fune/js/src/vm/ArrayBufferObject.cpp

1884 lines
59 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "vm/ArrayBufferObject-inl.h"
#include "vm/ArrayBufferObject.h"
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/Likely.h"
#include "mozilla/Maybe.h"
#include "mozilla/PodOperations.h"
#include "mozilla/TaggedAnonymousMemory.h"
#include <string.h>
#ifndef XP_WIN
# include <sys/mman.h>
#endif
#ifdef MOZ_VALGRIND
# include <valgrind/memcheck.h>
#endif
#include "jsapi.h"
#include "jsfriendapi.h"
#include "jsnum.h"
#include "jstypes.h"
#include "jsutil.h"
#include "builtin/Array.h"
#include "builtin/DataViewObject.h"
#include "gc/Barrier.h"
#include "gc/Memory.h"
#include "js/ArrayBuffer.h"
#include "js/Conversions.h"
#include "js/MemoryMetrics.h"
#include "js/PropertySpec.h"
#include "js/SharedArrayBuffer.h"
#include "js/Wrapper.h"
#include "util/Windows.h"
#include "vm/GlobalObject.h"
#include "vm/Interpreter.h"
#include "vm/JSContext.h"
#include "vm/JSObject.h"
#include "vm/SharedArrayObject.h"
#include "vm/WrapperObject.h"
#include "wasm/WasmSignalHandlers.h"
#include "wasm/WasmTypes.h"
#include "gc/FreeOp-inl.h"
#include "gc/Marking-inl.h"
#include "gc/Nursery-inl.h"
#include "vm/JSAtom-inl.h"
#include "vm/NativeObject-inl.h"
#include "vm/Shape-inl.h"
using JS::ToInt32;
using mozilla::Atomic;
using mozilla::CheckedInt;
using mozilla::Maybe;
using mozilla::Nothing;
using mozilla::Some;
using mozilla::Unused;
using namespace js;
/*
* Convert |v| to an array index for an array of length |length| per
* the Typed Array Specification section 7.0, |subarray|. If successful,
* the output value is in the range [0, length].
*/
bool js::ToClampedIndex(JSContext* cx, HandleValue v, uint32_t length,
uint32_t* out) {
int32_t result;
if (!ToInt32(cx, v, &result)) {
return false;
}
if (result < 0) {
result += length;
if (result < 0) {
result = 0;
}
} else if (uint32_t(result) > length) {
result = length;
}
*out = uint32_t(result);
return true;
}
// If there are too many wasm memory buffers (typically 6GB each) live we run up
// against system resource exhaustion (address space or number of memory map
// descriptors), see bug 1068684, bug 1073934, bug 1517412, bug 1502733 for
// details. The limiting case seems to be Android on ARM64, where the
// per-process address space is limited to 4TB (39 bits) by the organization of
// the page tables. An earlier problem was Windows Vista Home 64-bit, where the
// per-process address space is limited to 8TB (40 bits).
//
// Thus we track the number of live objects, and set a limit of the number of
// live buffer objects per process. We trigger GC work when we approach the
// limit and we throw an OOM error if the per-process limit is exceeded. The
// limit (MaximumLiveMappedBuffers) is specific to architecture, OS, and OS
// configuration.
//
// Since the MaximumLiveMappedBuffers limit is not generally accounted for by
// any existing GC-trigger heuristics, we need an extra heuristic for triggering
// GCs when the caller is allocating memories rapidly without other garbage.
// Thus, once the live buffer count crosses the threshold
// StartTriggeringAtLiveBufferCount, we start triggering GCs every
// AllocatedBuffersPerTrigger allocations. Once we reach
// StartSyncFullGCAtLiveBufferCount live buffers, we perform expensive
// non-incremental full GCs as a last-ditch effort to avoid unnecessary failure.
// Once we reach MaximumLiveMappedBuffers, we perform further full GCs before
// giving up.
#if defined(JS_CODEGEN_ARM64) && defined(ANDROID)
// With 6GB mappings, the hard limit is 84 buffers. 75 cuts it close.
static const int32_t MaximumLiveMappedBuffers = 75;
#elif defined(MOZ_TSAN) || defined(MOZ_ASAN)
// ASAN and TSAN use a ton of vmem for bookkeeping leaving a lot less for the
// program so use a lower limit.
static const int32_t MaximumLiveMappedBuffers = 500;
#else
static const int32_t MaximumLiveMappedBuffers = 1000;
#endif
// StartTriggeringAtLiveBufferCount + AllocatedBuffersPerTrigger must be well
// below StartSyncFullGCAtLiveBufferCount in order to provide enough time for
// incremental GC to do its job.
#if defined(JS_CODEGEN_ARM64) && defined(ANDROID)
static const int32_t StartTriggeringAtLiveBufferCount = 15;
static const int32_t StartSyncFullGCAtLiveBufferCount =
MaximumLiveMappedBuffers - 15;
static const int32_t AllocatedBuffersPerTrigger = 15;
#else
static const int32_t StartTriggeringAtLiveBufferCount = 100;
static const int32_t StartSyncFullGCAtLiveBufferCount =
MaximumLiveMappedBuffers - 100;
static const int32_t AllocatedBuffersPerTrigger = 100;
#endif
static Atomic<int32_t, mozilla::ReleaseAcquire> liveBufferCount(0);
static Atomic<int32_t, mozilla::ReleaseAcquire> allocatedSinceLastTrigger(0);
int32_t js::LiveMappedBufferCount() { return liveBufferCount; }
void* js::MapBufferMemory(size_t mappedSize, size_t initialCommittedSize) {
MOZ_ASSERT(mappedSize % gc::SystemPageSize() == 0);
MOZ_ASSERT(initialCommittedSize % gc::SystemPageSize() == 0);
MOZ_ASSERT(initialCommittedSize <= mappedSize);
// Test >= to guard against the case where multiple extant runtimes
// race to allocate.
if (++liveBufferCount >= MaximumLiveMappedBuffers) {
if (OnLargeAllocationFailure) {
OnLargeAllocationFailure();
}
if (liveBufferCount >= MaximumLiveMappedBuffers) {
liveBufferCount--;
return nullptr;
}
}
#ifdef XP_WIN
void* data = VirtualAlloc(nullptr, mappedSize, MEM_RESERVE, PAGE_NOACCESS);
if (!data) {
liveBufferCount--;
return nullptr;
}
if (!VirtualAlloc(data, initialCommittedSize, MEM_COMMIT, PAGE_READWRITE)) {
VirtualFree(data, 0, MEM_RELEASE);
liveBufferCount--;
return nullptr;
}
#else // XP_WIN
void* data =
MozTaggedAnonymousMmap(nullptr, mappedSize, PROT_NONE,
MAP_PRIVATE | MAP_ANON, -1, 0, "wasm-reserved");
if (data == MAP_FAILED) {
liveBufferCount--;
return nullptr;
}
// Note we will waste a page on zero-sized memories here
if (mprotect(data, initialCommittedSize, PROT_READ | PROT_WRITE)) {
munmap(data, mappedSize);
liveBufferCount--;
return nullptr;
}
#endif // !XP_WIN
#if defined(MOZ_VALGRIND) && \
defined(VALGRIND_DISABLE_ADDR_ERROR_REPORTING_IN_RANGE)
VALGRIND_DISABLE_ADDR_ERROR_REPORTING_IN_RANGE(
(unsigned char*)data + initialCommittedSize,
mappedSize - initialCommittedSize);
#endif
return data;
}
bool js::CommitBufferMemory(void* dataEnd, uint32_t delta) {
MOZ_ASSERT(delta);
MOZ_ASSERT(delta % gc::SystemPageSize() == 0);
#ifdef XP_WIN
if (!VirtualAlloc(dataEnd, delta, MEM_COMMIT, PAGE_READWRITE)) {
return false;
}
#else // XP_WIN
if (mprotect(dataEnd, delta, PROT_READ | PROT_WRITE)) {
return false;
}
#endif // !XP_WIN
#if defined(MOZ_VALGRIND) && \
defined(VALGRIND_DISABLE_ADDR_ERROR_REPORTING_IN_RANGE)
VALGRIND_ENABLE_ADDR_ERROR_REPORTING_IN_RANGE((unsigned char*)dataEnd, delta);
#endif
return true;
}
#ifndef WASM_HUGE_MEMORY
bool js::ExtendBufferMapping(void* dataPointer, size_t mappedSize,
size_t newMappedSize) {
MOZ_ASSERT(mappedSize % gc::SystemPageSize() == 0);
MOZ_ASSERT(newMappedSize % gc::SystemPageSize() == 0);
MOZ_ASSERT(newMappedSize >= mappedSize);
# ifdef XP_WIN
void* mappedEnd = (char*)dataPointer + mappedSize;
uint32_t delta = newMappedSize - mappedSize;
if (!VirtualAlloc(mappedEnd, delta, MEM_RESERVE, PAGE_NOACCESS)) {
return false;
}
return true;
# elif defined(XP_LINUX)
// Note this will not move memory (no MREMAP_MAYMOVE specified)
if (MAP_FAILED == mremap(dataPointer, mappedSize, newMappedSize, 0)) {
return false;
}
return true;
# else
// No mechanism for remapping on MacOS and other Unices. Luckily
// shouldn't need it here as most of these are 64-bit.
