forked from mirrors/gecko-dev
		
	 126bd9e1a4
			
		
	
	
		126bd9e1a4
		
	
	
	
	
		
			
			This patch was generated automatically by the "modeline.py" script, available here: https://github.com/amccreight/moz-source-tools/blob/master/modeline.py For every file that is modified in this patch, the changes are as follows: (1) The patch changes the file to use the exact C++ mode lines from the Mozilla coding style guide, available here: https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style#Mode_Line (2) The patch deletes any blank lines between the mode line & the MPL boilerplate comment. (3) If the file previously had the mode lines and MPL boilerplate in a single contiguous C++ comment, then the patch splits them into separate C++ comments, to match the boilerplate in the coding style. MozReview-Commit-ID: 77D61xpSmIl --HG-- extra : rebase_source : c6162fa3cf539a07177a19838324bf368faa162b
		
			
				
	
	
		
			284 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			284 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| #include "PathHelpers.h"
 | |
| 
 | |
| namespace mozilla {
 | |
| namespace gfx {
 | |
| 
 | |
| UserDataKey sDisablePixelSnapping;
 | |
| 
 | |
| void
 | |
| AppendRectToPath(PathBuilder* aPathBuilder,
 | |
|                  const Rect& aRect,
 | |
|                  bool aDrawClockwise)
 | |
| {
 | |
|   if (aDrawClockwise) {
 | |
|     aPathBuilder->MoveTo(aRect.TopLeft());
 | |
|     aPathBuilder->LineTo(aRect.TopRight());
 | |
|     aPathBuilder->LineTo(aRect.BottomRight());
 | |
|     aPathBuilder->LineTo(aRect.BottomLeft());
 | |
|   } else {
 | |
|     aPathBuilder->MoveTo(aRect.TopRight());
 | |
|     aPathBuilder->LineTo(aRect.TopLeft());
 | |
|     aPathBuilder->LineTo(aRect.BottomLeft());
 | |
|     aPathBuilder->LineTo(aRect.BottomRight());
 | |
|   }
 | |
|   aPathBuilder->Close();
 | |
| }
 | |
| 
 | |
| void
 | |
| AppendRoundedRectToPath(PathBuilder* aPathBuilder,
 | |
|                         const Rect& aRect,
 | |
|                         const RectCornerRadii& aRadii,
 | |
|                         bool aDrawClockwise)
 | |
| {
 | |
|   // For CW drawing, this looks like:
 | |
|   //
 | |
|   //  ...******0**      1    C
 | |
|   //              ****
 | |
|   //                  ***    2
 | |
|   //                     **
 | |
|   //                       *
 | |
|   //                        *
 | |
|   //                         3
 | |
|   //                         *
 | |
|   //                         *
 | |
|   //
 | |
|   // Where 0, 1, 2, 3 are the control points of the Bezier curve for
 | |
|   // the corner, and C is the actual corner point.
 | |
|   //
 | |
|   // At the start of the loop, the current point is assumed to be
 | |
|   // the point adjacent to the top left corner on the top
 | |
|   // horizontal.  Note that corner indices start at the top left and
 | |
|   // continue clockwise, whereas in our loop i = 0 refers to the top
 | |
|   // right corner.
 | |
|   //
 | |
|   // When going CCW, the control points are swapped, and the first
 | |
|   // corner that's drawn is the top left (along with the top segment).
 | |
|   //
 | |
|   // There is considerable latitude in how one chooses the four
 | |
|   // control points for a Bezier curve approximation to an ellipse.
 | |
|   // For the overall path to be continuous and show no corner at the
 | |
|   // endpoints of the arc, points 0 and 3 must be at the ends of the
 | |
|   // straight segments of the rectangle; points 0, 1, and C must be
 | |
|   // collinear; and points 3, 2, and C must also be collinear.  This
 | |
|   // leaves only two free parameters: the ratio of the line segments
 | |
|   // 01 and 0C, and the ratio of the line segments 32 and 3C.  See
 | |
|   // the following papers for extensive discussion of how to choose
 | |
|   // these ratios:
 | |
|   //
 | |
|   //   Dokken, Tor, et al. "Good approximation of circles by
 | |
|   //      curvature-continuous Bezier curves."  Computer-Aided
 | |
|   //      Geometric Design 7(1990) 33--41.
 | |
|   //   Goldapp, Michael. "Approximation of circular arcs by cubic
 | |
|   //      polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
