forked from mirrors/gecko-dev
When a binary has a PT_GNU_RELRO segment, the elfhack injected code uses mprotect to add the writable flag to relocated pages before applying relocations, removing it afterwards. To do so, the elfhack program uses the location and size of the PT_GNU_RELRO segment, and adjusts it to be aligned according to the PT_LOAD alignment. The problem here is that the PT_LOAD alignment doesn't necessarily match the actual page alignment, and the resulting mprotect may end up not covering the full extent of what the dynamic linker has protected read-only according to the PT_GNU_RELRO segment. In turn, this can lead to a crash on startup when trying to apply relocations to the still read-only locations. Practically speaking, this doesn't end up being a problem on x86, where the PT_LOAD alignment is usually 4096, which happens to be the page size, but on Debian armhf, it is 64k, while the run time page size can be 4k. --HG-- extra : rebase_source : 5ac7356f685d87c1628727e6c84f7615409c57a5
986 lines
40 KiB
C++
986 lines
40 KiB
C++
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#undef NDEBUG
|
|
#include <assert.h>
|
|
#include <cstring>
|
|
#include <cstdlib>
|
|
#include <cstdio>
|
|
#include "elfxx.h"
|
|
|
|
#define ver "0"
|
|
#define elfhack_data ".elfhack.data.v" ver
|
|
#define elfhack_text ".elfhack.text.v" ver
|
|
|
|
#ifndef R_ARM_V4BX
|
|
#define R_ARM_V4BX 0x28
|
|
#endif
|
|
#ifndef R_ARM_CALL
|
|
#define R_ARM_CALL 0x1c
|
|
#endif
|
|
#ifndef R_ARM_JUMP24
|
|
#define R_ARM_JUMP24 0x1d
|
|
#endif
|
|
#ifndef R_ARM_THM_JUMP24
|
|
#define R_ARM_THM_JUMP24 0x1e
|
|
#endif
|
|
|
|
char *rundir = nullptr;
|
|
|
|
template <typename T>
|
|
struct wrapped {
|
|
T value;
|
|
};
|
|
|
|
class Elf_Addr_Traits {
|
|
public:
|
|
typedef wrapped<Elf32_Addr> Type32;
|
|
typedef wrapped<Elf64_Addr> Type64;
|
|
|
|
template <class endian, typename R, typename T>
|
|
static inline void swap(T &t, R &r) {
|
|
r.value = endian::swap(t.value);
|
|
}
|
|
};
|
|
|
|
typedef serializable<Elf_Addr_Traits> Elf_Addr;
|
|
|
|
class Elf_RelHack_Traits {
|
|
public:
|
|
typedef Elf32_Rel Type32;
|
|
typedef Elf32_Rel Type64;
|
|
|
|
template <class endian, typename R, typename T>
|
|
static inline void swap(T &t, R &r) {
|
|
r.r_offset = endian::swap(t.r_offset);
|
|
r.r_info = endian::swap(t.r_info);
|
|
}
|
|
};
|
|
|
|
typedef serializable<Elf_RelHack_Traits> Elf_RelHack;
|
|
|
|
class ElfRelHack_Section: public ElfSection {
|
|
public:
|
|
ElfRelHack_Section(Elf_Shdr &s)
|
|
: ElfSection(s, nullptr, nullptr)
|
|
{
|
|
name = elfhack_data;
|
|
};
|
|
|
|
void serialize(std::ofstream &file, char ei_class, char ei_data)
|
|
{
|
|
for (std::vector<Elf_RelHack>::iterator i = rels.begin();
|
|
i != rels.end(); ++i)
|
|
(*i).serialize(file, ei_class, ei_data);
|
|
}
|
|
|
|
bool isRelocatable() {
|
|
return true;
|
|
}
|
|
|
|
void push_back(Elf_RelHack &r) {
|
|
rels.push_back(r);
|
|
shdr.sh_size = rels.size() * shdr.sh_entsize;
|
|
}
|
|
private:
|
|
std::vector<Elf_RelHack> rels;
|
|
};
|
|
|
|
class ElfRelHackCode_Section: public ElfSection {
|
|
public:
|
|
ElfRelHackCode_Section(Elf_Shdr &s, Elf &e, ElfRelHack_Section &relhack_section,
|
|
unsigned int init, unsigned int mprotect_cb,
|
|
unsigned int sysconf_cb)
|
|
: ElfSection(s, nullptr, nullptr), parent(e), relhack_section(relhack_section),
|
|
init(init), mprotect_cb(mprotect_cb), sysconf_cb(sysconf_cb) {
|
|
std::string file(rundir);
|
|
file += "/inject/";
|
|
switch (parent.getMachine()) {
|
|
case EM_386:
|
|
file += "x86";
|
|
break;
|
|
case EM_X86_64:
|
|
file += "x86_64";
|
|
break;
|
|
case EM_ARM:
|
|
file += "arm";
|
|
break;
|
|
default:
|
|
throw std::runtime_error("unsupported architecture");
|
|
}
|
|
file += ".o";
|
|
std::ifstream inject(file.c_str(), std::ios::in|std::ios::binary);
|
|
elf = new Elf(inject);
|
|
if (elf->getType() != ET_REL)
|
|
throw std::runtime_error("object for injected code is not ET_REL");
|
|
if (elf->getMachine() != parent.getMachine())
|
|
throw std::runtime_error("architecture of object for injected code doesn't match");
|
|
|
|
ElfSymtab_Section *symtab = nullptr;
|
|
|
|
// Find the symbol table.
