisp) const {
MOZ_ASSERT(aDisp == StyleDisplay(), "Wrong display struct");
// 'contain:paint', which we handle as 'overflow:clip' here. Except for
// scrollframes we don't need contain:paint to add any clipping, because
// the scrollable frame will already clip overflowing content, and because
// 'contain:paint' should prevent all means of escaping that clipping
// (e.g. because it forms a fixed-pos containing block).
if (aDisp->IsContainPaint() && !IsScrollFrame() &&
IsFrameOfType(eSupportsContainLayoutAndPaint)) {
return PhysicalAxes::Both;
}
// and overflow:hidden that we should interpret as clip
if (aDisp->mOverflowX == StyleOverflow::Hidden &&
aDisp->mOverflowY == StyleOverflow::Hidden) {
// REVIEW: these are the frame types that set up clipping.
LayoutFrameType type = Type();
switch (type) {
case LayoutFrameType::Table:
case LayoutFrameType::TableCell:
case LayoutFrameType::SVGOuterSVG:
case LayoutFrameType::SVGInnerSVG:
case LayoutFrameType::SVGSymbol:
case LayoutFrameType::SVGForeignObject:
return PhysicalAxes::Both;
default:
if (IsFrameOfType(nsIFrame::eReplacedContainsBlock)) {
if (type == mozilla::LayoutFrameType::TextInput) {
// It has an anonymous scroll frame that handles any overflow.
return PhysicalAxes::None;
}
return PhysicalAxes::Both;
}
}
}
// clip overflow:clip, except for nsListControlFrame which is
// an nsHTMLScrollFrame sub-class.
if (MOZ_UNLIKELY((aDisp->mOverflowX == mozilla::StyleOverflow::Clip ||
aDisp->mOverflowY == mozilla::StyleOverflow::Clip) &&
!IsListControlFrame())) {
// FIXME: we could use GetViewportScrollStylesOverrideElement() here instead
// if that worked correctly in a print context. (see bug 1654667)
const auto* element = Element::FromNodeOrNull(GetContent());
if (!element ||
!PresContext()->ElementWouldPropagateScrollStyles(*element)) {
uint8_t axes = uint8_t(PhysicalAxes::None);
if (aDisp->mOverflowX == mozilla::StyleOverflow::Clip) {
axes |= uint8_t(PhysicalAxes::Horizontal);
}
if (aDisp->mOverflowY == mozilla::StyleOverflow::Clip) {
axes |= uint8_t(PhysicalAxes::Vertical);
}
return PhysicalAxes(axes);
}
}
if (HasAnyStateBits(NS_FRAME_SVG_LAYOUT)) {
return PhysicalAxes::None;
}
// If we're paginated and a block, and have NS_BLOCK_CLIP_PAGINATED_OVERFLOW
// set, then we want to clip our overflow.
bool clip = HasAnyStateBits(NS_BLOCK_CLIP_PAGINATED_OVERFLOW) &&
PresContext()->IsPaginated() && IsBlockFrame();
return clip ? PhysicalAxes::Both : PhysicalAxes::None;
}
#ifdef DEBUG
static void GetTagName(nsIFrame* aFrame, nsIContent* aContent, int aResultSize,
char* aResult) {
if (aContent) {
snprintf(aResult, aResultSize, "%s@%p",
nsAtomCString(aContent->NodeInfo()->NameAtom()).get(), aFrame);
} else {
snprintf(aResult, aResultSize, "@%p", aFrame);
}
}
void nsIFrame::Trace(const char* aMethod, bool aEnter) {
if (NS_FRAME_LOG_TEST(sFrameLogModule, NS_FRAME_TRACE_CALLS)) {
char tagbuf[40];
GetTagName(this, mContent, sizeof(tagbuf), tagbuf);
printf_stderr("%s: %s %s", tagbuf, aEnter ? "enter" : "exit", aMethod);
}
}
void nsIFrame::Trace(const char* aMethod, bool aEnter,
const nsReflowStatus& aStatus) {
if (NS_FRAME_LOG_TEST(sFrameLogModule, NS_FRAME_TRACE_CALLS)) {
char tagbuf[40];
GetTagName(this, mContent, sizeof(tagbuf), tagbuf);
printf_stderr("%s: %s %s, status=%scomplete%s", tagbuf,
aEnter ? "enter" : "exit", aMethod,
aStatus.IsIncomplete() ? "not" : "",
(aStatus.NextInFlowNeedsReflow()) ? "+reflow" : "");
}
}
void nsIFrame::TraceMsg(const char* aFormatString, ...) {
if (NS_FRAME_LOG_TEST(sFrameLogModule, NS_FRAME_TRACE_CALLS)) {
// Format arguments into a buffer
char argbuf[200];
va_list ap;
va_start(ap, aFormatString);
VsprintfLiteral(argbuf, aFormatString, ap);
va_end(ap);
char tagbuf[40];
GetTagName(this, mContent, sizeof(tagbuf), tagbuf);
printf_stderr("%s: %s", tagbuf, argbuf);
}
}
void nsIFrame::VerifyDirtyBitSet(const nsFrameList& aFrameList) {
for (nsIFrame* f : aFrameList) {
NS_ASSERTION(f->HasAnyStateBits(NS_FRAME_IS_DIRTY), "dirty bit not set");
}
}
// Start Display Reflow
DR_cookie::DR_cookie(nsPresContext* aPresContext, nsIFrame* aFrame,
const ReflowInput& aReflowInput, ReflowOutput& aMetrics,
nsReflowStatus& aStatus)
: mPresContext(aPresContext),
mFrame(aFrame),
mReflowInput(aReflowInput),
mMetrics(aMetrics),
mStatus(aStatus) {
MOZ_COUNT_CTOR(DR_cookie);
mValue = nsIFrame::DisplayReflowEnter(aPresContext, mFrame, mReflowInput);
}
DR_cookie::~DR_cookie() {
MOZ_COUNT_DTOR(DR_cookie);
nsIFrame::DisplayReflowExit(mPresContext, mFrame, mMetrics, mStatus, mValue);
}
