forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			454 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			454 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
/* This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
window.docShell.chromeEventHandler.classList.add("textRecognitionDialogFrame");
 | 
						|
 | 
						|
window.addEventListener("DOMContentLoaded", () => {
 | 
						|
  // The arguments are passed in as the final parameters to TabDialogBox.prototype.open.
 | 
						|
  new TextRecognitionModal(...window.arguments);
 | 
						|
});
 | 
						|
 | 
						|
/**
 | 
						|
 * @typedef {Object} TextRecognitionResult
 | 
						|
 * @property {number} confidence
 | 
						|
 * @property {string} string
 | 
						|
 * @property {DOMQuad} quad
 | 
						|
 */
 | 
						|
 | 
						|
class TextRecognitionModal {
 | 
						|
  /**
 | 
						|
   * @param {Promise<TextRecognitionResult[]>} resultsPromise
 | 
						|
   * @param {() => {}} resizeVertically
 | 
						|
   * @param {(url: string, where: string, params: Object) => {}} openLinkIn
 | 
						|
   */
 | 
						|
  constructor(resultsPromise, resizeVertically, openLinkIn) {
 | 
						|
    /** @type {HTMLElement} */
 | 
						|
    this.textEl = document.querySelector(".textRecognitionText");
 | 
						|
 | 
						|
    /** @type {NodeListOf<HTMLElement>} */
 | 
						|
    this.headerEls = document.querySelectorAll(".textRecognitionHeader");
 | 
						|
 | 
						|
    /** @type {HTMLAnchorElement} */
 | 
						|
    this.linkEl = document.querySelector(
 | 
						|
      "#text-recognition-header-no-results a"
 | 
						|
    );
 | 
						|
 | 
						|
    this.resizeVertically = resizeVertically;
 | 
						|
    this.openLinkIn = openLinkIn;
 | 
						|
    this.setupLink();
 | 
						|
    this.setupCloseHandler();
 | 
						|
 | 
						|
    this.showHeaderByID("text-recognition-header-loading");
 | 
						|
 | 
						|
    resultsPromise.then(
 | 
						|
      ({ results, direction }) => {
 | 
						|
        if (results.length === 0) {
 | 
						|
          // Update the UI to indicate that there were no results.
 | 
						|
          this.showHeaderByID("text-recognition-header-no-results");
 | 
						|
          // It's still worth recording telemetry times, as the API was still invoked.
 | 
						|
          TelemetryStopwatch.finish(
 | 
						|
            "TEXT_RECOGNITION_API_PERFORMANCE",
 | 
						|
            resultsPromise
 | 
						|
          );
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        // There were results, cluster them into a nice presentation, and present
 | 
						|
        // the results to the UI.
 | 
						|
        this.runClusteringAndUpdateUI(results, direction);
 | 
						|
        this.showHeaderByID("text-recognition-header-results");
 | 
						|
        TelemetryStopwatch.finish(
 | 
						|
          "TEXT_RECOGNITION_API_PERFORMANCE",
 | 
						|
          resultsPromise
 | 
						|
        );
 | 
						|
 | 
						|
        TextRecognitionModal.recordInteractionTime();
 | 
						|
      },
 | 
						|
      error => {
 | 
						|
        // There was an error in the text recognition call. Treat this as the same
 | 
						|
        // as if there were no results, but report the error to the console and telemetry.
 | 
						|
        this.showHeaderByID("text-recognition-header-no-results");
 | 
						|
 | 
						|
        console.error(
 | 
						|
          "There was an error recognizing the text from an image.",
 | 
						|
          error
 | 
						|
        );
 | 
						|
        Services.telemetry.scalarAdd(
 | 
						|
          "browser.ui.interaction.textrecognition_error",
 | 
						|
          1
 | 
						|
        );
 | 
						|
        TelemetryStopwatch.cancel(
 | 
						|
          "TEXT_RECOGNITION_API_PERFORMANCE",
 | 
						|
          resultsPromise
 | 
						|
        );
 | 
						|
      }
 | 
						|
    );
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * After the results are shown, measure how long a user interacts with the modal.
 | 
						|
   */
 | 
						|
  static recordInteractionTime() {
 | 
						|
    TelemetryStopwatch.start(
 | 
						|
      "TEXT_RECOGNITION_INTERACTION_TIMING",
 | 
						|
      // Pass the instance of the window in case multiple tabs are doing text recognition
 | 
						|
      // and there is a race condition.
