forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			1132 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1132 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| #include "FilterNodeD2D1.h"
 | |
| 
 | |
| #include "Logging.h"
 | |
| 
 | |
| #include "SourceSurfaceD2D1.h"
 | |
| #include "DrawTargetD2D1.h"
 | |
| #include "ExtendInputEffectD2D1.h"
 | |
| 
 | |
| namespace mozilla {
 | |
| namespace gfx {
 | |
| 
 | |
| D2D1_COLORMATRIX_ALPHA_MODE D2DAlphaMode(uint32_t aMode)
 | |
| {
 | |
|   switch (aMode) {
 | |
|   case ALPHA_MODE_PREMULTIPLIED:
 | |
|     return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
 | |
|   case ALPHA_MODE_STRAIGHT:
 | |
|     return D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT;
 | |
|   default:
 | |
|     MOZ_CRASH("GFX: Unknown enum value D2DAlphaMode!");
 | |
|   }
 | |
| 
 | |
|   return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
 | |
| }
 | |
| 
 | |
| D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE D2DAffineTransformInterpolationMode(SamplingFilter aSamplingFilter)
 | |
| {
 | |
|   switch (aSamplingFilter) {
 | |
|   case SamplingFilter::GOOD:
 | |
|     return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
 | |
|   case SamplingFilter::LINEAR:
 | |
|     return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
 | |
|   case SamplingFilter::POINT:
 | |
|     return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
 | |
|   default:
 | |
|     MOZ_CRASH("GFX: Unknown enum value D2DAffineTIM!");
 | |
|   }
 | |
| 
 | |
|   return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
 | |
| }
 | |
| 
 | |
| D2D1_BLEND_MODE D2DBlendMode(uint32_t aMode)
 | |
| {
 | |
|   switch (aMode) {
 | |
|   case BLEND_MODE_DARKEN:
 | |
|     return D2D1_BLEND_MODE_DARKEN;
 | |
|   case BLEND_MODE_LIGHTEN:
 | |
|     return D2D1_BLEND_MODE_LIGHTEN;
 | |
|   case BLEND_MODE_MULTIPLY:
 | |
|     return D2D1_BLEND_MODE_MULTIPLY;
 | |
|   case BLEND_MODE_SCREEN:
 | |
|     return D2D1_BLEND_MODE_SCREEN;
 | |
|   case BLEND_MODE_OVERLAY:
 | |
|     return D2D1_BLEND_MODE_OVERLAY;
 | |
|   case BLEND_MODE_COLOR_DODGE:
 | |
|     return D2D1_BLEND_MODE_COLOR_DODGE;
 | |
|   case BLEND_MODE_COLOR_BURN:
 | |
|     return D2D1_BLEND_MODE_COLOR_BURN;
 | |
|   case BLEND_MODE_HARD_LIGHT:
 | |
|     return D2D1_BLEND_MODE_HARD_LIGHT;
 | |
|   case BLEND_MODE_SOFT_LIGHT:
 | |
|     return D2D1_BLEND_MODE_SOFT_LIGHT;
 | |
|   case BLEND_MODE_DIFFERENCE:
 | |
|     return D2D1_BLEND_MODE_DIFFERENCE;
 | |
|   case BLEND_MODE_EXCLUSION:
 | |
|     return D2D1_BLEND_MODE_EXCLUSION;
 | |
|   case BLEND_MODE_HUE:
 | |
|     return D2D1_BLEND_MODE_HUE;
 | |
|   case BLEND_MODE_SATURATION:
 | |
|     return D2D1_BLEND_MODE_SATURATION;
 | |
|   case BLEND_MODE_COLOR:
 | |
|     return D2D1_BLEND_MODE_COLOR;
 | |
|   case BLEND_MODE_LUMINOSITY:
 | |
|     return D2D1_BLEND_MODE_LUMINOSITY;
 | |
| 
 | |
|   default:
 | |
|     MOZ_CRASH("GFX: Unknown enum value D2DBlendMode!");
 | |
|   }
 | |
| 
 | |
|   return D2D1_BLEND_MODE_DARKEN;
 | |
| }
 | |
| 
 | |
| D2D1_MORPHOLOGY_MODE D2DMorphologyMode(uint32_t aMode)
 | |
| {
 | |
|   switch (aMode) {
 | |
|   case MORPHOLOGY_OPERATOR_DILATE:
 | |
|     return D2D1_MORPHOLOGY_MODE_DILATE;
 | |
|   case MORPHOLOGY_OPERATOR_ERODE:
 | |
|     return D2D1_MORPHOLOGY_MODE_ERODE;
 | |
|   }
 | |
| 
 | |
|   MOZ_CRASH("GFX: Unknown enum value D2DMorphologyMode!");
 | |
|   return D2D1_MORPHOLOGY_MODE_DILATE;
 | |
| }
 | |
| 
 | |
| D2D1_TURBULENCE_NOISE D2DTurbulenceNoise(uint32_t aMode)
 | |
| {
 | |
|   switch (aMode) {
 | |
|   case TURBULENCE_TYPE_FRACTAL_NOISE:
 | |
|     return D2D1_TURBULENCE_NOISE_FRACTAL_SUM;
 | |
|   case TURBULENCE_TYPE_TURBULENCE:
 | |
|     return D2D1_TURBULENCE_NOISE_TURBULENCE;
 | |
|   }
 | |
| 
 | |
|   MOZ_CRASH("GFX: Unknown enum value D2DTurbulenceNoise!");
 | |
|   return D2D1_TURBULENCE_NOISE_TURBULENCE;
 | |
| }
 | |
| 
 | |
| D2D1_COMPOSITE_MODE D2DFilterCompositionMode(uint32_t aMode)
 | |
| {
 | |
|   switch (aMode) {
 | |
|   case COMPOSITE_OPERATOR_OVER:
 | |
|     return D2D1_COMPOSITE_MODE_SOURCE_OVER;
 | |
|   case COMPOSITE_OPERATOR_IN:
 | |
|     return D2D1_COMPOSITE_MODE_SOURCE_IN;
 | |
|   case COMPOSITE_OPERATOR_OUT:
 | |
|     return D2D1_COMPOSITE_MODE_SOURCE_OUT;
 | |
|   case COMPOSITE_OPERATOR_ATOP:
 | |
|     return D2D1_COMPOSITE_MODE_SOURCE_ATOP;
 | |
|   case COMPOSITE_OPERATOR_XOR:
 | |
|     return D2D1_COMPOSITE_MODE_XOR;
 | |
|   }
 | |
| 
 | |
|   MOZ_CRASH("GFX: Unknown enum value D2DFilterCompositionMode!");
 | |
|   return D2D1_COMPOSITE_MODE_SOURCE_OVER;
 | |
| }
 | |
| 
 | |
| D2D1_CHANNEL_SELECTOR D2DChannelSelector(uint32_t aMode)
 | |
| {
 | |
|   switch (aMode) {
 | |
|   case COLOR_CHANNEL_R:
 | |
|     return D2D1_CHANNEL_SELECTOR_R;
 | |
|   case COLOR_CHANNEL_G:
 | |
|     return D2D1_CHANNEL_SELECTOR_G;
 | |
|   case COLOR_CHANNEL_B:
 | |
|     return D2D1_CHANNEL_SELECTOR_B;
 | |
|   case COLOR_CHANNEL_A:
 | |
|     return D2D1_CHANNEL_SELECTOR_A;
 | |
|   }
 | |
| 
 | |