|
|
for (ElfSection *section = elf->getSection(1); section != nullptr;
|
|
section = section->getNext()) {
|
|
if (section->getType() == SHT_SYMTAB)
|
|
symtab = (ElfSymtab_Section *) section;
|
|
}
|
|
if (symtab == nullptr)
|
|
throw std::runtime_error("Couldn't find a symbol table for the injected code");
|
|
|
|
relro = parent.getSegmentByType(PT_GNU_RELRO);
|
|
|
|
// Find the init symbol
|
|
entry_point = -1;
|
|
std::string symbol = "init";
|
|
if (!init)
|
|
symbol += "_noinit";
|
|
if (relro)
|
|
symbol += "_relro";
|
|
Elf_SymValue *sym = symtab->lookup(symbol.c_str());
|
|
if (!sym)
|
|
throw std::runtime_error("Couldn't find an 'init' symbol in the injected code");
|
|
|
|
entry_point = sym->value.getValue();
|
|
|
|
// Get all relevant sections from the injected code object.
|
|
add_code_section(sym->value.getSection());
|
|
|
|
// Adjust code sections offsets according to their size
|
|
std::vector<ElfSection *>::iterator c = code.begin();
|
|
(*c)->getShdr().sh_addr = 0;
|
|
for(ElfSection *last = *(c++); c != code.end(); ++c) {
|
|
unsigned int addr = last->getShdr().sh_addr + last->getSize();
|
|
if (addr & ((*c)->getAddrAlign() - 1))
|
|
addr = (addr | ((*c)->getAddrAlign() - 1)) + 1;
|
|
(*c)->getShdr().sh_addr = addr;
|
|
// We need to align this section depending on the greater
|
|
// alignment required by code sections.
|
|
if (shdr.sh_addralign < (*c)->getAddrAlign())
|
|
shdr.sh_addralign = (*c)->getAddrAlign();
|
|
}
|
|
shdr.sh_size = code.back()->getAddr() + code.back()->getSize();
|
|
data = new char[shdr.sh_size];
|
|
char *buf = data;
|
|
for (c = code.begin(); c != code.end(); ++c) {
|
|
memcpy(buf, (*c)->getData(), (*c)->getSize());
|
|
buf += (*c)->getSize();
|
|
}
|
|
name = elfhack_text;
|
|
}
|
|
|
|
~ElfRelHackCode_Section() {
|
|
delete elf;
|
|
}
|
|
|
|
void serialize(std::ofstream &file, char ei_class, char ei_data)
|
|
{
|
|
// Readjust code offsets
|
|
for (std::vector<ElfSection *>::iterator c = code.begin(); c != code.end(); ++c)
|
|
(*c)->getShdr().sh_addr += getAddr();
|
|
|
|
// Apply relocations
|
|
for (std::vector<ElfSection *>::iterator c = code.begin(); c != code.end(); ++c) {
|
|
for (ElfSection *rel = elf->getSection(1); rel != nullptr; rel = rel->getNext())
|
|
if (((rel->getType() == SHT_REL) ||
|
|
(rel->getType() == SHT_RELA)) &&
|
|
(rel->getInfo().section == *c)) {
|
|
if (rel->getType() == SHT_REL)
|
|
apply_relocations((ElfRel_Section<Elf_Rel> *)rel, *c);
|
|
else
|
|
apply_relocations((ElfRel_Section<Elf_Rela> *)rel, *c);
|
|
}
|
|
}
|
|
|
|
ElfSection::serialize(file, ei_class, ei_data);
|
|
}
|
|
|
|
bool isRelocatable() {
|
|
return true;
|
|
}
|
|
|
|
unsigned int getEntryPoint() {
|
|
return entry_point;
|
|
}
|
|
private:
|
|
void add_code_section(ElfSection *section)
|
|
{
|
|
if (section) {
|
|
/* Don't add section if it's already been added in the past */
|
|
for (auto s = code.begin(); s != code.end(); ++s) {
|
|
if (section == *s)
|
|
return;
|
|
}
|
|
code.push_back(section);
|
|
find_code(section);
|
|
}
|
|
}
|
|
|
|
/* Look at the relocations associated to the given section to find other
|
|
* sections that it requires */
|
|
void find_code(ElfSection *section)
|
|
{
|
|
for (ElfSection *s = elf->getSection(1); s != nullptr;
|
|
s = s->getNext()) {
|
|
if (((s->getType() == SHT_REL) ||
|
|
(s->getType() == SHT_RELA)) &&
|
|
(s->getInfo().section == section)) {
|
|
if (s->getType() == SHT_REL)
|
|
scan_relocs_for_code((ElfRel_Section<Elf_Rel> *)s);
|
|
else
|
|
scan_relocs_for_code((ElfRel_Section<Elf_Rela> *)s);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Rel_Type>
|
|
void scan_relocs_for_code(ElfRel_Section<Rel_Type> *rel)
|
|
{
|
|
ElfSymtab_Section *symtab = (ElfSymtab_Section *)rel->getLink();
|
|
for (auto r = rel->rels.begin(); r != rel->rels.end(); ++r) {
|
|
ElfSection *section = symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection();
|
|
add_code_section(section);
|
|
}
|
|
}
|
|
|
|
class pc32_relocation {
|
|
public:
|
|
Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
|
|
Elf32_Word addend, unsigned int addr)
|
|
{
|
|
return addr + addend - offset - base_addr;
|
|
}
|
|
};
|
|
|
|
class arm_plt32_relocation {
|
|
public:
|
|
Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
|
|
Elf32_Word addend, unsigned int addr)
|
|
{
|
|
// We don't care about sign_extend because the only case where this is
|
|
// going to be used only jumps forward.
|
|
Elf32_Addr tmp = (Elf32_Addr) (addr - offset - base_addr) >> 2;
|
|
tmp = (addend + tmp) & 0x00ffffff;
|
|
return (addend & 0xff000000) | tmp;
|
|
}
|
|
};
|
|
|
|
class arm_thm_jump24_relocation {
|
|
public:
|
|
Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
|
|
Elf32_Word addend, unsigned int addr)
|
|
{
|
|
/* Follows description of b.w and bl instructions as per
|
|
ARM Architecture Reference Manual ARM® v7-A and ARM® v7-R edition, A8.6.16
|
|
We limit ourselves to Encoding T4 of b.w and Encoding T1 of bl.