 | 
						|
      window
 | 
						|
    );
 | 
						|
 | 
						|
    const finish = () => {
 | 
						|
      TelemetryStopwatch.finish("TEXT_RECOGNITION_INTERACTION_TIMING", window);
 | 
						|
      window.removeEventListener("blur", finish);
 | 
						|
      window.removeEventListener("unload", finish);
 | 
						|
    };
 | 
						|
 | 
						|
    // The user's focus went away, record this as the total interaction, even if they
 | 
						|
    // go back and interact with it more. This can be triggered by doing actions like
 | 
						|
    // clicking the URL bar, or by switching tabs.
 | 
						|
    window.addEventListener("blur", finish);
 | 
						|
 | 
						|
    // The modal is closed.
 | 
						|
    window.addEventListener("unload", finish);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * After the results are shown, measure how long a user interacts with the modal.
 | 
						|
   * @param {number} textLength
 | 
						|
   */
 | 
						|
  static recordTextLengthTelemetry(textLength) {
 | 
						|
    const histogram = Services.telemetry.getHistogramById(
 | 
						|
      "TEXT_RECOGNITION_TEXT_LENGTH"
 | 
						|
    );
 | 
						|
    histogram.add(textLength);
 | 
						|
  }
 | 
						|
 | 
						|
  setupCloseHandler() {
 | 
						|
    document
 | 
						|
      .querySelector("#text-recognition-close")
 | 
						|
      .addEventListener("click", () => {
 | 
						|
        window.close();
 | 
						|
      });
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Apply the variables for the support.mozilla.org URL.
 | 
						|
   */
 | 
						|
  setupLink() {
 | 
						|
    this.linkEl.href = Services.urlFormatter.formatURL(this.linkEl.href);
 | 
						|
    this.linkEl.addEventListener("click", event => {
 | 
						|
      event.preventDefault();
 | 
						|
      this.openLinkIn(this.linkEl.href, "tab", {
 | 
						|
        forceForeground: true,
 | 
						|
        triggeringPrincipal:
 | 
						|
          Services.scriptSecurityManager.getSystemPrincipal(),
 | 
						|
      });
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * A helper to only show the appropriate header.
 | 
						|
   *
 | 
						|
   * @param {string} id
 | 
						|
   */
 | 
						|
  showHeaderByID(id) {
 | 
						|
    for (const header of this.headerEls) {
 | 
						|
      header.style.display = "none";
 | 
						|
    }
 | 
						|
 | 
						|
    document.getElementById(id).style.display = "";
 | 
						|
    this.resizeVertically();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * @param {string} text
 | 
						|
   */
 | 
						|
  static copy(text) {
 | 
						|
    const clipboard = Cc["@mozilla.org/widget/clipboardhelper;1"].getService(
 | 
						|
      Ci.nsIClipboardHelper
 | 
						|
    );
 | 
						|
    clipboard.copyString(text);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Cluster the text based on its visual position.
 | 
						|
   *
 | 
						|
   * @param {TextRecognitionResult[]} results
 | 
						|
   * @param {"ltr" | "rtl"} direction
 | 
						|
   */
 | 
						|
  runClusteringAndUpdateUI(results, direction) {
 | 
						|
    /** @type {Vec2[]} */
 | 
						|
    const centers = [];
 | 
						|
 | 
						|
    for (const result of results) {
 | 
						|
      const p = result.quad;
 | 
						|
 | 
						|
      // Pick either the left-most or right-most edge. This optimizes for
 | 
						|
      // aligned text over centered text.
 | 
						|
      const minOrMax = direction === "ltr" ? Math.min : Math.max;
 | 
						|
 | 
						|
      centers.push([
 | 
						|
        minOrMax(p.p1.x, p.p2.x, p.p3.x, p.p4.x),
 | 
						|
        (p.p1.y, p.p2.y, p.p3.y, p.p4.y) / 4,
 | 
						|
      ]);
 | 
						|
    }
 | 
						|
 | 
						|
    const distSq = new DistanceSquared(centers);
 | 
						|
 | 
						|
    // The values are ranged 0 - 1. This value might be able to be determined
 | 
						|
    // algorithmically.
 | 
						|
    const averageDistance = Math.sqrt(distSq.quantile(0.2));
 | 
						|
    const clusters = densityCluster(
 | 
						|
      centers,
 | 
						|
      // Neighborhood radius:
 | 
						|
      averageDistance,
 | 
						|
      // Minimum points to form a cluster:
 | 
						|
      2
 | 
						|
    );
 | 
						|
 | 
						|
    let text = "";
 | 
						|
    for (const cluster of clusters) {
 | 
						|
      const pCluster = document.createElement("p");
 | 
						|
      pCluster.className = "textRecognitionTextCluster";
 | 
						|
 | 
						|
      for (let i = 0; i < cluster.length; i++) {
 | 
						|
        const index = cluster[i];
 | 
						|
        const { string } = results[index];
 | 
						|
        if (i + 1 === cluster.length) {
 | 
						|
          // Each cluster could be a paragraph, so add newlines to the end
 | 
						|
          // for better copying.