DR_layout_cookie::DR_layout_cookie(nsIFrame* aFrame) : mFrame(aFrame) {
MOZ_COUNT_CTOR(DR_layout_cookie);
mValue = nsIFrame::DisplayLayoutEnter(mFrame);
}
DR_layout_cookie::~DR_layout_cookie() {
MOZ_COUNT_DTOR(DR_layout_cookie);
nsIFrame::DisplayLayoutExit(mFrame, mValue);
}
DR_intrinsic_inline_size_cookie::DR_intrinsic_inline_size_cookie(
nsIFrame* aFrame, const char* aType, nscoord& aResult)
: mFrame(aFrame), mType(aType), mResult(aResult) {
MOZ_COUNT_CTOR(DR_intrinsic_inline_size_cookie);
mValue = nsIFrame::DisplayIntrinsicISizeEnter(mFrame, mType);
}
DR_intrinsic_inline_size_cookie::~DR_intrinsic_inline_size_cookie() {
MOZ_COUNT_DTOR(DR_intrinsic_inline_size_cookie);
nsIFrame::DisplayIntrinsicISizeExit(mFrame, mType, mResult, mValue);
}
DR_intrinsic_size_cookie::DR_intrinsic_size_cookie(nsIFrame* aFrame,
const char* aType,
nsSize& aResult)
: mFrame(aFrame), mType(aType), mResult(aResult) {
MOZ_COUNT_CTOR(DR_intrinsic_size_cookie);
mValue = nsIFrame::DisplayIntrinsicSizeEnter(mFrame, mType);
}
DR_intrinsic_size_cookie::~DR_intrinsic_size_cookie() {
MOZ_COUNT_DTOR(DR_intrinsic_size_cookie);
nsIFrame::DisplayIntrinsicSizeExit(mFrame, mType, mResult, mValue);
}
DR_init_constraints_cookie::DR_init_constraints_cookie(
nsIFrame* aFrame, ReflowInput* aState, nscoord aCBWidth, nscoord aCBHeight,
const mozilla::Maybe<mozilla::LogicalMargin> aBorder,
const mozilla::Maybe<mozilla::LogicalMargin> aPadding)
: mFrame(aFrame), mState(aState) {
MOZ_COUNT_CTOR(DR_init_constraints_cookie);
nsMargin border;
if (aBorder) {
border = aBorder->GetPhysicalMargin(aFrame->GetWritingMode());
}
nsMargin padding;
if (aPadding) {
padding = aPadding->GetPhysicalMargin(aFrame->GetWritingMode());
}
mValue = ReflowInput::DisplayInitConstraintsEnter(
mFrame, mState, aCBWidth, aCBHeight, aBorder ? &border : nullptr,
aPadding ? &padding : nullptr);
}
DR_init_constraints_cookie::~DR_init_constraints_cookie() {
MOZ_COUNT_DTOR(DR_init_constraints_cookie);
ReflowInput::DisplayInitConstraintsExit(mFrame, mState, mValue);
}
DR_init_offsets_cookie::DR_init_offsets_cookie(
nsIFrame* aFrame, SizeComputationInput* aState, nscoord aPercentBasis,
WritingMode aCBWritingMode,
const mozilla::Maybe<mozilla::LogicalMargin> aBorder,
const mozilla::Maybe<mozilla::LogicalMargin> aPadding)
: mFrame(aFrame), mState(aState) {
MOZ_COUNT_CTOR(DR_init_offsets_cookie);
nsMargin border;
if (aBorder) {
border = aBorder->GetPhysicalMargin(aFrame->GetWritingMode());
}
nsMargin padding;
if (aPadding) {
padding = aPadding->GetPhysicalMargin(aFrame->GetWritingMode());
}
mValue = SizeComputationInput::DisplayInitOffsetsEnter(
mFrame, mState, aPercentBasis, aCBWritingMode,
aBorder ? &border : nullptr, aPadding ? &padding : nullptr);
}
DR_init_offsets_cookie::~DR_init_offsets_cookie() {
MOZ_COUNT_DTOR(DR_init_offsets_cookie);
SizeComputationInput::DisplayInitOffsetsExit(mFrame, mState, mValue);
}
struct DR_Rule;
struct DR_FrameTypeInfo {
DR_FrameTypeInfo(LayoutFrameType aFrameType, const char* aFrameNameAbbrev,
const char* aFrameName);
~DR_FrameTypeInfo();
LayoutFrameType mType;
char mNameAbbrev[16];
char mName[32];
nsTArray<DR_Rule*> mRules;
private:
DR_FrameTypeInfo& operator=(const DR_FrameTypeInfo&) = delete;
};
struct DR_FrameTreeNode;
struct DR_Rule;
struct DR_State {
DR_State();
~DR_State();
void Init();
void AddFrameTypeInfo(LayoutFrameType aFrameType,
const char* aFrameNameAbbrev, const char* aFrameName);
DR_FrameTypeInfo* GetFrameTypeInfo(LayoutFrameType aFrameType);
DR_FrameTypeInfo* GetFrameTypeInfo(char* aFrameName);
void InitFrameTypeTable();
DR_FrameTreeNode* CreateTreeNode(nsIFrame* aFrame,
const ReflowInput* aReflowInput);
void FindMatchingRule(DR_FrameTreeNode& aNode);
bool RuleMatches(DR_Rule& aRule, DR_FrameTreeNode& aNode);
bool GetToken(FILE* aFile, char* aBuf, size_t aBufSize);
DR_Rule* ParseRule(FILE* aFile);
void ParseRulesFile();
void AddRule(nsTArray<DR_Rule*>& aRules, DR_Rule& aRule);
bool IsWhiteSpace(int c);
bool GetNumber(char* aBuf, int32_t& aNumber);
void PrettyUC(nscoord aSize, char* aBuf, int aBufSize);
void PrintMargin(const char* tag, const nsMargin* aMargin);
void DisplayFrameTypeInfo(nsIFrame* aFrame, int32_t aIndent);
void DeleteTreeNode(DR_FrameTreeNode& aNode);
bool mInited;
bool mActive;
int32_t mCount;
int32_t mAssert;
int32_t mIndent;
bool mIndentUndisplayedFrames;
bool mDisplayPixelErrors;
nsTArray<DR_Rule*> mWildRules;
nsTArray<DR_FrameTypeInfo> mFrameTypeTable;
// reflow specific state
nsTArray<DR_FrameTreeNode*> mFrameTreeLeaves;
};
static DR_State* DR_state; // the one and only DR_State
