forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			576 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			576 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| /* Various predicates and operations on IEEE-754 floating point types. */
 | |
| 
 | |
| #ifndef mozilla_FloatingPoint_h
 | |
| #define mozilla_FloatingPoint_h
 | |
| 
 | |
| #include "mozilla/Assertions.h"
 | |
| #include "mozilla/Attributes.h"
 | |
| #include "mozilla/Casting.h"
 | |
| #include "mozilla/MathAlgorithms.h"
 | |
| #include "mozilla/MemoryChecking.h"
 | |
| #include "mozilla/Types.h"
 | |
| #include "mozilla/TypeTraits.h"
 | |
| 
 | |
| #include <limits>
 | |
| #include <stdint.h>
 | |
| 
 | |
| namespace mozilla {
 | |
| 
 | |
| /*
 | |
|  * It's reasonable to ask why we have this header at all.  Don't isnan,
 | |
|  * copysign, the built-in comparison operators, and the like solve these
 | |
|  * problems?  Unfortunately, they don't.  We've found that various compilers
 | |
|  * (MSVC, MSVC when compiling with PGO, and GCC on OS X, at least) miscompile
 | |
|  * the standard methods in various situations, so we can't use them.  Some of
 | |
|  * these compilers even have problems compiling seemingly reasonable bitwise
 | |
|  * algorithms!  But with some care we've found algorithms that seem to not
 | |
|  * trigger those compiler bugs.
 | |
|  *
 | |
|  * For the aforementioned reasons, be very wary of making changes to any of
 | |
|  * these algorithms.  If you must make changes, keep a careful eye out for
 | |
|  * compiler bustage, particularly PGO-specific bustage.
 | |
|  */
 | |
| 
 | |
| struct FloatTypeTraits
 | |
| {
 | |
|   using Bits = uint32_t;
 | |
| 
 | |
|   static constexpr unsigned kExponentBias = 127;
 | |
|   static constexpr unsigned kExponentShift = 23;
 | |
| 
 | |
|   static constexpr Bits kSignBit         = 0x80000000UL;
 | |
|   static constexpr Bits kExponentBits    = 0x7F800000UL;
 | |
|   static constexpr Bits kSignificandBits = 0x007FFFFFUL;
 | |
| };
 | |
| 
 | |
| struct DoubleTypeTraits
 | |
| {
 | |
|   using Bits = uint64_t;
 | |
| 
 | |
|   static constexpr unsigned kExponentBias = 1023;
 | |
|   static constexpr unsigned kExponentShift = 52;
 | |
| 
 | |
|   static constexpr Bits kSignBit         = 0x8000000000000000ULL;
 | |
|   static constexpr Bits kExponentBits    = 0x7ff0000000000000ULL;
 | |
|   static constexpr Bits kSignificandBits = 0x000fffffffffffffULL;
 | |
| };
 | |
| 
 | |
| template<typename T> struct SelectTrait;
 | |
| template<> struct SelectTrait<float> : public FloatTypeTraits {};
 | |
| template<> struct SelectTrait<double> : public DoubleTypeTraits {};
 | |
| 
 | |
| /*
 | |
|  *  This struct contains details regarding the encoding of floating-point
 | |
|  *  numbers that can be useful for direct bit manipulation. As of now, the
 | |
|  *  template parameter has to be float or double.
 | |
|  *
 | |
|  *  The nested typedef |Bits| is the unsigned integral type with the same size
 | |
|  *  as T: uint32_t for float and uint64_t for double (static assertions
 | |
|  *  double-check these assumptions).
 | |
|  *
 | |
|  *  kExponentBias is the offset that is subtracted from the exponent when
 | |
|  *  computing the value, i.e. one plus the opposite of the mininum possible
 | |
|  *  exponent.
 | |
|  *  kExponentShift is the shift that one needs to apply to retrieve the
 | |
|  *  exponent component of the value.
 | |
|  *
 | |
|  *  kSignBit contains a bits mask. Bit-and-ing with this mask will result in
 | |
|  *  obtaining the sign bit.
 | |
|  *  kExponentBits contains the mask needed for obtaining the exponent bits and
 | |
|  *  kSignificandBits contains the mask needed for obtaining the significand
 | |
|  *  bits.
