forked from mirrors/gecko-dev
		
	This patch is an automatic replacement of s/NS_NOTREACHED/MOZ_ASSERT_UNREACHABLE/. Reindenting long lines and whitespace fixups follow in patch 6b. MozReview-Commit-ID: 5UQVHElSpCr --HG-- extra : rebase_source : 4c1b2fc32b269342f07639266b64941e2270e9c4 extra : source : 907543f6eae716f23a6de52b1ffb1c82908d158a
		
			
				
	
	
		
			1334 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1334 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | 
						|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | 
						|
/* This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
/*
 | 
						|
 * A class used for intermediate representations of the -moz-transform property.
 | 
						|
 */
 | 
						|
 | 
						|
#include "nsStyleTransformMatrix.h"
 | 
						|
#include "nsCSSValue.h"
 | 
						|
#include "nsLayoutUtils.h"
 | 
						|
#include "nsPresContext.h"
 | 
						|
#include "nsSVGUtils.h"
 | 
						|
#include "nsCSSKeywords.h"
 | 
						|
#include "mozilla/ServoBindings.h"
 | 
						|
#include "mozilla/StyleAnimationValue.h"
 | 
						|
#include "gfxMatrix.h"
 | 
						|
#include "gfxQuaternion.h"
 | 
						|
 | 
						|
using namespace mozilla;
 | 
						|
using namespace mozilla::gfx;
 | 
						|
 | 
						|
namespace nsStyleTransformMatrix {
 | 
						|
 | 
						|
/* Note on floating point precision: The transform matrix is an array
 | 
						|
 * of single precision 'float's, and so are most of the input values
 | 
						|
 * we get from the style system, but intermediate calculations
 | 
						|
 * involving angles need to be done in 'double'.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
// Define UNIFIED_CONTINUATIONS here and in nsDisplayList.cpp
 | 
						|
// to have the transform property try
 | 
						|
// to transform content with continuations as one unified block instead of
 | 
						|
// several smaller ones.  This is currently disabled because it doesn't work
 | 
						|
// correctly, since when the frames are initially being reflowed, their
 | 
						|
// continuations all compute their bounding rects independently of each other
 | 
						|
// and consequently get the wrong value.
 | 
						|
//#define UNIFIED_CONTINUATIONS
 | 
						|
 | 
						|
void
 | 
						|
TransformReferenceBox::EnsureDimensionsAreCached()
 | 
						|
{
 | 
						|
  if (mIsCached) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  MOZ_ASSERT(mFrame);
 | 
						|
 | 
						|
  mIsCached = true;
 | 
						|
 | 
						|
  if (mFrame->GetStateBits() & NS_FRAME_SVG_LAYOUT) {
 | 
						|
    if (!nsLayoutUtils::SVGTransformBoxEnabled()) {
 | 
						|
      mX = -mFrame->GetPosition().x;
 | 
						|
      mY = -mFrame->GetPosition().y;
 | 
						|
      Size contextSize = nsSVGUtils::GetContextSize(mFrame);
 | 
						|
      mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width);
 | 
						|
      mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height);
 | 
						|
    } else
 | 
						|
    if (mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::FillBox) {
 | 
						|
      // Percentages in transforms resolve against the SVG bbox, and the
 | 
						|
      // transform is relative to the top-left of the SVG bbox.
 | 
						|
      nsRect bboxInAppUnits =
 | 
						|
        nsLayoutUtils::ComputeGeometryBox(const_cast<nsIFrame*>(mFrame),
 | 
						|
                                          StyleGeometryBox::FillBox);
 | 
						|
      // The mRect of an SVG nsIFrame is its user space bounds *including*
 | 
						|
      // stroke and markers, whereas bboxInAppUnits is its user space bounds
 | 
						|
      // including fill only.  We need to note the offset of the reference box
 | 
						|
      // from the frame's mRect in mX/mY.
 | 
						|
      mX = bboxInAppUnits.x - mFrame->GetPosition().x;
 | 
						|
      mY = bboxInAppUnits.y - mFrame->GetPosition().y;
 | 
						|
      mWidth = bboxInAppUnits.width;
 | 
						|
      mHeight = bboxInAppUnits.height;
 | 
						|
    } else {
 | 
						|
      // The value 'border-box' is treated as 'view-box' for SVG content.
 | 
						|
      MOZ_ASSERT(mFrame->StyleDisplay()->mTransformBox ==
 | 
						|
                   StyleGeometryBox::ViewBox ||
 | 
						|
                 mFrame->StyleDisplay()->mTransformBox ==
 | 
						|
                   StyleGeometryBox::BorderBox,
 | 
						|
                 "Unexpected value for 'transform-box'");
 | 
						|
      // Percentages in transforms resolve against the width/height of the
 | 
						|
      // nearest viewport (or its viewBox if one is applied), and the
 | 
						|
      // transform is relative to {0,0} in current user space.
 | 
						|
      mX = -mFrame->GetPosition().x;
 | 
						|
      mY = -mFrame->GetPosition().y;
 | 
						|
      Size contextSize = nsSVGUtils::GetContextSize(mFrame);
 | 
						|
      mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width);
 | 
						|
      mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If UNIFIED_CONTINUATIONS is not defined, this is simply the frame's
 | 
						|
  // bounding rectangle, translated to the origin.  Otherwise, it is the
 | 
						|
  // smallest rectangle containing a frame and all of its continuations.  For
 | 
						|
  // example, if there is a <span> element with several continuations split
 | 
						|
  // over several lines, this function will return the rectangle containing all
 | 
						|
  // of those continuations.
 | 
						|
 | 
						|
  nsRect rect;
 | 
						|
 | 
						|
#ifndef UNIFIED_CONTINUATIONS
 | 
						|
  rect = mFrame->GetRect();
 | 
						|
#else
 | 
						|
  // Iterate the continuation list, unioning together the bounding rects:
 | 
						|
  for (const nsIFrame *currFrame = mFrame->FirstContinuation();
 | 
						|
       currFrame != nullptr;
 | 
						|
       currFrame = currFrame->GetNextContinuation())
 | 
						|
  {
 | 
						|
    // Get the frame rect in local coordinates, then translate back to the
 | 
						|
    // original coordinates:
 | 
						|
    rect.UnionRect(result, nsRect(currFrame->GetOffsetTo(mFrame),
 | 
						|
                                  currFrame->GetSize()));
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  mX = 0;
 | 
						|
  mY = 0;
 | 
						|
  mWidth = rect.Width();
 | 
						|
  mHeight = rect.Height();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
TransformReferenceBox::Init(const nsSize& aDimensions)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(!mFrame && !mIsCached);
 | 
						|
 | 
						|
  mX = 0;
 | 
						|
  mY = 0;
 | 
						|
  mWidth = aDimensions.width;
 | 
						|
  mHeight = aDimensions.height;
 | 
						|
  mIsCached = true;
 | 
						|
}
 | 
						|
 | 
						|
float
 | 
						|
ProcessTranslatePart(const nsCSSValue& aValue,
 | 
						|
                     TransformReferenceBox* aRefBox,
 | 
						|
                     TransformReferenceBox::DimensionGetter aDimensionGetter)
 | 
						|
{
 | 
						|
  nscoord offset = 0;
 | 
						|
  float percent = 0.0f;
 | 
						|
 | 
						|
  if (aValue.GetUnit() == eCSSUnit_Percent) {
 | 
						|
    percent = aValue.GetPercentValue();
 | 
						|
  } else if (aValue.GetUnit() == eCSSUnit_Pixel ||
 | 
						|
             aValue.GetUnit() == eCSSUnit_Number) {
 | 
						|
    // Handle this here (even though nsRuleNode::CalcLength handles it
 | 
						|
    // fine) so that callers are allowed to pass a null ComputedStyle
 | 
						|
    // and pres context to SetToTransformFunction if they know (as
 | 
						|
    // StyleAnimationValue does) that all lengths within the transform
 | 
						|
    // function have already been computed to pixels and percents.