|   MOZ_CRASH("GFX: Unknown enum value D2DChannelSelector!");
 | |
|   return D2D1_CHANNEL_SELECTOR_R;
 | |
| }
 | |
| 
 | |
| already_AddRefed<ID2D1Image> GetImageForSourceSurface(DrawTarget *aDT, SourceSurface *aSurface)
 | |
| {
 | |
|   if (aDT->IsTiledDrawTarget() || aDT->IsDualDrawTarget() || aDT->IsCaptureDT()) {
 | |
|     gfxDevCrash(LogReason::FilterNodeD2D1Target) << "Incompatible draw target type! " << (int)aDT->IsTiledDrawTarget() << " " << (int)aDT->IsDualDrawTarget();
 | |
|     return nullptr;
 | |
|   }
 | |
|   switch (aDT->GetBackendType()) {
 | |
|     case BackendType::DIRECT2D1_1:
 | |
|       return static_cast<DrawTargetD2D1*>(aDT)->GetImageForSurface(aSurface, ExtendMode::CLAMP);
 | |
|     default:
 | |
|       gfxDevCrash(LogReason::FilterNodeD2D1Backend) << "Unknown draw target type! " << (int)aDT->GetBackendType();
 | |
|       return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint32_t ConvertValue(FilterType aType, uint32_t aAttribute, uint32_t aValue)
 | |
| {
 | |
|   switch (aType) {
 | |
|   case FilterType::COLOR_MATRIX:
 | |
|     if (aAttribute == ATT_COLOR_MATRIX_ALPHA_MODE) {
 | |
|       aValue = D2DAlphaMode(aValue);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::TRANSFORM:
 | |
|     if (aAttribute == ATT_TRANSFORM_FILTER) {
 | |
|       aValue = D2DAffineTransformInterpolationMode(SamplingFilter(aValue));
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::BLEND:
 | |
|     if (aAttribute == ATT_BLEND_BLENDMODE) {
 | |
|       aValue = D2DBlendMode(aValue);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::MORPHOLOGY:
 | |
|     if (aAttribute == ATT_MORPHOLOGY_OPERATOR) {
 | |
|       aValue = D2DMorphologyMode(aValue);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::DISPLACEMENT_MAP:
 | |
|     if (aAttribute == ATT_DISPLACEMENT_MAP_X_CHANNEL ||
 | |
|         aAttribute == ATT_DISPLACEMENT_MAP_Y_CHANNEL) {
 | |
|       aValue = D2DChannelSelector(aValue);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::TURBULENCE:
 | |
|     if (aAttribute == ATT_TURBULENCE_TYPE) {
 | |
|       aValue = D2DTurbulenceNoise(aValue);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::COMPOSITE:
 | |
|     if (aAttribute == ATT_COMPOSITE_OPERATOR) {
 | |
|       aValue = D2DFilterCompositionMode(aValue);
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return aValue;
 | |
| }
 | |
| 
 | |
| void ConvertValue(FilterType aType, uint32_t aAttribute, IntSize &aValue)
 | |
| {
 | |
|   switch (aType) {
 | |
|   case FilterType::MORPHOLOGY:
 | |
|     if (aAttribute == ATT_MORPHOLOGY_RADII) {
 | |
|       aValue.width *= 2;
 | |
|       aValue.width += 1;
 | |
|       aValue.height *= 2;
 | |
|       aValue.height += 1;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| UINT32
 | |
| GetD2D1InputForInput(FilterType aType, uint32_t aIndex)
 | |
| {
 | |
|   return aIndex;
 | |
| }
 | |
| 
 | |
| #define CONVERT_PROP(moz2dname, d2dname) \
 | |
|   case ATT_##moz2dname: \
 | |
|   return D2D1_##d2dname
 | |
| 
 | |
| UINT32
 | |
| GetD2D1PropForAttribute(FilterType aType, uint32_t aIndex)
 | |
| {
 | |
|   switch (aType) {
 | |
|   case FilterType::COLOR_MATRIX:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(COLOR_MATRIX_MATRIX, COLORMATRIX_PROP_COLOR_MATRIX);
 | |
|       CONVERT_PROP(COLOR_MATRIX_ALPHA_MODE, COLORMATRIX_PROP_ALPHA_MODE);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::TRANSFORM:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(TRANSFORM_MATRIX, 2DAFFINETRANSFORM_PROP_TRANSFORM_MATRIX);
 | |
|       CONVERT_PROP(TRANSFORM_FILTER, 2DAFFINETRANSFORM_PROP_INTERPOLATION_MODE);
 | |
|     }
 | |
|   case FilterType::BLEND:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(BLEND_BLENDMODE, BLEND_PROP_MODE);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::MORPHOLOGY:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(MORPHOLOGY_OPERATOR, MORPHOLOGY_PROP_MODE);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::FLOOD:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(FLOOD_COLOR, FLOOD_PROP_COLOR);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::TILE:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(TILE_SOURCE_RECT, TILE_PROP_RECT);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::TABLE_TRANSFER:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(TABLE_TRANSFER_DISABLE_R, TABLETRANSFER_PROP_RED_DISABLE);
 | |
|       CONVERT_PROP(TABLE_TRANSFER_DISABLE_G, TABLETRANSFER_PROP_GREEN_DISABLE);
 | |
|       CONVERT_PROP(TABLE_TRANSFER_DISABLE_B, TABLETRANSFER_PROP_BLUE_DISABLE);
 | |
|       CONVERT_PROP(TABLE_TRANSFER_DISABLE_A, TABLETRANSFER_PROP_ALPHA_DISABLE);
 | |
|       CONVERT_PROP(TABLE_TRANSFER_TABLE_R, TABLETRANSFER_PROP_RED_TABLE);
 | |
|       CONVERT_PROP(TABLE_TRANSFER_TABLE_G, TABLETRANSFER_PROP_GREEN_TABLE);
 | |
|       CONVERT_PROP(TABLE_TRANSFER_TABLE_B, TABLETRANSFER_PROP_BLUE_TABLE);
 | |
|       CONVERT_PROP(TABLE_TRANSFER_TABLE_A, TABLETRANSFER_PROP_ALPHA_TABLE);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::DISCRETE_TRANSFER:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_R, DISCRETETRANSFER_PROP_RED_DISABLE);