return false;
# endif
}
#endif
void js::UnmapBufferMemory(void* base, size_t mappedSize) {
MOZ_ASSERT(mappedSize % gc::SystemPageSize() == 0);
#ifdef XP_WIN
VirtualFree(base, 0, MEM_RELEASE);
#else // XP_WIN
munmap(base, mappedSize);
#endif // !XP_WIN
#if defined(MOZ_VALGRIND) && \
defined(VALGRIND_ENABLE_ADDR_ERROR_REPORTING_IN_RANGE)
VALGRIND_ENABLE_ADDR_ERROR_REPORTING_IN_RANGE((unsigned char*)base,
mappedSize);
#endif
// Decrement the buffer counter at the end -- otherwise, a race condition
// could enable the creation of unlimited buffers.
liveBufferCount--;
}
/*
* ArrayBufferObject
*
* This class holds the underlying raw buffer that the TypedArrayObject classes
* access. It can be created explicitly and passed to a TypedArrayObject, or
* can be created implicitly by constructing a TypedArrayObject with a size.
*/
/*
* ArrayBufferObject (base)
*/
static const ClassOps ArrayBufferObjectClassOps = {
nullptr, /* addProperty */
nullptr, /* delProperty */
nullptr, /* enumerate */
nullptr, /* newEnumerate */
nullptr, /* resolve */
nullptr, /* mayResolve */
ArrayBufferObject::finalize,
nullptr, /* call */
nullptr, /* hasInstance */
nullptr, /* construct */
nullptr, /* trace */
};
static const JSFunctionSpec arraybuffer_functions[] = {
JS_FN("isView", ArrayBufferObject::fun_isView, 1, 0), JS_FS_END};
static const JSPropertySpec arraybuffer_properties[] = {
JS_SELF_HOSTED_SYM_GET(species, "ArrayBufferSpecies", 0), JS_PS_END};
static const JSFunctionSpec arraybuffer_proto_functions[] = {
JS_SELF_HOSTED_FN("slice", "ArrayBufferSlice", 2, 0), JS_FS_END};
static const JSPropertySpec arraybuffer_proto_properties[] = {
JS_PSG("byteLength", ArrayBufferObject::byteLengthGetter, 0),
JS_STRING_SYM_PS(toStringTag, "ArrayBuffer", JSPROP_READONLY), JS_PS_END};
static const ClassSpec ArrayBufferObjectClassSpec = {
GenericCreateConstructor<ArrayBufferObject::class_constructor, 1,
gc::AllocKind::FUNCTION>,
GenericCreatePrototype<ArrayBufferObject>,
arraybuffer_functions,
arraybuffer_properties,
arraybuffer_proto_functions,
arraybuffer_proto_properties};
static const ClassExtension ArrayBufferObjectClassExtension = {
ArrayBufferObject::objectMoved};
const Class ArrayBufferObject::class_ = {
"ArrayBuffer",
JSCLASS_DELAY_METADATA_BUILDER |
JSCLASS_HAS_RESERVED_SLOTS(RESERVED_SLOTS) |
JSCLASS_HAS_CACHED_PROTO(JSProto_ArrayBuffer) |
JSCLASS_BACKGROUND_FINALIZE,
&ArrayBufferObjectClassOps, &ArrayBufferObjectClassSpec,
&ArrayBufferObjectClassExtension};
const Class ArrayBufferObject::protoClass_ = {
"ArrayBufferPrototype", JSCLASS_HAS_CACHED_PROTO(JSProto_ArrayBuffer),
JS_NULL_CLASS_OPS, &ArrayBufferObjectClassSpec};
bool js::IsArrayBuffer(HandleValue v) {
return v.isObject() && v.toObject().is<ArrayBufferObject>();
}
bool js::IsArrayBuffer(HandleObject obj) {
return obj->is<ArrayBufferObject>();
}
bool js::IsArrayBuffer(JSObject* obj) { return obj->is<ArrayBufferObject>(); }
ArrayBufferObject& js::AsArrayBuffer(HandleObject obj) {
MOZ_ASSERT(IsArrayBuffer(obj));
return obj->as<ArrayBufferObject>();
}
ArrayBufferObject& js::AsArrayBuffer(JSObject* obj) {
MOZ_ASSERT(IsArrayBuffer(obj));
return obj->as<ArrayBufferObject>();
}
bool js::IsArrayBufferMaybeShared(HandleValue v) {
return v.isObject() && v.toObject().is<ArrayBufferObjectMaybeShared>();
}
bool js::IsArrayBufferMaybeShared(HandleObject obj) {
return obj->is<ArrayBufferObjectMaybeShared>();
}
bool js::IsArrayBufferMaybeShared(JSObject* obj) {
return obj->is<ArrayBufferObjectMaybeShared>();
}
ArrayBufferObjectMaybeShared& js::AsArrayBufferMaybeShared(HandleObject obj) {
MOZ_ASSERT(IsArrayBufferMaybeShared(obj));
return obj->as<ArrayBufferObjectMaybeShared>();
}
ArrayBufferObjectMaybeShared& js::AsArrayBufferMaybeShared(JSObject* obj) {
MOZ_ASSERT(IsArrayBufferMaybeShared(obj));
return obj->as<ArrayBufferObjectMaybeShared>();
}
MOZ_ALWAYS_INLINE bool ArrayBufferObject::byteLengthGetterImpl(
JSContext* cx, const CallArgs& args) {
MOZ_ASSERT(IsArrayBuffer(args.thisv()));
args.rval().setInt32(
args.thisv().toObject().as<ArrayBufferObject>().byteLength());
return true;
}
bool ArrayBufferObject::byteLengthGetter(JSContext* cx, unsigned argc,
Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
return CallNonGenericMethod<IsArrayBuffer, byteLengthGetterImpl>(cx, args);
}
/*
* ArrayBuffer.isView(obj); ES6 (Dec 2013 draft) 24.1.3.1
*/
bool ArrayBufferObject::fun_isView(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
args.rval().setBoolean(args.get(0).isObject() &&
JS_IsArrayBufferViewObject(&args.get(0).toObject()));
return true;
}
// ES2017 draft 24.1.2.1
bool ArrayBufferObject::class_constructor(JSContext* cx, unsigned argc,
Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
// Step 1.
if (!ThrowIfNotConstructing(cx, args, "ArrayBuffer")) {
return false;
}
// Step 2.
uint64_t byteLength;
if (!ToIndex(cx, args.get(0), &byteLength)) {
return false;
}
// Step 3 (Inlined 24.1.1.1 AllocateArrayBuffer).
// 24.1.1.1, step 1 (Inlined 9.1.14 OrdinaryCreateFromConstructor).
RootedObject proto(cx);
if (!GetPrototypeFromBuiltinConstructor(cx, args, JSProto_ArrayBuffer,
&proto)) {
return false;
}
// 24.1.1.1, step 3 (Inlined 6.2.6.1 CreateByteDataBlock, step 2).
// Refuse to allocate too large buffers, currently limited to ~2 GiB.
if (byteLength > INT32_MAX) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BAD_ARRAY_LENGTH);
return false;
}
// 24.1.1.1, steps 1 and 4-6.