 | 
						|
    //
 | 
						|
    // Raw numbers are treated as being pixels.
 | 
						|
    //
 | 
						|
    // Don't convert to aValue to AppUnits here to avoid precision issues.
 | 
						|
    return aValue.GetFloatValue();
 | 
						|
  } else if (aValue.IsCalcUnit()) {
 | 
						|
    // Servo backend. We can retrieve the Calc value directly because it has
 | 
						|
    // been computed from Servo side and set by nsCSSValue::SetCalcValue().
 | 
						|
    // We don't use nsRuleNode::SpecifiedCalcToComputedCalc() because it
 | 
						|
    // asserts for null context and we always pass null context for Servo
 | 
						|
    // backend.
 | 
						|
    nsStyleCoord::CalcValue calc = aValue.GetCalcValue();
 | 
						|
    percent = calc.mPercent;
 | 
						|
    offset = calc.mLength;
 | 
						|
  } else {
 | 
						|
    // Note: The unit of nsCSSValue passed from Servo side would be number,
 | 
						|
    //       pixel, percent, or eCSSUnit_Calc, so it is impossible to go into
 | 
						|
    //       this branch.
 | 
						|
    MOZ_CRASH("unexpected unit in ProcessTranslatePart");
 | 
						|
  }
 | 
						|
 | 
						|
  float translation =
 | 
						|
    NSAppUnitsToFloatPixels(offset, nsPresContext::AppUnitsPerCSSPixel());
 | 
						|
  // We want to avoid calling aDimensionGetter if there's no percentage to be
 | 
						|
  // resolved (for performance reasons - see TransformReferenceBox).
 | 
						|
  if (percent != 0.0f && aRefBox && !aRefBox->IsEmpty()) {
 | 
						|
    translation +=
 | 
						|
      percent * NSAppUnitsToFloatPixels((aRefBox->*aDimensionGetter)(),
 | 
						|
                                        nsPresContext::AppUnitsPerCSSPixel());
 | 
						|
  }
 | 
						|
  return translation;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Helper functions to process all the transformation function types.
 | 
						|
 *
 | 
						|
 * These take a matrix parameter to accumulate the current matrix.
 | 
						|
 */
 | 
						|
 | 
						|
/* Helper function to process a matrix entry. */
 | 
						|
static void
 | 
						|
ProcessMatrix(Matrix4x4& aMatrix,
 | 
						|
              const nsCSSValue::Array* aData,
 | 
						|
              TransformReferenceBox& aRefBox)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 7, "Invalid array!");
 | 
						|
 | 
						|
  gfxMatrix result;
 | 
						|
 | 
						|
  /* Take the first four elements out of the array as floats and store
 | 
						|
   * them.
 | 
						|
   */
 | 
						|
  result._11 = aData->Item(1).GetFloatValue();
 | 
						|
  result._12 = aData->Item(2).GetFloatValue();
 | 
						|
  result._21 = aData->Item(3).GetFloatValue();
 | 
						|
  result._22 = aData->Item(4).GetFloatValue();
 | 
						|
 | 
						|
  /* The last two elements have their length parts stored in aDelta
 | 
						|
   * and their percent parts stored in aX[0] and aY[1].
 | 
						|
   */
 | 
						|
  result._31 = ProcessTranslatePart(aData->Item(5),
 | 
						|
                                    &aRefBox, &TransformReferenceBox::Width);
 | 
						|
  result._32 = ProcessTranslatePart(aData->Item(6),
 | 
						|
                                    &aRefBox, &TransformReferenceBox::Height);
 | 
						|
 | 
						|
  aMatrix = result * aMatrix;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ProcessMatrix3D(Matrix4x4& aMatrix,
 | 
						|
                const nsCSSValue::Array* aData,
 | 
						|
                TransformReferenceBox& aRefBox)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 17, "Invalid array!");
 | 
						|
 | 
						|
  Matrix4x4 temp;
 | 
						|
 | 
						|
  temp._11 = aData->Item(1).GetFloatValue();
 | 
						|
  temp._12 = aData->Item(2).GetFloatValue();
 | 
						|
  temp._13 = aData->Item(3).GetFloatValue();
 | 
						|
  temp._14 = aData->Item(4).GetFloatValue();
 | 
						|
  temp._21 = aData->Item(5).GetFloatValue();
 | 
						|
  temp._22 = aData->Item(6).GetFloatValue();
 | 
						|
  temp._23 = aData->Item(7).GetFloatValue();
 | 
						|
  temp._24 = aData->Item(8).GetFloatValue();
 | 
						|
  temp._31 = aData->Item(9).GetFloatValue();
 | 
						|
  temp._32 = aData->Item(10).GetFloatValue();
 | 
						|
  temp._33 = aData->Item(11).GetFloatValue();
 | 
						|
  temp._34 = aData->Item(12).GetFloatValue();
 | 
						|
  temp._44 = aData->Item(16).GetFloatValue();
 | 
						|
 | 
						|
  temp._41 = ProcessTranslatePart(aData->Item(13),
 | 
						|
                                  &aRefBox, &TransformReferenceBox::Width);
 | 
						|
  temp._42 = ProcessTranslatePart(aData->Item(14),
 | 
						|
                                  &aRefBox, &TransformReferenceBox::Height);
 | 
						|
  temp._43 = ProcessTranslatePart(aData->Item(15), nullptr);
 | 
						|
 | 
						|
  aMatrix = temp * aMatrix;
 | 
						|
}
 | 
						|
 | 
						|
// For accumulation for transform functions, |aOne| corresponds to |aB| and
 | 
						|
// |aTwo| corresponds to |aA| for StyleAnimationValue::Accumulate().
 | 
						|
class Accumulate {
 | 
						|
public:
 | 
						|
  template<typename T>
 | 
						|
  static T operate(const T& aOne, const T& aTwo, double aCoeff)
 | 
						|
  {
 | 
						|
    return aOne + aTwo * aCoeff;
 | 
						|
  }
 | 
						|
 | 
						|
  static Point4D operateForPerspective(const Point4D& aOne,
 | 
						|
                                       const Point4D& aTwo,
 | 
						|
                                       double aCoeff)
 | 
						|
  {
 | 
						|
    return (aOne - Point4D(0, 0, 0, 1)) +
 | 
						|
           (aTwo - Point4D(0, 0, 0, 1)) * aCoeff +
 | 
						|
           Point4D(0, 0, 0, 1);
 | 
						|
  }
 | 
						|
  static Point3D operateForScale(const Point3D& aOne,
 | 
						|
                                 const Point3D& aTwo,
 | 
						|
                                 double aCoeff)
 | 
						|
  {
 | 
						|
    // For scale, the identify element is 1, see AddTransformScale in
 | 
						|
    // StyleAnimationValue.cpp.