 | |
|       CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_G, DISCRETETRANSFER_PROP_GREEN_DISABLE);
 | |
|       CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_B, DISCRETETRANSFER_PROP_BLUE_DISABLE);
 | |
|       CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_A, DISCRETETRANSFER_PROP_ALPHA_DISABLE);
 | |
|       CONVERT_PROP(DISCRETE_TRANSFER_TABLE_R, DISCRETETRANSFER_PROP_RED_TABLE);
 | |
|       CONVERT_PROP(DISCRETE_TRANSFER_TABLE_G, DISCRETETRANSFER_PROP_GREEN_TABLE);
 | |
|       CONVERT_PROP(DISCRETE_TRANSFER_TABLE_B, DISCRETETRANSFER_PROP_BLUE_TABLE);
 | |
|       CONVERT_PROP(DISCRETE_TRANSFER_TABLE_A, DISCRETETRANSFER_PROP_ALPHA_TABLE);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::LINEAR_TRANSFER:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_DISABLE_R, LINEARTRANSFER_PROP_RED_DISABLE);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_DISABLE_G, LINEARTRANSFER_PROP_GREEN_DISABLE);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_DISABLE_B, LINEARTRANSFER_PROP_BLUE_DISABLE);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_DISABLE_A, LINEARTRANSFER_PROP_ALPHA_DISABLE);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_R, LINEARTRANSFER_PROP_RED_Y_INTERCEPT);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_G, LINEARTRANSFER_PROP_GREEN_Y_INTERCEPT);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_B, LINEARTRANSFER_PROP_BLUE_Y_INTERCEPT);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_A, LINEARTRANSFER_PROP_ALPHA_Y_INTERCEPT);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_SLOPE_R, LINEARTRANSFER_PROP_RED_SLOPE);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_SLOPE_G, LINEARTRANSFER_PROP_GREEN_SLOPE);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_SLOPE_B, LINEARTRANSFER_PROP_BLUE_SLOPE);
 | |
|       CONVERT_PROP(LINEAR_TRANSFER_SLOPE_A, LINEARTRANSFER_PROP_ALPHA_SLOPE);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::GAMMA_TRANSFER:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_DISABLE_R, GAMMATRANSFER_PROP_RED_DISABLE);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_DISABLE_G, GAMMATRANSFER_PROP_GREEN_DISABLE);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_DISABLE_B, GAMMATRANSFER_PROP_BLUE_DISABLE);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_DISABLE_A, GAMMATRANSFER_PROP_ALPHA_DISABLE);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_R, GAMMATRANSFER_PROP_RED_AMPLITUDE);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_G, GAMMATRANSFER_PROP_GREEN_AMPLITUDE);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_B, GAMMATRANSFER_PROP_BLUE_AMPLITUDE);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_A, GAMMATRANSFER_PROP_ALPHA_AMPLITUDE);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_R, GAMMATRANSFER_PROP_RED_EXPONENT);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_G, GAMMATRANSFER_PROP_GREEN_EXPONENT);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_B, GAMMATRANSFER_PROP_BLUE_EXPONENT);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_A, GAMMATRANSFER_PROP_ALPHA_EXPONENT);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_OFFSET_R, GAMMATRANSFER_PROP_RED_OFFSET);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_OFFSET_G, GAMMATRANSFER_PROP_GREEN_OFFSET);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_OFFSET_B, GAMMATRANSFER_PROP_BLUE_OFFSET);
 | |
|       CONVERT_PROP(GAMMA_TRANSFER_OFFSET_A, GAMMATRANSFER_PROP_ALPHA_OFFSET);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::CONVOLVE_MATRIX:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(CONVOLVE_MATRIX_BIAS, CONVOLVEMATRIX_PROP_BIAS);
 | |
|       CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_MATRIX, CONVOLVEMATRIX_PROP_KERNEL_MATRIX);
 | |
|       CONVERT_PROP(CONVOLVE_MATRIX_DIVISOR, CONVOLVEMATRIX_PROP_DIVISOR);
 | |
|       CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_UNIT_LENGTH, CONVOLVEMATRIX_PROP_KERNEL_UNIT_LENGTH);
 | |
|       CONVERT_PROP(CONVOLVE_MATRIX_PRESERVE_ALPHA, CONVOLVEMATRIX_PROP_PRESERVE_ALPHA);
 | |
|     }
 | |
|   case FilterType::DISPLACEMENT_MAP:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(DISPLACEMENT_MAP_SCALE, DISPLACEMENTMAP_PROP_SCALE);
 | |
|       CONVERT_PROP(DISPLACEMENT_MAP_X_CHANNEL, DISPLACEMENTMAP_PROP_X_CHANNEL_SELECT);
 | |
|       CONVERT_PROP(DISPLACEMENT_MAP_Y_CHANNEL, DISPLACEMENTMAP_PROP_Y_CHANNEL_SELECT);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::TURBULENCE:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(TURBULENCE_BASE_FREQUENCY, TURBULENCE_PROP_BASE_FREQUENCY);
 | |
|       CONVERT_PROP(TURBULENCE_NUM_OCTAVES, TURBULENCE_PROP_NUM_OCTAVES);
 | |
|       CONVERT_PROP(TURBULENCE_SEED, TURBULENCE_PROP_SEED);
 | |
|       CONVERT_PROP(TURBULENCE_STITCHABLE, TURBULENCE_PROP_STITCHABLE);
 | |