 | 
						|
          text += string + "\n\n";
 | 
						|
          // The paragraph tag automatically uses two newlines.
 | 
						|
          pCluster.innerText += string;
 | 
						|
        } else {
 | 
						|
          // This text is assumed to be a newlines in a paragraph, so only needs
 | 
						|
          // to be separated by a space.
 | 
						|
          text += string + " ";
 | 
						|
          pCluster.innerText += string + " ";
 | 
						|
        }
 | 
						|
      }
 | 
						|
      this.textEl.appendChild(pCluster);
 | 
						|
    }
 | 
						|
 | 
						|
    this.textEl.style.display = "block";
 | 
						|
 | 
						|
    text = text.trim();
 | 
						|
    TextRecognitionModal.copy(text);
 | 
						|
    TextRecognitionModal.recordTextLengthTelemetry(text.length);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * A two dimensional vector.
 | 
						|
 *
 | 
						|
 * @typedef {[number, number]} Vec2
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @typedef {number} PointIndex
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * An implementation of the DBSCAN clustering algorithm.
 | 
						|
 *
 | 
						|
 * https://en.wikipedia.org/wiki/DBSCAN#Algorithm
 | 
						|
 *
 | 
						|
 * @param {Vec2[]} points
 | 
						|
 * @param {number} distance
 | 
						|
 * @param {number} minPoints
 | 
						|
 * @returns {Array<PointIndex[]>}
 | 
						|
 */
 | 
						|
function densityCluster(points, distance, minPoints) {
 | 
						|
  /**
 | 
						|
   * A flat of array of labels that match the index of the points array. The values have
 | 
						|
   * the following meaning:
 | 
						|
   *
 | 
						|
   *   undefined := No label has been assigned
 | 
						|
   *   "noise"   := Noise is a point that hasn't been clustered.
 | 
						|
   *   number    := Cluster index
 | 
						|
   *
 | 
						|
   * @type {undefined | "noise" | Index}
 | 
						|
   */
 | 
						|
  const labels = Array(points.length);
 | 
						|
  const noiseLabel = "noise";
 | 
						|
 | 
						|
  let nextClusterIndex = 0;
 | 
						|
 | 
						|
  // Every point must be visited at least once. Often they will be visited earlier
 | 
						|
  // in the interior of the loop.
 | 
						|
  for (let pointIndex = 0; pointIndex < points.length; pointIndex++) {
 | 
						|
    if (labels[pointIndex] !== undefined) {
 | 
						|
      // This point is already labeled from the interior logic.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the neighbors that are within the range of the epsilon value, includes
 | 
						|
    // the current point.
 | 
						|
    const neighbors = getNeighborsWithinDistance(points, distance, pointIndex);
 | 
						|
 | 
						|
    if (neighbors.length < minPoints) {
 | 
						|
      labels[pointIndex] = noiseLabel;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Start a new cluster.
 | 
						|
    const clusterIndex = nextClusterIndex++;
 | 
						|
    labels[pointIndex] = clusterIndex;
 | 
						|
 | 
						|
    // Fill the cluster. The neighbors array grows.
 | 
						|
    for (let i = 0; i < neighbors.length; i++) {
 | 
						|
      const nextPointIndex = neighbors[i];
 | 
						|
      if (typeof labels[nextPointIndex] === "number") {
 | 
						|
        // This point was already claimed, ignore it.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (labels[nextPointIndex] === noiseLabel) {
 | 
						|
        // Claim this point and move on since noise has no neighbors.
 | 
						|
        labels[nextPointIndex] = clusterIndex;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Claim this point as part of this cluster.
 | 
						|
      labels[nextPointIndex] = clusterIndex;
 | 
						|
 | 
						|
      const newNeighbors = getNeighborsWithinDistance(
 | 
						|
        points,
 | 
						|
        distance,
 | 
						|
        nextPointIndex
 | 
						|
      );
 | 
						|
 | 
						|
      if (newNeighbors.length >= minPoints) {
 | 
						|
        // Add on to the neighbors if more are found.
 | 
						|
        for (const newNeighbor of newNeighbors) {
 | 
						|
          if (!neighbors.includes(newNeighbor)) {
 | 
						|
            neighbors.push(newNeighbor);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const clusters = [];
 | 
						|
 | 
						|
  // Pre-populate the clusters.
