fune/xpcom/threads/nsThreadPool.cpp
Sandor Molnar 41b78439d0 Backed out 6 changesets (bug 1809752, bug 1809753) for causing perma failures in browser/components/firefoxview/tests/browser/browser_feature_callout_position.js
Backed out changeset ea05784d74c4 (bug 1809753)
Backed out changeset 7c9b20eebcc8 (bug 1809753)
Backed out changeset d0267ac2256d (bug 1809753)
Backed out changeset aa9f2971bd6f (bug 1809753)
Backed out changeset f0d9fcfaa6f8 (bug 1809752)
Backed out changeset 6d58c799cffe (bug 1809752)
2023-01-17 03:19:24 +02:00

597 lines
18 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsThreadPool.h"
#include "nsCOMArray.h"
#include "ThreadDelay.h"
#include "nsThreadManager.h"
#include "nsThread.h"
#include "nsThreadUtils.h"
#include "prinrval.h"
#include "mozilla/Logging.h"
#include "mozilla/ProfilerLabels.h"
#include "mozilla/ProfilerRunnable.h"
#include "mozilla/SchedulerGroup.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/SpinEventLoopUntil.h"
#include "nsThreadSyncDispatch.h"
#include <mutex>
using namespace mozilla;
static LazyLogModule sThreadPoolLog("nsThreadPool");
#ifdef LOG
# undef LOG
#endif
#define LOG(args) MOZ_LOG(sThreadPoolLog, mozilla::LogLevel::Debug, args)
static MOZ_THREAD_LOCAL(nsThreadPool*) gCurrentThreadPool;
void nsThreadPool::InitTLS() { gCurrentThreadPool.infallibleInit(); }
// DESIGN:
// o Allocate anonymous threads.
// o Use nsThreadPool::Run as the main routine for each thread.
// o Each thread waits on the event queue's monitor, checking for
// pending events and rescheduling itself as an idle thread.
#define DEFAULT_THREAD_LIMIT 4
#define DEFAULT_IDLE_THREAD_LIMIT 1
#define DEFAULT_IDLE_THREAD_TIMEOUT PR_SecondsToInterval(60)
NS_IMPL_ISUPPORTS_INHERITED(nsThreadPool, Runnable, nsIThreadPool,
nsIEventTarget)
nsThreadPool* nsThreadPool::GetCurrentThreadPool() {
return gCurrentThreadPool.get();
}
nsThreadPool::nsThreadPool()
: Runnable("nsThreadPool"),
mMutex("[nsThreadPool.mMutex]"),
mEventsAvailable(mMutex, "[nsThreadPool.mEventsAvailable]"),
mThreadLimit(DEFAULT_THREAD_LIMIT),
mIdleThreadLimit(DEFAULT_IDLE_THREAD_LIMIT),
mIdleThreadTimeout(DEFAULT_IDLE_THREAD_TIMEOUT),
mIdleCount(0),
mStackSize(nsIThreadManager::DEFAULT_STACK_SIZE),
mShutdown(false),
mRegressiveMaxIdleTime(false),
mIsAPoolThreadFree(true) {
LOG(("THRD-P(%p) constructor!!!\n", this));
}
nsThreadPool::~nsThreadPool() {
// Threads keep a reference to the nsThreadPool until they return from Run()
// after removing themselves from mThreads.