|       CONVERT_PROP(TURBULENCE_TYPE, TURBULENCE_PROP_NOISE);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::ARITHMETIC_COMBINE:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(ARITHMETIC_COMBINE_COEFFICIENTS, ARITHMETICCOMPOSITE_PROP_COEFFICIENTS);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::COMPOSITE:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(COMPOSITE_OPERATOR, COMPOSITE_PROP_MODE);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::GAUSSIAN_BLUR:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(GAUSSIAN_BLUR_STD_DEVIATION, GAUSSIANBLUR_PROP_STANDARD_DEVIATION);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::DIRECTIONAL_BLUR:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(DIRECTIONAL_BLUR_STD_DEVIATION, DIRECTIONALBLUR_PROP_STANDARD_DEVIATION);
 | |
|       CONVERT_PROP(DIRECTIONAL_BLUR_DIRECTION, DIRECTIONALBLUR_PROP_ANGLE);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::POINT_DIFFUSE:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(POINT_DIFFUSE_DIFFUSE_CONSTANT, POINTDIFFUSE_PROP_DIFFUSE_CONSTANT);
 | |
|       CONVERT_PROP(POINT_DIFFUSE_POSITION, POINTDIFFUSE_PROP_LIGHT_POSITION);
 | |
|       CONVERT_PROP(POINT_DIFFUSE_COLOR, POINTDIFFUSE_PROP_COLOR);
 | |
|       CONVERT_PROP(POINT_DIFFUSE_SURFACE_SCALE, POINTDIFFUSE_PROP_SURFACE_SCALE);
 | |
|       CONVERT_PROP(POINT_DIFFUSE_KERNEL_UNIT_LENGTH, POINTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::SPOT_DIFFUSE:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(SPOT_DIFFUSE_DIFFUSE_CONSTANT, SPOTDIFFUSE_PROP_DIFFUSE_CONSTANT);
 | |
|       CONVERT_PROP(SPOT_DIFFUSE_POINTS_AT, SPOTDIFFUSE_PROP_POINTS_AT);
 | |
|       CONVERT_PROP(SPOT_DIFFUSE_FOCUS, SPOTDIFFUSE_PROP_FOCUS);
 | |
|       CONVERT_PROP(SPOT_DIFFUSE_LIMITING_CONE_ANGLE, SPOTDIFFUSE_PROP_LIMITING_CONE_ANGLE);
 | |
|       CONVERT_PROP(SPOT_DIFFUSE_POSITION, SPOTDIFFUSE_PROP_LIGHT_POSITION);
 | |
|       CONVERT_PROP(SPOT_DIFFUSE_COLOR, SPOTDIFFUSE_PROP_COLOR);
 | |
|       CONVERT_PROP(SPOT_DIFFUSE_SURFACE_SCALE, SPOTDIFFUSE_PROP_SURFACE_SCALE);
 | |
|       CONVERT_PROP(SPOT_DIFFUSE_KERNEL_UNIT_LENGTH, SPOTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::DISTANT_DIFFUSE:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(DISTANT_DIFFUSE_DIFFUSE_CONSTANT, DISTANTDIFFUSE_PROP_DIFFUSE_CONSTANT);
 | |
|       CONVERT_PROP(DISTANT_DIFFUSE_AZIMUTH, DISTANTDIFFUSE_PROP_AZIMUTH);
 | |
|       CONVERT_PROP(DISTANT_DIFFUSE_ELEVATION, DISTANTDIFFUSE_PROP_ELEVATION);
 | |
|       CONVERT_PROP(DISTANT_DIFFUSE_COLOR, DISTANTDIFFUSE_PROP_COLOR);
 | |
|       CONVERT_PROP(DISTANT_DIFFUSE_SURFACE_SCALE, DISTANTDIFFUSE_PROP_SURFACE_SCALE);
 | |
|       CONVERT_PROP(DISTANT_DIFFUSE_KERNEL_UNIT_LENGTH, DISTANTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::POINT_SPECULAR:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(POINT_SPECULAR_SPECULAR_CONSTANT, POINTSPECULAR_PROP_SPECULAR_CONSTANT);
 | |
|       CONVERT_PROP(POINT_SPECULAR_SPECULAR_EXPONENT, POINTSPECULAR_PROP_SPECULAR_EXPONENT);
 | |
|       CONVERT_PROP(POINT_SPECULAR_POSITION, POINTSPECULAR_PROP_LIGHT_POSITION);
 | |
|       CONVERT_PROP(POINT_SPECULAR_COLOR, POINTSPECULAR_PROP_COLOR);
 | |
|       CONVERT_PROP(POINT_SPECULAR_SURFACE_SCALE, POINTSPECULAR_PROP_SURFACE_SCALE);
 | |
|       CONVERT_PROP(POINT_SPECULAR_KERNEL_UNIT_LENGTH, POINTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::SPOT_SPECULAR:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(SPOT_SPECULAR_SPECULAR_CONSTANT, SPOTSPECULAR_PROP_SPECULAR_CONSTANT);
 | |
|       CONVERT_PROP(SPOT_SPECULAR_SPECULAR_EXPONENT, SPOTSPECULAR_PROP_SPECULAR_EXPONENT);
 | |
|       CONVERT_PROP(SPOT_SPECULAR_POINTS_AT, SPOTSPECULAR_PROP_POINTS_AT);
 | |
|       CONVERT_PROP(SPOT_SPECULAR_FOCUS, SPOTSPECULAR_PROP_FOCUS);
 | |
|       CONVERT_PROP(SPOT_SPECULAR_LIMITING_CONE_ANGLE, SPOTSPECULAR_PROP_LIMITING_CONE_ANGLE);
 | |
|       CONVERT_PROP(SPOT_SPECULAR_POSITION, SPOTSPECULAR_PROP_LIGHT_POSITION);
 | |
|       CONVERT_PROP(SPOT_SPECULAR_COLOR, SPOTSPECULAR_PROP_COLOR);
 | |
|       CONVERT_PROP(SPOT_SPECULAR_SURFACE_SCALE, SPOTSPECULAR_PROP_SURFACE_SCALE);
 | |
|       CONVERT_PROP(SPOT_SPECULAR_KERNEL_UNIT_LENGTH, SPOTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::DISTANT_SPECULAR:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_CONSTANT, DISTANTSPECULAR_PROP_SPECULAR_CONSTANT);
 | |
|       CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_EXPONENT, DISTANTSPECULAR_PROP_SPECULAR_EXPONENT);
 | |
|       CONVERT_PROP(DISTANT_SPECULAR_AZIMUTH, DISTANTSPECULAR_PROP_AZIMUTH);
 | |
|       CONVERT_PROP(DISTANT_SPECULAR_ELEVATION, DISTANTSPECULAR_PROP_ELEVATION);
 | |
|       CONVERT_PROP(DISTANT_SPECULAR_COLOR, DISTANTSPECULAR_PROP_COLOR);
 | |
|       CONVERT_PROP(DISTANT_SPECULAR_SURFACE_SCALE, DISTANTSPECULAR_PROP_SURFACE_SCALE);
 | |
|       CONVERT_PROP(DISTANT_SPECULAR_KERNEL_UNIT_LENGTH, DISTANTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
 | |
|     }
 | |
|     break;
 | |
|   case FilterType::CROP:
 | |
|     switch (aIndex) {
 | |
|       CONVERT_PROP(CROP_RECT, CROP_PROP_RECT);
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return UINT32_MAX;