 | 
						|
    return (aOne - Point3D(1, 1, 1)) +
 | 
						|
           (aTwo - Point3D(1, 1, 1)) * aCoeff +
 | 
						|
           Point3D(1, 1, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
 | 
						|
                                    const gfxQuaternion& aTwo,
 | 
						|
                                    double aCoeff)
 | 
						|
  {
 | 
						|
    if (aCoeff == 0.0) {
 | 
						|
      return aOne.ToMatrix();
 | 
						|
    }
 | 
						|
 | 
						|
    double theta = acos(mozilla::clamped(aTwo.w, -1.0, 1.0));
 | 
						|
    double scale = (theta != 0.0) ? 1.0 / sin(theta) : 0.0;
 | 
						|
    theta *= aCoeff;
 | 
						|
    scale *= sin(theta);
 | 
						|
 | 
						|
    gfxQuaternion result = gfxQuaternion(scale * aTwo.x,
 | 
						|
                                         scale * aTwo.y,
 | 
						|
                                         scale * aTwo.z,
 | 
						|
                                         cos(theta)) * aOne;
 | 
						|
    return result.ToMatrix();
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
 | 
						|
                                      const Matrix4x4& aMatrix2,
 | 
						|
                                      double aProgress)
 | 
						|
  {
 | 
						|
    return aMatrix1;
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
 | 
						|
                                  const Matrix4x4& aMatrix2,
 | 
						|
                                  double aCount)
 | 
						|
  {
 | 
						|
    Matrix4x4 result;
 | 
						|
    Servo_MatrixTransform_Operate(MatrixTransformOperator::Accumulate,
 | 
						|
                                  &aMatrix1.components,
 | 
						|
                                  &aMatrix2.components,
 | 
						|
                                  aCount,
 | 
						|
                                  &result.components);
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Interpolate {
 | 
						|
public:
 | 
						|
  template<typename T>
 | 
						|
  static T operate(const T& aOne, const T& aTwo, double aCoeff)
 | 
						|
  {
 | 
						|
    return aOne + (aTwo - aOne) * aCoeff;
 | 
						|
  }
 | 
						|
 | 
						|
  static Point4D operateForPerspective(const Point4D& aOne,
 | 
						|
                                       const Point4D& aTwo,
 | 
						|
                                       double aCoeff)
 | 
						|
  {
 | 
						|
    return aOne + (aTwo - aOne) * aCoeff;
 | 
						|
  }
 | 
						|
 | 
						|
  static Point3D operateForScale(const Point3D& aOne,
 | 
						|
                                 const Point3D& aTwo,
 | 
						|
                                 double aCoeff)
 | 
						|
  {
 | 
						|
    return aOne + (aTwo - aOne) * aCoeff;
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
 | 
						|
                                    const gfxQuaternion& aTwo,
 | 
						|
                                    double aCoeff)
 | 
						|
  {
 | 
						|
    return aOne.Slerp(aTwo, aCoeff).ToMatrix();
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
 | 
						|
                                      const Matrix4x4& aMatrix2,
 | 
						|
                                      double aProgress)
 | 
						|
  {
 | 
						|
    return aProgress < 0.5 ? aMatrix1 : aMatrix2;
 | 
						|
  }
 | 
						|
 | 
						|
  static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
 | 
						|
                                  const Matrix4x4& aMatrix2,
 | 
						|
                                  double aProgress)
 | 
						|
  {
 | 
						|
    Matrix4x4 result;
 | 
						|
    Servo_MatrixTransform_Operate(MatrixTransformOperator::Interpolate,
 | 
						|
                                  &aMatrix1.components,
 | 
						|
                                  &aMatrix2.components,
 | 
						|
                                  aProgress,
 | 
						|
                                  &result.components);
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 2 matrices by decomposing them with Operator.
 | 
						|
 *
 | 
						|
 * @param aMatrix1   First matrix, using CSS pixel units.
 | 
						|
 * @param aMatrix2   Second matrix, using CSS pixel units.
 | 
						|
 * @param aProgress  Coefficient for the Operator.
 | 
						|
 */
 | 
						|
template <typename Operator>
 | 
						|
static Matrix4x4
 | 
						|
OperateTransformMatrix(const Matrix4x4 &aMatrix1,
 | 
						|
                       const Matrix4x4 &aMatrix2,
 | 
						|
                       double aProgress)
 | 
						|
{
 | 
						|
  // Decompose both matrices
 | 
						|
 | 
						|
  Point3D scale1(1, 1, 1), translate1;
 | 
						|
  Point4D perspective1(0, 0, 0, 1);
 | 
						|
  gfxQuaternion rotate1;
 | 
						|
  nsStyleTransformMatrix::ShearArray shear1{0.0f, 0.0f, 0.0f};
 | 
						|
 | 
						|
  Point3D scale2(1, 1, 1), translate2;
 | 
						|
  Point4D perspective2(0, 0, 0, 1);
 | 
						|
  gfxQuaternion rotate2;
 | 
						|
  nsStyleTransformMatrix::ShearArray shear2{0.0f, 0.0f, 0.0f};
 | 
						|
 | 
						|
  // Check if both matrices are decomposable.
 | 
						|
  bool wasDecomposed;
 | 
						|
  Matrix matrix2d1, matrix2d2;
 | 
						|
  if (aMatrix1.Is2D(&matrix2d1) && aMatrix2.Is2D(&matrix2d2)) {
 | 
						|
    wasDecomposed =
 | 
						|
      Decompose2DMatrix(matrix2d1, scale1, shear1, rotate1, translate1) &&
 | 
						|
      Decompose2DMatrix(matrix2d2, scale2, shear2, rotate2, translate2);
 | 
						|
  } else {
 | 
						|
    wasDecomposed =
 | 
						|
      Decompose3DMatrix(aMatrix1, scale1, shear1,
 | 
						|
                        rotate1, translate1, perspective1) &&
 | 
						|
      Decompose3DMatrix(aMatrix2, scale2, shear2,
 | 
						|
                        rotate2, translate2, perspective2);
 | 
						|
  }
 | 
						|
 | 
						|
  // Fallback to discrete operation if one of the matrices is not decomposable.
 | 
						|
  if (!wasDecomposed) {
 | 
						|
    return Operator::operateForFallback(aMatrix1, aMatrix2, aProgress);
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix4x4 result;
 | 
						|
 | 
						|
  // Operate each of the pieces in response to |Operator|.
 | 
						|
  Point4D perspective =
 | 
						|
    Operator::operateForPerspective(perspective1, perspective2, aProgress);
 | 
						|
  result.SetTransposedVector(3, perspective);
 | 
						|
 | 
						|
  Point3D translate =
 | 
						|
    Operator::operate(translate1, translate2, aProgress);
 | 
						|
  result.PreTranslate(translate.x, translate.y, translate.z);
 | 
						|
 | 
						|
  Matrix4x4 rotate = Operator::operateForRotate(rotate1, rotate2, aProgress);
 | 
						|
  if (!rotate.IsIdentity()) {
 | 
						|
    result = rotate * result;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Would it be better to operate these as angles?
 | 
						|
  //       How do we convert back to angles?