|
|
We don't care about sign_extend because the only case where this is
|
|
going to be used only jumps forward. */
|
|
Elf32_Addr tmp = (Elf32_Addr) (addr - offset - base_addr);
|
|
unsigned int word0 = addend & 0xffff,
|
|
word1 = addend >> 16;
|
|
|
|
/* Encoding T4 of B.W is 10x1 ; Encoding T1 of BL is 11x1. */
|
|
unsigned int type = (word1 & 0xd000) >> 12;
|
|
if (((word0 & 0xf800) != 0xf000) || ((type & 0x9) != 0x9))
|
|
throw std::runtime_error("R_ARM_THM_JUMP24/R_ARM_THM_CALL relocation only supported for B.W <label> and BL <label>");
|
|
|
|
/* When the target address points to ARM code, switch a BL to a
|
|
* BLX. This however can't be done with a B.W without adding a
|
|
* trampoline, which is not supported as of now. */
|
|
if ((addr & 0x1) == 0) {
|
|
if (type == 0x9)
|
|
throw std::runtime_error("R_ARM_THM_JUMP24/R_ARM_THM_CALL relocation only supported for BL <label> when label points to ARM code");
|
|
/* The address of the target is always relative to a 4-bytes
|
|
* aligned address, so if the address of the BL instruction is
|
|
* not 4-bytes aligned, adjust for it. */
|
|
if ((base_addr + offset) & 0x2)
|
|
tmp += 2;
|
|
/* Encoding T2 of BLX is 11x0. */
|
|
type = 0xc;
|
|
}
|
|
|
|
unsigned int s = (word0 & (1 << 10)) >> 10;
|
|
unsigned int j1 = (word1 & (1 << 13)) >> 13;
|
|
unsigned int j2 = (word1 & (1 << 11)) >> 11;
|
|
unsigned int i1 = j1 ^ s ? 0 : 1;
|
|
unsigned int i2 = j2 ^ s ? 0 : 1;
|
|
|
|
tmp += ((s << 24) | (i1 << 23) | (i2 << 22) | ((word0 & 0x3ff) << 12) | ((word1 & 0x7ff) << 1));
|
|
|
|
s = (tmp & (1 << 24)) >> 24;
|
|
j1 = ((tmp & (1 << 23)) >> 23) ^ !s;
|
|
j2 = ((tmp & (1 << 22)) >> 22) ^ !s;
|
|
|
|
return 0xf000 | (s << 10) | ((tmp & (0x3ff << 12)) >> 12) |
|
|
(type << 28) | (j1 << 29) | (j2 << 27) | ((tmp & 0xffe) << 15);
|
|
}
|
|
};
|
|
|
|
class gotoff_relocation {
|
|
public:
|
|
Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
|
|
Elf32_Word addend, unsigned int addr)
|
|
{
|
|
return addr + addend;
|
|
}
|
|
};
|
|
|
|
template <class relocation_type>
|
|
void apply_relocation(ElfSection *the_code, char *base, Elf_Rel *r, unsigned int addr)
|
|
{
|
|
relocation_type relocation;
|
|
Elf32_Addr value;
|
|
memcpy(&value, base + r->r_offset, 4);
|
|
value = relocation(the_code->getAddr(), r->r_offset, value, addr);
|
|
memcpy(base + r->r_offset, &value, 4);
|
|
}
|
|
|
|
template <class relocation_type>
|
|
void apply_relocation(ElfSection *the_code, char *base, Elf_Rela *r, unsigned int addr)
|
|
{
|
|
relocation_type relocation;
|
|
Elf32_Addr value = relocation(the_code->getAddr(), r->r_offset, r->r_addend, addr);
|
|
memcpy(base + r->r_offset, &value, 4);
|
|
}
|
|
|
|
template <typename Rel_Type>
|
|
void apply_relocations(ElfRel_Section<Rel_Type> *rel, ElfSection *the_code)
|
|
{
|
|
assert(rel->getType() == Rel_Type::sh_type);
|
|
char *buf = data + (the_code->getAddr() - code.front()->getAddr());
|
|
// TODO: various checks on the sections
|
|
ElfSymtab_Section *symtab = (ElfSymtab_Section *)rel->getLink();
|
|
for (typename std::vector<Rel_Type>::iterator r = rel->rels.begin(); r != rel->rels.end(); ++r) {
|
|
// TODO: various checks on the symbol
|
|
const char *name = symtab->syms[ELF32_R_SYM(r->r_info)].name;
|
|
unsigned int addr;
|
|
if (symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection() == nullptr) {
|
|
if (strcmp(name, "relhack") == 0) {
|
|
addr = relhack_section.getAddr();
|
|
} else if (strcmp(name, "elf_header") == 0) {
|
|
// TODO: change this ungly hack to something better
|
|
ElfSection *ehdr = parent.getSection(1)->getPrevious()->getPrevious();
|
|
addr = ehdr->getAddr();
|
|
} else if (strcmp(name, "original_init") == 0) {
|
|
addr = init;
|
|
} else if (relro && strcmp(name, "mprotect_cb") == 0) {
|
|
addr = mprotect_cb;
|
|
} else if (relro && strcmp(name, "sysconf_cb") == 0) {
|
|
addr = sysconf_cb;
|
|
} else if (relro && strcmp(name, "relro_start") == 0) {
|
|
addr = relro->getAddr();
|
|
} else if (relro && strcmp(name, "relro_end") == 0) {
|
|
addr = (relro->getAddr() + relro->getMemSize());
|
|
} else if (strcmp(name, "_GLOBAL_OFFSET_TABLE_") == 0) {
|
|
// We actually don't need a GOT, but need it as a reference for
|
|
// GOTOFF relocations. We'll just use the start of the ELF file
|
|
addr = 0;
|
|
} else if (strcmp(name, "") == 0) {