struct DR_RulePart {
explicit DR_RulePart(LayoutFrameType aFrameType)
: mFrameType(aFrameType), mNext(0) {}
void Destroy();
LayoutFrameType mFrameType;
DR_RulePart* mNext;
};
void DR_RulePart::Destroy() {
if (mNext) {
mNext->Destroy();
}
delete this;
}
struct DR_Rule {
DR_Rule() : mLength(0), mTarget(nullptr), mDisplay(false) {
MOZ_COUNT_CTOR(DR_Rule);
}
~DR_Rule() {
if (mTarget) mTarget->Destroy();
MOZ_COUNT_DTOR(DR_Rule);
}
void AddPart(LayoutFrameType aFrameType);
uint32_t mLength;
DR_RulePart* mTarget;
bool mDisplay;
};
void DR_Rule::AddPart(LayoutFrameType aFrameType) {
DR_RulePart* newPart = new DR_RulePart(aFrameType);
newPart->mNext = mTarget;
mTarget = newPart;
mLength++;
}
DR_FrameTypeInfo::~DR_FrameTypeInfo() {
int32_t numElements;
numElements = mRules.Length();
for (int32_t i = numElements - 1; i >= 0; i--) {
delete mRules.ElementAt(i);
}
}
DR_FrameTypeInfo::DR_FrameTypeInfo(LayoutFrameType aFrameType,
const char* aFrameNameAbbrev,
const char* aFrameName) {
mType = aFrameType;
PL_strncpyz(mNameAbbrev, aFrameNameAbbrev, sizeof(mNameAbbrev));
PL_strncpyz(mName, aFrameName, sizeof(mName));
}
struct DR_FrameTreeNode {
DR_FrameTreeNode(nsIFrame* aFrame, DR_FrameTreeNode* aParent)
: mFrame(aFrame), mParent(aParent), mDisplay(0), mIndent(0) {
MOZ_COUNT_CTOR(DR_FrameTreeNode);
}
MOZ_COUNTED_DTOR(DR_FrameTreeNode)
nsIFrame* mFrame;
DR_FrameTreeNode* mParent;
bool mDisplay;
uint32_t mIndent;
};
// DR_State implementation
DR_State::DR_State()
: mInited(false),
mActive(false),
mCount(0),
mAssert(-1),
mIndent(0),
mIndentUndisplayedFrames(false),
mDisplayPixelErrors(false) {
MOZ_COUNT_CTOR(DR_State);
}
void DR_State::Init() {
char* env = PR_GetEnv("GECKO_DISPLAY_REFLOW_ASSERT");
int32_t num;
if (env) {
if (GetNumber(env, num))
mAssert = num;
else
printf("GECKO_DISPLAY_REFLOW_ASSERT - invalid value = %s", env);
}
env = PR_GetEnv("GECKO_DISPLAY_REFLOW_INDENT_START");
if (env) {
if (GetNumber(env, num))
mIndent = num;
else
printf("GECKO_DISPLAY_REFLOW_INDENT_START - invalid value = %s", env);
}
env = PR_GetEnv("GECKO_DISPLAY_REFLOW_INDENT_UNDISPLAYED_FRAMES");
if (env) {
if (GetNumber(env, num))
mIndentUndisplayedFrames = num;
else
printf(
"GECKO_DISPLAY_REFLOW_INDENT_UNDISPLAYED_FRAMES - invalid value = %s",
env);
}
env = PR_GetEnv("GECKO_DISPLAY_REFLOW_FLAG_PIXEL_ERRORS");
if (env) {
if (GetNumber(env, num))
mDisplayPixelErrors = num;
else
printf("GECKO_DISPLAY_REFLOW_FLAG_PIXEL_ERRORS - invalid value = %s",
env);
}
InitFrameTypeTable();
ParseRulesFile();
mInited = true;
}
DR_State::~DR_State() {
MOZ_COUNT_DTOR(DR_State);
int32_t numElements, i;
numElements = mWildRules.Length();
for (i = numElements - 1; i >= 0; i--) {
delete mWildRules.ElementAt(i);
}
numElements = mFrameTreeLeaves.Length();
for (i = numElements - 1; i >= 0; i--) {
delete mFrameTreeLeaves.ElementAt(i);
}
}
bool DR_State::GetNumber(char* aBuf, int32_t& aNumber) {
if (sscanf(aBuf, "%d", &aNumber) > 0)
return true;
else
return false;
}
bool DR_State::IsWhiteSpace(int c) {
return (c == ' ') || (c == '\t') || (c == '\n') || (c == '\r');
}
bool DR_State::GetToken(FILE* aFile, char* aBuf, size_t aBufSize) {
bool haveToken = false;
aBuf[0] = 0;
// get the 1st non whitespace char
int c = -1;
for (c = getc(aFile); (c > 0) && IsWhiteSpace(c); c = getc(aFile)) {
}
if (c > 0) {
haveToken = true;
aBuf[0] = c;
// get everything up to the next whitespace char
size_t cX;
for (cX = 1; cX + 1 < aBufSize; cX++) {
c = getc(aFile);
if (c < 0) { // EOF
ungetc(' ', aFile);
break;
} else {
if (IsWhiteSpace(c)) {
break;
} else {
aBuf[cX] = c;
}
}
}
aBuf[cX] = 0;
}
return haveToken;
}
DR_Rule* DR_State::ParseRule(FILE* aFile) {
char buf[128];
int32_t doDisplay;
DR_Rule* rule = nullptr;
while (GetToken(aFile, buf, sizeof(buf))) {
if (GetNumber(buf, doDisplay)) {
if (rule) {
rule->mDisplay = !!doDisplay;
break;
} else {
printf("unexpected token - %s \n", buf);
}
} else {
if (!rule) {
rule = new DR_Rule;
}
if (strcmp(buf, "*") == 0) {
rule->AddPart(LayoutFrameType::None);
} else {
DR_FrameTypeInfo* info = GetFrameTypeInfo(buf);
if (info) {
rule->AddPart(info->mType);
} else {
printf("invalid frame type - %s \n", buf);
}
}
}
}
return rule;
}
void DR_State::AddRule(nsTArray<DR_Rule*>& aRules, DR_Rule& aRule) {
int32_t numRules = aRules.Length();
for (int32_t ruleX = 0; ruleX < numRules; ruleX++) {
DR_Rule* rule = aRules.ElementAt(ruleX);
NS_ASSERTION(rule, "program error");
if (aRule.mLength > rule->mLength) {
aRules.InsertElementAt(ruleX, &aRule);
return;
}
}
aRules.AppendElement(&aRule);