 | |
| }
 | |
| 
 | |
| bool
 | |
| GetD2D1PropsForIntSize(FilterType aType, uint32_t aIndex, UINT32 *aPropWidth, UINT32 *aPropHeight)
 | |
| {
 | |
|   switch (aType) {
 | |
|   case FilterType::MORPHOLOGY:
 | |
|     if (aIndex == ATT_MORPHOLOGY_RADII) {
 | |
|       *aPropWidth = D2D1_MORPHOLOGY_PROP_WIDTH;
 | |
|       *aPropHeight = D2D1_MORPHOLOGY_PROP_HEIGHT;
 | |
|       return true;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline REFCLSID GetCLDIDForFilterType(FilterType aType)
 | |
| {
 | |
|   switch (aType) {
 | |
|   case FilterType::OPACITY:
 | |
|   case FilterType::COLOR_MATRIX:
 | |
|     return CLSID_D2D1ColorMatrix;
 | |
|   case FilterType::TRANSFORM:
 | |
|     return CLSID_D2D12DAffineTransform;
 | |
|   case FilterType::BLEND:
 | |
|     return CLSID_D2D1Blend;
 | |
|   case FilterType::MORPHOLOGY:
 | |
|     return CLSID_D2D1Morphology;
 | |
|   case FilterType::FLOOD:
 | |
|     return CLSID_D2D1Flood;
 | |
|   case FilterType::TILE:
 | |
|     return CLSID_D2D1Tile;
 | |
|   case FilterType::TABLE_TRANSFER:
 | |
|     return CLSID_D2D1TableTransfer;
 | |
|   case FilterType::LINEAR_TRANSFER:
 | |
|     return CLSID_D2D1LinearTransfer;
 | |
|   case FilterType::DISCRETE_TRANSFER:
 | |
|     return CLSID_D2D1DiscreteTransfer;
 | |
|   case FilterType::GAMMA_TRANSFER:
 | |
|     return CLSID_D2D1GammaTransfer;
 | |
|   case FilterType::DISPLACEMENT_MAP:
 | |
|     return CLSID_D2D1DisplacementMap;
 | |
|   case FilterType::TURBULENCE:
 | |
|     return CLSID_D2D1Turbulence;
 | |
|   case FilterType::ARITHMETIC_COMBINE:
 | |
|     return CLSID_D2D1ArithmeticComposite;
 | |
|   case FilterType::COMPOSITE:
 | |
|     return CLSID_D2D1Composite;
 | |
|   case FilterType::GAUSSIAN_BLUR:
 | |
|     return CLSID_D2D1GaussianBlur;
 | |
|   case FilterType::DIRECTIONAL_BLUR:
 | |
|     return CLSID_D2D1DirectionalBlur;
 | |
|   case FilterType::POINT_DIFFUSE:
 | |
|     return CLSID_D2D1PointDiffuse;
 | |
|   case FilterType::POINT_SPECULAR:
 | |
|     return CLSID_D2D1PointSpecular;
 | |
|   case FilterType::SPOT_DIFFUSE:
 | |
|     return CLSID_D2D1SpotDiffuse;
 | |
|   case FilterType::SPOT_SPECULAR:
 | |
|     return CLSID_D2D1SpotSpecular;
 | |
|   case FilterType::DISTANT_DIFFUSE:
 | |
|     return CLSID_D2D1DistantDiffuse;
 | |
|   case FilterType::DISTANT_SPECULAR:
 | |
|     return CLSID_D2D1DistantSpecular;
 | |
|   case FilterType::CROP:
 | |
|     return CLSID_D2D1Crop;
 | |
|   case FilterType::PREMULTIPLY:
 | |
|     return CLSID_D2D1Premultiply;
 | |
|   case FilterType::UNPREMULTIPLY:
 | |
|     return CLSID_D2D1UnPremultiply;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return GUID_NULL;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| IsTransferFilterType(FilterType aType)
 | |
| {
 | |
|   switch (aType) {
 | |
|     case FilterType::LINEAR_TRANSFER:
 | |
|     case FilterType::GAMMA_TRANSFER:
 | |
|     case FilterType::TABLE_TRANSFER:
 | |
|     case FilterType::DISCRETE_TRANSFER:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool
 | |
| HasUnboundedOutputRegion(FilterType aType)
 | |
| {
 | |
|   if (IsTransferFilterType(aType)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   switch (aType) {
 | |
|     case FilterType::COLOR_MATRIX:
 | |
|     case FilterType::POINT_DIFFUSE:
 | |
|     case FilterType::SPOT_DIFFUSE:
 | |
|     case FilterType::DISTANT_DIFFUSE:
 | |
|     case FilterType::POINT_SPECULAR:
 | |
|     case FilterType::SPOT_SPECULAR:
 | |
|     case FilterType::DISTANT_SPECULAR:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* static */
 | |
| already_AddRefed<FilterNode>
 | |
| FilterNodeD2D1::Create(ID2D1DeviceContext *aDC, FilterType aType)
 | |
| {
 | |
|   if (aType == FilterType::CONVOLVE_MATRIX) {
 | |
|     return MakeAndAddRef<FilterNodeConvolveD2D1>(aDC);
 | |
|   }
 | |
| 
 | |
|   RefPtr<ID2D1Effect> effect;
 | |
|   HRESULT hr;
 | |
| 
 | |
|   hr = aDC->CreateEffect(GetCLDIDForFilterType(aType), getter_AddRefs(effect));
 | |
| 
 | |
|   if (FAILED(hr) || !effect) {
 | |
|     gfxCriticalErrorOnce() << "Failed to create effect for FilterType: " << hexa(hr);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (aType == FilterType::ARITHMETIC_COMBINE) {
 | |
|     effect->SetValue(D2D1_ARITHMETICCOMPOSITE_PROP_CLAMP_OUTPUT, TRUE);
 | |
|   }
 | |
| 
 | |
|   if (aType == FilterType::OPACITY) {
 | |
|     return MakeAndAddRef<FilterNodeOpacityD2D1>(effect, aType);
 | |
|   }
 | |
| 
 | |
|   RefPtr<FilterNodeD2D1> filter = new FilterNodeD2D1(effect, aType);
 | |
| 
 | |
|   if (HasUnboundedOutputRegion(aType)) {
 | |
|     // These filters can produce non-transparent output from transparent
 | |
|     // input pixels, and we want them to have an unbounded output region.
 | |
|     filter = new FilterNodeExtendInputAdapterD2D1(aDC, filter, aType);
 | |
|   }
 | |
| 
 | |
|   if (IsTransferFilterType(aType)) {
 | |
|     // Component transfer filters should appear to apply on unpremultiplied
 | |
|     // colors, but the D2D1 effects apply on premultiplied colors.