|
|
// This is for R_ARM_V4BX, until we find something better
|
|
addr = -1;
|
|
} else {
|
|
throw std::runtime_error("Unsupported symbol in relocation");
|
|
}
|
|
} else {
|
|
ElfSection *section = symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection();
|
|
assert((section->getType() == SHT_PROGBITS) && (section->getFlags() & SHF_EXECINSTR));
|
|
addr = symtab->syms[ELF32_R_SYM(r->r_info)].value.getValue();
|
|
}
|
|
// Do the relocation
|
|
#define REL(machine, type) (EM_ ## machine | (R_ ## machine ## _ ## type << 8))
|
|
switch (elf->getMachine() | (ELF32_R_TYPE(r->r_info) << 8)) {
|
|
case REL(X86_64, PC32):
|
|
case REL(X86_64, PLT32):
|
|
case REL(386, PC32):
|
|
case REL(386, GOTPC):
|
|
case REL(ARM, GOTPC):
|
|
case REL(ARM, REL32):
|
|
apply_relocation<pc32_relocation>(the_code, buf, &*r, addr);
|
|
break;
|
|
case REL(ARM, CALL):
|
|
case REL(ARM, JUMP24):
|
|
case REL(ARM, PLT32):
|
|
apply_relocation<arm_plt32_relocation>(the_code, buf, &*r, addr);
|
|
break;
|
|
case REL(ARM, THM_PC22 /* THM_CALL */):
|
|
case REL(ARM, THM_JUMP24):
|
|
apply_relocation<arm_thm_jump24_relocation>(the_code, buf, &*r, addr);
|
|
break;
|
|
case REL(386, GOTOFF):
|
|
case REL(ARM, GOTOFF):
|
|
apply_relocation<gotoff_relocation>(the_code, buf, &*r, addr);
|
|
break;
|
|
case REL(ARM, V4BX):
|
|
// Ignore R_ARM_V4BX relocations
|
|
break;
|
|
default:
|
|
throw std::runtime_error("Unsupported relocation type");
|
|
}
|
|
}
|
|
}
|
|
|
|
Elf *elf, &parent;
|
|
ElfRelHack_Section &relhack_section;
|
|
std::vector<ElfSection *> code;
|
|
unsigned int init;
|
|
unsigned int mprotect_cb;
|
|
unsigned int sysconf_cb;
|
|
int entry_point;
|
|
ElfSegment *relro;
|
|
};
|
|
|
|
unsigned int get_addend(Elf_Rel *rel, Elf *elf) {
|
|
ElfLocation loc(rel->r_offset, elf);
|
|
Elf_Addr addr(loc.getBuffer(), Elf_Addr::size(elf->getClass()), elf->getClass(), elf->getData());
|
|
return addr.value;
|
|
}
|
|
|
|
unsigned int get_addend(Elf_Rela *rel, Elf *elf) {
|
|
return rel->r_addend;
|
|
}
|
|
|
|
void set_relative_reloc(Elf_Rel *rel, Elf *elf, unsigned int value) {
|
|
ElfLocation loc(rel->r_offset, elf);
|
|
Elf_Addr addr;
|
|
addr.value = value;
|
|
addr.serialize(const_cast<char *>(loc.getBuffer()), Elf_Addr::size(elf->getClass()), elf->getClass(), elf->getData());
|
|
}
|
|
|
|
void set_relative_reloc(Elf_Rela *rel, Elf *elf, unsigned int value) {
|
|
// ld puts the value of relocated relocations both in the addend and
|
|
// at r_offset. For consistency, keep it that way.
|
|
set_relative_reloc((Elf_Rel *)rel, elf, value);
|
|
rel->r_addend = value;
|
|
}
|
|
|
|
void maybe_split_segment(Elf *elf, ElfSegment *segment, bool fill)
|
|
{
|
|
std::list<ElfSection *>::iterator it = segment->begin();
|
|
for (ElfSection *last = *(it++); it != segment->end(); last = *(it++)) {
|
|
// When two consecutive non-SHT_NOBITS sections are apart by more
|
|
// than the alignment of the section, the second can be moved closer
|
|
// to the first, but this requires the segment to be split.
|
|
if (((*it)->getType() != SHT_NOBITS) && (last->getType() != SHT_NOBITS) &&
|
|
((*it)->getOffset() - last->getOffset() - last->getSize() > segment->getAlign())) {
|
|
// Probably very wrong.
|
|
Elf_Phdr phdr;
|
|
phdr.p_type = PT_LOAD;
|
|
phdr.p_vaddr = 0;
|
|
phdr.p_paddr = phdr.p_vaddr + segment->getVPDiff();
|
|
phdr.p_flags = segment->getFlags();
|
|
phdr.p_align = segment->getAlign();
|
|
phdr.p_filesz = (unsigned int)-1;
|
|
phdr.p_memsz = (unsigned int)-1;
|
|
ElfSegment *newSegment = new ElfSegment(&phdr);
|
|
elf->insertSegmentAfter(segment, newSegment);
|
|
ElfSection *section = *it;
|
|
for (; it != segment->end(); ++it) {
|
|
newSegment->addSection(*it);
|
|
}
|
|
for (it = newSegment->begin(); it != newSegment->end(); ++it) {
|
|
segment->removeSection(*it);
|
|
}
|
|
// Fill the virtual address space gap left between the two PT_LOADs
|
|
// with a new PT_LOAD with no permissions. This avoids the linker
|
|
// (especially bionic's) filling the gap with anonymous memory,
|
|
// which breakpad doesn't like.
|
|
// /!\ running strip on a elfhacked binary will break this filler
|
|
// PT_LOAD.
|
|
if (!fill)
|
|
break;
|
|
// Insert dummy segment to normalize the entire Elf with the header
|
|
// sizes adjusted, before inserting a filler segment.