 | |
|  *
 | |
|  *  Full details of how floating point number formats are encoded are beyond
 | |
|  *  the scope of this comment. For more information, see
 | |
|  *  http://en.wikipedia.org/wiki/IEEE_floating_point
 | |
|  *  http://en.wikipedia.org/wiki/Floating_point#IEEE_754:_floating_point_in_modern_computers
 | |
|  */
 | |
| template<typename T>
 | |
| struct FloatingPoint : public SelectTrait<T>
 | |
| {
 | |
|   using Base = SelectTrait<T>;
 | |
|   using Bits = typename Base::Bits;
 | |
| 
 | |
|   static_assert((Base::kSignBit & Base::kExponentBits) == 0,
 | |
|                 "sign bit shouldn't overlap exponent bits");
 | |
|   static_assert((Base::kSignBit & Base::kSignificandBits) == 0,
 | |
|                 "sign bit shouldn't overlap significand bits");
 | |
|   static_assert((Base::kExponentBits & Base::kSignificandBits) == 0,
 | |
|                 "exponent bits shouldn't overlap significand bits");
 | |
| 
 | |
|   static_assert((Base::kSignBit | Base::kExponentBits | Base::kSignificandBits) ==
 | |
|                 ~Bits(0),
 | |
|                 "all bits accounted for");
 | |
| 
 | |
|   /*
 | |
|    * These implementations assume float/double are 32/64-bit single/double
 | |
|    * format number types compatible with the IEEE-754 standard.  C++ don't
 | |
|    * require this to be the case.  But we required this in implementations of
 | |
|    * these algorithms that preceded this header, so we shouldn't break anything
 | |
|    * if we keep doing so.
 | |
|    */
 | |
|   static_assert(sizeof(T) == sizeof(Bits), "Bits must be same size as T");
 | |
| };
 | |
| 
 | |
| /** Determines whether a float/double is NaN. */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| IsNaN(T aValue)
 | |
| {
 | |
|   /*
 | |
|    * A float/double is NaN if all exponent bits are 1 and the significand
 | |
|    * contains at least one non-zero bit.
 | |
|    */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   typedef typename Traits::Bits Bits;
 | |
|   return (BitwiseCast<Bits>(aValue) & Traits::kExponentBits) == Traits::kExponentBits &&
 | |
|          (BitwiseCast<Bits>(aValue) & Traits::kSignificandBits) != 0;
 | |
| }
 | |
| 
 | |
| /** Determines whether a float/double is +Infinity or -Infinity. */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| IsInfinite(T aValue)
 | |
| {
 | |
|   /* Infinities have all exponent bits set to 1 and an all-0 significand. */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   typedef typename Traits::Bits Bits;
 | |
|   Bits bits = BitwiseCast<Bits>(aValue);
 | |
|   return (bits & ~Traits::kSignBit) == Traits::kExponentBits;
 | |
| }
 | |
| 
 | |
| /** Determines whether a float/double is not NaN or infinite. */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| IsFinite(T aValue)
 | |
| {
 | |
|   /*
 | |
|    * NaN and Infinities are the only non-finite floats/doubles, and both have
 | |
|    * all exponent bits set to 1.
 | |
|    */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   typedef typename Traits::Bits Bits;
 | |
|   Bits bits = BitwiseCast<Bits>(aValue);
 | |
|   return (bits & Traits::kExponentBits) != Traits::kExponentBits;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Determines whether a float/double is negative or -0.  It is an error
 | |
|  * to call this method on a float/double which is NaN.
