fune/third_party/rust/bindgen/ir/analysis/mod.rs
Cristian Tuns b54e9ee57c Backed out 3 changesets (bug 1670633, bug 1866014) for causing build bustages in MediaEngineWebRTCAudio.cpp CLOSED TREE
Backed out changeset c0d256e9cde9 (bug 1866014)
Backed out changeset e7d101bd73d9 (bug 1670633)
Backed out changeset a849a8e4bd37 (bug 1670633)
2023-11-24 06:18:42 -05:00

407 lines
14 KiB
Rust

//! Fix-point analyses on the IR using the "monotone framework".
//!
//! A lattice is a set with a partial ordering between elements, where there is
//! a single least upper bound and a single greatest least bound for every
//! subset. We are dealing with finite lattices, which means that it has a
//! finite number of elements, and it follows that there exists a single top and
//! a single bottom member of the lattice. For example, the power set of a
//! finite set forms a finite lattice where partial ordering is defined by set
//! inclusion, that is `a <= b` if `a` is a subset of `b`. Here is the finite
//! lattice constructed from the set {0,1,2}:
//!
//! ```text
//! .----- Top = {0,1,2} -----.
//! / | \
//! / | \
//! / | \
//! {0,1} -------. {0,2} .--------- {1,2}
//! | \ / \ / |
//! | / \ |
//! | / \ / \ |
//! {0} --------' {1} `---------- {2}
//! \ | /
//! \ | /
//! \ | /
//! `------ Bottom = {} ------'
//! ```
//!
//! A monotone function `f` is a function where if `x <= y`, then it holds that
//! `f(x) <= f(y)`. It should be clear that running a monotone function to a
//! fix-point on a finite lattice will always terminate: `f` can only "move"
//! along the lattice in a single direction, and therefore can only either find
//! a fix-point in the middle of the lattice or continue to the top or bottom
//! depending if it is ascending or descending the lattice respectively.
//!
//! For a deeper introduction to the general form of this kind of analysis, see
//! [Static Program Analysis by Anders Møller and Michael I. Schwartzbach][spa].
//!
//! [spa]: https://cs.au.dk/~amoeller/spa/spa.pdf
// Re-export individual analyses.
mod template_params;
pub(crate) use self::template_params::UsedTemplateParameters;
mod derive;
pub use self::derive::DeriveTrait;
pub(crate) use self::derive::{as_cannot_derive_set, CannotDerive};
mod has_vtable;
pub(crate) use self::has_vtable::{
HasVtable, HasVtableAnalysis, HasVtableResult,
};
mod has_destructor;
pub(crate) use self::has_destructor::HasDestructorAnalysis;
mod has_type_param_in_array;
pub(crate) use self::has_type_param_in_array::HasTypeParameterInArray;
mod has_float;
pub(crate) use self::has_float::HasFloat;
mod sizedness;
pub(crate) use self::sizedness::{
Sizedness, SizednessAnalysis, SizednessResult,
};
use crate::ir::context::{BindgenContext, ItemId};
use crate::ir::traversal::{EdgeKind, Trace};
use crate::HashMap;
use std::fmt;
use std::ops;
/// An analysis in the monotone framework.
///
/// Implementors of this trait must maintain the following two invariants:
///
/// 1. The concrete data must be a member of a finite-height lattice.
/// 2. The concrete `constrain` method must be monotone: that is,
/// if `x <= y`, then `constrain(x) <= constrain(y)`.
///
/// If these invariants do not hold, iteration to a fix-point might never
/// complete.
///
/// For a simple example analysis, see the `ReachableFrom` type in the `tests`
/// module below.
pub(crate) trait MonotoneFramework: Sized + fmt::Debug {
/// The type of node in our dependency graph.
///
/// This is just generic (and not `ItemId`) so that we can easily unit test
/// without constructing real `Item`s and their `ItemId`s.
type Node: Copy;
/// Any extra data that is needed during computation.