|
|
{
|
|
memset(&phdr, 0, sizeof(phdr));
|
|
ElfSegment dummySegment(&phdr);
|
|
elf->insertSegmentAfter(segment, &dummySegment);
|
|
elf->normalize();
|
|
elf->removeSegment(&dummySegment);
|
|
}
|
|
ElfSection *previous = section->getPrevious();
|
|
phdr.p_type = PT_LOAD;
|
|
phdr.p_vaddr = (previous->getAddr() + previous->getSize() + segment->getAlign() - 1) & ~(segment->getAlign() - 1);
|
|
phdr.p_paddr = phdr.p_vaddr + segment->getVPDiff();
|
|
phdr.p_flags = 0;
|
|
phdr.p_align = 0;
|
|
phdr.p_filesz = (section->getAddr() & ~(newSegment->getAlign() - 1)) - phdr.p_vaddr;
|
|
phdr.p_memsz = phdr.p_filesz;
|
|
if (phdr.p_filesz) {
|
|
newSegment = new ElfSegment(&phdr);
|
|
assert(newSegment->isElfHackFillerSegment());
|
|
elf->insertSegmentAfter(segment, newSegment);
|
|
} else {
|
|
elf->normalize();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Rel_Type>
|
|
int do_relocation_section(Elf *elf, unsigned int rel_type, unsigned int rel_type2, bool force, bool fill)
|
|
{
|
|
ElfDynamic_Section *dyn = elf->getDynSection();
|
|
if (dyn == nullptr) {
|
|
fprintf(stderr, "Couldn't find SHT_DYNAMIC section\n");
|
|
return -1;
|
|
}
|
|
|
|
ElfRel_Section<Rel_Type> *section = (ElfRel_Section<Rel_Type> *)dyn->getSectionForType(Rel_Type::d_tag);
|
|
if (section == nullptr) {
|
|
fprintf(stderr, "No relocations\n");
|
|
return -1;
|
|
}
|
|
assert(section->getType() == Rel_Type::sh_type);
|
|
|
|
Elf32_Shdr relhack32_section =
|
|
{ 0, SHT_PROGBITS, SHF_ALLOC, 0, (Elf32_Off)-1, 0, SHN_UNDEF, 0,
|
|
Elf_RelHack::size(elf->getClass()), Elf_RelHack::size(elf->getClass()) }; // TODO: sh_addralign should be an alignment, not size
|
|
Elf32_Shdr relhackcode32_section =
|
|
{ 0, SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, 0, (Elf32_Off)-1, 0,
|
|
SHN_UNDEF, 0, 1, 0 };
|
|
|
|
unsigned int entry_sz = Elf_Addr::size(elf->getClass());
|
|
|
|
// The injected code needs to be executed before any init code in the
|
|
// binary. There are three possible cases:
|
|
// - The binary has no init code at all. In this case, we will add a
|
|
// DT_INIT entry pointing to the injected code.
|
|
// - The binary has a DT_INIT entry. In this case, we will interpose:
|
|
// we change DT_INIT to point to the injected code, and have the
|
|
// injected code call the original DT_INIT entry point.
|
|
// - The binary has no DT_INIT entry, but has a DT_INIT_ARRAY. In this
|
|
// case, we interpose as well, by replacing the first entry in the
|
|
// array to point to the injected code, and have the injected code
|
|
// call the original first entry.
|
|
// The binary may have .ctors instead of DT_INIT_ARRAY, for its init
|
|
// functions, but this falls into the second case above, since .ctors
|
|
// are actually run by DT_INIT code.
|
|
ElfValue *value = dyn->getValueForType(DT_INIT);
|
|
unsigned int original_init = value ? value->getValue() : 0;
|
|
ElfSection *init_array = nullptr;
|
|
if (!value || !value->getValue()) {
|
|
value = dyn->getValueForType(DT_INIT_ARRAYSZ);
|
|
if (value && value->getValue() >= entry_sz)
|
|
init_array = dyn->getSectionForType(DT_INIT_ARRAY);
|
|
}
|
|
|
|
Elf_Shdr relhack_section(relhack32_section);
|
|
Elf_Shdr relhackcode_section(relhackcode32_section);
|
|
ElfRelHack_Section *relhack = new ElfRelHack_Section(relhack_section);
|
|
|
|
ElfSymtab_Section *symtab = (ElfSymtab_Section *) section->getLink();
|
|
Elf_SymValue *sym = symtab->lookup("__cxa_pure_virtual");
|
|
|
|
std::vector<Rel_Type> new_rels;
|
|
Elf_RelHack relhack_entry;
|
|
relhack_entry.r_offset = relhack_entry.r_info = 0;
|
|
size_t init_array_reloc = 0;
|
|
for (typename std::vector<Rel_Type>::iterator i = section->rels.begin();
|
|
i != section->rels.end(); ++i) {
|
|
// We don't need to keep R_*_NONE relocations
|
|
if (!ELF32_R_TYPE(i->r_info))
|
|
continue;
|
|
ElfLocation loc(i->r_offset, elf);
|
|
// __cxa_pure_virtual is a function used in vtables to point at pure
|
|
// virtual methods. The __cxa_pure_virtual function usually abort()s.
|
|
// These functions are however normally never called. In the case
|
|
// where they would, jumping to the null address instead of calling
|
|
// __cxa_pure_virtual is going to work just as well. So we can remove
|
|
// relocations for the __cxa_pure_virtual symbol and null out the
|
|
// content at the offset pointed by the relocation.
|
|
if (sym) {
|
|
if (sym->defined) {
|
|
// If we are statically linked to libstdc++, the
|
|
// __cxa_pure_virtual symbol is defined in our lib, and we
|
|
// have relative relocations (rel_type) for it.
|
|
if (ELF32_R_TYPE(i->r_info) == rel_type) {
|
|
Elf_Addr addr(loc.getBuffer(), entry_sz, elf->getClass(), elf->getData());
|
|
if (addr.value == sym->value.getValue()) {
|
|
memset((char *)loc.getBuffer(), 0, entry_sz);
|
|
continue;
|
|
}
|
|
}
|
|
} else {
|
|
// If we are dynamically linked to libstdc++, the
|
|
// __cxa_pure_virtual symbol is undefined in our lib, and we
|
|
// have absolute relocations (rel_type2) for it.