 | 
						|
  float yzshear =
 | 
						|
    Operator::operate(shear1[ShearType::YZSHEAR],
 | 
						|
                      shear2[ShearType::YZSHEAR],
 | 
						|
                      aProgress);
 | 
						|
  if (yzshear != 0.0) {
 | 
						|
    result.SkewYZ(yzshear);
 | 
						|
  }
 | 
						|
 | 
						|
  float xzshear =
 | 
						|
    Operator::operate(shear1[ShearType::XZSHEAR],
 | 
						|
                      shear2[ShearType::XZSHEAR],
 | 
						|
                      aProgress);
 | 
						|
  if (xzshear != 0.0) {
 | 
						|
    result.SkewXZ(xzshear);
 | 
						|
  }
 | 
						|
 | 
						|
  float xyshear =
 | 
						|
    Operator::operate(shear1[ShearType::XYSHEAR],
 | 
						|
                      shear2[ShearType::XYSHEAR],
 | 
						|
                      aProgress);
 | 
						|
  if (xyshear != 0.0) {
 | 
						|
    result.SkewXY(xyshear);
 | 
						|
  }
 | 
						|
 | 
						|
  Point3D scale =
 | 
						|
    Operator::operateForScale(scale1, scale2, aProgress);
 | 
						|
  if (scale != Point3D(1.0, 1.0, 1.0)) {
 | 
						|
    result.PreScale(scale.x, scale.y, scale.z);
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Operator>
 | 
						|
static Matrix4x4
 | 
						|
OperateTransformMatrixByServo(const Matrix4x4 &aMatrix1,
 | 
						|
                              const Matrix4x4 &aMatrix2,
 | 
						|
                              double aProgress)
 | 
						|
{
 | 
						|
  return Operator::operateByServo(aMatrix1, aMatrix2, aProgress);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Operator>
 | 
						|
static void
 | 
						|
ProcessMatrixOperator(Matrix4x4& aMatrix,
 | 
						|
                      const nsCSSValue::Array* aData,
 | 
						|
                      TransformReferenceBox& aRefBox,
 | 
						|
                      bool* aContains3dTransform)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 4, "Invalid array!");
 | 
						|
 | 
						|
  auto readTransform = [&](const nsCSSValue& aValue) -> Matrix4x4 {
 | 
						|
    const nsCSSValueList* list = nullptr;
 | 
						|
    switch (aValue.GetUnit()) {
 | 
						|
      case eCSSUnit_List:
 | 
						|
        // For Gecko style backend.
 | 
						|
        list = aValue.GetListValue();
 | 
						|
        break;
 | 
						|
      case eCSSUnit_SharedList:
 | 
						|
        // For Servo style backend. The transform lists of interpolatematrix
 | 
						|
        // are not created on the main thread (i.e. during parallel traversal),
 | 
						|
        // and nsCSSValueList_heap is not thread safe. Therefore, we use
 | 
						|
        // nsCSSValueSharedList as a workaround.
 | 
						|
        list = aValue.GetSharedListValue()->mHead;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        list = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    Matrix4x4 matrix;
 | 
						|
    if (!list) {
 | 
						|
      return matrix;
 | 
						|
    }
 | 
						|
 | 
						|
    float appUnitPerCSSPixel = nsPresContext::AppUnitsPerCSSPixel();
 | 
						|
    matrix = nsStyleTransformMatrix::ReadTransforms(list,
 | 
						|
                                                    aRefBox,
 | 
						|
                                                    appUnitPerCSSPixel,
 | 
						|
                                                    aContains3dTransform);
 | 
						|
    return matrix;
 | 
						|
  };
 | 
						|
 | 
						|
  Matrix4x4 matrix1 = readTransform(aData->Item(1));
 | 
						|
  Matrix4x4 matrix2 = readTransform(aData->Item(2));
 | 
						|
  double progress = aData->Item(3).GetPercentValue();
 | 
						|
 | 
						|
  // We cannot use GeckoComputedStyle to check if we use Servo backend because
 | 
						|
  // it could be null in Gecko. Instead, use the unit of the nsCSSValue because
 | 
						|
  // we use eCSSUnit_SharedList for Servo backend.
 | 
						|
  if (aData->Item(1).GetUnit() == eCSSUnit_SharedList) {
 | 
						|
    aMatrix =
 | 
						|
      OperateTransformMatrixByServo<Operator>(matrix1, matrix2, progress)
 | 
						|
        * aMatrix;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  aMatrix =
 | 
						|
    OperateTransformMatrix<Operator>(matrix1, matrix2, progress) * aMatrix;
 | 
						|
}
 | 
						|
 | 
						|
/* Helper function to process two matrices that we need to interpolate between */
 | 
						|
void
 | 
						|
ProcessInterpolateMatrix(Matrix4x4& aMatrix,
 | 
						|
                         const nsCSSValue::Array* aData,
 | 
						|
                         TransformReferenceBox& aRefBox,
 | 
						|
                         bool* aContains3dTransform)
 | 
						|
{
 | 
						|
  ProcessMatrixOperator<Interpolate>(aMatrix, aData,
 | 
						|
                                     aRefBox,
 | 
						|
                                     aContains3dTransform);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ProcessAccumulateMatrix(Matrix4x4& aMatrix,
 | 
						|
                        const nsCSSValue::Array* aData,
 | 
						|
                        TransformReferenceBox& aRefBox,
 | 
						|
                        bool* aContains3dTransform)
 | 
						|
{
 | 
						|
  ProcessMatrixOperator<Accumulate>(aMatrix, aData, aRefBox,
 | 
						|
                                    aContains3dTransform);
 | 
						|
}
 | 
						|
 | 
						|
/* Helper function to process a translatex function. */
 | 
						|
static void
 | 
						|
ProcessTranslateX(Matrix4x4& aMatrix,
 | 
						|
                  const nsCSSValue::Array* aData,
 | 
						|
                  TransformReferenceBox& aRefBox)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Invalid array!");
 | 
						|
 | 
						|
  Point3D temp;
 | 
						|
 | 
						|
  temp.x = ProcessTranslatePart(aData->Item(1),
 | 
						|
                                &aRefBox, &TransformReferenceBox::Width);
 | 
						|
  aMatrix.PreTranslate(temp);
 | 
						|
}
 | 
						|
 | 
						|
/* Helper function to process a translatey function. */
 | 
						|
static void
 | 
						|
ProcessTranslateY(Matrix4x4& aMatrix,
 | 
						|
                  const nsCSSValue::Array* aData,
 | 
						|
                  TransformReferenceBox& aRefBox)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Invalid array!");
 | 
						|
 | 
						|
  Point3D temp;
 | 
						|
 | 
						|
  temp.y = ProcessTranslatePart(aData->Item(1),
 | 
						|
                                &aRefBox, &TransformReferenceBox::Height);
 | 
						|
  aMatrix.PreTranslate(temp);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ProcessTranslateZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Invalid array!");
 | 
						|
 | 
						|
  Point3D temp;
 | 
						|
 | 
						|
  temp.z = ProcessTranslatePart(aData->Item(1), nullptr);
 | 
						|
  aMatrix.PreTranslate(temp);
 | 
						|
}
 | 
						|
 | 
						|
/* Helper function to process a translate function. */
 | 
						|
static void
 | 
						|
ProcessTranslate(Matrix4x4& aMatrix,
 | 
						|
                 const nsCSSValue::Array* aData,
 | 
						|
                 TransformReferenceBox& aRefBox)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2 || aData->Count() == 3, "Invalid array!");
 | 
						|
 | 
						|
  Point3D temp;
 | 
						|
 | 
						|
  temp.x = ProcessTranslatePart(aData->Item(1),
 | 
						|
                                &aRefBox, &TransformReferenceBox::Width);
 | 
						|
 | 
						|
  /* If we read in a Y component, set it appropriately */
 | 
						|
  if (aData->Count() == 3) {
 | 
						|
    temp.y = ProcessTranslatePart(aData->Item(2),
 | 
						|
                                  &aRefBox, &TransformReferenceBox::Height);
 | 
						|
  }
 | 
						|
  aMatrix.PreTranslate(temp);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ProcessTranslate3D(Matrix4x4& aMatrix,
 | 
						|
                   const nsCSSValue::Array* aData,
 | 
						|
                   TransformReferenceBox& aRefBox)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 4, "Invalid array!");
 | 
						|
 | 
						|
  Point3D temp;
 | 
						|
 | 
						|
  temp.x = ProcessTranslatePart(aData->Item(1),
 | 
						|
                                &aRefBox, &TransformReferenceBox::Width);
 | 
						|
 | 
						|
  temp.y = ProcessTranslatePart(aData->Item(2),
 | 
						|
                                &aRefBox, &TransformReferenceBox::Height);
 | 
						|
 | 
						|
  temp.z = ProcessTranslatePart(aData->Item(3),
 | 
						|
                                nullptr);
 | 
						|
 | 
						|
  aMatrix.PreTranslate(temp);
 | 
						|
}
 | 
						|
 | 
						|
/* Helper function to set up a scale matrix. */
 | 
						|
static void
 | 
						|
ProcessScaleHelper(Matrix4x4& aMatrix,
 | 
						|
                   float aXScale,
 | 
						|
                   float aYScale,
 | 
						|
                   float aZScale)
 | 
						|
{
 | 
						|
  aMatrix.PreScale(aXScale, aYScale, aZScale);
 | 
						|
}
 | 
						|
 | 
						|
/* Process a scalex function. */
 | 
						|
static void
 | 
						|
ProcessScaleX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Bad array!");
 | 
						|
  ProcessScaleHelper(aMatrix, aData->Item(1).GetFloatValue(), 1.0f, 1.0f);
 | 
						|
}
 | 
						|
 | 
						|
/* Process a scaley function. */
 | 
						|
static void
 | 
						|
ProcessScaleY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Bad array!");
 | 
						|
  ProcessScaleHelper(aMatrix, 1.0f, aData->Item(1).GetFloatValue(), 1.0f);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ProcessScaleZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Bad array!");
 | 
						|
  ProcessScaleHelper(aMatrix, 1.0f, 1.0f, aData->Item(1).GetFloatValue());
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ProcessScale3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 4, "Bad array!");
 | 
						|
  ProcessScaleHelper(aMatrix,
 | 
						|
                     aData->Item(1).GetFloatValue(),
 | 
						|
                     aData->Item(2).GetFloatValue(),
 | 
						|
                     aData->Item(3).GetFloatValue());
 | 
						|
}
 | 
						|
 | 
						|
/* Process a scale function. */
 | 
						|
static void
 | 
						|
ProcessScale(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2 || aData->Count() == 3, "Bad array!");
 | 
						|
  /* We either have one element or two.  If we have one, it's for both X and Y.