}
static Maybe<bool> ShouldLogReflow(const char* processes) {
switch (processes[0]) {
case 'A':
case 'a':
return Some(true);
case 'P':
case 'p':
return Some(XRE_IsParentProcess());
case 'C':
case 'c':
return Some(XRE_IsContentProcess());
default:
return Nothing{};
}
}
void DR_State::ParseRulesFile() {
char* processes = PR_GetEnv("GECKO_DISPLAY_REFLOW_PROCESSES");
if (processes) {
Maybe<bool> enableLog = ShouldLogReflow(processes);
if (enableLog.isNothing()) {
MOZ_CRASH("GECKO_DISPLAY_REFLOW_PROCESSES: [a]ll [p]arent [c]ontent");
} else if (enableLog.value()) {
DR_Rule* rule = new DR_Rule;
rule->AddPart(LayoutFrameType::None);
rule->mDisplay = true;
AddRule(mWildRules, *rule);
mActive = true;
}
return;
}
char* path = PR_GetEnv("GECKO_DISPLAY_REFLOW_RULES_FILE");
if (path) {
FILE* inFile = fopen(path, "r");
if (!inFile) {
MOZ_CRASH(
"Failed to open the specified rules file; Try `--setpref "
"security.sandbox.content.level=2` if the sandbox is at cause");
}
for (DR_Rule* rule = ParseRule(inFile); rule; rule = ParseRule(inFile)) {
if (rule->mTarget) {
LayoutFrameType fType = rule->mTarget->mFrameType;
if (fType != LayoutFrameType::None) {
DR_FrameTypeInfo* info = GetFrameTypeInfo(fType);
AddRule(info->mRules, *rule);
} else {
AddRule(mWildRules, *rule);
}
mActive = true;
}
}
fclose(inFile);
}
}
void DR_State::AddFrameTypeInfo(LayoutFrameType aFrameType,
const char* aFrameNameAbbrev,
const char* aFrameName) {
mFrameTypeTable.EmplaceBack(aFrameType, aFrameNameAbbrev, aFrameName);
}
DR_FrameTypeInfo* DR_State::GetFrameTypeInfo(LayoutFrameType aFrameType) {
int32_t numEntries = mFrameTypeTable.Length();
NS_ASSERTION(numEntries != 0, "empty FrameTypeTable");
for (int32_t i = 0; i < numEntries; i++) {
DR_FrameTypeInfo& info = mFrameTypeTable.ElementAt(i);
if (info.mType == aFrameType) {
return &info;
}
}
return &mFrameTypeTable.ElementAt(numEntries -
1); // return unknown frame type
}
DR_FrameTypeInfo* DR_State::GetFrameTypeInfo(char* aFrameName) {
int32_t numEntries = mFrameTypeTable.Length();
NS_ASSERTION(numEntries != 0, "empty FrameTypeTable");
for (int32_t i = 0; i < numEntries; i++) {
DR_FrameTypeInfo& info = mFrameTypeTable.ElementAt(i);
if ((strcmp(aFrameName, info.mName) == 0) ||
(strcmp(aFrameName, info.mNameAbbrev) == 0)) {
return &info;
}
}
return &mFrameTypeTable.ElementAt(numEntries -
1); // return unknown frame type
}
void DR_State::InitFrameTypeTable() {
AddFrameTypeInfo(LayoutFrameType::Block, "block", "block");
AddFrameTypeInfo(LayoutFrameType::Br, "br", "br");
AddFrameTypeInfo(LayoutFrameType::ColorControl, "color", "colorControl");
AddFrameTypeInfo(LayoutFrameType::GfxButtonControl, "button",
"gfxButtonControl");
AddFrameTypeInfo(LayoutFrameType::HTMLButtonControl, "HTMLbutton",
"HTMLButtonControl");
AddFrameTypeInfo(LayoutFrameType::HTMLCanvas, "HTMLCanvas", "HTMLCanvas");
AddFrameTypeInfo(LayoutFrameType::SubDocument, "subdoc", "subDocument");
AddFrameTypeInfo(LayoutFrameType::Image, "img", "image");
AddFrameTypeInfo(LayoutFrameType::Inline, "inline", "inline");
AddFrameTypeInfo(LayoutFrameType::Letter, "letter", "letter");
AddFrameTypeInfo(LayoutFrameType::Line, "line", "line");
AddFrameTypeInfo(LayoutFrameType::ListControl, "select", "select");
AddFrameTypeInfo(LayoutFrameType::Page, "page", "page");
AddFrameTypeInfo(LayoutFrameType::Placeholder, "place", "placeholder");
AddFrameTypeInfo(LayoutFrameType::Canvas, "canvas", "canvas");
AddFrameTypeInfo(LayoutFrameType::Scroll, "scroll", "scroll");
AddFrameTypeInfo(LayoutFrameType::TableCell, "cell", "tableCell");
AddFrameTypeInfo(LayoutFrameType::TableCol, "col", "tableCol");
AddFrameTypeInfo(LayoutFrameType::TableColGroup, "colG", "tableColGroup");
AddFrameTypeInfo(LayoutFrameType::Table, "tbl", "table");
AddFrameTypeInfo(LayoutFrameType::TableWrapper, "tblW", "tableWrapper");
AddFrameTypeInfo(LayoutFrameType::TableRowGroup, "rowG", "tableRowGroup");
AddFrameTypeInfo(LayoutFrameType::TableRow, "row", "tableRow");
AddFrameTypeInfo(LayoutFrameType::TextInput, "textCtl", "textInput");
AddFrameTypeInfo(LayoutFrameType::Text, "text", "text");
AddFrameTypeInfo(LayoutFrameType::Viewport, "VP", "viewport");
AddFrameTypeInfo(LayoutFrameType::Box, "Box", "Box");
AddFrameTypeInfo(LayoutFrameType::Slider, "Slider", "Slider");
AddFrameTypeInfo(LayoutFrameType::None, "unknown", "unknown");
}
void DR_State::DisplayFrameTypeInfo(nsIFrame* aFrame, int32_t aIndent) {
DR_FrameTypeInfo* frameTypeInfo = GetFrameTypeInfo(aFrame->Type());
if (frameTypeInfo) {
for (int32_t i = 0; i < aIndent; i++) {