 | |
|     filter = new FilterNodePremultiplyAdapterD2D1(aDC, filter, aType);
 | |
|   }
 | |
| 
 | |
|   return filter.forget();
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::InitUnmappedProperties()
 | |
| {
 | |
|   switch (mType) {
 | |
|     case FilterType::TRANSFORM:
 | |
|       mEffect->SetValue(D2D1_2DAFFINETRANSFORM_PROP_BORDER_MODE, D2D1_BORDER_MODE_HARD);
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetInput(uint32_t aIndex, SourceSurface *aSurface)
 | |
| {
 | |
|   UINT32 input = GetD2D1InputForInput(mType, aIndex);
 | |
|   ID2D1Effect* effect = InputEffect();
 | |
|   MOZ_ASSERT(input < effect->GetInputCount());
 | |
| 
 | |
|   if (mType == FilterType::COMPOSITE) {
 | |
|     UINT32 inputCount = effect->GetInputCount();
 | |
| 
 | |
|     if (aIndex == inputCount - 1 && aSurface == nullptr) {
 | |
|       effect->SetInputCount(inputCount - 1);
 | |
|     } else if (aIndex >= inputCount && aSurface) {
 | |
|       effect->SetInputCount(aIndex + 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(input < effect->GetInputCount());
 | |
| 
 | |
|   mInputSurfaces.resize(effect->GetInputCount());
 | |
|   mInputFilters.resize(effect->GetInputCount());
 | |
| 
 | |
|   // In order to convert aSurface into an ID2D1Image, we need to know what
 | |
|   // DrawTarget we paint into. However, the same FilterNode object can be
 | |
|   // used on different DrawTargets, so we need to hold on to the SourceSurface
 | |
|   // objects and delay the conversion until we're actually painted and know
 | |
|   // our target DrawTarget.
 | |
|   // The conversion happens in WillDraw().
 | |
| 
 | |
|   mInputSurfaces[input] = aSurface;
 | |
|   mInputFilters[input] = nullptr;
 | |
| 
 | |
|   // Clear the existing image from the effect.
 | |
|   effect->SetInput(input, nullptr);
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetInput(uint32_t aIndex, FilterNode *aFilter)
 | |
| {
 | |
|   UINT32 input = GetD2D1InputForInput(mType, aIndex);
 | |
|   ID2D1Effect* effect = InputEffect();
 | |
| 
 | |
|   if (mType == FilterType::COMPOSITE) {
 | |
|     UINT32 inputCount = effect->GetInputCount();
 | |
| 
 | |
|     if (aIndex == inputCount - 1 && aFilter == nullptr) {
 | |
|       effect->SetInputCount(inputCount - 1);
 | |
|     } else if (aIndex >= inputCount && aFilter) {
 | |
|       effect->SetInputCount(aIndex + 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(input < effect->GetInputCount());
 | |
| 
 | |
|   if (aFilter && aFilter->GetBackendType() != FILTER_BACKEND_DIRECT2D1_1) {
 | |
|     gfxWarning() << "Unknown input FilterNode set on effect.";
 | |
|     MOZ_ASSERT(0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   FilterNodeD2D1* filter = static_cast<FilterNodeD2D1*>(aFilter);
 | |
| 
 | |
|   mInputSurfaces.resize(effect->GetInputCount());
 | |
|   mInputFilters.resize(effect->GetInputCount());
 | |
| 
 | |
|   // We hold on to the FilterNode object so that we can call WillDraw() on it.
 | |
|   mInputSurfaces[input] = nullptr;
 | |
|   mInputFilters[input] = filter;
 | |
| 
 | |
|   if (filter) {
 | |
|     effect->SetInputEffect(input, filter->OutputEffect());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::WillDraw(DrawTarget *aDT)
 | |
| {
 | |
|   // Convert input SourceSurfaces into ID2D1Images and set them on the effect.
 | |
|   for (size_t inputIndex = 0; inputIndex < mInputSurfaces.size(); inputIndex++) {
 | |
|     if (mInputSurfaces[inputIndex]) {
 | |
|       ID2D1Effect* effect = InputEffect();
 | |
|       RefPtr<ID2D1Image> image = GetImageForSourceSurface(aDT, mInputSurfaces[inputIndex]);
 | |
|       effect->SetInput(inputIndex, image);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Call WillDraw() on our input filters.
 | |
|   for (std::vector<RefPtr<FilterNodeD2D1>>::iterator it = mInputFilters.begin();
 | |
|        it != mInputFilters.end(); it++) {
 | |
|     if (*it) {
 | |
|       (*it)->WillDraw(aDT);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   if (mType == FilterType::TURBULENCE && aIndex == ATT_TURBULENCE_BASE_FREQUENCY) {
 | |
|     mEffect->SetValue(input, D2D1::Vector2F(FLOAT(aValue), FLOAT(aValue)));
 | |
|     return;
 | |
|   } else if (mType == FilterType::DIRECTIONAL_BLUR && aIndex == ATT_DIRECTIONAL_BLUR_DIRECTION) {
 | |
|     mEffect->SetValue(input, aValue == BLUR_DIRECTION_X ? 0 : 90.0f);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mEffect->SetValue(input, ConvertValue(mType, aIndex, aValue));
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, Float aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, aValue);
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point &aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, D2DPoint(aValue));
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix5x4 &aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, D2DMatrix5x4(aValue));
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point3D &aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, D2DVector3D(aValue));
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Size &aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, D2D1::Vector2F(aValue.width, aValue.height));
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntSize &aValue)
 | |
| {
 | |
|   UINT32 widthProp, heightProp;
 | |
| 
 | |
|   if (!GetD2D1PropsForIntSize(mType, aIndex, &widthProp, &heightProp)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   IntSize value = aValue;
 | |
|   ConvertValue(mType, aIndex, value);
 | |
| 
 | |
|   mEffect->SetValue(widthProp, (UINT)value.width);
 | |
|   mEffect->SetValue(heightProp, (UINT)value.height);
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Color &aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   switch (mType) {
 | |