JSObject* bufobj = createZeroed(cx, uint32_t(byteLength), proto);
if (!bufobj) {
return false;
}
args.rval().setObject(*bufobj);
return true;
}
static uint8_t* AllocateArrayBufferContents(JSContext* cx, uint32_t nbytes) {
auto* p = cx->pod_callocCanGC<uint8_t>(nbytes, js::ArrayBufferContentsArena);
if (!p) {
ReportOutOfMemory(cx);
}
return p;
}
static uint8_t* NewCopiedBufferContents(JSContext* cx,
Handle<ArrayBufferObject*> buffer) {
uint8_t* dataCopy = AllocateArrayBufferContents(cx, buffer->byteLength());
if (dataCopy) {
if (auto count = buffer->byteLength()) {
memcpy(dataCopy, buffer->dataPointer(), count);
}
}
return dataCopy;
}
/* static */
void ArrayBufferObject::detach(JSContext* cx,
Handle<ArrayBufferObject*> buffer) {
cx->check(buffer);
MOZ_ASSERT(!buffer->isPreparedForAsmJS());
// When detaching buffers where we don't know all views, the new data must
// match the old data. All missing views are typed objects, which do not
// expect their data to ever change.
// When detaching a buffer with typed object views, any jitcode accessing
// such views must be deoptimized so that detachment checks are performed.
// This is done by setting a zone-wide flag indicating that buffers with
// typed object views have been detached.
if (buffer->hasTypedObjectViews()) {
// Make sure the global object's group has been instantiated, so the
// flag change will be observed.
AutoEnterOOMUnsafeRegion oomUnsafe;
if (!JSObject::getGroup(cx, cx->global())) {
oomUnsafe.crash("ArrayBufferObject::detach");
}
MarkObjectGroupFlags(cx, cx->global(),
OBJECT_FLAG_TYPED_OBJECT_HAS_DETACHED_BUFFER);
cx->zone()->detachedTypedObjects = 1;
}
auto NoteViewBufferWasDetached = [&cx](ArrayBufferViewObject* view) {
MOZ_ASSERT(!view->isSharedMemory());
view->notifyBufferDetached();
// Notify compiled jit code that the base pointer has moved.
MarkObjectStateChange(cx, view);
};
// Update all views of the buffer to account for the buffer having been
// detached, and clear the buffer's data and list of views.
//
// Typed object buffers are not exposed and cannot be detached.
auto& innerViews = ObjectRealm::get(buffer).innerViews.get();
if (InnerViewTable::ViewVector* views =
innerViews.maybeViewsUnbarriered(buffer)) {
for (size_t i = 0; i < views->length(); i++) {
JSObject* view = (*views)[i];
NoteViewBufferWasDetached(&view->as<ArrayBufferViewObject>());
}
innerViews.removeViews(buffer);
}
if (JSObject* view = buffer->firstView()) {
NoteViewBufferWasDetached(&view->as<ArrayBufferViewObject>());
buffer->setFirstView(nullptr);
}
if (buffer->dataPointer()) {
buffer->releaseData(cx->runtime()->defaultFreeOp());
buffer->setDataPointer(BufferContents::createNoData());
}
buffer->setByteLength(0);
buffer->setIsDetached();
}
/*
* [SMDOC] WASM Linear Memory structure
*
* Wasm Raw Buf Linear Memory Structure
*
* The linear heap in Wasm is an mmaped array buffer. Several
* constants manage its lifetime:
*
* - length - the wasm-visible current length of the buffer. Accesses in the
* range [0, length] succeed. May only increase.
*
* - boundsCheckLimit - the size against which we perform bounds checks. It is
* always a constant offset smaller than mappedSize. Currently that constant
* offset is 64k (wasm::GuardSize).
*
* - maxSize - the optional declared limit on how much length can grow.
*
* - mappedSize - the actual mmaped size. Access in the range
* [0, mappedSize] will either succeed, or be handled by the wasm signal
* handlers.
*
* The below diagram shows the layout of the wasm heap. The wasm-visible
* portion of the heap starts at 0. There is one extra page prior to the
* start of the wasm heap which contains the WasmArrayRawBuffer struct at
* its end (i.e. right before the start of the WASM heap).
*
* WasmArrayRawBuffer
* \ ArrayBufferObject::dataPointer()
* \ /
* \ |
* ______|_|____________________________________________________________
* |______|_|______________|___________________|____________|____________|
* 0 length maxSize boundsCheckLimit mappedSize
*
* \_______________________/
* COMMITED
* \____________________________________________/
* SLOP
* \_____________________________________________________________________/
* MAPPED
*
* Invariants:
* - length only increases
* - 0 <= length <= maxSize (if present) <= boundsCheckLimit <= mappedSize
* - on ARM boundsCheckLimit must be a valid ARM immediate.
* - if maxSize is not specified, boundsCheckLimit/mappedSize may grow. They
* are otherwise constant.
*
* NOTE: For asm.js on non-x64 we guarantee that
*
* length == maxSize == boundsCheckLimit == mappedSize
*
* That is, signal handlers will not be invoked, since they cannot emulate
* asm.js accesses on non-x64 architectures.
*
* The region between length and mappedSize is the SLOP - an area where we use
* signal handlers to catch things that slip by bounds checks. Logically it has
* two parts:
*
* - from length to boundsCheckLimit - this part of the SLOP serves to catch
* accesses to memory we have reserved but not yet grown into. This allows us
* to grow memory up to max (when present) without having to patch/update the
* bounds checks.
*
* - from boundsCheckLimit to mappedSize - this part of the SLOP allows us to
* bounds check against base pointers and fold some constant offsets inside
* loads. This enables better Bounds Check Elimination.
*
*/
class js::WasmArrayRawBuffer {
Maybe<uint32_t> maxSize_;
size_t mappedSize_; // Not including the header page
protected:
WasmArrayRawBuffer(uint8_t* buffer, const Maybe<uint32_t>& maxSize,
size_t mappedSize)
: maxSize_(maxSize), mappedSize_(mappedSize) {
MOZ_ASSERT(buffer == dataPointer());
}
public:
static WasmArrayRawBuffer* Allocate(uint32_t numBytes,
const Maybe<uint32_t>& maxSize);
static void Release(void* mem);
uint8_t* dataPointer() {
uint8_t* ptr = reinterpret_cast<uint8_t*>(this);
return ptr + sizeof(WasmArrayRawBuffer);
}
uint8_t* basePointer() { return dataPointer() - gc::SystemPageSize(); }
size_t mappedSize() const { return mappedSize_; }
Maybe<uint32_t> maxSize() const { return maxSize_; }
#ifndef WASM_HUGE_MEMORY
uint32_t boundsCheckLimit() const {
MOZ_ASSERT(mappedSize_ <= UINT32_MAX);
MOZ_ASSERT(mappedSize_ >= wasm::GuardSize);
MOZ_ASSERT(
wasm::IsValidBoundsCheckImmediate(mappedSize_ - wasm::GuardSize));
return mappedSize_ - wasm::GuardSize;
}
#endif
MOZ_MUST_USE bool growToSizeInPlace(uint32_t oldSize, uint32_t newSize) {
MOZ_ASSERT(newSize >= oldSize);
MOZ_ASSERT_IF(maxSize(), newSize <= maxSize().value());
MOZ_ASSERT(newSize <= mappedSize());
uint32_t delta = newSize - oldSize;
MOZ_ASSERT(delta % wasm::PageSize == 0);
uint8_t* dataEnd = dataPointer() + oldSize;
MOZ_ASSERT(uintptr_t(dataEnd) % gc::SystemPageSize() == 0);
if (delta && !CommitBufferMemory(dataEnd, delta)) {
return false;
}
return true;
}
#ifndef WASM_HUGE_MEMORY
bool extendMappedSize(uint32_t maxSize) {
size_t newMappedSize = wasm::ComputeMappedSize(maxSize);
MOZ_ASSERT(mappedSize_ <= newMappedSize);
if (mappedSize_ == newMappedSize) {
return true;
}
if (!ExtendBufferMapping(dataPointer(), mappedSize_, newMappedSize)) {
return false;
}
mappedSize_ = newMappedSize;
return true;
}
// Try and grow the mapped region of memory. Does not change current size.