MOZ_ASSERT(mThreads.IsEmpty());
}
nsresult nsThreadPool::PutEvent(nsIRunnable* aEvent) {
nsCOMPtr<nsIRunnable> event(aEvent);
return PutEvent(event.forget(), 0);
}
nsresult nsThreadPool::PutEvent(already_AddRefed<nsIRunnable> aEvent,
uint32_t aFlags) {
// Avoid spawning a new thread while holding the event queue lock...
bool spawnThread = false;
uint32_t stackSize = 0;
nsCString name;
{
MutexAutoLock lock(mMutex);
if (NS_WARN_IF(mShutdown)) {
return NS_ERROR_NOT_AVAILABLE;
}
LOG(("THRD-P(%p) put [%d %d %d]\n", this, mIdleCount, mThreads.Count(),
mThreadLimit));
MOZ_ASSERT(mIdleCount <= (uint32_t)mThreads.Count(), "oops");
// Make sure we have a thread to service this event.
if (mThreads.Count() < (int32_t)mThreadLimit &&
!(aFlags & NS_DISPATCH_AT_END) &&
// Spawn a new thread if we don't have enough idle threads to serve
// pending events immediately.
mEvents.Count(lock) >= mIdleCount) {
spawnThread = true;
}
nsCOMPtr<nsIRunnable> event(aEvent);
LogRunnable::LogDispatch(event);
mEvents.PutEvent(event.forget(), EventQueuePriority::Normal, lock);
mEventsAvailable.Notify();
stackSize = mStackSize;
name = mName;
}
auto delay = MakeScopeExit([&]() {
// Delay to encourage the receiving task to run before we do work.
DelayForChaosMode(ChaosFeature::TaskDispatching, 1000);
});
LOG(("THRD-P(%p) put [spawn=%d]\n", this, spawnThread));
if (!spawnThread) {
return NS_OK;
}
nsCOMPtr<nsIThread> thread;
nsresult rv = NS_NewNamedThread(
mThreadNaming.GetNextThreadName(name), getter_AddRefs(thread), nullptr,
{.stackSize = stackSize, .blockDispatch = true});
if (NS_WARN_IF(NS_FAILED(rv))) {
return NS_ERROR_UNEXPECTED;
}
bool killThread = false;
{
MutexAutoLock lock(mMutex);
if (mShutdown) {
killThread = true;
} else if (mThreads.Count() < (int32_t)mThreadLimit) {
mThreads.AppendObject(thread);
if (mThreads.Count() >= (int32_t)mThreadLimit) {
mIsAPoolThreadFree = false;
}
} else {
// Someone else may have also been starting a thread
killThread = true; // okay, we don't need this thread anymore
}
}
LOG(("THRD-P(%p) put [%p kill=%d]\n", this, thread.get(), killThread));
if (killThread) {
// We never dispatched any events to the thread, so we can shut it down
// asynchronously without worrying about anything.
ShutdownThread(thread);
} else {
thread->Dispatch(this, NS_DISPATCH_IGNORE_BLOCK_DISPATCH);
}
return NS_OK;
}
void nsThreadPool::ShutdownThread(nsIThread* aThread) {
LOG(("THRD-P(%p) shutdown async [%p]\n", this, aThread));
// This is either called by a threadpool thread that is out of work, or
// a thread that attempted to create a threadpool thread and raced in
// such a way that the newly created thread is no longer necessary.
// In the first case, we must go to another thread to shut aThread down
// (because it is the current thread). In the second case, we cannot
// synchronously shut down the current thread (because then Dispatch() would
// spin the event loop, and that could blow up the world), and asynchronous
// shutdown requires this thread have an event loop (and it may not, see bug
// 10204784). The simplest way to cover all cases is to asynchronously
// shutdown aThread from the main thread.
SchedulerGroup::Dispatch(
TaskCategory::Other,
NewRunnableMethod("nsIThread::AsyncShutdown", aThread,
&nsIThread::AsyncShutdown));
}
// This event 'runs' for the lifetime of the worker thread. The actual
// eventqueue is mEvents, and is shared by all the worker threads. This
// means that the set of threads together define the delay seen by a new
// event sent to the pool.
//
// To model the delay experienced by the pool, we can have each thread in
// the pool report 0 if it's idle OR if the pool is below the threadlimit;
// or otherwise the current event's queuing delay plus current running
// time.
