forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			346 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			346 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 | |
|  * You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| #include "mozilla/dom/AnimationEffect.h"
 | |
| #include "mozilla/dom/AnimationEffectBinding.h"
 | |
| 
 | |
| #include "mozilla/dom/Animation.h"
 | |
| #include "mozilla/dom/KeyframeEffect.h"
 | |
| #include "mozilla/dom/MutationObservers.h"
 | |
| #include "mozilla/AnimationUtils.h"
 | |
| #include "mozilla/FloatingPoint.h"
 | |
| #include "nsDOMMutationObserver.h"
 | |
| 
 | |
| namespace mozilla::dom {
 | |
| 
 | |
| NS_IMPL_CYCLE_COLLECTION_CLASS(AnimationEffect)
 | |
| NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(AnimationEffect)
 | |
|   NS_IMPL_CYCLE_COLLECTION_UNLINK(mDocument, mAnimation)
 | |
|   NS_IMPL_CYCLE_COLLECTION_UNLINK_PRESERVED_WRAPPER
 | |
| NS_IMPL_CYCLE_COLLECTION_UNLINK_END
 | |
| 
 | |
| NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN(AnimationEffect)
 | |
|   NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mDocument, mAnimation)
 | |
| NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END
 | |
| 
 | |
| NS_IMPL_CYCLE_COLLECTION_TRACE_WRAPPERCACHE(AnimationEffect)
 | |
| 
 | |
| NS_IMPL_CYCLE_COLLECTING_ADDREF(AnimationEffect)
 | |
| NS_IMPL_CYCLE_COLLECTING_RELEASE(AnimationEffect)
 | |
| 
 | |
| NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(AnimationEffect)
 | |
|   NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY
 | |
|   NS_INTERFACE_MAP_ENTRY(nsISupports)
 | |
| NS_INTERFACE_MAP_END
 | |
| 
 | |
| AnimationEffect::AnimationEffect(Document* aDocument, TimingParams&& aTiming)
 | |
|     : mDocument(aDocument), mTiming(std::move(aTiming)) {}
 | |
| 
 | |
| AnimationEffect::~AnimationEffect() = default;
 | |
| 
 | |
| nsISupports* AnimationEffect::GetParentObject() const {
 | |
|   return ToSupports(mDocument);
 | |
| }
 | |
| 
 | |
| // https://drafts.csswg.org/web-animations/#current
 | |
| bool AnimationEffect::IsCurrent() const {
 | |
|   if (!mAnimation || mAnimation->PlayState() == AnimationPlayState::Finished) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   ComputedTiming computedTiming = GetComputedTiming();
 | |
|   if (computedTiming.mPhase == ComputedTiming::AnimationPhase::Active) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return (mAnimation->PlaybackRate() > 0 &&
 | |
|           computedTiming.mPhase == ComputedTiming::AnimationPhase::Before) ||
 | |
|          (mAnimation->PlaybackRate() < 0 &&
 | |
|           computedTiming.mPhase == ComputedTiming::AnimationPhase::After);
 | |
| }
 | |
| 
 | |
| // https://drafts.csswg.org/web-animations/#in-effect
 | |
| bool AnimationEffect::IsInEffect() const {
 | |
|   ComputedTiming computedTiming = GetComputedTiming();
 | |
|   return !computedTiming.mProgress.IsNull();
 | |
| }
 | |
| 
 | |
| void AnimationEffect::SetSpecifiedTiming(TimingParams&& aTiming) {
 | |
|   if (mTiming == aTiming) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mTiming = aTiming;
 | |
| 
 | |
|   if (mAnimation) {
 | |
|     Maybe<nsAutoAnimationMutationBatch> mb;
 | |
|     if (AsKeyframeEffect() && AsKeyframeEffect()->GetAnimationTarget()) {
 | |
|       mb.emplace(AsKeyframeEffect()->GetAnimationTarget().mElement->OwnerDoc());
 | |
|     }
 | |
| 
 | |
|     mAnimation->NotifyEffectTimingUpdated();
 | |
| 
 | |
|     if (mAnimation->IsRelevant()) {
 | |
|       MutationObservers::NotifyAnimationChanged(mAnimation);
 | |
|     }
 | |
| 
 | |
|     if (AsKeyframeEffect()) {
 | |
|       AsKeyframeEffect()->RequestRestyle(EffectCompositor::RestyleType::Layer);
 | |
|     }
 | |
|   }
 | |
|   // For keyframe effects, NotifyEffectTimingUpdated above will eventually
 | |
|   // cause KeyframeEffect::NotifyAnimationTimingUpdated to be called so it can
 | |
|   // update its registration with the target element as necessary.