|   case FilterType::POINT_DIFFUSE:
 | |
|   case FilterType::SPOT_DIFFUSE:
 | |
|   case FilterType::DISTANT_DIFFUSE:
 | |
|   case FilterType::POINT_SPECULAR:
 | |
|   case FilterType::SPOT_SPECULAR:
 | |
|   case FilterType::DISTANT_SPECULAR:
 | |
|     mEffect->SetValue(input, D2D1::Vector3F(aValue.r, aValue.g, aValue.b));
 | |
| 	break;
 | |
|   default:
 | |
|     mEffect->SetValue(input, D2D1::Vector4F(aValue.r * aValue.a, aValue.g * aValue.a, aValue.b * aValue.a, aValue.a));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Rect &aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, D2DRect(aValue));
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntRect &aValue)
 | |
| {
 | |
|   if (mType == FilterType::TURBULENCE) {
 | |
|     MOZ_ASSERT(aIndex == ATT_TURBULENCE_RECT);
 | |
| 
 | |
|     mEffect->SetValue(D2D1_TURBULENCE_PROP_OFFSET, D2D1::Vector2F(Float(aValue.X()), Float(aValue.Y())));
 | |
|     mEffect->SetValue(D2D1_TURBULENCE_PROP_SIZE, D2D1::Vector2F(Float(aValue.Width()), Float(aValue.Height())));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, D2D1::RectF(Float(aValue.X()), Float(aValue.Y()),
 | |
|                                        Float(aValue.XMost()), Float(aValue.YMost())));
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, bool aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, (BOOL)aValue);
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Float *aValues, uint32_t aSize)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, (BYTE*)aValues, sizeof(Float) * aSize);
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntPoint &aValue)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, D2DPoint(aValue));
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix &aMatrix)
 | |
| {
 | |
|   UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
 | |
|   MOZ_ASSERT(input < mEffect->GetPropertyCount());
 | |
| 
 | |
|   mEffect->SetValue(input, D2DMatrix(aMatrix));
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeOpacityD2D1::SetAttribute(uint32_t aIndex, Float aValue)
 | |
| {
 | |
|   D2D1_MATRIX_5X4_F matrix = D2D1::Matrix5x4F(aValue, 0, 0, 0,
 | |
|                                               0, aValue, 0, 0,
 | |
|                                               0, 0, aValue, 0,
 | |
|                                               0, 0, 0, aValue,
 | |
|                                               0, 0, 0, 0);
 | |
| 
 | |
|   mEffect->SetValue(D2D1_COLORMATRIX_PROP_COLOR_MATRIX, matrix);
 | |
|   mEffect->SetValue(D2D1_COLORMATRIX_PROP_ALPHA_MODE, D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT);
 | |
| }
 | |
| 
 | |
| 
 | |
| FilterNodeConvolveD2D1::FilterNodeConvolveD2D1(ID2D1DeviceContext *aDC)
 | |
|   : FilterNodeD2D1(nullptr, FilterType::CONVOLVE_MATRIX)
 | |
|   , mEdgeMode(EDGE_MODE_DUPLICATE)
 | |
| {
 | |
|   // Correctly handling the interaction of edge mode and source rect is a bit
 | |
|   // tricky with D2D1 effects. We want the edge mode to only apply outside of
 | |
|   // the source rect (as specified by the ATT_CONVOLVE_MATRIX_SOURCE_RECT
 | |
|   // attribute). So if our input surface or filter is smaller than the source
 | |
|   // rect, we need to add transparency around it until we reach the edges of
 | |
|   // the source rect, and only then do any repeating or edge duplicating.
 | |
|   // Unfortunately, the border effect does not have a source rect attribute -
 | |
|   // it only looks at the output rect of its input filter or surface. So we use
 | |
|   // our custom ExtendInput effect to adjust the output rect of our input.
 | |
|   // All of this is only necessary when our edge mode is not EDGE_MODE_NONE, so
 | |
|   // we update the filter chain dynamically in UpdateChain().
 | |
| 
 | |
|   HRESULT hr;
 | |
|   
 | |
|   hr = aDC->CreateEffect(CLSID_D2D1ConvolveMatrix, getter_AddRefs(mEffect));
 | |
| 
 | |
|   if (FAILED(hr) || !mEffect) {
 | |
|     gfxWarning() << "Failed to create ConvolveMatrix filter!";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_BORDER_MODE, D2D1_BORDER_MODE_SOFT);
 | |
| 
 | |
|   hr = aDC->CreateEffect(CLSID_ExtendInputEffect, getter_AddRefs(mExtendInputEffect));
 | |
| 
 | |
|   if (FAILED(hr) || !mExtendInputEffect) {
 | |
|     gfxWarning() << "Failed to create ConvolveMatrix filter!";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   hr = aDC->CreateEffect(CLSID_D2D1Border, getter_AddRefs(mBorderEffect));
 | |
| 
 | |
|   if (FAILED(hr) || !mBorderEffect) {
 | |
|     gfxWarning() << "Failed to create ConvolveMatrix filter!";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mBorderEffect->SetInputEffect(0, mExtendInputEffect.get());
 | |
| 
 | |
|   UpdateChain();
 | |
|   UpdateSourceRect();
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeConvolveD2D1::SetInput(uint32_t aIndex, FilterNode *aFilter)
 | |
| {
 | |
|   FilterNodeD2D1::SetInput(aIndex, aFilter);
 | |
| 
 | |
|   UpdateChain();
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue)
 | |
| {
 | |
|   if (aIndex != ATT_CONVOLVE_MATRIX_EDGE_MODE) {
 | |
|     return FilterNodeD2D1::SetAttribute(aIndex, aValue);
 | |
|   }
 | |
| 
 | |
|   mEdgeMode = (ConvolveMatrixEdgeMode)aValue;
 | |
| 
 | |
|   UpdateChain();
 | |
| }
 | |
| 
 | |
| ID2D1Effect*
 | |
| FilterNodeConvolveD2D1::InputEffect()
 | |
| {
 | |
|   return mEdgeMode == EDGE_MODE_NONE ? mEffect.get() : mExtendInputEffect.get();
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeConvolveD2D1::UpdateChain()
 | |
| {
 | |
|   // The shape of the filter graph:
 | |
|   //
 | |
|   // EDGE_MODE_NONE:
 | |
|   // input --> convolvematrix
 | |
|   //
 | |
|   // EDGE_MODE_DUPLICATE or EDGE_MODE_WRAP:
 | |
|   // input --> extendinput --> border --> convolvematrix
 | |
|   //
 | |
|   // mEffect is convolvematrix.