 | 
						|
   * Otherwise it's one for each.
 | 
						|
   */
 | 
						|
  const nsCSSValue& scaleX = aData->Item(1);
 | 
						|
  const nsCSSValue& scaleY = (aData->Count() == 2 ? scaleX :
 | 
						|
                              aData->Item(2));
 | 
						|
 | 
						|
  ProcessScaleHelper(aMatrix,
 | 
						|
                     scaleX.GetFloatValue(),
 | 
						|
                     scaleY.GetFloatValue(),
 | 
						|
                     1.0f);
 | 
						|
}
 | 
						|
 | 
						|
/* Helper function that, given a set of angles, constructs the appropriate
 | 
						|
 * skew matrix.
 | 
						|
 */
 | 
						|
static void
 | 
						|
ProcessSkewHelper(Matrix4x4& aMatrix, double aXAngle, double aYAngle)
 | 
						|
{
 | 
						|
  aMatrix.SkewXY(aXAngle, aYAngle);
 | 
						|
}
 | 
						|
 | 
						|
/* Function that converts a skewx transform into a matrix. */
 | 
						|
static void
 | 
						|
ProcessSkewX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  NS_ASSERTION(aData->Count() == 2, "Bad array!");
 | 
						|
  ProcessSkewHelper(aMatrix, aData->Item(1).GetAngleValueInRadians(), 0.0);
 | 
						|
}
 | 
						|
 | 
						|
/* Function that converts a skewy transform into a matrix. */
 | 
						|
static void
 | 
						|
ProcessSkewY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  NS_ASSERTION(aData->Count() == 2, "Bad array!");
 | 
						|
  ProcessSkewHelper(aMatrix, 0.0, aData->Item(1).GetAngleValueInRadians());
 | 
						|
}
 | 
						|
 | 
						|
/* Function that converts a skew transform into a matrix. */
 | 
						|
static void
 | 
						|
ProcessSkew(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  NS_ASSERTION(aData->Count() == 2 || aData->Count() == 3, "Bad array!");
 | 
						|
 | 
						|
  double xSkew = aData->Item(1).GetAngleValueInRadians();
 | 
						|
  double ySkew = (aData->Count() == 2
 | 
						|
                  ? 0.0 : aData->Item(2).GetAngleValueInRadians());
 | 
						|
 | 
						|
  ProcessSkewHelper(aMatrix, xSkew, ySkew);
 | 
						|
}
 | 
						|
 | 
						|
/* Function that converts a rotate transform into a matrix. */
 | 
						|
static void
 | 
						|
ProcessRotateZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Invalid array!");
 | 
						|
  double theta = aData->Item(1).GetAngleValueInRadians();
 | 
						|
  aMatrix.RotateZ(theta);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ProcessRotateX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Invalid array!");
 | 
						|
  double theta = aData->Item(1).GetAngleValueInRadians();
 | 
						|
  aMatrix.RotateX(theta);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ProcessRotateY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Invalid array!");
 | 
						|
  double theta = aData->Item(1).GetAngleValueInRadians();
 | 
						|
  aMatrix.RotateY(theta);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ProcessRotate3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 5, "Invalid array!");
 | 
						|
 | 
						|
  double theta = aData->Item(4).GetAngleValueInRadians();
 | 
						|
  float x = aData->Item(1).GetFloatValue();
 | 
						|
  float y = aData->Item(2).GetFloatValue();
 | 
						|
  float z = aData->Item(3).GetFloatValue();
 | 
						|
 | 
						|
  Matrix4x4 temp;
 | 
						|
  temp.SetRotateAxisAngle(x, y, z, theta);
 | 
						|
 | 
						|
  aMatrix = temp * aMatrix;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ProcessPerspective(Matrix4x4& aMatrix, const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Count() == 2, "Invalid array!");
 | 
						|
 | 
						|
  float depth = ProcessTranslatePart(aData->Item(1), nullptr);
 | 
						|
  ApplyPerspectiveToMatrix(aMatrix, depth);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * SetToTransformFunction is essentially a giant switch statement that fans
 | 
						|
 * out to many smaller helper functions.