|
|
if ((ELF32_R_TYPE(i->r_info) == rel_type2) &&
|
|
(sym == &symtab->syms[ELF32_R_SYM(i->r_info)])) {
|
|
memset((char *)loc.getBuffer(), 0, entry_sz);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
// Keep track of the relocation associated with the first init_array entry.
|
|
if (init_array && i->r_offset == init_array->getAddr()) {
|
|
if (init_array_reloc) {
|
|
fprintf(stderr, "Found multiple relocations for the first init_array entry. Skipping\n");
|
|
return -1;
|
|
}
|
|
new_rels.push_back(*i);
|
|
init_array_reloc = new_rels.size();
|
|
} else if (!(loc.getSection()->getFlags() & SHF_WRITE) || (ELF32_R_TYPE(i->r_info) != rel_type)) {
|
|
// Don't pack relocations happening in non writable sections.
|
|
// Our injected code is likely not to be allowed to write there.
|
|
new_rels.push_back(*i);
|
|
} else {
|
|
// With Elf_Rel, the value pointed by the relocation offset is the addend.
|
|
// With Elf_Rela, the addend is in the relocation entry, but the elfhacked
|
|
// relocation info doesn't contain it. Elfhack relies on the value pointed
|
|
// by the relocation offset to also contain the addend. Which is true with
|
|
// BFD ld and gold, but not lld, which leaves that nulled out. So if that
|
|
// value is nulled out, we update it to the addend.
|
|
Elf_Addr addr(loc.getBuffer(), entry_sz, elf->getClass(), elf->getData());
|
|
unsigned int addend = get_addend(&*i, elf);
|
|
if (addr.value == 0) {
|
|
addr.value = addend;
|
|
addr.serialize(const_cast<char*>(loc.getBuffer()), entry_sz, elf->getClass(), elf->getData());
|
|
} else if (addr.value != addend) {
|
|
fprintf(stderr, "Relocation addend inconsistent with content. Skipping\n");
|
|
return -1;
|
|
}
|
|
if (i->r_offset == relhack_entry.r_offset + relhack_entry.r_info * entry_sz) {
|
|
relhack_entry.r_info++;
|
|
} else {
|
|
if (relhack_entry.r_offset)
|
|
relhack->push_back(relhack_entry);
|
|
relhack_entry.r_offset = i->r_offset;
|
|
relhack_entry.r_info = 1;
|
|
}
|
|
}
|
|
}
|
|
if (relhack_entry.r_offset)
|
|
relhack->push_back(relhack_entry);
|
|
// Last entry must be nullptr
|
|
relhack_entry.r_offset = relhack_entry.r_info = 0;
|
|
relhack->push_back(relhack_entry);
|
|
|
|
if (init_array && !init_array_reloc) {
|
|
// Some linkers create a DT_INIT_ARRAY section that, for all purposes,
|
|
// is empty: it only contains 0x0 or 0xffffffff pointers with no relocations.
|
|
const size_t zero = 0;
|
|
const size_t all = SIZE_MAX;
|
|
const char *data = init_array->getData();
|
|
size_t length = Elf_Addr::size(elf->getClass());
|
|
bool empty = true;
|
|
for (size_t off = 0; off < init_array->getSize(); off += length) {
|
|
if (memcmp(data + off, &zero, length) &&
|
|
memcmp(data + off, &all, length)) {
|
|
empty = false;
|
|
break;
|
|
}
|
|
}
|
|
// If we encounter such an empty DT_INIT_ARRAY section, we add a
|
|
// relocation for its first entry to point to our init. Code further
|
|
// below will take care of actually setting the right r_info and
|
|
// r_addend for the relocation, as if we had a normal DT_INIT_ARRAY
|
|
// section.
|
|
if (empty) {
|
|
new_rels.emplace_back();
|
|
init_array_reloc = new_rels.size();
|
|
Rel_Type *rel = &new_rels[init_array_reloc - 1];
|
|
rel->r_offset = init_array->getAddr();
|
|
} else {
|
|
fprintf(stderr, "Didn't find relocation for DT_INIT_ARRAY's first entry. Skipping\n");
|
|
return -1;
|
|
}
|
|
} else if (init_array) {
|
|
Rel_Type *rel = &new_rels[init_array_reloc - 1];
|
|
unsigned int addend = get_addend(rel, elf);
|
|
// Use relocated value of DT_INIT_ARRAY's first entry for the
|
|
// function to be called by the injected code.
|
|
if (ELF32_R_TYPE(rel->r_info) == rel_type) {
|
|
original_init = addend;
|
|
} else if (ELF32_R_TYPE(rel->r_info) == rel_type2) {
|
|
ElfSymtab_Section *symtab = (ElfSymtab_Section *)section->getLink();
|
|
original_init = symtab->syms[ELF32_R_SYM(rel->r_info)].value.getValue() + addend;
|
|
} else {
|
|
fprintf(stderr, "Unsupported relocation type for DT_INIT_ARRAY's first entry. Skipping\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
unsigned int mprotect_cb = 0;
|
|
unsigned int sysconf_cb = 0;
|
|
// If there is a relro segment, our injected code will run after the linker sets the
|
|
// corresponding pages read-only. We need to make our code change that to read-write
|
|
// before applying relocations, which means it needs to call mprotect.
|
|
// To do that, we need to find a reference to the mprotect symbol. In case the library
|
|
// already has one, we use that, but otherwise, we add the symbol.
|
|
// Then the injected code needs to be able to call the corresponding function, which
|
|
// means it needs access to a pointer to it. We get such a pointer by making the linker
|
|
// apply a relocation for the symbol at an address our code can read.