 | |
|  */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| IsNegative(T aValue)
 | |
| {
 | |
|   MOZ_ASSERT(!IsNaN(aValue), "NaN does not have a sign");
 | |
| 
 | |
|   /* The sign bit is set if the double is negative. */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   typedef typename Traits::Bits Bits;
 | |
|   Bits bits = BitwiseCast<Bits>(aValue);
 | |
|   return (bits & Traits::kSignBit) != 0;
 | |
| }
 | |
| 
 | |
| /** Determines whether a float/double represents -0. */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| IsNegativeZero(T aValue)
 | |
| {
 | |
|   /* Only the sign bit is set if the value is -0. */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   typedef typename Traits::Bits Bits;
 | |
|   Bits bits = BitwiseCast<Bits>(aValue);
 | |
|   return bits == Traits::kSignBit;
 | |
| }
 | |
| 
 | |
| /** Determines wether a float/double represents +0. */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| IsPositiveZero(T aValue)
 | |
| {
 | |
|   /* All bits are zero if the value is +0. */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   typedef typename Traits::Bits Bits;
 | |
|   Bits bits = BitwiseCast<Bits>(aValue);
 | |
|   return bits == 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns 0 if a float/double is NaN or infinite;
 | |
|  * otherwise, the float/double is returned.
 | |
|  */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE T
 | |
| ToZeroIfNonfinite(T aValue)
 | |
| {
 | |
|   return IsFinite(aValue) ? aValue : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns the exponent portion of the float/double.
 | |
|  *
 | |
|  * Zero is not special-cased, so ExponentComponent(0.0) is
 | |
|  * -int_fast16_t(Traits::kExponentBias).
 | |
|  */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE int_fast16_t
 | |
| ExponentComponent(T aValue)
 | |
| {
 | |
|   /*
 | |
|    * The exponent component of a float/double is an unsigned number, biased
 | |
|    * from its actual value.  Subtract the bias to retrieve the actual exponent.
 | |
|    */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   typedef typename Traits::Bits Bits;
 | |
|   Bits bits = BitwiseCast<Bits>(aValue);
 | |
|   return int_fast16_t((bits & Traits::kExponentBits) >> Traits::kExponentShift) -
 | |
|          int_fast16_t(Traits::kExponentBias);
 | |
| }
 | |
| 
 | |
| /** Returns +Infinity. */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE T
 | |
| PositiveInfinity()
 | |
| {
 | |
|   /*
 | |
|    * Positive infinity has all exponent bits set, sign bit set to 0, and no
 | |
|    * significand.
 | |
|    */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   return BitwiseCast<T>(Traits::kExponentBits);
 | |
| }
 | |
| 
 | |
| /** Returns -Infinity. */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE T
 | |
| NegativeInfinity()
 | |
| {
 | |
|   /*
 | |
|    * Negative infinity has all exponent bits set, sign bit set to 1, and no
 | |
|    * significand.
 | |
|    */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   return BitwiseCast<T>(Traits::kSignBit | Traits::kExponentBits);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Computes the bit pattern for a NaN with the specified sign bit and
 | |
|  * significand bits.
 | |
|  */
 | |
| template<typename T,
 | |
|          int SignBit,
 | |
|          typename FloatingPoint<T>::Bits Significand>
 | |
| struct SpecificNaNBits
 | |
| {
 | |
|   using Traits = FloatingPoint<T>;
 | |
| 
 | |
|   static_assert(SignBit == 0 || SignBit == 1, "bad sign bit");
 | |
|   static_assert((Significand & ~Traits::kSignificandBits) == 0,
 | |
|                 "significand must only have significand bits set");
 | |
|   static_assert(Significand & Traits::kSignificandBits,
 | |
|                 "significand must be nonzero");
 | |
| 
 | |
|   static constexpr typename Traits::Bits value =
 | |
|     (SignBit * Traits::kSignBit) | Traits::kExponentBits | Significand;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Constructs a NaN value with the specified sign bit and significand bits.
 | |
|  *
 | |
|  * There is also a variant that returns the value directly.  In most cases, the
 | |
|  * two variants should be identical.  However, in the specific case of x86
 | |
|  * chips, the behavior differs: returning floating-point values directly is done
 | |
|  * through the x87 stack, and x87 loads and stores turn signaling NaNs into
 | |
|  * quiet NaNs... silently.  Returning floating-point values via outparam,
 | |
|  * however, is done entirely within the SSE registers when SSE2 floating-point
 | |
|  * is enabled in the compiler, which has semantics-preserving behavior you would
 | |
|  * expect.
 | |
|  *
 | |
|  * If preserving the distinction between signaling NaNs and quiet NaNs is
 | |
|  * important to you, you should use the outparam version.  In all other cases,
 | |
|  * you should use the direct return version.