 | 
						|
  for (let i = 0; i < nextClusterIndex; i++) {
 | 
						|
    clusters[i] = [];
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn the labels into clusters, adding the noise to the end.
 | 
						|
  for (let pointIndex = 0; pointIndex < labels.length; pointIndex++) {
 | 
						|
    const label = labels[pointIndex];
 | 
						|
    if (typeof label === "number") {
 | 
						|
      clusters[label].push(pointIndex);
 | 
						|
    } else if (label === noiseLabel) {
 | 
						|
      // Add a single cluster.
 | 
						|
      clusters.push([pointIndex]);
 | 
						|
    } else {
 | 
						|
      throw new Error("Logic error. Expected every point to have a label.");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  clusters.sort((a, b) => points[b[0]][1] - points[a[0]][1]);
 | 
						|
 | 
						|
  return clusters;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * @param {Vec2[]} points
 | 
						|
 * @param {number} distance
 | 
						|
 * @param {number} index,
 | 
						|
 * @returns {Index[]}
 | 
						|
 */
 | 
						|
function getNeighborsWithinDistance(points, distance, index) {
 | 
						|
  let neighbors = [index];
 | 
						|
  // There is no reason to compute the square root here if we square the
 | 
						|
  // original distance.
 | 
						|
  const distanceSquared = distance * distance;
 | 
						|
 | 
						|
  for (let otherIndex = 0; otherIndex < points.length; otherIndex++) {
 | 
						|
    if (otherIndex === index) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    const a = points[index];
 | 
						|
    const b = points[otherIndex];
 | 
						|
    const dx = a[0] - b[0];
 | 
						|
    const dy = a[1] - b[1];
 | 
						|
 | 
						|
    if (dx * dx + dy * dy < distanceSquared) {
 | 
						|
      neighbors.push(otherIndex);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return neighbors;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * This class pre-computes the squared distances to allow for efficient distance lookups,
 | 
						|
 * and it provides a way to look up a distance quantile.
 | 
						|
 */
 | 
						|
class DistanceSquared {
 | 
						|
  /** @type {Map<number>} */
 | 
						|
  #distances = new Map();
 | 
						|
  #list;
 | 
						|
  #distancesSorted;
 | 
						|
 | 
						|
  /**
 | 
						|
   * @param {Vec2[]} list
 | 
						|
   */
 | 
						|
  constructor(list) {
 | 
						|
    this.#list = list;
 | 
						|
    for (let aIndex = 0; aIndex < list.length; aIndex++) {
 | 
						|
      for (let bIndex = aIndex + 1; bIndex < list.length; bIndex++) {
 | 
						|
        const id = this.#getTupleID(aIndex, bIndex);
 | 
						|
        const a = this.#list[aIndex];
 | 
						|
        const b = this.#list[bIndex];
 | 
						|
        const dx = a[0] - b[0];
 | 
						|
        const dy = a[1] - b[1];
 | 
						|
        this.#distances.set(id, dx * dx + dy * dy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a unique tuple ID to identify the relationship between two vectors.
 | 
						|
   */
 | 
						|
  #getTupleID(aIndex, bIndex) {
 | 
						|
    return aIndex < bIndex
 | 
						|
      ? aIndex * this.#list.length + bIndex
 | 
						|
      : bIndex * this.#list.length + aIndex;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the distance squared between two vectors.
 | 
						|
   *
 | 
						|
   * @param {Index} aIndex
 | 
						|
   * @param {Index} bIndex
 | 
						|
   * @returns {number} The distance squared
 | 
						|
   */
 | 
						|
  get(aIndex, bIndex) {
 | 
						|
    return this.#distances.get(this.#getTupleID(aIndex, bIndex));
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the quantile squared.
 | 
						|
   *
 | 
						|
   * @param {number} percentile - Ranged between 0 - 1
 | 
						|
   * @returns {number}
 | 
						|
   */
 | 
						|
  quantile(percentile) {
 | 
						|
    if (!this.#distancesSorted) {
 | 
						|
      this.#distancesSorted = [...this.#distances.values()].sort(
 | 
						|
        (a, b) => a - b
 | 
						|
      );
 | 
						|
    }
 | 
						|
    const index = Math.max(
 | 
						|
      0,
 | 
						|
      Math.min(
 | 
						|
        this.#distancesSorted.length - 1,
 | 
						|
        Math.round(this.#distancesSorted.length * percentile)
 | 
						|
      )
 | 
						|
    );
 | 
						|
    return this.#distancesSorted[index];
 | 
						|
  }
 | 
						|
}
 |