// Does not move memory if no space to grow.
void tryGrowMaxSizeInPlace(uint32_t deltaMaxSize) {
CheckedInt<uint32_t> newMaxSize = maxSize_.value();
newMaxSize += deltaMaxSize;
MOZ_ASSERT(newMaxSize.isValid());
MOZ_ASSERT(newMaxSize.value() % wasm::PageSize == 0);
if (!extendMappedSize(newMaxSize.value())) {
return;
}
maxSize_ = Some(newMaxSize.value());
}
#endif // WASM_HUGE_MEMORY
};
/* static */
WasmArrayRawBuffer* WasmArrayRawBuffer::Allocate(
uint32_t numBytes, const Maybe<uint32_t>& maxSize) {
MOZ_RELEASE_ASSERT(numBytes <= ArrayBufferObject::MaxBufferByteLength);
size_t mappedSize;
#ifdef WASM_HUGE_MEMORY
mappedSize = wasm::HugeMappedSize;
#else
mappedSize = wasm::ComputeMappedSize(maxSize.valueOr(numBytes));
#endif
MOZ_RELEASE_ASSERT(mappedSize <= SIZE_MAX - gc::SystemPageSize());
MOZ_RELEASE_ASSERT(numBytes <= maxSize.valueOr(UINT32_MAX));
MOZ_ASSERT(numBytes % gc::SystemPageSize() == 0);
MOZ_ASSERT(mappedSize % gc::SystemPageSize() == 0);
uint64_t mappedSizeWithHeader = mappedSize + gc::SystemPageSize();
uint64_t numBytesWithHeader = numBytes + gc::SystemPageSize();
void* data =
MapBufferMemory((size_t)mappedSizeWithHeader, (size_t)numBytesWithHeader);
if (!data) {
return nullptr;
}
uint8_t* base = reinterpret_cast<uint8_t*>(data) + gc::SystemPageSize();
uint8_t* header = base - sizeof(WasmArrayRawBuffer);
auto rawBuf = new (header) WasmArrayRawBuffer(base, maxSize, mappedSize);
return rawBuf;
}
/* static */
void WasmArrayRawBuffer::Release(void* mem) {
WasmArrayRawBuffer* header =
(WasmArrayRawBuffer*)((uint8_t*)mem - sizeof(WasmArrayRawBuffer));
MOZ_RELEASE_ASSERT(header->mappedSize() <= SIZE_MAX - gc::SystemPageSize());
size_t mappedSizeWithHeader = header->mappedSize() + gc::SystemPageSize();
UnmapBufferMemory(header->basePointer(), mappedSizeWithHeader);
}
WasmArrayRawBuffer* ArrayBufferObject::BufferContents::wasmBuffer() const {
MOZ_RELEASE_ASSERT(kind_ == WASM);
return (WasmArrayRawBuffer*)(data_ - sizeof(WasmArrayRawBuffer));
}
template <typename ObjT, typename RawbufT>
static bool CreateBuffer(
JSContext* cx, uint32_t initialSize, const Maybe<uint32_t>& maxSize,
MutableHandleArrayBufferObjectMaybeShared maybeSharedObject) {
#define ROUND_UP(v, a) ((v) % (a) == 0 ? (v) : v + a - ((v) % (a)))
RawbufT* buffer = RawbufT::Allocate(initialSize, maxSize);
if (!buffer) {
#ifdef WASM_HUGE_MEMORY
wasm::Log(cx, "huge Memory allocation failed");
ReportOutOfMemory(cx);
return false;
#else
// If we fail, and have a maxSize, try to reserve the biggest chunk in
// the range [initialSize, maxSize) using log backoff.
if (!maxSize) {
wasm::Log(cx, "new Memory({initial=%u bytes}) failed", initialSize);
ReportOutOfMemory(cx);
return false;
}
uint32_t cur = maxSize.value() / 2;
for (; cur > initialSize; cur /= 2) {
buffer = RawbufT::Allocate(initialSize,
mozilla::Some(ROUND_UP(cur, wasm::PageSize)));
if (buffer) {
break;
}
}
if (!buffer) {
wasm::Log(cx, "new Memory({initial=%u bytes}) failed", initialSize);
ReportOutOfMemory(cx);
return false;
}
// Try to grow our chunk as much as possible.
for (size_t d = cur / 2; d >= wasm::PageSize; d /= 2) {
buffer->tryGrowMaxSizeInPlace(ROUND_UP(d, wasm::PageSize));
}
#endif
}
#undef ROUND_UP
// ObjT::createFromNewRawBuffer assumes ownership of |buffer| even in case
// of failure.
ObjT* object = ObjT::createFromNewRawBuffer(cx, buffer, initialSize);
if (!object) {
return false;
}
maybeSharedObject.set(object);
// See MaximumLiveMappedBuffers comment above.
if (liveBufferCount > StartSyncFullGCAtLiveBufferCount) {
JS::PrepareForFullGC(cx);
JS::NonIncrementalGC(cx, GC_NORMAL, JS::GCReason::TOO_MUCH_WASM_MEMORY);
allocatedSinceLastTrigger = 0;
} else if (liveBufferCount > StartTriggeringAtLiveBufferCount) {
allocatedSinceLastTrigger++;
if (allocatedSinceLastTrigger > AllocatedBuffersPerTrigger) {
Unused << cx->runtime()->gc.triggerGC(JS::GCReason::TOO_MUCH_WASM_MEMORY);
allocatedSinceLastTrigger = 0;
}
} else {
allocatedSinceLastTrigger = 0;
}
if (maxSize) {
#ifdef WASM_HUGE_MEMORY
wasm::Log(cx, "new Memory({initial:%u bytes, maximum:%u bytes}) succeeded",
unsigned(initialSize), unsigned(*maxSize));
#else
wasm::Log(cx,
"new Memory({initial:%u bytes, maximum:%u bytes}) succeeded "
"with internal maximum of %u",
unsigned(initialSize), unsigned(*maxSize),
unsigned(object->wasmMaxSize().value()));
#endif
} else {
wasm::Log(cx, "new Memory({initial:%u bytes}) succeeded",
unsigned(initialSize));
}
return true;
}
bool js::CreateWasmBuffer(JSContext* cx, const wasm::Limits& memory,
MutableHandleArrayBufferObjectMaybeShared buffer) {
MOZ_ASSERT(memory.initial % wasm::PageSize == 0);
MOZ_RELEASE_ASSERT(cx->wasmHaveSignalHandlers);
MOZ_RELEASE_ASSERT((memory.initial / wasm::PageSize) <=
wasm::MaxMemoryInitialPages);
// Prevent applications specifying a large max (like UINT32_MAX) from
// unintentially OOMing the browser on 32-bit: they just want "a lot of
// memory". Maintain the invariant that initialSize <= maxSize.
Maybe<uint32_t> maxSize = memory.maximum;
if (sizeof(void*) == 4 && maxSize) {
static const uint32_t OneGiB = 1 << 30;
uint32_t clamp = Max(OneGiB, memory.initial);
maxSize = Some(Min(clamp, *maxSize));
}
#ifndef WASM_HUGE_MEMORY
if (sizeof(void*) == 8 && maxSize &&
maxSize.value() >= (UINT32_MAX - wasm::PageSize)) {
// On 64-bit platforms that don't define WASM_HUGE_MEMORY
// clamp maxSize to smaller value that satisfies the 32-bit invariants
// maxSize + wasm::PageSize < UINT32_MAX and maxSize % wasm::PageSize == 0
uint32_t clamp = (wasm::MaxMemoryMaximumPages - 2) * wasm::PageSize;
MOZ_ASSERT(clamp < UINT32_MAX);
MOZ_ASSERT(memory.initial <= clamp);
maxSize = Some(clamp);
}
#endif
if (memory.shared == wasm::Shareable::True) {
if (!cx->realm()->creationOptions().getSharedMemoryAndAtomicsEnabled()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_WASM_NO_SHMEM_LINK);
return false;
}
return CreateBuffer<SharedArrayBufferObject, SharedArrayRawBuffer>(
cx, memory.initial, maxSize, buffer);
}
return CreateBuffer<ArrayBufferObject, WasmArrayRawBuffer>(cx, memory.initial,
maxSize, buffer);
}
bool ArrayBufferObject::prepareForAsmJS() {
MOZ_ASSERT(byteLength() % wasm::PageSize == 0,
"prior size checking should have guaranteed page-size multiple");
MOZ_ASSERT(byteLength() > 0,
"prior size checking should have excluded empty buffers");
switch (bufferKind()) {
case MALLOCED:
case MAPPED:
case EXTERNAL:
// It's okay if this uselessly sets the flag a second time.