printf(" ");
}
if (!strcmp(frameTypeInfo->mNameAbbrev, "unknown")) {
if (aFrame) {
nsAutoString name;
aFrame->GetFrameName(name);
printf("%s %p ", NS_LossyConvertUTF16toASCII(name).get(),
(void*)aFrame);
} else {
printf("%s %p ", frameTypeInfo->mNameAbbrev, (void*)aFrame);
}
} else {
printf("%s %p ", frameTypeInfo->mNameAbbrev, (void*)aFrame);
}
}
}
bool DR_State::RuleMatches(DR_Rule& aRule, DR_FrameTreeNode& aNode) {
NS_ASSERTION(aRule.mTarget, "program error");
DR_RulePart* rulePart;
DR_FrameTreeNode* parentNode;
for (rulePart = aRule.mTarget->mNext, parentNode = aNode.mParent;
rulePart && parentNode;
rulePart = rulePart->mNext, parentNode = parentNode->mParent) {
if (rulePart->mFrameType != LayoutFrameType::None) {
if (parentNode->mFrame) {
if (rulePart->mFrameType != parentNode->mFrame->Type()) {
return false;
}
} else
NS_ASSERTION(false, "program error");
}
// else wild card match
}
return true;
}
void DR_State::FindMatchingRule(DR_FrameTreeNode& aNode) {
if (!aNode.mFrame) {
NS_ASSERTION(false, "invalid DR_FrameTreeNode \n");
return;
}
bool matchingRule = false;
DR_FrameTypeInfo* info = GetFrameTypeInfo(aNode.mFrame->Type());
NS_ASSERTION(info, "program error");
int32_t numRules = info->mRules.Length();
for (int32_t ruleX = 0; ruleX < numRules; ruleX++) {
DR_Rule* rule = info->mRules.ElementAt(ruleX);
if (rule && RuleMatches(*rule, aNode)) {
aNode.mDisplay = rule->mDisplay;
matchingRule = true;
break;
}
}
if (!matchingRule) {
int32_t numWildRules = mWildRules.Length();
for (int32_t ruleX = 0; ruleX < numWildRules; ruleX++) {
DR_Rule* rule = mWildRules.ElementAt(ruleX);
if (rule && RuleMatches(*rule, aNode)) {
aNode.mDisplay = rule->mDisplay;
break;
}
}
}
}
DR_FrameTreeNode* DR_State::CreateTreeNode(nsIFrame* aFrame,
const ReflowInput* aReflowInput) {
// find the frame of the parent reflow input (usually just the parent of
// aFrame)
nsIFrame* parentFrame;
if (aReflowInput) {
const ReflowInput* parentRI = aReflowInput->mParentReflowInput;
parentFrame = (parentRI) ? parentRI->mFrame : nullptr;
} else {
parentFrame = aFrame->GetParent();
}
// find the parent tree node leaf
DR_FrameTreeNode* parentNode = nullptr;
DR_FrameTreeNode* lastLeaf = nullptr;
if (mFrameTreeLeaves.Length())
lastLeaf = mFrameTreeLeaves.ElementAt(mFrameTreeLeaves.Length() - 1);
if (lastLeaf) {
for (parentNode = lastLeaf;
parentNode && (parentNode->mFrame != parentFrame);
parentNode = parentNode->mParent) {
}
}
DR_FrameTreeNode* newNode = new DR_FrameTreeNode(aFrame, parentNode);
FindMatchingRule(*newNode);
newNode->mIndent = mIndent;
if (newNode->mDisplay || mIndentUndisplayedFrames) {
++mIndent;
}
if (lastLeaf && (lastLeaf == parentNode)) {
mFrameTreeLeaves.RemoveLastElement();
}
mFrameTreeLeaves.AppendElement(newNode);
mCount++;
return newNode;
}
void DR_State::PrettyUC(nscoord aSize, char* aBuf, int aBufSize) {
if (NS_UNCONSTRAINEDSIZE == aSize) {
strcpy(aBuf, "UC");
} else {
if ((nscoord)0xdeadbeefU == aSize) {
strcpy(aBuf, "deadbeef");
} else {
snprintf(aBuf, aBufSize, "%d", aSize);
}
}
}
void DR_State::PrintMargin(const char* tag, const nsMargin* aMargin) {
if (aMargin) {
char t[16], r[16], b[16], l[16];
PrettyUC(aMargin->top, t, 16);
PrettyUC(aMargin->right, r, 16);
PrettyUC(aMargin->bottom, b, 16);
PrettyUC(aMargin->left, l, 16);
printf(" %s=%s,%s,%s,%s", tag, t, r, b, l);
} else {
// use %p here for consistency with other null-pointer printouts
printf(" %s=%p", tag, (void*)aMargin);
}
}
void DR_State::DeleteTreeNode(DR_FrameTreeNode& aNode) {
mFrameTreeLeaves.RemoveElement(&aNode);
int32_t numLeaves = mFrameTreeLeaves.Length();
if ((0 == numLeaves) ||
(aNode.mParent != mFrameTreeLeaves.ElementAt(numLeaves - 1))) {
mFrameTreeLeaves.AppendElement(aNode.mParent);
}
if (aNode.mDisplay || mIndentUndisplayedFrames) {
--mIndent;
}
// delete the tree node
delete &aNode;
}
static void CheckPixelError(nscoord aSize, int32_t aPixelToTwips) {
if (NS_UNCONSTRAINEDSIZE != aSize) {
if ((aSize % aPixelToTwips) > 0) {
printf("VALUE %d is not a whole pixel \n", aSize);
}
}
}
static void DisplayReflowEnterPrint(nsPresContext* aPresContext,
nsIFrame* aFrame,
const ReflowInput& aReflowInput,
DR_FrameTreeNode& aTreeNode,
bool aChanged) {
if (aTreeNode.mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, aTreeNode.mIndent);
char width[16];
char height[16];
DR_state->PrettyUC(aReflowInput.AvailableWidth(), width, 16);
DR_state->PrettyUC(aReflowInput.AvailableHeight(), height, 16);
printf("Reflow a=%s,%s ", width, height);
DR_state->PrettyUC(aReflowInput.ComputedWidth(), width, 16);