//
// To reconstruct the delays for the pool, the profiler can look at all the
// threads that are part of a pool (pools have defined naming patterns that
// can be user to connect them). If all threads have delays at time X,
// that means that all threads saturated at that point and any event
// dispatched to the pool would get a delay.
//
// The delay experienced by an event dispatched when all pool threads are
// busy is based on the calculations shown in platform.cpp. Run that
// algorithm for each thread in the pool, and the delay at time X is the
// longest value for time X of any of the threads, OR the time from X until
// any one of the threads reports 0 (i.e. it's not busy), whichever is
// shorter.
// In order to record this when the profiler samples threads in the pool,
// each thread must (effectively) override GetRunnningEventDelay, by
// resetting the mLastEventDelay/Start values in the nsThread when we start
// to run an event (or when we run out of events to run). Note that handling
// the shutdown of a thread may be a little tricky.
NS_IMETHODIMP
nsThreadPool::Run() {
nsCOMPtr<nsIThread> current;
nsThreadManager::get().GetCurrentThread(getter_AddRefs(current));
bool shutdownThreadOnExit = false;
bool exitThread = false;
bool wasIdle = false;
TimeStamp idleSince;
// This thread is an nsThread created below with NS_NewNamedThread()
static_cast<nsThread*>(current.get())
->SetPoolThreadFreePtr(&mIsAPoolThreadFree);
nsCOMPtr<nsIThreadPoolListener> listener;
{
MutexAutoLock lock(mMutex);
listener = mListener;
LOG(("THRD-P(%p) enter %s\n", this, mName.BeginReading()));
}
if (listener) {
listener->OnThreadCreated();
}
MOZ_ASSERT(!gCurrentThreadPool.get());
gCurrentThreadPool.set(this);
do {
nsCOMPtr<nsIRunnable> event;
TimeDuration delay;
{
MutexAutoLock lock(mMutex);
event = mEvents.GetEvent(lock, &delay);
if (!event) {
TimeStamp now = TimeStamp::Now();
uint32_t idleTimeoutDivider =
(mIdleCount && mRegressiveMaxIdleTime) ? mIdleCount : 1;
TimeDuration timeout = TimeDuration::FromMilliseconds(
static_cast<double>(mIdleThreadTimeout) / idleTimeoutDivider);
// If we are shutting down, then don't keep any idle threads
if (mShutdown) {
exitThread = true;
} else {
if (wasIdle) {
// if too many idle threads or idle for too long, then bail.
if (mIdleCount > mIdleThreadLimit ||
(mIdleThreadTimeout != UINT32_MAX &&
(now - idleSince) >= timeout)) {
exitThread = true;
}
} else {
// if would be too many idle threads...
if (mIdleCount == mIdleThreadLimit) {
exitThread = true;
} else {
++mIdleCount;
idleSince = now;
wasIdle = true;
}
}
}
if (exitThread) {
if (wasIdle) {
--mIdleCount;
}
shutdownThreadOnExit = mThreads.RemoveObject(current);
// keep track if there are threads available to start
mIsAPoolThreadFree = (mThreads.Count() < (int32_t)mThreadLimit);
} else {
current->SetRunningEventDelay(TimeDuration(), TimeStamp());
AUTO_PROFILER_LABEL("nsThreadPool::Run::Wait", IDLE);
TimeDuration delta = timeout - (now - idleSince);
LOG(("THRD-P(%p) %s waiting [%f]\n", this, mName.BeginReading(),
delta.ToMilliseconds()));
mEventsAvailable.Wait(delta);
LOG(("THRD-P(%p) done waiting\n", this));
}
} else if (wasIdle) {
wasIdle = false;
--mIdleCount;
}
}
if (event) {
if (MOZ_LOG_TEST(sThreadPoolLog, mozilla::LogLevel::Debug)) {
MutexAutoLock lock(mMutex);
LOG(("THRD-P(%p) %s running [%p]\n", this, mName.BeginReading(),
event.get()));
}
// Delay event processing to encourage whoever dispatched this event
// to run.