 | |
| }
 | |
| 
 | |
| ComputedTiming AnimationEffect::GetComputedTimingAt(
 | |
|     const Nullable<TimeDuration>& aLocalTime, const TimingParams& aTiming,
 | |
|     double aPlaybackRate) {
 | |
|   static const StickyTimeDuration zeroDuration;
 | |
| 
 | |
|   // Always return the same object to benefit from return-value optimization.
 | |
|   ComputedTiming result;
 | |
| 
 | |
|   if (aTiming.Duration()) {
 | |
|     MOZ_ASSERT(aTiming.Duration().ref() >= zeroDuration,
 | |
|                "Iteration duration should be positive");
 | |
|     result.mDuration = aTiming.Duration().ref();
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(aTiming.Iterations() >= 0.0 && !IsNaN(aTiming.Iterations()),
 | |
|              "mIterations should be nonnegative & finite, as ensured by "
 | |
|              "ValidateIterations or CSSParser");
 | |
|   result.mIterations = aTiming.Iterations();
 | |
| 
 | |
|   MOZ_ASSERT(aTiming.IterationStart() >= 0.0,
 | |
|              "mIterationStart should be nonnegative, as ensured by "
 | |
|              "ValidateIterationStart");
 | |
|   result.mIterationStart = aTiming.IterationStart();
 | |
| 
 | |
|   result.mActiveDuration = aTiming.ActiveDuration();
 | |
|   result.mEndTime = aTiming.EndTime();
 | |
|   result.mFill = aTiming.Fill() == dom::FillMode::Auto ? dom::FillMode::None
 | |
|                                                        : aTiming.Fill();
 | |
| 
 | |
|   // The default constructor for ComputedTiming sets all other members to
 | |
|   // values consistent with an animation that has not been sampled.
 | |
|   if (aLocalTime.IsNull()) {
 | |
|     return result;
 | |
|   }
 | |
|   const TimeDuration& localTime = aLocalTime.Value();
 | |
| 
 | |
|   StickyTimeDuration beforeActiveBoundary =
 | |
|       std::max(std::min(StickyTimeDuration(aTiming.Delay()), result.mEndTime),
 | |
|                zeroDuration);
 | |
| 
 | |
|   StickyTimeDuration activeAfterBoundary = std::max(
 | |
|       std::min(StickyTimeDuration(aTiming.Delay() + result.mActiveDuration),
 | |
|                result.mEndTime),
 | |
|       zeroDuration);
 | |
| 
 | |
|   if (localTime > activeAfterBoundary ||
 | |
|       (aPlaybackRate >= 0 && localTime == activeAfterBoundary)) {
 | |
|     result.mPhase = ComputedTiming::AnimationPhase::After;
 | |
|     if (!result.FillsForwards()) {
 | |
|       // The animation isn't active or filling at this time.
 | |
|       return result;
 | |
|     }
 | |
|     result.mActiveTime =
 | |
|         std::max(std::min(StickyTimeDuration(localTime - aTiming.Delay()),
 | |
|                           result.mActiveDuration),
 | |
|                  zeroDuration);
 | |
|   } else if (localTime < beforeActiveBoundary ||
 | |
|              (aPlaybackRate < 0 && localTime == beforeActiveBoundary)) {
 | |
|     result.mPhase = ComputedTiming::AnimationPhase::Before;
 | |
|     if (!result.FillsBackwards()) {
 | |
|       // The animation isn't active or filling at this time.
 | |
|       return result;
 | |
|     }
 | |
|     result.mActiveTime =
 | |
|         std::max(StickyTimeDuration(localTime - aTiming.Delay()), zeroDuration);
 | |
|   } else {
 | |
|     MOZ_ASSERT(result.mActiveDuration,
 | |
|                "How can we be in the middle of a zero-duration interval?");
 | |
|     result.mPhase = ComputedTiming::AnimationPhase::Active;
 | |
|     result.mActiveTime = localTime - aTiming.Delay();
 | |
|   }
 | |
| 
 | |
|   // Convert active time to a multiple of iterations.