///
/// Again, this is just generic (and not `&BindgenContext`) so that we can
/// easily unit test without constructing real `BindgenContext`s full of
/// real `Item`s and real `ItemId`s.
type Extra: Sized;
/// The final output of this analysis. Once we have reached a fix-point, we
/// convert `self` into this type, and return it as the final result of the
/// analysis.
type Output: From<Self> + fmt::Debug;
/// Construct a new instance of this analysis.
fn new(extra: Self::Extra) -> Self;
/// Get the initial set of nodes from which to start the analysis. Unless
/// you are sure of some domain-specific knowledge, this should be the
/// complete set of nodes.
fn initial_worklist(&self) -> Vec<Self::Node>;
/// Update the analysis for the given node.
///
/// If this results in changing our internal state (ie, we discovered that
/// we have not reached a fix-point and iteration should continue), return
/// `ConstrainResult::Changed`. Otherwise, return `ConstrainResult::Same`.
/// When `constrain` returns `ConstrainResult::Same` for all nodes in the
/// set, we have reached a fix-point and the analysis is complete.
fn constrain(&mut self, node: Self::Node) -> ConstrainResult;
/// For each node `d` that depends on the given `node`'s current answer when
/// running `constrain(d)`, call `f(d)`. This informs us which new nodes to
/// queue up in the worklist when `constrain(node)` reports updated
/// information.
fn each_depending_on<F>(&self, node: Self::Node, f: F)
where
F: FnMut(Self::Node);
}
/// Whether an analysis's `constrain` function modified the incremental results
/// or not.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum ConstrainResult {
/// The incremental results were updated, and the fix-point computation
/// should continue.
Changed,
/// The incremental results were not updated.
Same,
}
impl Default for ConstrainResult {
fn default() -> Self {
ConstrainResult::Same
}
}
impl ops::BitOr for ConstrainResult {
type Output = Self;
fn bitor(self, rhs: ConstrainResult) -> Self::Output {
if self == ConstrainResult::Changed || rhs == ConstrainResult::Changed {
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
}
impl ops::BitOrAssign for ConstrainResult {
fn bitor_assign(&mut self, rhs: ConstrainResult) {
*self = *self | rhs;
}
}
/// Run an analysis in the monotone framework.
pub(crate) fn analyze<Analysis>(extra: Analysis::Extra) -> Analysis::Output
where
Analysis: MonotoneFramework,
{
let mut analysis = Analysis::new(extra);
let mut worklist = analysis.initial_worklist();
while let Some(node) = worklist.pop() {
if let ConstrainResult::Changed = analysis.constrain(node) {
analysis.each_depending_on(node, |needs_work| {
worklist.push(needs_work);
});
}
}
analysis.into()
}
/// Generate the dependency map for analysis
pub(crate) fn generate_dependencies<F>(
ctx: &BindgenContext,
consider_edge: F,
) -> HashMap<ItemId, Vec<ItemId>>
where
F: Fn(EdgeKind) -> bool,
{
let mut dependencies = HashMap::default();
for &item in ctx.allowlisted_items() {
dependencies.entry(item).or_insert_with(Vec::new);
{
// We reverse our natural IR graph edges to find dependencies
// between nodes.
item.trace(
ctx,
&mut |sub_item: ItemId, edge_kind| {
if ctx.allowlisted_items().contains(&sub_item) &&
consider_edge(edge_kind)
{
dependencies
.entry(sub_item)
.or_insert_with(Vec::new)
.push(item);
}
},
&(),
);
}
}
dependencies
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{HashMap, HashSet};
// Here we find the set of nodes that are reachable from any given
// node. This is a lattice mapping nodes to subsets of all nodes. Our join
// function is set union.
//
// This is our test graph:
//
// +---+ +---+
// | | | |
// | 1 | .----| 2 |
// | | | | |
// +---+ | +---+
// | | ^
// | | |
// | +---+ '------'
// '----->| |
// | 3 |
// .------| |------.