|
|
// The problem here is that there is not much relocated space where we can put such a
|
|
// pointer, so we abuse the bss section temporarily (it will be restored to a null
|
|
// value before any code can actually use it)
|
|
if (elf->getSegmentByType(PT_GNU_RELRO)) {
|
|
ElfSection *gnu_versym = dyn->getSectionForType(DT_VERSYM);
|
|
auto lookup = [&symtab, &gnu_versym](const char* symbol) {
|
|
Elf_SymValue *sym_value = symtab->lookup(symbol, STT(FUNC));
|
|
if (!sym_value) {
|
|
symtab->syms.emplace_back();
|
|
sym_value = &symtab->syms.back();
|
|
symtab->grow(symtab->syms.size() * symtab->getEntSize());
|
|
sym_value->name = ((ElfStrtab_Section *)symtab->getLink())->getStr(symbol);
|
|
sym_value->info = ELF32_ST_INFO(STB_GLOBAL, STT_FUNC);
|
|
sym_value->other = STV_DEFAULT;
|
|
new (&sym_value->value) ElfLocation(nullptr, 0, ElfLocation::ABSOLUTE);
|
|
sym_value->size = 0;
|
|
sym_value->defined = false;
|
|
|
|
// The DT_VERSYM data (in the .gnu.version section) has the same number of
|
|
// entries as the symbols table. Since we added one entry there, we need to
|
|
// add one entry here. Zeroes in the extra data means no version for that
|
|
// symbol, which is the simplest thing to do.
|
|
if (gnu_versym) {
|
|
gnu_versym->grow(gnu_versym->getSize() + gnu_versym->getEntSize());
|
|
}
|
|
}
|
|
return sym_value;
|
|
};
|
|
|
|
Elf_SymValue *mprotect = lookup("mprotect");
|
|
Elf_SymValue *sysconf = lookup("sysconf");
|
|
|
|
// Add relocations for the mprotect and sysconf symbols.
|
|
auto add_relocation_to = [&new_rels, &symtab, rel_type2](Elf_SymValue *symbol, unsigned int location) {
|
|
new_rels.emplace_back();
|
|
Rel_Type &rel = new_rels.back();
|
|
memset(&rel, 0, sizeof(rel));
|
|
rel.r_info = ELF32_R_INFO(
|
|
std::distance(symtab->syms.begin(),
|
|
std::vector<Elf_SymValue>::iterator(symbol)),
|
|
rel_type2);
|
|
rel.r_offset = location;
|
|
return location;
|
|
};
|
|
|
|
|
|
// Find the beginning of the bss section, and use an aligned location in there
|
|
// for the relocation.
|
|
for (ElfSection *s = elf->getSection(1); s != nullptr; s = s->getNext()) {
|
|
if (s->getType() != SHT_NOBITS || (s->getFlags() & (SHF_TLS | SHF_WRITE)) != SHF_WRITE) {
|
|
continue;
|
|
}
|
|
size_t ptr_size = Elf_Addr::size(elf->getClass());
|
|
size_t usable_start = (s->getAddr() + ptr_size - 1) & ~(ptr_size - 1);
|
|
size_t usable_end = (s->getAddr() + s->getSize()) & ~(ptr_size - 1);
|
|
if (usable_end - usable_start >= 2 * ptr_size) {
|
|
mprotect_cb = add_relocation_to(mprotect, usable_start);
|
|
sysconf_cb = add_relocation_to(sysconf, usable_start + ptr_size);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mprotect_cb == 0 || sysconf_cb == 0) {
|
|
fprintf(stderr, "Couldn't find .bss. Skipping\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
section->rels.assign(new_rels.begin(), new_rels.end());
|
|
section->shrink(new_rels.size() * section->getEntSize());
|
|
|
|
ElfRelHackCode_Section *relhackcode = new ElfRelHackCode_Section(
|
|
relhackcode_section, *elf, *relhack, original_init, mprotect_cb, sysconf_cb);
|
|
// Find the first executable section, and insert the relhack code before
|
|
// that. The relhack data is inserted between .rel.dyn and .rel.plt.
|
|
ElfSection *first_executable = nullptr;
|
|
for (ElfSection *s = elf->getSection(1); s != nullptr;
|
|
s = s->getNext()) {
|
|
if (s->getFlags() & SHF_EXECINSTR) {
|
|
first_executable = s;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!first_executable) {
|
|
fprintf(stderr, "Couldn't find executable section. Skipping\n");
|
|
return -1;
|
|
}
|
|
|
|
unsigned int old_exec = first_executable->getOffset();
|
|
|
|
relhack->insertBefore(section);
|
|
relhackcode->insertBefore(first_executable);
|
|
|
|
// Trying to get first_executable->getOffset() now may throw if the new
|
|
// layout would require it to move, so we look at the end of the relhack
|
|
// code section instead, comparing it to where the first executable
|
|
// section used to start.
|
|
if (relhackcode->getOffset() + relhackcode->getSize() >= old_exec) {
|
|
fprintf(stderr, "No gain. Skipping\n");
|
|
return -1;
|
|
}
|
|
|
|
// Adjust PT_LOAD segments
|
|
for (ElfSegment *segment = elf->getSegmentByType(PT_LOAD); segment;
|
|
segment = elf->getSegmentByType(PT_LOAD, segment)) {
|
|
maybe_split_segment(elf, segment, fill);
|
|
}
|
|
|
|
// Ensure Elf sections will be at their final location.
|
|
elf->normalize();
|
|
ElfLocation *init = new ElfLocation(relhackcode, relhackcode->getEntryPoint());
|
|
if (init_array) {
|
|
// Adjust the first DT_INIT_ARRAY entry to point at the injected code
|
|
// by transforming its relocation into a relative one pointing to the
|
|
// address of the injected code.