 | |
|   // https://drafts.csswg.org/web-animations/#overall-progress
 | |
|   double overallProgress;
 | |
|   if (!result.mDuration) {
 | |
|     overallProgress = result.mPhase == ComputedTiming::AnimationPhase::Before
 | |
|                           ? 0.0
 | |
|                           : result.mIterations;
 | |
|   } else {
 | |
|     overallProgress = result.mActiveTime / result.mDuration;
 | |
|   }
 | |
| 
 | |
|   // Factor in iteration start offset.
 | |
|   if (IsFinite(overallProgress)) {
 | |
|     overallProgress += result.mIterationStart;
 | |
|   }
 | |
| 
 | |
|   // Determine the 0-based index of the current iteration.
 | |
|   // https://drafts.csswg.org/web-animations/#current-iteration
 | |
|   result.mCurrentIteration =
 | |
|       (result.mIterations >= double(UINT64_MAX) &&
 | |
|        result.mPhase == ComputedTiming::AnimationPhase::After) ||
 | |
|               overallProgress >= double(UINT64_MAX)
 | |
|           ? UINT64_MAX  // In GetComputedTimingDictionary(),
 | |
|                         // we will convert this into Infinity
 | |
|           : static_cast<uint64_t>(overallProgress);
 | |
| 
 | |
|   // Convert the overall progress to a fraction of a single iteration--the
 | |
|   // simply iteration progress.
 | |
|   // https://drafts.csswg.org/web-animations/#simple-iteration-progress
 | |
|   double progress = IsFinite(overallProgress)
 | |
|                         ? fmod(overallProgress, 1.0)
 | |
|                         : fmod(result.mIterationStart, 1.0);
 | |
| 
 | |
|   // When we are at the end of the active interval and the end of an iteration
 | |
|   // we need to report the end of the final iteration and not the start of the
 | |
|   // next iteration. We *don't* want to do this, however, when we have
 | |
|   // a zero-iteration animation.
 | |
|   if (progress == 0.0 &&
 | |
|       (result.mPhase == ComputedTiming::AnimationPhase::After ||
 | |
|        result.mPhase == ComputedTiming::AnimationPhase::Active) &&
 | |
|       result.mActiveTime == result.mActiveDuration &&
 | |
|       result.mIterations != 0.0) {
 | |
|     // The only way we can reach the end of the active interval and have
 | |
|     // a progress of zero and a current iteration of zero, is if we have a
 | |
|     // zero iteration count -- something we should have detected above.
 | |
|     MOZ_ASSERT(result.mCurrentIteration != 0,
 | |
|                "Should not have zero current iteration");
 | |
|     progress = 1.0;
 | |
|     if (result.mCurrentIteration != UINT64_MAX) {
 | |
|       result.mCurrentIteration--;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Factor in the direction.
 | |
|   bool thisIterationReverse = false;
 | |
|   switch (aTiming.Direction()) {
 | |
|     case PlaybackDirection::Normal:
 | |
|       thisIterationReverse = false;
 | |
|       break;
 | |
|     case PlaybackDirection::Reverse:
 | |
|       thisIterationReverse = true;
 | |
|       break;
 | |
|     case PlaybackDirection::Alternate:
 | |
|       thisIterationReverse = (result.mCurrentIteration & 1) == 1;
 | |
|       break;
 | |
|     case PlaybackDirection::Alternate_reverse:
 | |
|       thisIterationReverse = (result.mCurrentIteration & 1) == 0;
 | |
|       break;
 | |
|     default:
 | |
|       MOZ_ASSERT_UNREACHABLE("Unknown PlaybackDirection type");
 | |
|   }
 | |
|   if (thisIterationReverse) {
 | |
|     progress = 1.0 - progress;
 | |
|   }
 | |
| 
 | |
|   // Calculate the 'before flag' which we use when applying step timing
 | |
|   // functions.
 | |
|   if ((result.mPhase == ComputedTiming::AnimationPhase::After &&
 | |
|        thisIterationReverse) ||
 | |
|       (result.mPhase == ComputedTiming::AnimationPhase::Before &&
 | |
|        !thisIterationReverse)) {
 | |
|     result.mBeforeFlag = ComputedTimingFunction::BeforeFlag::Set;
 | |
|   }
 | |
| 
 | |
|   // Apply the easing.