setIsPreparedForAsmJS();
return true;
case INLINE_DATA:
static_assert(wasm::PageSize > MaxInlineBytes,
"inline data must be too small to be a page size multiple");
MOZ_ASSERT_UNREACHABLE(
"inline-data buffers should be implicitly excluded by size checks");
return false;
case NO_DATA:
MOZ_ASSERT_UNREACHABLE(
"size checking should have excluded detached or empty buffers");
return false;
// asm.js code and associated buffers are potentially long-lived. Yet a
// buffer of user-owned data *must* be detached by the user before the
// user-owned data is disposed. No caller wants to use a user-owned
// ArrayBuffer with asm.js, so just don't support this and avoid a mess of
// complexity.
case USER_OWNED:
// wasm buffers can be detached at any time.
case WASM:
MOZ_ASSERT(!isPreparedForAsmJS());
return false;
case BAD1:
MOZ_ASSERT_UNREACHABLE("invalid bufferKind() encountered");
return false;
}
MOZ_ASSERT_UNREACHABLE("non-exhaustive kind-handling switch?");
return false;
}
ArrayBufferObject::BufferContents ArrayBufferObject::createMappedContents(
int fd, size_t offset, size_t length) {
void* data =
gc::AllocateMappedContent(fd, offset, length, ARRAY_BUFFER_ALIGNMENT);
return BufferContents::createMapped(data);
}
uint8_t* ArrayBufferObject::inlineDataPointer() const {
return static_cast<uint8_t*>(fixedData(JSCLASS_RESERVED_SLOTS(&class_)));
}
uint8_t* ArrayBufferObject::dataPointer() const {
return static_cast<uint8_t*>(getFixedSlot(DATA_SLOT).toPrivate());
}
SharedMem<uint8_t*> ArrayBufferObject::dataPointerShared() const {
return SharedMem<uint8_t*>::unshared(getFixedSlot(DATA_SLOT).toPrivate());
}
ArrayBufferObject::FreeInfo* ArrayBufferObject::freeInfo() const {
MOZ_ASSERT(isExternal());
return reinterpret_cast<FreeInfo*>(inlineDataPointer());
}
void ArrayBufferObject::releaseData(FreeOp* fop) {
switch (bufferKind()) {
case INLINE_DATA:
// Inline data doesn't require releasing.
break;
case MALLOCED:
fop->free_(this, dataPointer(), byteLength(),
MemoryUse::ArrayBufferContents);
break;
case NO_DATA:
// There's nothing to release if there's no data.
MOZ_ASSERT(dataPointer() == nullptr);
break;
case USER_OWNED:
// User-owned data is released by, well, the user.
break;
case MAPPED:
gc::DeallocateMappedContent(dataPointer(), byteLength());
RemoveCellMemory(this, associatedBytes(),
MemoryUse::ArrayBufferContents);
break;
case WASM:
WasmArrayRawBuffer::Release(dataPointer());
RemoveCellMemory(this, byteLength(), MemoryUse::ArrayBufferContents);
break;
case EXTERNAL:
if (freeInfo()->freeFunc) {
// The analyzer can't know for sure whether the embedder-supplied
// free function will GC. We give the analyzer a hint here.
// (Doing a GC in the free function is considered a programmer
// error.)
JS::AutoSuppressGCAnalysis nogc;
freeInfo()->freeFunc(dataPointer(), freeInfo()->freeUserData);
}
break;
case BAD1:
MOZ_CRASH("invalid BufferKind encountered");
break;
}
}
void ArrayBufferObject::setDataPointer(BufferContents contents) {
setFixedSlot(DATA_SLOT, PrivateValue(contents.data()));
setFlags((flags() & ~KIND_MASK) | contents.kind());
if (isExternal()) {
auto info = freeInfo();
info->freeFunc = contents.freeFunc();
info->freeUserData = contents.freeUserData();
}
}
uint32_t ArrayBufferObject::byteLength() const {
return getFixedSlot(BYTE_LENGTH_SLOT).toInt32();
}
inline size_t ArrayBufferObject::associatedBytes() const {
if (bufferKind() == MALLOCED) {
return byteLength();
} else if (bufferKind() == MAPPED) {
return JS_ROUNDUP(byteLength(), js::gc::SystemPageSize());
} else {
MOZ_CRASH("Unexpected buffer kind");
}
}
void ArrayBufferObject::setByteLength(uint32_t length) {
MOZ_ASSERT(length <= INT32_MAX);
setFixedSlot(BYTE_LENGTH_SLOT, Int32Value(length));
}
size_t ArrayBufferObject::wasmMappedSize() const {
if (isWasm()) {
return contents().wasmBuffer()->mappedSize();
}
return byteLength();
}
size_t js::WasmArrayBufferMappedSize(const ArrayBufferObjectMaybeShared* buf) {
if (buf->is<ArrayBufferObject>()) {
return buf->as<ArrayBufferObject>().wasmMappedSize();
}
return buf->as<SharedArrayBufferObject>().wasmMappedSize();
}
Maybe<uint32_t> ArrayBufferObject::wasmMaxSize() const {
if (isWasm()) {
return contents().wasmBuffer()->maxSize();
} else {
return Some<uint32_t>(byteLength());
}
}
Maybe<uint32_t> js::WasmArrayBufferMaxSize(
const ArrayBufferObjectMaybeShared* buf) {
if (buf->is<ArrayBufferObject>()) {
return buf->as<ArrayBufferObject>().wasmMaxSize();
}
return buf->as<SharedArrayBufferObject>().wasmMaxSize();
}
static void CheckStealPreconditions(Handle<ArrayBufferObject*> buffer,
JSContext* cx) {
cx->check(buffer);
MOZ_ASSERT(!buffer->isDetached(), "can't steal from a detached buffer");
MOZ_ASSERT(!buffer->isPreparedForAsmJS(),
"asm.js-prepared buffers don't have detachable/stealable data");
}
/* static */
bool ArrayBufferObject::wasmGrowToSizeInPlace(
uint32_t newSize, HandleArrayBufferObject oldBuf,
MutableHandleArrayBufferObject newBuf, JSContext* cx) {
CheckStealPreconditions(oldBuf, cx);
MOZ_ASSERT(oldBuf->isWasm());
// On failure, do not throw and ensure that the original buffer is
// unmodified and valid. After WasmArrayRawBuffer::growToSizeInPlace(), the
// wasm-visible length of the buffer has been increased so it must be the
// last fallible operation.
if (newSize > ArrayBufferObject::MaxBufferByteLength) {
return false;
}
newBuf.set(ArrayBufferObject::createEmpty(cx));
if (!newBuf) {
cx->clearPendingException();
return false;
}
MOZ_ASSERT(newBuf->isNoData());
if (!oldBuf->contents().wasmBuffer()->growToSizeInPlace(oldBuf->byteLength(),
newSize)) {
return false;
}
// Extract the grown contents from |oldBuf|.
BufferContents oldContents = oldBuf->contents();
// Overwrite |oldBuf|'s data pointer *without* releasing old data.
oldBuf->setDataPointer(BufferContents::createNoData());
// Detach |oldBuf| now that doing so won't release |oldContents|.