 | |
| 
 | |
|   if (mEdgeMode != EDGE_MODE_NONE) {
 | |
|     mEffect->SetInputEffect(0, mBorderEffect.get());
 | |
|   }
 | |
| 
 | |
|   RefPtr<ID2D1Effect> inputEffect;
 | |
|   if (mInputFilters.size() > 0 && mInputFilters[0]) {
 | |
|     inputEffect = mInputFilters[0]->OutputEffect();
 | |
|   }
 | |
|   InputEffect()->SetInputEffect(0, inputEffect);
 | |
| 
 | |
|   if (mEdgeMode == EDGE_MODE_DUPLICATE) {
 | |
|     mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X, D2D1_BORDER_EDGE_MODE_CLAMP);
 | |
|     mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y, D2D1_BORDER_EDGE_MODE_CLAMP);
 | |
|   } else if (mEdgeMode == EDGE_MODE_WRAP) {
 | |
|     mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X, D2D1_BORDER_EDGE_MODE_WRAP);
 | |
|     mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y, D2D1_BORDER_EDGE_MODE_WRAP);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntSize &aValue)
 | |
| {
 | |
|   if (aIndex != ATT_CONVOLVE_MATRIX_KERNEL_SIZE) {
 | |
|     MOZ_ASSERT(false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mKernelSize = aValue;
 | |
| 
 | |
|   mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_X, aValue.width);
 | |
|   mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_Y, aValue.height);
 | |
| 
 | |
|   UpdateOffset();
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntPoint &aValue)
 | |
| {
 | |
|   if (aIndex != ATT_CONVOLVE_MATRIX_TARGET) {
 | |
|     MOZ_ASSERT(false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mTarget = aValue;
 | |
| 
 | |
|   UpdateOffset();
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntRect &aValue)
 | |
| {
 | |
|   if (aIndex != ATT_CONVOLVE_MATRIX_SOURCE_RECT) {
 | |
|     MOZ_ASSERT(false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mSourceRect = aValue;
 | |
| 
 | |
|   UpdateSourceRect();
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeConvolveD2D1::UpdateOffset()
 | |
| {
 | |
|   D2D1_VECTOR_2F vector =
 | |
|     D2D1::Vector2F((Float(mKernelSize.width) - 1.0f) / 2.0f - Float(mTarget.x),
 | |
|                    (Float(mKernelSize.height) - 1.0f) / 2.0f - Float(mTarget.y));
 | |
| 
 | |
|   mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_OFFSET, vector);
 | |
| }
 | |
| 
 | |
| void
 | |
| FilterNodeConvolveD2D1::UpdateSourceRect()
 | |
| {
 | |
|   mExtendInputEffect->SetValue(EXTENDINPUT_PROP_OUTPUT_RECT,
 | |
|                    D2D1::Vector4F(Float(mSourceRect.X()), Float(mSourceRect.Y()),
 | |
|                    Float(mSourceRect.XMost()), Float(mSourceRect.YMost())));
 | |
| }
 | |
| 
 | |
| FilterNodeExtendInputAdapterD2D1::FilterNodeExtendInputAdapterD2D1(ID2D1DeviceContext *aDC,
 | |
|                                                                    FilterNodeD2D1 *aFilterNode, FilterType aType)
 | |
|  : FilterNodeD2D1(aFilterNode->MainEffect(), aType)
 | |
|  , mWrappedFilterNode(aFilterNode)
 | |
| {
 | |
|   // We have an mEffect that looks at the bounds of the input effect, and we
 | |
|   // want mEffect to regard its input as unbounded. So we take the input,
 | |
|   // pipe it through an ExtendInput effect (which has an infinite output rect
 | |
|   // by default), and feed the resulting unbounded composition into mEffect.
 | |
| 
 | |
|   HRESULT hr;
 | |
| 
 | |
|   hr = aDC->CreateEffect(CLSID_ExtendInputEffect, getter_AddRefs(mExtendInputEffect));
 | |
| 
 | |
|   if (FAILED(hr) || !mExtendInputEffect) {
 | |
|     gfxWarning() << "Failed to create extend input effect for filter: " << hexa(hr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   aFilterNode->InputEffect()->SetInputEffect(0, mExtendInputEffect.get());
 | |
| }
 | |
| 
 | |
| FilterNodePremultiplyAdapterD2D1::FilterNodePremultiplyAdapterD2D1(ID2D1DeviceContext *aDC,
 | |
|                                                                    FilterNodeD2D1 *aFilterNode, FilterType aType)
 | |
|  : FilterNodeD2D1(aFilterNode->MainEffect(), aType)
 | |
| {
 | |
|   // D2D1 component transfer effects do strange things when it comes to
 | |
|   // premultiplication.
 | |
|   // For our purposes we only need the transfer filters to apply straight to
 | |
|   // unpremultiplied source channels and output unpremultiplied results.
 | |
|   // However, the D2D1 effects are designed differently: They can apply to both
 | |
|   // premultiplied and unpremultiplied inputs, and they always premultiply
 | |
|   // their result - at least in those color channels that have not been
 | |
|   // disabled.
 | |
|   // In order to determine whether the input needs to be unpremultiplied as
 | |
|   // part of the transfer, the effect consults the alpha mode metadata of the
 | |
|   // input surface or the input effect. We don't have such a concept in Moz2D,
 | |
|   // and giving Moz2D users different results based on something that cannot be
 | |
|   // influenced through Moz2D APIs seems like a bad idea.
 | |
|   // We solve this by applying a premultiply effect to the input before feeding
 | |
|   // it into the transfer effect. The premultiply effect always premultiplies
 | |
|   // regardless of any alpha mode metadata on inputs, and it always marks its
 | |
|   // output as premultiplied so that the transfer effect will unpremultiply
 | |
|   // consistently. Feeding always-premultiplied input into the transfer effect
 | |
|   // also avoids another problem that would appear when individual color
 | |
|   // channels disable the transfer: In that case, the disabled channels would
 | |
|   // pass through unchanged in their unpremultiplied form and the other
 | |
|   // channels would be premultiplied, giving a mixed result.
 | |
|   // But since we now ensure that the input is premultiplied, disabled channels
 | |
|   // will pass premultiplied values through to the result, which is consistent
 | |
|   // with the enabled channels.
 | |
|   // We also add an unpremultiply effect that postprocesses the result of the
 | |
|   // transfer effect because getting unpremultiplied results from the transfer
 | |
|   // filters is part of the FilterNode API.
 | |
|   HRESULT hr;
 | |
| 
 | |
|   hr = aDC->CreateEffect(CLSID_D2D1Premultiply, getter_AddRefs(mPrePremultiplyEffect));
 | |
| 
 | |
|   if (FAILED(hr) || !mPrePremultiplyEffect) {
 | |
|     gfxWarning() << "Failed to create ComponentTransfer filter!";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   hr = aDC->CreateEffect(CLSID_D2D1UnPremultiply, getter_AddRefs(mPostUnpremultiplyEffect));
 | |
| 
 | |
|   if (FAILED(hr) || !mPostUnpremultiplyEffect) {
 | |
|     gfxWarning() << "Failed to create ComponentTransfer filter!";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   aFilterNode->InputEffect()->SetInputEffect(0, mPrePremultiplyEffect.get());
 | |
|   mPostUnpremultiplyEffect->SetInputEffect(0, aFilterNode->OutputEffect());
 | |
| }
 | |
| 
 | |
| }
 | |
| }
 | 