 | |
|   if (aTiming.TimingFunction()) {
 | |
|     progress = aTiming.TimingFunction()->GetValue(progress, result.mBeforeFlag);
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(IsFinite(progress), "Progress value should be finite");
 | |
|   result.mProgress.SetValue(progress);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| ComputedTiming AnimationEffect::GetComputedTiming(
 | |
|     const TimingParams* aTiming) const {
 | |
|   double playbackRate = mAnimation ? mAnimation->PlaybackRate() : 1;
 | |
|   return GetComputedTimingAt(
 | |
|       GetLocalTime(), aTiming ? *aTiming : SpecifiedTiming(), playbackRate);
 | |
| }
 | |
| 
 | |
| // Helper function for generating an (Computed)EffectTiming dictionary
 | |
| static void GetEffectTimingDictionary(const TimingParams& aTiming,
 | |
|                                       EffectTiming& aRetVal) {
 | |
|   aRetVal.mDelay = aTiming.Delay().ToMilliseconds();
 | |
|   aRetVal.mEndDelay = aTiming.EndDelay().ToMilliseconds();
 | |
|   aRetVal.mFill = aTiming.Fill();
 | |
|   aRetVal.mIterationStart = aTiming.IterationStart();
 | |
|   aRetVal.mIterations = aTiming.Iterations();
 | |
|   if (aTiming.Duration()) {
 | |
|     aRetVal.mDuration.SetAsUnrestrictedDouble() =
 | |
|         aTiming.Duration()->ToMilliseconds();
 | |
|   }
 | |
|   aRetVal.mDirection = aTiming.Direction();
 | |
|   if (aTiming.TimingFunction()) {
 | |
|     aRetVal.mEasing.Truncate();
 | |
|     aTiming.TimingFunction()->AppendToString(aRetVal.mEasing);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AnimationEffect::GetTiming(EffectTiming& aRetVal) const {
 | |
|   GetEffectTimingDictionary(SpecifiedTiming(), aRetVal);
 | |
| }
 | |
| 
 | |
| void AnimationEffect::GetComputedTimingAsDict(
 | |
|     ComputedEffectTiming& aRetVal) const {
 | |
|   // Specified timing
 | |
|   GetEffectTimingDictionary(SpecifiedTiming(), aRetVal);
 | |
| 
 | |
|   // Computed timing
 | |
|   double playbackRate = mAnimation ? mAnimation->PlaybackRate() : 1;
 | |
|   const Nullable<TimeDuration> currentTime = GetLocalTime();
 | |
|   ComputedTiming computedTiming =
 | |
|       GetComputedTimingAt(currentTime, SpecifiedTiming(), playbackRate);
 | |
| 
 | |
|   aRetVal.mDuration.SetAsUnrestrictedDouble() =
 | |
|       computedTiming.mDuration.ToMilliseconds();
 | |
|   aRetVal.mFill = computedTiming.mFill;
 | |
|   aRetVal.mActiveDuration = computedTiming.mActiveDuration.ToMilliseconds();
 | |
|   aRetVal.mEndTime = computedTiming.mEndTime.ToMilliseconds();
 | |
|   aRetVal.mLocalTime = AnimationUtils::TimeDurationToDouble(currentTime);
 | |
|   aRetVal.mProgress = computedTiming.mProgress;
 | |
| 
 | |
|   if (!aRetVal.mProgress.IsNull()) {
 | |
|     // Convert the returned currentIteration into Infinity if we set
 | |
|     // (uint64_t) computedTiming.mCurrentIteration to UINT64_MAX
 | |
|     double iteration =
 | |
|         computedTiming.mCurrentIteration == UINT64_MAX
 | |
|             ? PositiveInfinity<double>()
 | |
|             : static_cast<double>(computedTiming.mCurrentIteration);
 | |
|     aRetVal.mCurrentIteration.SetValue(iteration);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AnimationEffect::UpdateTiming(const OptionalEffectTiming& aTiming,
 | |
|                                    ErrorResult& aRv) {
 | |
|   TimingParams timing =
 | |
|       TimingParams::MergeOptionalEffectTiming(mTiming, aTiming, aRv);
 | |
|   if (aRv.Failed()) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SetSpecifiedTiming(std::move(timing));
 | |
| }
 | |
| 
 | |
| Nullable<TimeDuration> AnimationEffect::GetLocalTime() const {
 | |
|   // Since the *animation* start time is currently always zero, the local
 | |
|   // time is equal to the parent time.
 | |
|   Nullable<TimeDuration> result;
 | |
|   if (mAnimation) {
 | |
|     result = mAnimation->GetCurrentTimeAsDuration();
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| }  // namespace mozilla::dom
 | 