// | +---+ |
// | ^ |
// v | v
// +---+ | +---+ +---+
// | | | | | | |
// | 4 | | | 5 |--->| 6 |
// | | | | | | |
// +---+ | +---+ +---+
// | | | |
// | | | v
// | +---+ | +---+
// | | | | | |
// '----->| 7 |<-----' | 8 |
// | | | |
// +---+ +---+
//
// And here is the mapping from a node to the set of nodes that are
// reachable from it within the test graph:
//
// 1: {3,4,5,6,7,8}
// 2: {2}
// 3: {3,4,5,6,7,8}
// 4: {3,4,5,6,7,8}
// 5: {3,4,5,6,7,8}
// 6: {8}
// 7: {3,4,5,6,7,8}
// 8: {}
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
struct Node(usize);
#[derive(Clone, Debug, Default, PartialEq, Eq)]
struct Graph(HashMap<Node, Vec<Node>>);
impl Graph {
fn make_test_graph() -> Graph {
let mut g = Graph::default();
g.0.insert(Node(1), vec![Node(3)]);
g.0.insert(Node(2), vec![Node(2)]);
g.0.insert(Node(3), vec![Node(4), Node(5)]);
g.0.insert(Node(4), vec![Node(7)]);
g.0.insert(Node(5), vec![Node(6), Node(7)]);
g.0.insert(Node(6), vec![Node(8)]);
g.0.insert(Node(7), vec![Node(3)]);
g.0.insert(Node(8), vec![]);
g
}
fn reverse(&self) -> Graph {
let mut reversed = Graph::default();
for (node, edges) in self.0.iter() {
reversed.0.entry(*node).or_insert_with(Vec::new);
for referent in edges.iter() {
reversed
.0
.entry(*referent)
.or_insert_with(Vec::new)
.push(*node);
}
}
reversed
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
struct ReachableFrom<'a> {
reachable: HashMap<Node, HashSet<Node>>,
graph: &'a Graph,
reversed: Graph,
}
impl<'a> MonotoneFramework for ReachableFrom<'a> {
type Node = Node;
type Extra = &'a Graph;
type Output = HashMap<Node, HashSet<Node>>;
fn new(graph: &'a Graph) -> ReachableFrom {
let reversed = graph.reverse();
ReachableFrom {
reachable: Default::default(),
graph,
reversed,
}
}
fn initial_worklist(&self) -> Vec<Node> {
self.graph.0.keys().cloned().collect()
}
fn constrain(&mut self, node: Node) -> ConstrainResult {
// The set of nodes reachable from a node `x` is
//
// reachable(x) = s_0 U s_1 U ... U reachable(s_0) U reachable(s_1) U ...
//
// where there exist edges from `x` to each of `s_0, s_1, ...`.
//
// Yes, what follows is a **terribly** inefficient set union
// implementation. Don't copy this code outside of this test!
let original_size = self
.reachable
.entry(node)
.or_insert_with(HashSet::default)
.len();
for sub_node in self.graph.0[&node].iter() {
self.reachable.get_mut(&node).unwrap().insert(*sub_node);
let sub_reachable = self
.reachable
.entry(*sub_node)
.or_insert_with(HashSet::default)
.clone();
for transitive in sub_reachable {
self.reachable.get_mut(&node).unwrap().insert(transitive);
}
}
let new_size = self.reachable[&node].len();
if original_size != new_size {
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
fn each_depending_on<F>(&self, node: Node, mut f: F)
where
F: FnMut(Node),
{
for dep in self.reversed.0[&node].iter() {
f(*dep);
}
}
}
impl<'a> From<ReachableFrom<'a>> for HashMap<Node, HashSet<Node>> {
fn from(reachable: ReachableFrom<'a>) -> Self {
reachable.reachable
}
}
#[test]
fn monotone() {
let g = Graph::make_test_graph();
let reachable = analyze::<ReachableFrom>(&g);
println!("reachable = {:#?}", reachable);
fn nodes<A>(nodes: A) -> HashSet<Node>
where
A: AsRef<[usize]>,
{
nodes.as_ref().iter().cloned().map(Node).collect()
}
let mut expected = HashMap::default();
expected.insert(Node(1), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(2), nodes([2]));
expected.insert(Node(3), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(4), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(5), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(6), nodes([8]));
expected.insert(Node(7), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(8), nodes([]));
println!("expected = {:#?}", expected);
assert_eq!(reachable, expected);
}
}