 | 
						|
 */
 | 
						|
static void
 | 
						|
MatrixForTransformFunction(Matrix4x4& aMatrix,
 | 
						|
                           const nsCSSValue::Array * aData,
 | 
						|
                           TransformReferenceBox& aRefBox,
 | 
						|
                           bool* aContains3dTransform)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aContains3dTransform);
 | 
						|
  MOZ_ASSERT(aData, "Why did you want to get data from a null array?");
 | 
						|
 | 
						|
  /* Get the keyword for the transform. */
 | 
						|
  switch (TransformFunctionOf(aData)) {
 | 
						|
  case eCSSKeyword_translatex:
 | 
						|
    ProcessTranslateX(aMatrix, aData, aRefBox);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_translatey:
 | 
						|
    ProcessTranslateY(aMatrix, aData, aRefBox);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_translatez:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    ProcessTranslateZ(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_translate:
 | 
						|
    ProcessTranslate(aMatrix, aData, aRefBox);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_translate3d:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    ProcessTranslate3D(aMatrix, aData, aRefBox);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_scalex:
 | 
						|
    ProcessScaleX(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_scaley:
 | 
						|
    ProcessScaleY(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_scalez:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    ProcessScaleZ(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_scale:
 | 
						|
    ProcessScale(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_scale3d:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    ProcessScale3D(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_skewx:
 | 
						|
    ProcessSkewX(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_skewy:
 | 
						|
    ProcessSkewY(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_skew:
 | 
						|
    ProcessSkew(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_rotatex:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    ProcessRotateX(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_rotatey:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    ProcessRotateY(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_rotatez:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    MOZ_FALLTHROUGH;
 | 
						|
  case eCSSKeyword_rotate:
 | 
						|
    ProcessRotateZ(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_rotate3d:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    ProcessRotate3D(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_matrix:
 | 
						|
    ProcessMatrix(aMatrix, aData, aRefBox);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_matrix3d:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    ProcessMatrix3D(aMatrix, aData, aRefBox);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_interpolatematrix:
 | 
						|
    ProcessMatrixOperator<Interpolate>(aMatrix, aData, aRefBox,
 | 
						|
                                       aContains3dTransform);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_accumulatematrix:
 | 
						|
    ProcessMatrixOperator<Accumulate>(aMatrix, aData, aRefBox,
 | 
						|
                                      aContains3dTransform);
 | 
						|
    break;
 | 
						|
  case eCSSKeyword_perspective:
 | 
						|
    *aContains3dTransform = true;
 | 
						|
    ProcessPerspective(aMatrix, aData);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    MOZ_ASSERT_UNREACHABLE("Unknown transform function!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Return the transform function, as an nsCSSKeyword, for the given
 | 
						|
 * nsCSSValue::Array from a transform list.
 | 
						|
 */
 | 
						|
nsCSSKeyword
 | 
						|
TransformFunctionOf(const nsCSSValue::Array* aData)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aData->Item(0).GetUnit() == eCSSUnit_Enumerated);
 | 
						|
  return aData->Item(0).GetKeywordValue();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SetIdentityMatrix(nsCSSValue::Array* aMatrix)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aMatrix, "aMatrix should be non-null");
 | 
						|
 | 
						|
  nsCSSKeyword tfunc = TransformFunctionOf(aMatrix);
 | 
						|
  MOZ_ASSERT(tfunc == eCSSKeyword_matrix ||
 | 
						|
             tfunc == eCSSKeyword_matrix3d,
 | 
						|
             "Only accept matrix and matrix3d");
 | 
						|
 | 
						|
  if (tfunc == eCSSKeyword_matrix) {
 | 
						|
    MOZ_ASSERT(aMatrix->Count() == 7, "Invalid matrix");
 | 
						|
    Matrix m;
 | 
						|
    for (size_t i = 0; i < 6; ++i) {
 | 
						|
      aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  MOZ_ASSERT(aMatrix->Count() == 17, "Invalid matrix3d");
 | 
						|
  Matrix4x4 m;
 | 
						|
  for (size_t i = 0; i < 16; ++i) {
 | 
						|
    aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Matrix4x4
 | 
						|
ReadTransforms(const nsCSSValueList* aList,
 | 
						|
               TransformReferenceBox& aRefBox,
 | 
						|
               float aAppUnitsPerMatrixUnit,
 | 
						|
               bool* aContains3dTransform)
 | 
						|
{
 | 
						|
  Matrix4x4 result;
 | 
						|
 | 
						|
  for (const nsCSSValueList* curr = aList; curr != nullptr; curr = curr->mNext) {
 | 
						|
    const nsCSSValue &currElem = curr->mValue;
 | 
						|
    if (currElem.GetUnit() != eCSSUnit_Function) {
 | 
						|
      NS_ASSERTION(currElem.GetUnit() == eCSSUnit_None &&
 | 
						|
                   !aList->mNext,
 | 
						|
                   "stream should either be a list of functions or a "
 | 
						|
                   "lone None");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    NS_ASSERTION(currElem.GetArrayValue()->Count() >= 1,
 | 
						|
                 "Incoming function is too short!");
 | 
						|
 | 
						|
    /* Read in a single transform matrix. */
 | 
						|
    MatrixForTransformFunction(result, currElem.GetArrayValue(), aRefBox,
 | 
						|
                               aContains3dTransform);
 | 
						|
  }
 | 
						|
 | 
						|
  float scale = float(nsPresContext::AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit;
 | 
						|
  result.PreScale(1/scale, 1/scale, 1/scale);
 | 
						|
  result.PostScale(scale, scale, scale);
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
Point
 | 
						|
Convert2DPosition(nsStyleCoord const (&aValue)[2],
 | 
						|
                  TransformReferenceBox& aRefBox,
 | 
						|
                  int32_t aAppUnitsPerDevPixel)
 | 
						|
{
 | 
						|
  float position[2];
 | 
						|
  nsStyleTransformMatrix::TransformReferenceBox::DimensionGetter dimensionGetter[] =
 | 
						|
    { &nsStyleTransformMatrix::TransformReferenceBox::Width,
 | 
						|
      &nsStyleTransformMatrix::TransformReferenceBox::Height };
 | 
						|
  for (uint8_t index = 0; index < 2; ++index) {
 | 
						|
    const nsStyleCoord& value  = aValue[index];
 | 
						|
    if (value.GetUnit() == eStyleUnit_Calc) {
 | 
						|
      const nsStyleCoord::Calc *calc = value.GetCalcValue();
 | 
						|
      position[index] =
 | 
						|
        NSAppUnitsToFloatPixels((aRefBox.*dimensionGetter[index])(), aAppUnitsPerDevPixel) *
 | 
						|
          calc->mPercent +
 | 
						|
        NSAppUnitsToFloatPixels(calc->mLength, aAppUnitsPerDevPixel);
 | 
						|
    } else if (value.GetUnit() == eStyleUnit_Percent) {
 | 
						|
      position[index] =
 | 
						|
        NSAppUnitsToFloatPixels((aRefBox.*dimensionGetter[index])(), aAppUnitsPerDevPixel) *
 | 
						|
        value.GetPercentValue();
 | 
						|
    } else {
 | 
						|
      MOZ_ASSERT(value.GetUnit() == eStyleUnit_Coord,
 | 
						|
                "unexpected unit");
 | 
						|
      position[index] =
 | 
						|
        NSAppUnitsToFloatPixels(value.GetCoordValue(),
 | 
						|
                                aAppUnitsPerDevPixel);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Point(position[0], position[1]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The relevant section of the transitions specification:
 | 
						|
 * http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types-
 | 
						|
 * defers all of the details to the 2-D and 3-D transforms specifications.
 | 
						|
 * For the 2-D transforms specification (all that's relevant for us, right
 | 
						|
 * now), the relevant section is:
 | 
						|
 * http://dev.w3.org/csswg/css3-2d-transforms/#animation
 | 
						|
 * This, in turn, refers to the unmatrix program in Graphics Gems,
 | 
						|
 * available from http://tog.acm.org/resources/GraphicsGems/ , and in
 | 
						|
 * particular as the file GraphicsGems/gemsii/unmatrix.c
 | 
						|
 * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
 | 
						|
 *
 | 
						|
 * The unmatrix reference is for general 3-D transform matrices (any of the
 | 
						|
 * 16 components can have any value).
 | 
						|
 *
 | 
						|
 * For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant:
 | 
						|
 *
 | 
						|
 * [ A C E ]
 | 
						|
 * [ B D F ]
 | 
						|
 * [ 0 0 1 ]
 | 
						|
 *
 | 
						|
 * For that case, I believe the algorithm in unmatrix reduces to:
 | 
						|
 *
 | 
						|
 *  (1) If A * D - B * C == 0, the matrix is singular.  Fail.