RemoveCellMemory(oldBuf, oldBuf->byteLength(),
MemoryUse::ArrayBufferContents);
ArrayBufferObject::detach(cx, oldBuf);
// Set |newBuf|'s contents to |oldBuf|'s original contents.
newBuf->initialize(newSize, oldContents);
AddCellMemory(newBuf, newSize, MemoryUse::ArrayBufferContents);
return true;
}
#ifndef WASM_HUGE_MEMORY
/* static */
bool ArrayBufferObject::wasmMovingGrowToSize(
uint32_t newSize, HandleArrayBufferObject oldBuf,
MutableHandleArrayBufferObject newBuf, JSContext* cx) {
// On failure, do not throw and ensure that the original buffer is
// unmodified and valid.
if (newSize > ArrayBufferObject::MaxBufferByteLength) {
return false;
}
if (newSize <= oldBuf->wasmBoundsCheckLimit() ||
oldBuf->contents().wasmBuffer()->extendMappedSize(newSize)) {
return wasmGrowToSizeInPlace(newSize, oldBuf, newBuf, cx);
}
newBuf.set(ArrayBufferObject::createEmpty(cx));
if (!newBuf) {
cx->clearPendingException();
return false;
}
WasmArrayRawBuffer* newRawBuf =
WasmArrayRawBuffer::Allocate(newSize, Nothing());
if (!newRawBuf) {
return false;
}
AddCellMemory(newBuf, newSize, MemoryUse::ArrayBufferContents);
BufferContents contents =
BufferContents::createWasm(newRawBuf->dataPointer());
newBuf->initialize(newSize, contents);
memcpy(newBuf->dataPointer(), oldBuf->dataPointer(), oldBuf->byteLength());
ArrayBufferObject::detach(cx, oldBuf);
return true;
}
uint32_t ArrayBufferObject::wasmBoundsCheckLimit() const {
if (isWasm()) {
return contents().wasmBuffer()->boundsCheckLimit();
}
return byteLength();
}
uint32_t ArrayBufferObjectMaybeShared::wasmBoundsCheckLimit() const {
if (is<ArrayBufferObject>()) {
return as<ArrayBufferObject>().wasmBoundsCheckLimit();
}
return as<SharedArrayBufferObject>().wasmBoundsCheckLimit();
}
#else
uint32_t ArrayBufferObject::wasmBoundsCheckLimit() const {
return byteLength();
}
uint32_t ArrayBufferObjectMaybeShared::wasmBoundsCheckLimit() const {
return byteLength();
}
#endif
uint32_t ArrayBufferObject::flags() const {
return uint32_t(getFixedSlot(FLAGS_SLOT).toInt32());
}
void ArrayBufferObject::setFlags(uint32_t flags) {
setFixedSlot(FLAGS_SLOT, Int32Value(flags));
}
static MOZ_MUST_USE bool CheckArrayBufferTooLarge(JSContext* cx,
uint32_t nbytes) {
// Refuse to allocate too large buffers, currently limited to ~2 GiB.
if (MOZ_UNLIKELY(nbytes > ArrayBufferObject::MaxBufferByteLength)) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BAD_ARRAY_LENGTH);
return false;
}
return true;
}
ArrayBufferObject* ArrayBufferObject::createForContents(
JSContext* cx, uint32_t nbytes, BufferContents contents) {
MOZ_ASSERT(contents);
MOZ_ASSERT(contents.kind() != INLINE_DATA);
MOZ_ASSERT(contents.kind() != NO_DATA);
MOZ_ASSERT(contents.kind() != WASM);
// 24.1.1.1, step 3 (Inlined 6.2.6.1 CreateByteDataBlock, step 2).
if (!CheckArrayBufferTooLarge(cx, nbytes)) {
return nullptr;
}
// Some |contents| kinds need to store extra data in the ArrayBuffer beyond a
// data pointer. If needed for the particular kind, add extra fixed slots to
// the ArrayBuffer for use as raw storage to store such information.
size_t reservedSlots = JSCLASS_RESERVED_SLOTS(&class_);
size_t nAllocated = 0;
size_t nslots = reservedSlots;
if (contents.kind() == USER_OWNED) {
// No accounting to do in this case.
} else if (contents.kind() == EXTERNAL) {
// Store the FreeInfo in the inline data slots so that we
// don't use up slots for it in non-refcounted array buffers.
size_t freeInfoSlots = JS_HOWMANY(sizeof(FreeInfo), sizeof(Value));
MOZ_ASSERT(reservedSlots + freeInfoSlots <= NativeObject::MAX_FIXED_SLOTS,
"FreeInfo must fit in inline slots");
nslots += freeInfoSlots;
} else {
// The ABO is taking ownership, so account the bytes against the zone.
nAllocated = nbytes;
if (contents.kind() == MAPPED) {
nAllocated = JS_ROUNDUP(nbytes, js::gc::SystemPageSize());
} else {
MOZ_ASSERT(contents.kind() == MALLOCED,
"should have handled all possible callers' kinds");
}
}
MOZ_ASSERT(!(class_.flags & JSCLASS_HAS_PRIVATE));
gc::AllocKind allocKind = gc::GetGCObjectKind(nslots);
AutoSetNewObjectMetadata metadata(cx);
Rooted<ArrayBufferObject*> buffer(
cx, NewObjectWithClassProto<ArrayBufferObject>(cx, nullptr, allocKind,
TenuredObject));
if (!buffer) {
return nullptr;
}
MOZ_ASSERT(!gc::IsInsideNursery(buffer),
"ArrayBufferObject has a finalizer that must be called to not "
"leak in some cases, so it can't be nursery-allocated");
buffer->initialize(nbytes, contents);
if (contents.kind() == MAPPED || contents.kind() == MALLOCED) {
AddCellMemory(buffer, nAllocated, MemoryUse::ArrayBufferContents);
}
return buffer;
}
ArrayBufferObject* ArrayBufferObject::createZeroed(
JSContext* cx, uint32_t nbytes, HandleObject proto /* = nullptr */) {
// 24.1.1.1, step 3 (Inlined 6.2.6.1 CreateByteDataBlock, step 2).
if (!CheckArrayBufferTooLarge(cx, nbytes)) {
return nullptr;
}
// Try fitting the data inline with the object by repurposing fixed-slot
// storage. Add extra fixed slots if necessary to accomplish this, but don't
// exceed the maximum number of fixed slots!
size_t nslots = JSCLASS_RESERVED_SLOTS(&class_);
uint8_t* data;
if (nbytes <= MaxInlineBytes) {
int newSlots = JS_HOWMANY(nbytes, sizeof(Value));
MOZ_ASSERT(int(nbytes) <= newSlots * int(sizeof(Value)));
nslots += newSlots;
data = nullptr;
} else {
data = AllocateArrayBufferContents(cx, nbytes);
if (!data) {
return nullptr;
}
}
MOZ_ASSERT(!(class_.flags & JSCLASS_HAS_PRIVATE));
gc::AllocKind allocKind = gc::GetGCObjectKind(nslots);
AutoSetNewObjectMetadata metadata(cx);
Rooted<ArrayBufferObject*> buffer(
cx, NewObjectWithClassProto<ArrayBufferObject>(cx, proto, allocKind,
GenericObject));
if (!buffer) {
if (data) {
js_free(data);
}
return nullptr;
}
MOZ_ASSERT(!gc::IsInsideNursery(buffer),
"ArrayBufferObject has a finalizer that must be called to not "
"leak in some cases, so it can't be nursery-allocated");
if (data) {
buffer->initialize(nbytes, BufferContents::createMalloced(data));
AddCellMemory(buffer, nbytes, MemoryUse::ArrayBufferContents);
} else {
void* inlineData = buffer->initializeToInlineData(nbytes);
memset(inlineData, 0, nbytes);
}
return buffer;
}
ArrayBufferObject* ArrayBufferObject::createEmpty(JSContext* cx) {
AutoSetNewObjectMetadata metadata(cx);
ArrayBufferObject* obj = NewBuiltinClassInstance<ArrayBufferObject>(cx);
if (!obj) {
return nullptr;
}
obj->initialize(0, BufferContents::createNoData());
return obj;
}
ArrayBufferObject* ArrayBufferObject::createFromNewRawBuffer(
JSContext* cx, WasmArrayRawBuffer* rawBuffer, uint32_t initialSize) {
AutoSetNewObjectMetadata metadata(cx);
ArrayBufferObject* buffer = NewBuiltinClassInstance<ArrayBufferObject>(cx);
if (!buffer) {
WasmArrayRawBuffer::Release(rawBuffer->dataPointer());
return nullptr;
}
buffer->setByteLength(initialSize);
buffer->setFlags(0);
buffer->setFirstView(nullptr);
auto contents = BufferContents::createWasm(rawBuffer->dataPointer());
buffer->setDataPointer(contents);
AddCellMemory(buffer, initialSize, MemoryUse::ArrayBufferContents);
return buffer;
}
/* static */ uint8_t* ArrayBufferObject::stealMallocedContents(
JSContext* cx, Handle<ArrayBufferObject*> buffer) {
CheckStealPreconditions(buffer, cx);
switch (buffer->bufferKind()) {
case MALLOCED: {
uint8_t* stolenData = buffer->dataPointer();
MOZ_ASSERT(stolenData);
RemoveCellMemory(buffer, buffer->byteLength(),
MemoryUse::ArrayBufferContents);
// Overwrite the old data pointer *without* releasing the contents
// being stolen.
buffer->setDataPointer(BufferContents::createNoData());
// Detach |buffer| now that doing so won't free |stolenData|.