 | |
|  */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE void
 | |
| SpecificNaN(int signbit, typename FloatingPoint<T>::Bits significand, T* result)
 | |
| {
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   MOZ_ASSERT(signbit == 0 || signbit == 1);
 | |
|   MOZ_ASSERT((significand & ~Traits::kSignificandBits) == 0);
 | |
|   MOZ_ASSERT(significand & Traits::kSignificandBits);
 | |
| 
 | |
|   BitwiseCast<T>((signbit ? Traits::kSignBit : 0) |
 | |
|                   Traits::kExponentBits |
 | |
|                   significand,
 | |
|                   result);
 | |
|   MOZ_ASSERT(IsNaN(*result));
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE T
 | |
| SpecificNaN(int signbit, typename FloatingPoint<T>::Bits significand)
 | |
| {
 | |
|   T t;
 | |
|   SpecificNaN(signbit, significand, &t);
 | |
|   return t;
 | |
| }
 | |
| 
 | |
| /** Computes the smallest non-zero positive float/double value. */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE T
 | |
| MinNumberValue()
 | |
| {
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   typedef typename Traits::Bits Bits;
 | |
|   return BitwiseCast<T>(Bits(1));
 | |
| }
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| template<typename Float, typename SignedInteger>
 | |
| inline bool
 | |
| NumberEqualsSignedInteger(Float aValue, SignedInteger* aInteger)
 | |
| {
 | |
|   static_assert(IsSame<Float, float>::value || IsSame<Float, double>::value,
 | |
|                 "Float must be an IEEE-754 floating point type");
 | |
|   static_assert(IsSigned<SignedInteger>::value,
 | |
|                 "this algorithm only works for signed types: a different one "
 | |
|                 "will be required for unsigned types");
 | |
|   static_assert(sizeof(SignedInteger) >= sizeof(int),
 | |
|                 "this function *might* require some finessing for signed types "
 | |
|                 "subject to integral promotion before it can be used on them");
 | |
| 
 | |
|   MOZ_MAKE_MEM_UNDEFINED(aInteger, sizeof(*aInteger));
 | |
| 
 | |
|   // NaNs and infinities are not integers.
 | |
|   if (!IsFinite(aValue)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise do direct comparisons against the minimum/maximum |SignedInteger|
 | |
|   // values that can be encoded in |Float|.
 | |
| 
 | |
|   constexpr SignedInteger MaxIntValue =
 | |
|     std::numeric_limits<SignedInteger>::max(); // e.g. INT32_MAX
 | |
|   constexpr SignedInteger MinValue =
 | |
|     std::numeric_limits<SignedInteger>::min(); // e.g. INT32_MIN
 | |
| 
 | |
|   static_assert(IsPowerOfTwo(Abs(MinValue)),
 | |
|                 "MinValue should be is a small power of two, thus exactly "
 | |
|                 "representable in float/double both");
 | |
| 
 | |
|   constexpr unsigned SignedIntegerWidth = CHAR_BIT * sizeof(SignedInteger);
 | |
|   constexpr unsigned ExponentShift = FloatingPoint<Float>::kExponentShift;
 | |
| 
 | |
|   // Careful!  |MaxIntValue| may not be the maximum |SignedInteger| value that
 | |
|   // can be encoded in |Float|.  Its |SignedIntegerWidth - 1| bits of precision
 | |
|   // may exceed |Float|'s |ExponentShift + 1| bits of precision.  If necessary,
 | |
|   // compute the maximum |SignedInteger| that fits in |Float| from IEEE-754
 | |
|   // first principles.  (|MinValue| doesn't have this problem because as a
 | |
|   // [relatively] small power of two it's always representable in |Float|.)
 | |
| 
 | |
|   // Per C++11 [expr.const]p2, unevaluated subexpressions of logical AND/OR and
 | |
|   // conditional expressions *may* contain non-constant expressions, without
 | |
|   // making the enclosing expression not constexpr.  MSVC implements this -- but
 | |
|   // it sometimes warns about undefined behavior in unevaluated subexpressions.