DelayForChaosMode(ChaosFeature::TaskRunning, 1000);
// We'll handle the case of unstarted threads available
// when we sample.
current->SetRunningEventDelay(delay, TimeStamp::Now());
LogRunnable::Run log(event);
AUTO_PROFILE_FOLLOWING_RUNNABLE(event);
event->Run();
// To cover the event's destructor code in the LogRunnable span
event = nullptr;
}
} while (!exitThread);
if (listener) {
listener->OnThreadShuttingDown();
}
MOZ_ASSERT(gCurrentThreadPool.get() == this);
gCurrentThreadPool.set(nullptr);
if (shutdownThreadOnExit) {
ShutdownThread(current);
}
LOG(("THRD-P(%p) leave\n", this));
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
nsCOMPtr<nsIRunnable> event(aEvent);
return Dispatch(event.forget(), aFlags);
}
NS_IMETHODIMP
nsThreadPool::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) {
LOG(("THRD-P(%p) dispatch [%p %x]\n", this, /* XXX aEvent*/ nullptr, aFlags));
if (NS_WARN_IF(mShutdown)) {
return NS_ERROR_NOT_AVAILABLE;
}
if (aFlags & DISPATCH_SYNC) {
nsCOMPtr<nsIThread> thread;
nsThreadManager::get().GetCurrentThread(getter_AddRefs(thread));
if (NS_WARN_IF(!thread)) {
return NS_ERROR_NOT_AVAILABLE;
}
RefPtr<nsThreadSyncDispatch> wrapper =
new nsThreadSyncDispatch(thread.forget(), std::move(aEvent));
PutEvent(wrapper);
SpinEventLoopUntil("nsThreadPool::Dispatch"_ns, [&, wrapper]() -> bool {
return !wrapper->IsPending();
});
} else {
NS_ASSERTION(aFlags == NS_DISPATCH_NORMAL || aFlags == NS_DISPATCH_AT_END,
"unexpected dispatch flags");
PutEvent(std::move(aEvent), aFlags);
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsThreadPool::RegisterShutdownTask(nsITargetShutdownTask*) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsThreadPool::UnregisterShutdownTask(nsITargetShutdownTask*) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP_(bool)
nsThreadPool::IsOnCurrentThreadInfallible() {
return gCurrentThreadPool.get() == this;
}
NS_IMETHODIMP
nsThreadPool::IsOnCurrentThread(bool* aResult) {
MutexAutoLock lock(mMutex);
if (NS_WARN_IF(mShutdown)) {
return NS_ERROR_NOT_AVAILABLE;
}
*aResult = IsOnCurrentThreadInfallible();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::Shutdown() { return ShutdownWithTimeout(-1); }
NS_IMETHODIMP
nsThreadPool::ShutdownWithTimeout(int32_t aTimeoutMs) {
nsCOMArray<nsIThread> threads;
nsCOMPtr<nsIThreadPoolListener> listener;
{
MutexAutoLock lock(mMutex);
if (mShutdown) {
return NS_ERROR_ILLEGAL_DURING_SHUTDOWN;
}
mShutdown = true;
mEventsAvailable.NotifyAll();
threads.AppendObjects(mThreads);
mThreads.Clear();
// Swap in a null listener so that we release the listener at the end of
// this method. The listener will be kept alive as long as the other threads
// that were created when it was set.
mListener.swap(listener);
}
nsTArray<nsCOMPtr<nsIThreadShutdown>> contexts;
for (int32_t i = 0; i < threads.Count(); ++i) {
nsCOMPtr<nsIThreadShutdown> context;
if (NS_SUCCEEDED(threads[i]->BeginShutdown(getter_AddRefs(context)))) {
contexts.AppendElement(std::move(context));
}
}
// Start a timer which will stop waiting & leak the thread, forcing
// onCompletion to be called when it expires.