ArrayBufferObject::detach(cx, buffer);
return stolenData;
}
case INLINE_DATA:
case NO_DATA:
case USER_OWNED:
case MAPPED:
case EXTERNAL: {
// We can't use these data types directly. Make a copy to return.
uint8_t* copiedData = NewCopiedBufferContents(cx, buffer);
if (!copiedData) {
return nullptr;
}
// Detach |buffer|. This immediately releases the currently owned
// contents, freeing or unmapping data in the MAPPED and EXTERNAL cases.
ArrayBufferObject::detach(cx, buffer);
return copiedData;
}
case WASM:
MOZ_ASSERT_UNREACHABLE(
"wasm buffers aren't stealable except by a "
"memory.grow operation that shouldn't call this "
"function");
return nullptr;
case BAD1:
MOZ_ASSERT_UNREACHABLE("bad kind when stealing malloc'd data");
return nullptr;
}
MOZ_ASSERT_UNREACHABLE("garbage kind computed");
return nullptr;
}
/* static */ ArrayBufferObject::BufferContents
ArrayBufferObject::extractStructuredCloneContents(
JSContext* cx, Handle<ArrayBufferObject*> buffer) {
CheckStealPreconditions(buffer, cx);
BufferContents contents = buffer->contents();
switch (contents.kind()) {
case INLINE_DATA:
case NO_DATA:
case USER_OWNED: {
uint8_t* copiedData = NewCopiedBufferContents(cx, buffer);
if (!copiedData) {
return BufferContents::createFailed();
}
ArrayBufferObject::detach(cx, buffer);
return BufferContents::createMalloced(copiedData);
}
case MALLOCED:
case MAPPED: {
MOZ_ASSERT(contents);
RemoveCellMemory(buffer, buffer->associatedBytes(),
MemoryUse::ArrayBufferContents);
// Overwrite the old data pointer *without* releasing old data.
buffer->setDataPointer(BufferContents::createNoData());
// Detach |buffer| now that doing so won't release |oldContents|.
ArrayBufferObject::detach(cx, buffer);
return contents;
}
case WASM:
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_WASM_NO_TRANSFER);
return BufferContents::createFailed();
case EXTERNAL:
MOZ_ASSERT_UNREACHABLE(
"external ArrayBuffer shouldn't have passed the "
"structured-clone preflighting");
break;
case BAD1:
MOZ_ASSERT_UNREACHABLE("bad kind when stealing malloc'd data");
break;
}
MOZ_ASSERT_UNREACHABLE("garbage kind computed");
return BufferContents::createFailed();
}
/* static */
void ArrayBufferObject::addSizeOfExcludingThis(
JSObject* obj, mozilla::MallocSizeOf mallocSizeOf, JS::ClassInfo* info) {
ArrayBufferObject& buffer = AsArrayBuffer(obj);
switch (buffer.bufferKind()) {
case INLINE_DATA:
// Inline data's size should be reported by this object's size-class
// reporting.
break;
case MALLOCED:
if (buffer.isPreparedForAsmJS()) {
info->objectsMallocHeapElementsAsmJS +=
mallocSizeOf(buffer.dataPointer());
} else {
info->objectsMallocHeapElementsNormal +=
mallocSizeOf(buffer.dataPointer());
}
break;
case NO_DATA:
// No data is no memory.
MOZ_ASSERT(buffer.dataPointer() == nullptr);
break;
case USER_OWNED:
// User-owned data should be accounted for by the user.
break;
case MAPPED:
info->objectsNonHeapElementsNormal += buffer.byteLength();
break;
case WASM:
info->objectsNonHeapElementsWasm += buffer.byteLength();
MOZ_ASSERT(buffer.wasmMappedSize() >= buffer.byteLength());
info->wasmGuardPages += buffer.wasmMappedSize() - buffer.byteLength();
break;
case EXTERNAL:
MOZ_CRASH("external buffers not currently supported");
break;
case BAD1:
MOZ_CRASH("bad bufferKind()");
}
}
/* static */
void ArrayBufferObject::finalize(FreeOp* fop, JSObject* obj) {
obj->as<ArrayBufferObject>().releaseData(fop);
}
/* static */
void ArrayBufferObject::copyData(Handle<ArrayBufferObject*> toBuffer,
uint32_t toIndex,
Handle<ArrayBufferObject*> fromBuffer,
uint32_t fromIndex, uint32_t count) {
MOZ_ASSERT(toBuffer->byteLength() >= count);
MOZ_ASSERT(toBuffer->byteLength() >= toIndex + count);
MOZ_ASSERT(fromBuffer->byteLength() >= fromIndex);
MOZ_ASSERT(fromBuffer->byteLength() >= fromIndex + count);
memcpy(toBuffer->dataPointer() + toIndex,
fromBuffer->dataPointer() + fromIndex, count);
}
/* static */
size_t ArrayBufferObject::objectMoved(JSObject* obj, JSObject* old) {
ArrayBufferObject& dst = obj->as<ArrayBufferObject>();
const ArrayBufferObject& src = old->as<ArrayBufferObject>();
// Fix up possible inline data pointer.
if (src.hasInlineData()) {
dst.setFixedSlot(DATA_SLOT, PrivateValue(dst.inlineDataPointer()));
}
return 0;
}
JSObject* ArrayBufferObject::firstView() {
return getFixedSlot(FIRST_VIEW_SLOT).isObject()
? &getFixedSlot(FIRST_VIEW_SLOT).toObject()
: nullptr;
}
void ArrayBufferObject::setFirstView(JSObject* view) {
MOZ_ASSERT_IF(view,
view->is<ArrayBufferViewObject>() || view->is<TypedObject>());
setFixedSlot(FIRST_VIEW_SLOT, ObjectOrNullValue(view));
}
bool ArrayBufferObject::addView(JSContext* cx, JSObject* view) {
MOZ_ASSERT(view->is<ArrayBufferViewObject>() || view->is<TypedObject>());
if (!firstView()) {
setFirstView(view);
return true;
}
return ObjectRealm::get(this).innerViews.get().addView(cx, this, view);
}
/*
* InnerViewTable
*/
constexpr size_t VIEW_LIST_MAX_LENGTH = 500;
bool InnerViewTable::addView(JSContext* cx, ArrayBufferObject* buffer,
JSObject* view) {
// ArrayBufferObject entries are only added when there are multiple views.
MOZ_ASSERT(buffer->firstView());
Map::AddPtr p = map.lookupForAdd(buffer);
MOZ_ASSERT(!gc::IsInsideNursery(buffer));
bool addToNursery = nurseryKeysValid && gc::IsInsideNursery(view);
if (p) {
ViewVector& views = p->value();
MOZ_ASSERT(!views.empty());
if (addToNursery) {
// Only add the entry to |nurseryKeys| if it isn't already there.
if (views.length() >= VIEW_LIST_MAX_LENGTH) {
// To avoid quadratic blowup, skip the loop below if we end up
// adding enormous numbers of views for the same object.
nurseryKeysValid = false;
} else {
for (size_t i = 0; i < views.length(); i++) {
if (gc::IsInsideNursery(views[i])) {
addToNursery = false;
break;
}
}
}
}
if (!views.append(view)) {
ReportOutOfMemory(cx);
return false;
}
} else {
if (!map.add(p, buffer, ViewVector())) {
ReportOutOfMemory(cx);
return false;
}
// ViewVector has one inline element, so the first insertion is
// guaranteed to succeed.