DR_state->PrettyUC(aReflowInput.ComputedHeight(), height, 16);
printf("c=%s,%s ", width, height);
if (aFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY)) printf("dirty ");
if (aFrame->HasAnyStateBits(NS_FRAME_HAS_DIRTY_CHILDREN))
printf("dirty-children ");
if (aReflowInput.mFlags.mSpecialBSizeReflow) printf("special-bsize ");
if (aReflowInput.IsHResize()) printf("h-resize ");
if (aReflowInput.IsVResize()) printf("v-resize ");
nsIFrame* inFlow = aFrame->GetPrevInFlow();
if (inFlow) {
printf("pif=%p ", (void*)inFlow);
}
inFlow = aFrame->GetNextInFlow();
if (inFlow) {
printf("nif=%p ", (void*)inFlow);
}
if (aChanged)
printf("CHANGED \n");
else
printf("cnt=%d \n", DR_state->mCount);
if (DR_state->mDisplayPixelErrors) {
int32_t d2a = aPresContext->AppUnitsPerDevPixel();
CheckPixelError(aReflowInput.AvailableWidth(), d2a);
CheckPixelError(aReflowInput.AvailableHeight(), d2a);
CheckPixelError(aReflowInput.ComputedWidth(), d2a);
CheckPixelError(aReflowInput.ComputedHeight(), d2a);
}
}
}
void* nsIFrame::DisplayReflowEnter(nsPresContext* aPresContext,
nsIFrame* aFrame,
const ReflowInput& aReflowInput) {
if (!DR_state->mInited) DR_state->Init();
if (!DR_state->mActive) return nullptr;
NS_ASSERTION(aFrame, "invalid call");
DR_FrameTreeNode* treeNode = DR_state->CreateTreeNode(aFrame, &aReflowInput);
if (treeNode) {
DisplayReflowEnterPrint(aPresContext, aFrame, aReflowInput, *treeNode,
false);
}
return treeNode;
}
void* nsIFrame::DisplayLayoutEnter(nsIFrame* aFrame) {
if (!DR_state->mInited) DR_state->Init();
if (!DR_state->mActive) return nullptr;
NS_ASSERTION(aFrame, "invalid call");
DR_FrameTreeNode* treeNode = DR_state->CreateTreeNode(aFrame, nullptr);
if (treeNode && treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
printf("XULLayout\n");
}
return treeNode;
}
void* nsIFrame::DisplayIntrinsicISizeEnter(nsIFrame* aFrame,
const char* aType) {
if (!DR_state->mInited) DR_state->Init();
if (!DR_state->mActive) return nullptr;
NS_ASSERTION(aFrame, "invalid call");
DR_FrameTreeNode* treeNode = DR_state->CreateTreeNode(aFrame, nullptr);
if (treeNode && treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
printf("Get%sISize\n", aType);
}
return treeNode;
}
void* nsIFrame::DisplayIntrinsicSizeEnter(nsIFrame* aFrame, const char* aType) {
if (!DR_state->mInited) DR_state->Init();
if (!DR_state->mActive) return nullptr;
NS_ASSERTION(aFrame, "invalid call");
DR_FrameTreeNode* treeNode = DR_state->CreateTreeNode(aFrame, nullptr);
if (treeNode && treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
printf("Get%sSize\n", aType);
}
return treeNode;
}
void nsIFrame::DisplayReflowExit(nsPresContext* aPresContext, nsIFrame* aFrame,
ReflowOutput& aMetrics,
const nsReflowStatus& aStatus,
void* aFrameTreeNode) {
if (!DR_state->mActive) return;
NS_ASSERTION(aFrame, "DisplayReflowExit - invalid call");
if (!aFrameTreeNode) return;
DR_FrameTreeNode* treeNode = (DR_FrameTreeNode*)aFrameTreeNode;
if (treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
char width[16];
char height[16];
char x[16];
char y[16];
DR_state->PrettyUC(aMetrics.Width(), width, 16);
DR_state->PrettyUC(aMetrics.Height(), height, 16);
printf("Reflow d=%s,%s", width, height);
if (!aStatus.IsEmpty()) {
printf(" status=%s", ToString(aStatus).c_str());
}
if (aFrame->HasOverflowAreas()) {
DR_state->PrettyUC(aMetrics.InkOverflow().x, x, 16);
DR_state->PrettyUC(aMetrics.InkOverflow().y, y, 16);
DR_state->PrettyUC(aMetrics.InkOverflow().width, width, 16);
DR_state->PrettyUC(aMetrics.InkOverflow().height, height, 16);
printf(" vis-o=(%s,%s) %s x %s", x, y, width, height);
nsRect storedOverflow = aFrame->InkOverflowRect();
DR_state->PrettyUC(storedOverflow.x, x, 16);
DR_state->PrettyUC(storedOverflow.y, y, 16);
DR_state->PrettyUC(storedOverflow.width, width, 16);
DR_state->PrettyUC(storedOverflow.height, height, 16);
printf(" vis-sto=(%s,%s) %s x %s", x, y, width, height);
DR_state->PrettyUC(aMetrics.ScrollableOverflow().x, x, 16);
DR_state->PrettyUC(aMetrics.ScrollableOverflow().y, y, 16);
DR_state->PrettyUC(aMetrics.ScrollableOverflow().width, width, 16);
DR_state->PrettyUC(aMetrics.ScrollableOverflow().height, height, 16);
printf(" scr-o=(%s,%s) %s x %s", x, y, width, height);
storedOverflow = aFrame->ScrollableOverflowRect();
DR_state->PrettyUC(storedOverflow.x, x, 16);
DR_state->PrettyUC(storedOverflow.y, y, 16);
DR_state->PrettyUC(storedOverflow.width, width, 16);
DR_state->PrettyUC(storedOverflow.height, height, 16);
printf(" scr-sto=(%s,%s) %s x %s", x, y, width, height);