 | |
|   // This bites us if we initialize |MaxValue| the obvious way including an
 | |
|   // |uint64_t(1) << (SignedIntegerWidth - 2 - ExponentShift)| subexpression.
 | |
|   // Pull that shift-amount out and give it a not-too-huge value when it's in an
 | |
|   // unevaluated subexpression.  🙄
 | |
|   constexpr unsigned PrecisionExceededShiftAmount =
 | |
|     ExponentShift > SignedIntegerWidth - 1
 | |
|     ? 0
 | |
|     : SignedIntegerWidth - 2 - ExponentShift;
 | |
| 
 | |
|   constexpr SignedInteger MaxValue =
 | |
|    ExponentShift > SignedIntegerWidth - 1
 | |
|     ? MaxIntValue
 | |
|     : SignedInteger((uint64_t(1) << (SignedIntegerWidth - 1)) -
 | |
|                     (uint64_t(1) << PrecisionExceededShiftAmount));
 | |
| 
 | |
|   if (static_cast<Float>(MinValue) <= aValue &&
 | |
|       aValue <= static_cast<Float>(MaxValue))
 | |
|   {
 | |
|     auto possible = static_cast<SignedInteger>(aValue);
 | |
|     if (static_cast<Float>(possible) == aValue) {
 | |
|       *aInteger = possible;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template<typename Float, typename SignedInteger>
 | |
| inline bool
 | |
| NumberIsSignedInteger(Float aValue, SignedInteger* aInteger)
 | |
| {
 | |
|   static_assert(IsSame<Float, float>::value || IsSame<Float, double>::value,
 | |
|                 "Float must be an IEEE-754 floating point type");
 | |
|   static_assert(IsSigned<SignedInteger>::value,
 | |
|                 "this algorithm only works for signed types: a different one "
 | |
|                 "will be required for unsigned types");
 | |
|   static_assert(sizeof(SignedInteger) >= sizeof(int),
 | |
|                 "this function *might* require some finessing for signed types "
 | |
|                 "subject to integral promotion before it can be used on them");
 | |
| 
 | |
|   MOZ_MAKE_MEM_UNDEFINED(aInteger, sizeof(*aInteger));
 | |
| 
 | |
|   if (IsNegativeZero(aValue)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return NumberEqualsSignedInteger(aValue, aInteger);
 | |
| }
 | |
| 
 | |
| } // namespace detail
 | |
| 
 | |
| /**
 | |
|  * If |aValue| is identical to some |int32_t| value, set |*aInt32| to that value
 | |
|  * and return true.  Otherwise return false, leaving |*aInt32| in an
 | |
|  * indeterminate state.
 | |
|  *
 | |
|  * This method returns false for negative zero.  If you want to consider -0 to
 | |
|  * be 0, use NumberEqualsInt32 below.
 | |
|  */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| NumberIsInt32(T aValue, int32_t* aInt32)
 | |
| {
 | |
|   return detail::NumberIsSignedInteger(aValue, aInt32);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * If |aValue| is equal to some int32_t value (where -0 and +0 are considered
 | |
|  * equal), set |*aInt32| to that value and return true.  Otherwise return false,
 | |
|  * leaving |*aInt32| in an indeterminate state.
 | |
|  *
 | |
|  * |NumberEqualsInt32(-0.0, ...)| will return true.  To test whether a value can
 | |
|  * be losslessly converted to |int32_t| and back, use NumberIsInt32 above.
 | |
|  */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| NumberEqualsInt32(T aValue, int32_t* aInt32)
 | |
| {
 | |
|   return detail::NumberEqualsSignedInteger(aValue, aInt32);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Computes a NaN value.  Do not use this method if you depend upon a particular
 | |
|  * NaN value being returned.
 | |
|  */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE T
 | |
| UnspecifiedNaN()
 | |
| {
 | |
|   /*
 | |
|    * If we can use any quiet NaN, we might as well use the all-ones NaN,
 | |
|    * since it's cheap to materialize on common platforms (such as x64, where
 | |
|    * this value can be represented in a 32-bit signed immediate field, allowing
 | |
|    * it to be stored to memory in a single instruction).