|
|
Rel_Type *rel = §ion->rels[init_array_reloc - 1];
|
|
rel->r_info = ELF32_R_INFO(0, rel_type); // Set as a relative relocation
|
|
set_relative_reloc(§ion->rels[init_array_reloc - 1], elf, init->getValue());
|
|
} else if (!dyn->setValueForType(DT_INIT, init)) {
|
|
fprintf(stderr, "Can't grow .dynamic section to set DT_INIT. Skipping\n");
|
|
return -1;
|
|
}
|
|
// TODO: adjust the value according to the remaining number of relative relocations
|
|
if (dyn->getValueForType(Rel_Type::d_tag_count))
|
|
dyn->setValueForType(Rel_Type::d_tag_count, new ElfPlainValue(0));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int backup_file(const char *name)
|
|
{
|
|
std::string fname(name);
|
|
fname += ".bak";
|
|
return rename(name, fname.c_str());
|
|
}
|
|
|
|
void do_file(const char *name, bool backup = false, bool force = false, bool fill = false)
|
|
{
|
|
std::ifstream file(name, std::ios::in|std::ios::binary);
|
|
Elf elf(file);
|
|
unsigned int size = elf.getSize();
|
|
fprintf(stderr, "%s: ", name);
|
|
if (elf.getType() != ET_DYN) {
|
|
fprintf(stderr, "Not a shared object. Skipping\n");
|
|
return;
|
|
}
|
|
|
|
for (ElfSection *section = elf.getSection(1); section != nullptr;
|
|
section = section->getNext()) {
|
|
if (section->getName() &&
|
|
(strncmp(section->getName(), ".elfhack.", 9) == 0)) {
|
|
fprintf(stderr, "Already elfhacked. Skipping\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
int exit = -1;
|
|
switch (elf.getMachine()) {
|
|
case EM_386:
|
|
exit = do_relocation_section<Elf_Rel>(&elf, R_386_RELATIVE, R_386_32, force, fill);
|
|
break;
|
|
case EM_X86_64:
|
|
exit = do_relocation_section<Elf_Rela>(&elf, R_X86_64_RELATIVE, R_X86_64_64, force, fill);
|
|
break;
|
|
case EM_ARM:
|
|
exit = do_relocation_section<Elf_Rel>(&elf, R_ARM_RELATIVE, R_ARM_ABS32, force, fill);
|
|
break;
|
|
}
|
|
if (exit == 0) {
|
|
if (!force && (elf.getSize() >= size)) {
|
|
fprintf(stderr, "No gain. Skipping\n");
|
|
} else if (backup && backup_file(name) != 0) {
|
|
fprintf(stderr, "Couln't create backup file\n");
|
|
} else {
|
|
std::ofstream ofile(name, std::ios::out|std::ios::binary|std::ios::trunc);
|
|
elf.write(ofile);
|
|
fprintf(stderr, "Reduced by %d bytes\n", size - elf.getSize());
|
|
}
|
|
}
|
|
}
|
|
|
|
void undo_file(const char *name, bool backup = false)
|
|
{
|
|
std::ifstream file(name, std::ios::in|std::ios::binary);
|
|
Elf elf(file);
|
|
unsigned int size = elf.getSize();
|
|
fprintf(stderr, "%s: ", name);
|
|
if (elf.getType() != ET_DYN) {
|
|
fprintf(stderr, "Not a shared object. Skipping\n");
|
|
return;
|
|
}
|
|
|
|
ElfSection *data = nullptr, *text = nullptr;
|
|
for (ElfSection *section = elf.getSection(1); section != nullptr;
|
|
section = section->getNext()) {
|
|
if (section->getName() &&
|
|
(strcmp(section->getName(), elfhack_data) == 0))
|
|
data = section;
|
|
if (section->getName() &&
|
|
(strcmp(section->getName(), elfhack_text) == 0))
|
|
text = section;
|
|
}
|
|
|
|
if (!data || !text) {
|
|
fprintf(stderr, "Not elfhacked. Skipping\n");
|
|
return;
|
|
}
|
|
|
|
ElfSegment *first = data->getSegmentByType(PT_LOAD);
|
|
ElfSegment *second = text->getSegmentByType(PT_LOAD);
|
|
if (first != second) {
|
|
fprintf(stderr, elfhack_data " and " elfhack_text " not in the same segment. Skipping\n");
|
|
return;
|
|
}
|
|
second = elf.getSegmentByType(PT_LOAD, first);
|
|
ElfSegment *filler = nullptr;
|
|
// If the second PT_LOAD is a filler from elfhack --fill, check the third.
|
|
if (second->isElfHackFillerSegment()) {
|
|
filler = second;
|
|
second = elf.getSegmentByType(PT_LOAD, filler);
|
|
}
|
|
if (second->getFlags() != first->getFlags()) {
|
|
fprintf(stderr, "Couldn't identify elfhacked PT_LOAD segments. Skipping\n");
|
|
return;
|
|
}
|
|
// Move sections from the second PT_LOAD to the first, and remove the
|
|
// second PT_LOAD segment.
|
|
for (std::list<ElfSection *>::iterator section = second->begin();
|
|
section != second->end(); ++section)
|
|
first->addSection(*section);
|
|
|
|
elf.removeSegment(second);
|
|
if (filler)
|
|
elf.removeSegment(filler);
|
|
|
|
if (backup && backup_file(name) != 0) {
|
|
fprintf(stderr, "Couln't create backup file\n");
|
|
} else {
|
|
std::ofstream ofile(name, std::ios::out|std::ios::binary|std::ios::trunc);
|
|
elf.write(ofile);
|
|
fprintf(stderr, "Grown by %d bytes\n", elf.getSize() - size);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int arg;
|
|
bool backup = false;
|
|
bool force = false;
|
|
bool revert = false;
|
|
bool fill = false;
|
|
char *lastSlash = rindex(argv[0], '/');
|
|
if (lastSlash != nullptr)
|
|
rundir = strndup(argv[0], lastSlash - argv[0]);
|
|
for (arg = 1; arg < argc; arg++) {
|
|
if (strcmp(argv[arg], "-f") == 0)
|
|
force = true;
|
|
else if (strcmp(argv[arg], "-b") == 0)
|
|
backup = true;
|
|
else if (strcmp(argv[arg], "-r") == 0)
|
|
revert = true;
|
|
else if (strcmp(argv[arg], "--fill") == 0)
|
|
fill = true;
|
|
else if (revert) {
|
|
undo_file(argv[arg], backup);
|
|
} else
|
|
do_file(argv[arg], backup, force, fill);
|
|
}
|
|
|
|
free(rundir);
|
|
return 0;
|
|
}
|