}
printf("\n");
if (DR_state->mDisplayPixelErrors) {
int32_t d2a = aPresContext->AppUnitsPerDevPixel();
CheckPixelError(aMetrics.Width(), d2a);
CheckPixelError(aMetrics.Height(), d2a);
}
}
DR_state->DeleteTreeNode(*treeNode);
}
void nsIFrame::DisplayLayoutExit(nsIFrame* aFrame, void* aFrameTreeNode) {
if (!DR_state->mActive) return;
NS_ASSERTION(aFrame, "non-null frame required");
if (!aFrameTreeNode) return;
DR_FrameTreeNode* treeNode = (DR_FrameTreeNode*)aFrameTreeNode;
if (treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
nsRect rect = aFrame->GetRect();
printf("XULLayout=%d,%d,%d,%d\n", rect.x, rect.y, rect.width, rect.height);
}
DR_state->DeleteTreeNode(*treeNode);
}
void nsIFrame::DisplayIntrinsicISizeExit(nsIFrame* aFrame, const char* aType,
nscoord aResult,
void* aFrameTreeNode) {
if (!DR_state->mActive) return;
NS_ASSERTION(aFrame, "non-null frame required");
if (!aFrameTreeNode) return;
DR_FrameTreeNode* treeNode = (DR_FrameTreeNode*)aFrameTreeNode;
if (treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
char iSize[16];
DR_state->PrettyUC(aResult, iSize, 16);
printf("Get%sISize=%s\n", aType, iSize);
}
DR_state->DeleteTreeNode(*treeNode);
}
void nsIFrame::DisplayIntrinsicSizeExit(nsIFrame* aFrame, const char* aType,
nsSize aResult, void* aFrameTreeNode) {
if (!DR_state->mActive) return;
NS_ASSERTION(aFrame, "non-null frame required");
if (!aFrameTreeNode) return;
DR_FrameTreeNode* treeNode = (DR_FrameTreeNode*)aFrameTreeNode;
if (treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
char width[16];
char height[16];
DR_state->PrettyUC(aResult.width, width, 16);
DR_state->PrettyUC(aResult.height, height, 16);
printf("Get%sSize=%s,%s\n", aType, width, height);
}
DR_state->DeleteTreeNode(*treeNode);
}
/* static */
void nsIFrame::DisplayReflowStartup() { DR_state = new DR_State(); }
/* static */
void nsIFrame::DisplayReflowShutdown() {
delete DR_state;
DR_state = nullptr;
}
void DR_cookie::Change() const {
DR_FrameTreeNode* treeNode = (DR_FrameTreeNode*)mValue;
if (treeNode && treeNode->mDisplay) {
DisplayReflowEnterPrint(mPresContext, mFrame, mReflowInput, *treeNode,
true);
}
}
/* static */
void* ReflowInput::DisplayInitConstraintsEnter(nsIFrame* aFrame,
ReflowInput* aState,
nscoord aContainingBlockWidth,
nscoord aContainingBlockHeight,
const nsMargin* aBorder,
const nsMargin* aPadding) {
MOZ_ASSERT(aFrame, "non-null frame required");
MOZ_ASSERT(aState, "non-null state required");
if (!DR_state->mInited) DR_state->Init();
if (!DR_state->mActive) return nullptr;
DR_FrameTreeNode* treeNode = DR_state->CreateTreeNode(aFrame, aState);
if (treeNode && treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
printf("InitConstraints parent=%p", (void*)aState->mParentReflowInput);
char width[16];
char height[16];
DR_state->PrettyUC(aContainingBlockWidth, width, 16);
DR_state->PrettyUC(aContainingBlockHeight, height, 16);
printf(" cb=%s,%s", width, height);
DR_state->PrettyUC(aState->AvailableWidth(), width, 16);
DR_state->PrettyUC(aState->AvailableHeight(), height, 16);
printf(" as=%s,%s", width, height);
DR_state->PrintMargin("b", aBorder);
DR_state->PrintMargin("p", aPadding);
putchar('\n');
}
return treeNode;
}
/* static */
void ReflowInput::DisplayInitConstraintsExit(nsIFrame* aFrame,
ReflowInput* aState,
void* aValue) {
MOZ_ASSERT(aFrame, "non-null frame required");
MOZ_ASSERT(aState, "non-null state required");
if (!DR_state->mActive) return;
if (!aValue) return;
DR_FrameTreeNode* treeNode = (DR_FrameTreeNode*)aValue;
if (treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
char cmiw[16], cw[16], cmxw[16], cmih[16], ch[16], cmxh[16];
DR_state->PrettyUC(aState->ComputedMinWidth(), cmiw, 16);
DR_state->PrettyUC(aState->ComputedWidth(), cw, 16);
DR_state->PrettyUC(aState->ComputedMaxWidth(), cmxw, 16);
DR_state->PrettyUC(aState->ComputedMinHeight(), cmih, 16);
DR_state->PrettyUC(aState->ComputedHeight(), ch, 16);
DR_state->PrettyUC(aState->ComputedMaxHeight(), cmxh, 16);
printf("InitConstraints= cw=(%s <= %s <= %s) ch=(%s <= %s <= %s)", cmiw, cw,
cmxw, cmih, ch, cmxh);
const nsMargin m = aState->ComputedPhysicalOffsets();
DR_state->PrintMargin("co", &m);
putchar('\n');
}
DR_state->DeleteTreeNode(*treeNode);
}
/* static */
void* SizeComputationInput::DisplayInitOffsetsEnter(
nsIFrame* aFrame, SizeComputationInput* aState, nscoord aPercentBasis,
WritingMode aCBWritingMode, const nsMargin* aBorder,
const nsMargin* aPadding) {
MOZ_ASSERT(aFrame, "non-null frame required");
MOZ_ASSERT(aState, "non-null state required");