 | 
						|
 *
 | 
						|
 *  (2) Set translation components (Tx and Ty) to the translation parts of
 | 
						|
 *      the matrix (E and F) and then ignore them for the rest of the time.
 | 
						|
 *      (For us, E and F each actually consist of three constants:  a
 | 
						|
 *      length, a multiplier for the width, and a multiplier for the
 | 
						|
 *      height.  This actually requires its own decomposition, but I'll
 | 
						|
 *      keep that separate.)
 | 
						|
 *
 | 
						|
 *  (3) Let the X scale (Sx) be sqrt(A^2 + B^2).  Then divide both A and B
 | 
						|
 *      by it.
 | 
						|
 *
 | 
						|
 *  (4) Let the XY shear (K) be A * C + B * D.  From C, subtract A times
 | 
						|
 *      the XY shear.  From D, subtract B times the XY shear.
 | 
						|
 *
 | 
						|
 *  (5) Let the Y scale (Sy) be sqrt(C^2 + D^2).  Divide C, D, and the XY
 | 
						|
 *      shear (K) by it.
 | 
						|
 *
 | 
						|
 *  (6) At this point, A * D - B * C is either 1 or -1.  If it is -1,
 | 
						|
 *      negate the XY shear (K), the X scale (Sx), and A, B, C, and D.
 | 
						|
 *      (Alternatively, we could negate the XY shear (K) and the Y scale
 | 
						|
 *      (Sy).)
 | 
						|
 *
 | 
						|
 *  (7) Let the rotation be R = atan2(B, A).
 | 
						|
 *
 | 
						|
 * Then the resulting decomposed transformation is:
 | 
						|
 *
 | 
						|
 *   translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy)
 | 
						|
 *
 | 
						|
 * An interesting result of this is that all of the simple transform
 | 
						|
 * functions (i.e., all functions other than matrix()), in isolation,
 | 
						|
 * decompose back to themselves except for:
 | 
						|
 *   'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes
 | 
						|
 *   to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the
 | 
						|
 *   alternate sign possibilities that would get fixed in step 6):
 | 
						|
 *     In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = sec(φ).
 | 
						|
 *     Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = sin(φ).
 | 
						|
 *     In step 4, the XY shear is sin(φ).
 | 
						|
 *     Thus, after step 4, C = -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ).
 | 
						|
 *     Thus, in step 5, the Y scale is sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ).
 | 
						|
 *     Thus, after step 5, C = -sin(φ), D = cos(φ), and the XY shear is tan(φ).
 | 
						|
 *     Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
 | 
						|
 *     In step 7, the rotation is thus φ.
 | 
						|
 *
 | 
						|
 *   skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes
 | 
						|
 *   to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring
 | 
						|
 *   the alternate sign possibilities that would get fixed in step 6):
 | 
						|
 *     In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = sec(φ).
 | 
						|
 *     Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = sin(φ).
 | 
						|
 *     In step 4, the XY shear is cos(φ)tan(θ) + sin(φ).
 | 
						|
 *     Thus, after step 4,
 | 
						|
 *     C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ)
 | 
						|
 *     D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ)
 | 
						|
 *     Thus, in step 5, the Y scale is sqrt(C² + D²) =
 | 
						|
 *     sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) -
 | 
						|
 *          2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) +
 | 
						|
 *          (sin²(φ)cos²(φ) + cos⁴(φ))) =
 | 
						|
 *     sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) =
 | 
						|
 *     cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so
 | 
						|
 *     we avoid flipping in step 6).
 | 
						|
 *     After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is
 | 
						|
 *     (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) =
 | 
						|
 *     (dividing both numerator and denominator by cos(φ))
 | 
						|
 *     (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ).
 | 
						|
 *     (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .)
 | 
						|
 *     Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
 | 
						|
 *     In step 7, the rotation is thus φ.
 | 
						|
 *
 | 
						|
 *     To check this result, we can multiply things back together:
 | 
						|
 *
 | 
						|
 *     [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ)    0   ]
 | 
						|
 *     [ sin(φ)  cos(φ) ] [ 0      1     ] [   0    cos(φ) ]
 | 
						|
 *
 | 
						|
 *     [ cos(φ)      cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ)    0   ]
 | 
						|
 *     [ sin(φ)      sin(φ)tan(θ + φ) + cos(φ) ] [   0    cos(φ) ]
 | 
						|
 *
 | 
						|
 *     but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)),
 | 
						|
 *     cos(φ)tan(θ + φ) - sin(φ)
 | 
						|
 *      = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ)
 | 
						|
 *      = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ)
 | 
						|
 *      = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ)
 | 
						|
 *      = tan(θ) (cos(φ) + sin(φ)tan(φ))
 | 
						|
 *      = tan(θ) sec(φ) (cos²(φ) + sin²(φ))
 | 
						|
 *      = tan(θ) sec(φ)
 | 
						|
 *     and
 | 
						|
 *     sin(φ)tan(θ + φ) + cos(φ)
 | 
						|
 *      = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ)
 | 
						|
 *      = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ)
 | 
						|
 *      = sec(φ) (sin²(φ) + cos²(φ))
 | 
						|
 *      = sec(φ)
 | 
						|
 *     so the above is:
 | 
						|
 *     [ cos(φ)  tan(θ) sec(φ) ] [ sec(φ)    0   ]
 | 
						|
 *     [ sin(φ)     sec(φ)     ] [   0    cos(φ) ]
 | 
						|
 *
 | 
						|
 *     [    1   tan(θ) ]
 | 
						|
 *     [ tan(φ)    1   ]
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Decompose2DMatrix implements the above decomposition algorithm.
 | 
						|
 */
 | 
						|
 | 
						|
bool
 | 
						|
Decompose2DMatrix(const Matrix& aMatrix,
 | 
						|
                  Point3D& aScale,
 | 
						|
                  ShearArray& aShear,
 | 
						|
                  gfxQuaternion& aRotate,
 | 
						|
                  Point3D& aTranslate)
 | 
						|
{
 | 
						|
  float A = aMatrix._11,
 | 
						|
        B = aMatrix._12,
 | 
						|
        C = aMatrix._21,
 | 
						|
        D = aMatrix._22;
 | 
						|
  if (A * D == B * C) {
 | 
						|
    // singular matrix
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  float scaleX = sqrt(A * A + B * B);
 | 
						|
  A /= scaleX;
 | 
						|
  B /= scaleX;
 | 
						|
 | 
						|
  float XYshear = A * C + B * D;
 | 
						|
  C -= A * XYshear;
 | 
						|
  D -= B * XYshear;
 | 
						|
 | 
						|
  float scaleY = sqrt(C * C + D * D);
 | 
						|
  C /= scaleY;
 | 
						|
  D /= scaleY;
 | 
						|
  XYshear /= scaleY;
 | 
						|
 | 
						|
  float determinant = A * D - B * C;
 | 
						|
  // Determinant should now be 1 or -1.