MOZ_ALWAYS_TRUE(p->value().append(view));
}
if (addToNursery && !nurseryKeys.append(buffer)) {
nurseryKeysValid = false;
}
return true;
}
InnerViewTable::ViewVector* InnerViewTable::maybeViewsUnbarriered(
ArrayBufferObject* buffer) {
Map::Ptr p = map.lookup(buffer);
if (p) {
return &p->value();
}
return nullptr;
}
void InnerViewTable::removeViews(ArrayBufferObject* buffer) {
Map::Ptr p = map.lookup(buffer);
MOZ_ASSERT(p);
map.remove(p);
}
/* static */
bool InnerViewTable::sweepEntry(JSObject** pkey, ViewVector& views) {
if (IsAboutToBeFinalizedUnbarriered(pkey)) {
return true;
}
MOZ_ASSERT(!views.empty());
size_t i = 0;
while (i < views.length()) {
if (IsAboutToBeFinalizedUnbarriered(&views[i])) {
// If the current element is garbage then remove it from the
// vector by moving the last one into its place.
views[i] = views.back();
views.popBack();
} else {
i++;
}
}
return views.empty();
}
void InnerViewTable::sweep() {
MOZ_ASSERT(nurseryKeys.empty());
map.sweep();
}
void InnerViewTable::sweepAfterMinorGC() {
MOZ_ASSERT(needsSweepAfterMinorGC());
if (nurseryKeysValid) {
for (size_t i = 0; i < nurseryKeys.length(); i++) {
JSObject* buffer = MaybeForwarded(nurseryKeys[i]);
Map::Ptr p = map.lookup(buffer);
if (!p) {
continue;
}
if (sweepEntry(&p->mutableKey(), p->value())) {
map.remove(buffer);
}
}
nurseryKeys.clear();
} else {
// Do the required sweeping by looking at every map entry.
nurseryKeys.clear();
sweep();
nurseryKeysValid = true;
}
}
size_t InnerViewTable::sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) {
size_t vectorSize = 0;
for (Map::Enum e(map); !e.empty(); e.popFront()) {
vectorSize += e.front().value().sizeOfExcludingThis(mallocSizeOf);
}
return vectorSize + map.shallowSizeOfExcludingThis(mallocSizeOf) +
nurseryKeys.sizeOfExcludingThis(mallocSizeOf);
}
template <>
bool JSObject::is<js::ArrayBufferObjectMaybeShared>() const {
return is<ArrayBufferObject>() || is<SharedArrayBufferObject>();
}
JS_FRIEND_API uint32_t JS::GetArrayBufferByteLength(JSObject* obj) {
ArrayBufferObject* aobj = obj->maybeUnwrapAs<ArrayBufferObject>();
return aobj ? aobj->byteLength() : 0;
}
JS_FRIEND_API uint8_t* JS::GetArrayBufferData(JSObject* obj,
bool* isSharedMemory,
const JS::AutoRequireNoGC&) {
ArrayBufferObject* aobj = obj->maybeUnwrapIf<ArrayBufferObject>();
if (!aobj) {
return nullptr;
}
*isSharedMemory = false;
return aobj->dataPointer();
}
JS_FRIEND_API bool JS::DetachArrayBuffer(JSContext* cx, HandleObject obj) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
cx->check(obj);
if (!obj->is<ArrayBufferObject>()) {
JS_ReportErrorASCII(cx, "ArrayBuffer object required");
return false;
}
Rooted<ArrayBufferObject*> buffer(cx, &obj->as<ArrayBufferObject>());
if (buffer->isWasm() || buffer->isPreparedForAsmJS()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_WASM_NO_TRANSFER);
return false;
}
ArrayBufferObject::detach(cx, buffer);
return true;
}
JS_FRIEND_API bool JS::IsDetachedArrayBufferObject(JSObject* obj) {
ArrayBufferObject* aobj = obj->maybeUnwrapIf<ArrayBufferObject>();
if (!aobj) {
return false;
}
return aobj->isDetached();
}
JS_FRIEND_API JSObject* JS::NewArrayBuffer(JSContext* cx, uint32_t nbytes) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
return ArrayBufferObject::createZeroed(cx, nbytes);
}
JS_PUBLIC_API JSObject* JS::NewArrayBufferWithContents(JSContext* cx,
size_t nbytes,
void* data) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
MOZ_ASSERT_IF(!data, nbytes == 0);
if (!data) {
// Don't pass nulled contents to |createForContents|.
return ArrayBufferObject::createZeroed(cx, 0);
}
using BufferContents = ArrayBufferObject::BufferContents;
BufferContents contents = BufferContents::createMalloced(data);
return ArrayBufferObject::createForContents(cx, nbytes, contents);
}
JS_PUBLIC_API JSObject* JS::NewExternalArrayBuffer(
JSContext* cx, size_t nbytes, void* data,
JS::BufferContentsFreeFunc freeFunc, void* freeUserData) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
MOZ_ASSERT(data);
MOZ_ASSERT(nbytes > 0);
using BufferContents = ArrayBufferObject::BufferContents;
BufferContents contents =
BufferContents::createExternal(data, freeFunc, freeUserData);
return ArrayBufferObject::createForContents(cx, nbytes, contents);
}
JS_PUBLIC_API JSObject* JS::NewArrayBufferWithUserOwnedContents(JSContext* cx,
size_t nbytes,
void* data) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
MOZ_ASSERT(data);
using BufferContents = ArrayBufferObject::BufferContents;
BufferContents contents = BufferContents::createUserOwned(data);
return ArrayBufferObject::createForContents(cx, nbytes, contents);
}
JS_FRIEND_API bool JS::IsArrayBufferObject(JSObject* obj) {
return obj->canUnwrapAs<ArrayBufferObject>();
}
JS_FRIEND_API bool JS::ArrayBufferHasData(JSObject* obj) {
return !obj->unwrapAs<ArrayBufferObject>().isDetached();
}
JS_FRIEND_API JSObject* JS::UnwrapArrayBuffer(JSObject* obj) {
return obj->maybeUnwrapIf<ArrayBufferObject>();
}
JS_FRIEND_API JSObject* JS::UnwrapSharedArrayBuffer(JSObject* obj) {
return obj->maybeUnwrapIf<SharedArrayBufferObject>();
}
JS_PUBLIC_API void* JS::StealArrayBufferContents(JSContext* cx,
HandleObject objArg) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
cx->check(objArg);
JSObject* obj = CheckedUnwrapStatic(objArg);
if (!obj) {
ReportAccessDenied(cx);
return nullptr;
}
if (!obj->is<ArrayBufferObject>()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_TYPED_ARRAY_BAD_ARGS);
return nullptr;
}
Rooted<ArrayBufferObject*> buffer(cx, &obj->as<ArrayBufferObject>());
if (buffer->isDetached()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_TYPED_ARRAY_DETACHED);
return nullptr;
}
if (buffer->isWasm() || buffer->isPreparedForAsmJS()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_WASM_NO_TRANSFER);
return nullptr;
}
AutoRealm ar(cx, buffer);
return ArrayBufferObject::stealMallocedContents(cx, buffer);
}
JS_PUBLIC_API JSObject* JS::NewMappedArrayBufferWithContents(JSContext* cx,
size_t nbytes,
void* data) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
MOZ_ASSERT(data);
using BufferContents = ArrayBufferObject::BufferContents;
BufferContents contents = BufferContents::createMapped(data);
return ArrayBufferObject::createForContents(cx, nbytes, contents);
}
JS_PUBLIC_API void* JS::CreateMappedArrayBufferContents(int fd, size_t offset,
size_t length) {
return ArrayBufferObject::createMappedContents(fd, offset, length).data();
}
JS_PUBLIC_API void JS::ReleaseMappedArrayBufferContents(void* contents,
size_t length) {
gc::DeallocateMappedContent(contents, length);
}
JS_FRIEND_API bool JS::IsMappedArrayBufferObject(JSObject* obj) {
ArrayBufferObject* aobj = obj->maybeUnwrapIf<ArrayBufferObject>();
if (!aobj) {
return false;
}
return aobj->isMapped();
}
JS_FRIEND_API JSObject* JS::GetObjectAsArrayBuffer(JSObject* obj,
uint32_t* length,
uint8_t** data) {
ArrayBufferObject* aobj = obj->maybeUnwrapIf<ArrayBufferObject>();
if (!aobj) {
return nullptr;
}
*length = aobj->byteLength();
*data = aobj->dataPointer();
return aobj;
}
JS_FRIEND_API void JS::GetArrayBufferLengthAndData(JSObject* obj,
uint32_t* length,
bool* isSharedMemory,
uint8_t** data) {
MOZ_ASSERT(IsArrayBuffer(obj));
*length = AsArrayBuffer(obj).byteLength();
*data = AsArrayBuffer(obj).dataPointer();
*isSharedMemory = false;
}