if (!DR_state->mInited) DR_state->Init();
if (!DR_state->mActive) return nullptr;
// aState is not necessarily a ReflowInput
DR_FrameTreeNode* treeNode = DR_state->CreateTreeNode(aFrame, nullptr);
if (treeNode && treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
char pctBasisStr[16];
DR_state->PrettyUC(aPercentBasis, pctBasisStr, 16);
printf("InitOffsets pct_basis=%s", pctBasisStr);
DR_state->PrintMargin("b", aBorder);
DR_state->PrintMargin("p", aPadding);
putchar('\n');
}
return treeNode;
}
/* static */
void SizeComputationInput::DisplayInitOffsetsExit(nsIFrame* aFrame,
SizeComputationInput* aState,
void* aValue) {
MOZ_ASSERT(aFrame, "non-null frame required");
MOZ_ASSERT(aState, "non-null state required");
if (!DR_state->mActive) return;
if (!aValue) return;
DR_FrameTreeNode* treeNode = (DR_FrameTreeNode*)aValue;
if (treeNode->mDisplay) {
DR_state->DisplayFrameTypeInfo(aFrame, treeNode->mIndent);
printf("InitOffsets=");
const auto m = aState->ComputedPhysicalMargin();
DR_state->PrintMargin("m", &m);
const auto p = aState->ComputedPhysicalPadding();
DR_state->PrintMargin("p", &p);
const auto bp = aState->ComputedPhysicalBorderPadding();
DR_state->PrintMargin("b+p", &bp);
putchar('\n');
}
DR_state->DeleteTreeNode(*treeNode);
}
// End Display Reflow
// Validation of SideIsVertical.
# define CASE(side, result) \
static_assert(SideIsVertical(side) == result, "SideIsVertical is wrong")
CASE(eSideTop, false);
CASE(eSideRight, true);
CASE(eSideBottom, false);
CASE(eSideLeft, true);
# undef CASE
// Validation of HalfCornerIsX.
# define CASE(corner, result) \
static_assert(HalfCornerIsX(corner) == result, "HalfCornerIsX is wrong")
CASE(eCornerTopLeftX, true);
CASE(eCornerTopLeftY, false);
CASE(eCornerTopRightX, true);
CASE(eCornerTopRightY, false);
CASE(eCornerBottomRightX, true);
CASE(eCornerBottomRightY, false);
CASE(eCornerBottomLeftX, true);
CASE(eCornerBottomLeftY, false);
# undef CASE
// Validation of HalfToFullCorner.
# define CASE(corner, result) \
static_assert(HalfToFullCorner(corner) == result, \
"HalfToFullCorner is " \
"wrong")
CASE(eCornerTopLeftX, eCornerTopLeft);
CASE(eCornerTopLeftY, eCornerTopLeft);
CASE(eCornerTopRightX, eCornerTopRight);
CASE(eCornerTopRightY, eCornerTopRight);
CASE(eCornerBottomRightX, eCornerBottomRight);
CASE(eCornerBottomRightY, eCornerBottomRight);
CASE(eCornerBottomLeftX, eCornerBottomLeft);
CASE(eCornerBottomLeftY, eCornerBottomLeft);
# undef CASE
// Validation of FullToHalfCorner.
# define CASE(corner, vert, result) \
static_assert(FullToHalfCorner(corner, vert) == result, \
"FullToHalfCorner is wrong")
CASE(eCornerTopLeft, false, eCornerTopLeftX);
CASE(eCornerTopLeft, true, eCornerTopLeftY);
CASE(eCornerTopRight, false, eCornerTopRightX);
CASE(eCornerTopRight, true, eCornerTopRightY);
CASE(eCornerBottomRight, false, eCornerBottomRightX);
CASE(eCornerBottomRight, true, eCornerBottomRightY);
CASE(eCornerBottomLeft, false, eCornerBottomLeftX);
CASE(eCornerBottomLeft, true, eCornerBottomLeftY);
# undef CASE
// Validation of SideToFullCorner.
# define CASE(side, second, result) \
static_assert(SideToFullCorner(side, second) == result, \
"SideToFullCorner is wrong")
CASE(eSideTop, false, eCornerTopLeft);
CASE(eSideTop, true, eCornerTopRight);
CASE(eSideRight, false, eCornerTopRight);
CASE(eSideRight, true, eCornerBottomRight);
CASE(eSideBottom, false, eCornerBottomRight);
CASE(eSideBottom, true, eCornerBottomLeft);
CASE(eSideLeft, false, eCornerBottomLeft);
CASE(eSideLeft, true, eCornerTopLeft);
# undef CASE
// Validation of SideToHalfCorner.
# define CASE(side, second, parallel, result) \
static_assert(SideToHalfCorner(side, second, parallel) == result, \
"SideToHalfCorner is wrong")
CASE(eSideTop, false, true, eCornerTopLeftX);
CASE(eSideTop, false, false, eCornerTopLeftY);
CASE(eSideTop, true, true, eCornerTopRightX);
CASE(eSideTop, true, false, eCornerTopRightY);
CASE(eSideRight, false, false, eCornerTopRightX);
CASE(eSideRight, false, true, eCornerTopRightY);
CASE(eSideRight, true, false, eCornerBottomRightX);
CASE(eSideRight, true, true, eCornerBottomRightY);
CASE(eSideBottom, false, true, eCornerBottomRightX);
CASE(eSideBottom, false, false, eCornerBottomRightY);
CASE(eSideBottom, true, true, eCornerBottomLeftX);
CASE(eSideBottom, true, false, eCornerBottomLeftY);
CASE(eSideLeft, false, false, eCornerBottomLeftX);
CASE(eSideLeft, false, true, eCornerBottomLeftY);
CASE(eSideLeft, true, false, eCornerTopLeftX);
CASE(eSideLeft, true, true, eCornerTopLeftY);
# undef CASE
#endif