 | 
						|
  if (0.99 > Abs(determinant) || Abs(determinant) > 1.01) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (determinant < 0) {
 | 
						|
    A = -A;
 | 
						|
    B = -B;
 | 
						|
    C = -C;
 | 
						|
    D = -D;
 | 
						|
    XYshear = -XYshear;
 | 
						|
    scaleX = -scaleX;
 | 
						|
  }
 | 
						|
 | 
						|
  float rotate = atan2f(B, A);
 | 
						|
  aRotate = gfxQuaternion(0, 0, sin(rotate/2), cos(rotate/2));
 | 
						|
  aShear[ShearType::XYSHEAR] = XYshear;
 | 
						|
  aScale.x = scaleX;
 | 
						|
  aScale.y = scaleY;
 | 
						|
  aTranslate.x = aMatrix._31;
 | 
						|
  aTranslate.y = aMatrix._32;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Implementation of the unmatrix algorithm, specified by:
 | 
						|
 *
 | 
						|
 * http://dev.w3.org/csswg/css3-2d-transforms/#unmatrix
 | 
						|
 *
 | 
						|
 * This, in turn, refers to the unmatrix program in Graphics Gems,
 | 
						|
 * available from http://tog.acm.org/resources/GraphicsGems/ , and in
 | 
						|
 * particular as the file GraphicsGems/gemsii/unmatrix.c
 | 
						|
 * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
 | 
						|
 */
 | 
						|
bool
 | 
						|
Decompose3DMatrix(const Matrix4x4& aMatrix,
 | 
						|
                  Point3D& aScale,
 | 
						|
                  ShearArray& aShear,
 | 
						|
                  gfxQuaternion& aRotate,
 | 
						|
                  Point3D& aTranslate,
 | 
						|
                  Point4D& aPerspective)
 | 
						|
{
 | 
						|
  Matrix4x4 local = aMatrix;
 | 
						|
 | 
						|
  if (local[3][3] == 0) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  /* Normalize the matrix */
 | 
						|
  local.Normalize();
 | 
						|
 | 
						|
  /**
 | 
						|
   * perspective is used to solve for perspective, but it also provides
 | 
						|
   * an easy way to test for singularity of the upper 3x3 component.
 | 
						|
   */
 | 
						|
  Matrix4x4 perspective = local;
 | 
						|
  Point4D empty(0, 0, 0, 1);
 | 
						|
  perspective.SetTransposedVector(3, empty);
 | 
						|
 | 
						|
  if (perspective.Determinant() == 0.0) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /* First, isolate perspective. */
 | 
						|
  if (local[0][3] != 0 || local[1][3] != 0 ||
 | 
						|
      local[2][3] != 0) {
 | 
						|
    /* aPerspective is the right hand side of the equation. */
 | 
						|
    aPerspective = local.TransposedVector(3);
 | 
						|
 | 
						|
    /**
 | 
						|
     * Solve the equation by inverting perspective and multiplying
 | 
						|
     * aPerspective by the inverse.
 | 
						|
     */
 | 
						|
    perspective.Invert();
 | 
						|
    aPerspective = perspective.TransposeTransform4D(aPerspective);
 | 
						|
 | 
						|
    /* Clear the perspective partition */
 | 
						|
    local.SetTransposedVector(3, empty);
 | 
						|
  } else {
 | 
						|
    aPerspective = Point4D(0, 0, 0, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Next take care of translation */
 | 
						|
  for (int i = 0; i < 3; i++) {
 | 
						|
    aTranslate[i] = local[3][i];
 | 
						|
    local[3][i] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now get scale and shear. */
 | 
						|
 | 
						|
  /* Compute X scale factor and normalize first row. */
 | 
						|
  aScale.x = local[0].Length();
 | 
						|
  local[0] /= aScale.x;
 | 
						|
 | 
						|
  /* Compute XY shear factor and make 2nd local orthogonal to 1st. */
 | 
						|
  aShear[ShearType::XYSHEAR] = local[0].DotProduct(local[1]);
 | 
						|
  local[1] -= local[0] * aShear[ShearType::XYSHEAR];
 | 
						|
 | 
						|
  /* Now, compute Y scale and normalize 2nd local. */
 | 
						|
  aScale.y = local[1].Length();
 | 
						|
  local[1] /= aScale.y;
 | 
						|
  aShear[ShearType::XYSHEAR] /= aScale.y;
 | 
						|
 | 
						|
  /* Compute XZ and YZ shears, make 3rd local orthogonal */
 | 
						|
  aShear[ShearType::XZSHEAR] = local[0].DotProduct(local[2]);
 | 
						|
  local[2] -= local[0] * aShear[ShearType::XZSHEAR];
 | 
						|
  aShear[ShearType::YZSHEAR] = local[1].DotProduct(local[2]);
 | 
						|
  local[2] -= local[1] * aShear[ShearType::YZSHEAR];
 | 
						|
 | 
						|
  /* Next, get Z scale and normalize 3rd local. */
 | 
						|
  aScale.z = local[2].Length();
 | 
						|
  local[2] /= aScale.z;
 | 
						|
 | 
						|
  aShear[ShearType::XZSHEAR] /= aScale.z;
 | 
						|
  aShear[ShearType::YZSHEAR] /= aScale.z;
 | 
						|
 | 
						|
  /**
 | 
						|
   * At this point, the matrix (in locals) is orthonormal.
 | 
						|
   * Check for a coordinate system flip.  If the determinant
 | 
						|
   * is -1, then negate the matrix and the scaling factors.
 | 
						|
   */
 | 
						|
  if (local[0].DotProduct(local[1].CrossProduct(local[2])) < 0) {
 | 
						|
    aScale *= -1;
 | 
						|
    for (int i = 0; i < 3; i++) {
 | 
						|
      local[i] *= -1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now, get the rotations out */
 | 
						|
  aRotate = gfxQuaternion(local);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Matrix
 | 
						|
CSSValueArrayTo2DMatrix(nsCSSValue::Array* aArray)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aArray &&
 | 
						|
             TransformFunctionOf(aArray) == eCSSKeyword_matrix &&
 | 
						|
             aArray->Count() == 7);
 | 
						|
  Matrix m(aArray->Item(1).GetFloatValue(),
 | 
						|
           aArray->Item(2).GetFloatValue(),
 | 
						|
           aArray->Item(3).GetFloatValue(),
 | 
						|
           aArray->Item(4).GetFloatValue(),
 | 
						|
           aArray->Item(5).GetFloatValue(),
 | 
						|
           aArray->Item(6).GetFloatValue());
 | 
						|
  return m;
 | 
						|
}
 | 
						|
 | 
						|
Matrix4x4
 | 
						|
CSSValueArrayTo3DMatrix(nsCSSValue::Array* aArray)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aArray &&
 | 
						|
             TransformFunctionOf(aArray) == eCSSKeyword_matrix3d &&
 | 
						|
             aArray->Count() == 17);
 | 
						|
  gfx::Float array[16];
 | 
						|
  for (size_t i = 0; i < 16; ++i) {
 | 
						|
    array[i] = aArray->Item(i+1).GetFloatValue();
 | 
						|
  }
 | 
						|
  Matrix4x4 m(array);
 | 
						|
  return m;
 | 
						|
}
 | 
						|
 | 
						|
Size
 | 
						|
GetScaleValue(const nsCSSValueSharedList* aList,
 | 
						|
              const nsIFrame* aForFrame)
 | 
						|
{
 | 
						|
  MOZ_ASSERT(aList && aList->mHead);
 | 
						|
  MOZ_ASSERT(aForFrame);
 | 
						|
 | 
						|
  bool dontCareBool;
 | 
						|
  TransformReferenceBox refBox(aForFrame);
 | 
						|
  Matrix4x4 transform = ReadTransforms(
 | 
						|
                          aList->mHead,
 | 
						|
                          refBox,
 | 
						|
                          aForFrame->PresContext()->AppUnitsPerDevPixel(),
 | 
						|
                          &dontCareBool);
 | 
						|
  Matrix transform2d;
 | 
						|
  bool canDraw2D = transform.CanDraw2D(&transform2d);
 | 
						|
  if (!canDraw2D) {
 | 
						|
    return Size();
 | 
						|
  }
 | 
						|
 | 
						|
  return transform2d.ScaleFactors(true);
 | 
						|
}
 | 
						|
 | 
						|
} // namespace nsStyleTransformMatrix
 |