 | |
|    */
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   return SpecificNaN<T>(1, Traits::kSignificandBits);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compare two doubles for equality, *without* equating -0 to +0, and equating
 | |
|  * any NaN value to any other NaN value.  (The normal equality operators equate
 | |
|  * -0 with +0, and they equate NaN to no other value.)
 | |
|  */
 | |
| template<typename T>
 | |
| static inline bool
 | |
| NumbersAreIdentical(T aValue1, T aValue2)
 | |
| {
 | |
|   typedef FloatingPoint<T> Traits;
 | |
|   typedef typename Traits::Bits Bits;
 | |
|   if (IsNaN(aValue1)) {
 | |
|     return IsNaN(aValue2);
 | |
|   }
 | |
|   return BitwiseCast<Bits>(aValue1) == BitwiseCast<Bits>(aValue2);
 | |
| }
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| template<typename T>
 | |
| struct FuzzyEqualsEpsilon;
 | |
| 
 | |
| template<>
 | |
| struct FuzzyEqualsEpsilon<float>
 | |
| {
 | |
|   // A number near 1e-5 that is exactly representable in a float.
 | |
|   static float value() { return 1.0f / (1 << 17); }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct FuzzyEqualsEpsilon<double>
 | |
| {
 | |
|   // A number near 1e-12 that is exactly representable in a double.
 | |
|   static double value() { return 1.0 / (1LL << 40); }
 | |
| };
 | |
| 
 | |
| } // namespace detail
 | |
| 
 | |
| /**
 | |
|  * Compare two floating point values for equality, modulo rounding error. That
 | |
|  * is, the two values are considered equal if they are both not NaN and if they
 | |
|  * are less than or equal to aEpsilon apart. The default value of aEpsilon is
 | |
|  * near 1e-5.
 | |
|  *
 | |
|  * For most scenarios you will want to use FuzzyEqualsMultiplicative instead,
 | |
|  * as it is more reasonable over the entire range of floating point numbers.
 | |
|  * This additive version should only be used if you know the range of the
 | |
|  * numbers you are dealing with is bounded and stays around the same order of
 | |
|  * magnitude.
 | |
|  */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| FuzzyEqualsAdditive(T aValue1, T aValue2,
 | |
|                     T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value())
 | |
| {
 | |
|   static_assert(IsFloatingPoint<T>::value, "floating point type required");
 | |
|   return Abs(aValue1 - aValue2) <= aEpsilon;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compare two floating point values for equality, allowing for rounding error
 | |
|  * relative to the magnitude of the values. That is, the two values are
 | |
|  * considered equal if they are both not NaN and they are less than or equal to
 | |
|  * some aEpsilon apart, where the aEpsilon is scaled by the smaller of the two
 | |
|  * argument values.
 | |
|  *
 | |
|  * In most cases you will want to use this rather than FuzzyEqualsAdditive, as
 | |
|  * this function effectively masks out differences in the bottom few bits of
 | |
|  * the floating point numbers being compared, regardless of what order of
 | |
|  * magnitude those numbers are at.
 | |
|  */
 | |
| template<typename T>
 | |
| static MOZ_ALWAYS_INLINE bool
 | |
| FuzzyEqualsMultiplicative(T aValue1, T aValue2,
 | |
|                           T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value())
 | |
| {
 | |
|   static_assert(IsFloatingPoint<T>::value, "floating point type required");
 | |
|   // can't use std::min because of bug 965340
 | |
|   T smaller = Abs(aValue1) < Abs(aValue2) ? Abs(aValue1) : Abs(aValue2);
 | |
|   return Abs(aValue1 - aValue2) <= aEpsilon * smaller;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns true if |aValue| can be losslessly represented as an IEEE-754 single
 | |
|  * precision number, false otherwise.  All NaN values are considered
 | |
|  * representable (even though the bit patterns of double precision NaNs can't
 | |
|  * all be exactly represented in single precision).
 | |
|  */
 | |
| MOZ_MUST_USE
 | |
| extern MFBT_API bool
 | |
| IsFloat32Representable(double aValue);
 | |
| 
 | |
| } /* namespace mozilla */
 | |
| 
 | |
| #endif /* mozilla_FloatingPoint_h */
 | 