nsCOMPtr<nsITimer> timer;
if (aTimeoutMs >= 0) {
NS_NewTimerWithCallback(
getter_AddRefs(timer),
[&](nsITimer*) {
for (auto& context : contexts) {
context->StopWaitingAndLeakThread();
}
},
aTimeoutMs, nsITimer::TYPE_ONE_SHOT,
"nsThreadPool::ShutdownWithTimeout");
}
// Start a counter and register a callback to decrement outstandingThreads
// when the threads finish exiting. We'll spin an event loop until
// outstandingThreads reaches 0.
uint32_t outstandingThreads = contexts.Length();
RefPtr onCompletion = NS_NewCancelableRunnableFunction(
"nsThreadPool thread completion", [&] { --outstandingThreads; });
for (auto& context : contexts) {
context->OnCompletion(onCompletion);
}
mozilla::SpinEventLoopUntil("nsThreadPool::ShutdownWithTimeout"_ns,
[&] { return outstandingThreads == 0; });
if (timer) {
timer->Cancel();
}
onCompletion->Cancel();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetThreadLimit(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mThreadLimit;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetThreadLimit(uint32_t aValue) {
MutexAutoLock lock(mMutex);
LOG(("THRD-P(%p) thread limit [%u]\n", this, aValue));
mThreadLimit = aValue;
if (mIdleThreadLimit > mThreadLimit) {
mIdleThreadLimit = mThreadLimit;
}
if (static_cast<uint32_t>(mThreads.Count()) > mThreadLimit) {
mEventsAvailable
.NotifyAll(); // wake up threads so they observe this change
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetIdleThreadLimit(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mIdleThreadLimit;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetIdleThreadLimit(uint32_t aValue) {
MutexAutoLock lock(mMutex);
LOG(("THRD-P(%p) idle thread limit [%u]\n", this, aValue));
mIdleThreadLimit = aValue;
if (mIdleThreadLimit > mThreadLimit) {
mIdleThreadLimit = mThreadLimit;
}
// Do we need to kill some idle threads?
if (mIdleCount > mIdleThreadLimit) {
mEventsAvailable
.NotifyAll(); // wake up threads so they observe this change
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetIdleThreadTimeout(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mIdleThreadTimeout;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetIdleThreadTimeout(uint32_t aValue) {
MutexAutoLock lock(mMutex);
uint32_t oldTimeout = mIdleThreadTimeout;
mIdleThreadTimeout = aValue;
// Do we need to notify any idle threads that their sleep time has shortened?
if (mIdleThreadTimeout < oldTimeout && mIdleCount > 0) {
mEventsAvailable
.NotifyAll(); // wake up threads so they observe this change
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetIdleThreadTimeoutRegressive(bool* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mRegressiveMaxIdleTime;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetIdleThreadTimeoutRegressive(bool aValue) {
MutexAutoLock lock(mMutex);
bool oldRegressive = mRegressiveMaxIdleTime;
mRegressiveMaxIdleTime = aValue;
// Would setting regressive timeout effect idle threads?
if (mRegressiveMaxIdleTime > oldRegressive && mIdleCount > 1) {
mEventsAvailable
.NotifyAll(); // wake up threads so they observe this change
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetThreadStackSize(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mStackSize;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetThreadStackSize(uint32_t aValue) {
MutexAutoLock lock(mMutex);
mStackSize = aValue;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetListener(nsIThreadPoolListener** aListener) {
MutexAutoLock lock(mMutex);
NS_IF_ADDREF(*aListener = mListener);
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetListener(nsIThreadPoolListener* aListener) {
nsCOMPtr<nsIThreadPoolListener> swappedListener(aListener);
{
MutexAutoLock lock(mMutex);
mListener.swap(swappedListener);
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetName(const nsACString& aName) {
MutexAutoLock lock(mMutex);
if (mThreads.Count()) {
return NS_ERROR_NOT_AVAILABLE;
}
mName = aName;
return NS_OK;
}