 | |
|   //   Maisonobe, Luc. "Drawing an elliptical arc using polylines,
 | |
|   //      quadratic, or cubic Bezier curves."
 | |
|   //      http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
 | |
|   //
 | |
|   // We follow the approach in section 2 of Goldapp (least-error,
 | |
|   // Hermite-type approximation) and make both ratios equal to
 | |
|   //
 | |
|   //          2   2 + n - sqrt(2n + 28)
 | |
|   //  alpha = - * ---------------------
 | |
|   //          3           n - 4
 | |
|   //
 | |
|   // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
 | |
|   //
 | |
|   // This is the result of Goldapp's equation (10b) when the angle
 | |
|   // swept out by the arc is pi/2, and the parameter "a-bar" is the
 | |
|   // expression given immediately below equation (21).
 | |
|   //
 | |
|   // Using this value, the maximum radial error for a circle, as a
 | |
|   // fraction of the radius, is on the order of 0.2 x 10^-3.
 | |
|   // Neither Dokken nor Goldapp discusses error for a general
 | |
|   // ellipse; Maisonobe does, but his choice of control points
 | |
|   // follows different constraints, and Goldapp's expression for
 | |
|   // 'alpha' gives much smaller radial error, even for very flat
 | |
|   // ellipses, than Maisonobe's equivalent.
 | |
|   //
 | |
|   // For the various corners and for each axis, the sign of this
 | |
|   // constant changes, or it might be 0 -- it's multiplied by the
 | |
|   // appropriate multiplier from the list before using.
 | |
| 
 | |
|   const Float alpha = Float(0.55191497064665766025);
 | |
| 
 | |
|   typedef struct { Float a, b; } twoFloats;
 | |
| 
 | |
|   twoFloats cwCornerMults[4] = { { -1,  0 },    // cc == clockwise
 | |
|                                  {  0, -1 },
 | |
|                                  { +1,  0 },
 | |
|                                  {  0, +1 } };
 | |
|   twoFloats ccwCornerMults[4] = { { +1,  0 },   // ccw == counter-clockwise
 | |
|                                   {  0, -1 },
 | |
|                                   { -1,  0 },
 | |
|                                   {  0, +1 } };
 | |
| 
 | |
|   twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
 | |
| 
 | |
|   Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(),
 | |
|                            aRect.BottomRight(), aRect.BottomLeft() };
 | |
| 
 | |
|   Point pc, p0, p1, p2, p3;
 | |
| 
 | |
|   if (aDrawClockwise) {
 | |
|     aPathBuilder->MoveTo(Point(aRect.X() + aRadii[eCornerTopLeft].width,
 | |
|                                aRect.Y()));
 | |
|   } else {
 | |
|     aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aRadii[eCornerTopRight].width,
 | |
|                                aRect.Y()));
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < 4; ++i) {
 | |
|     // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
 | |
|     int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4);
 | |
| 
 | |
|     // i+2 and i+3 respectively.  These are used to index into the corner
 | |
|     // multiplier table, and were deduced by calculating out the long form
 | |
|     // of each corner and finding a pattern in the signs and values.
 | |
|     int i2 = (i+2) % 4;
 | |
|     int i3 = (i+3) % 4;
 | |
| 
 | |
|     pc = cornerCoords[c];
 | |
| 
 | |
|     if (aRadii[c].width > 0.0 && aRadii[c].height > 0.0) {
 | |
|       p0.x = pc.x + cornerMults[i].a * aRadii[c].width;
 | |
|       p0.y = pc.y + cornerMults[i].b * aRadii[c].height;
 | |
| 
 | |
|       p3.x = pc.x + cornerMults[i3].a * aRadii[c].width;
 | |
|       p3.y = pc.y + cornerMults[i3].b * aRadii[c].height;
 | |
| 
 | |
|       p1.x = p0.x + alpha * cornerMults[i2].a * aRadii[c].width;
 | |
|       p1.y = p0.y + alpha * cornerMults[i2].b * aRadii[c].height;
 | |
| 
 | |
|       p2.x = p3.x - alpha * cornerMults[i3].a * aRadii[c].width;
 | |
|       p2.y = p3.y - alpha * cornerMults[i3].b * aRadii[c].height;
 | |
| 
 | |
|       aPathBuilder->LineTo(p0);
 | |
|       aPathBuilder->BezierTo(p1, p2, p3);
 | |
|     } else {
 | |
|       aPathBuilder->LineTo(pc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   aPathBuilder->Close();
 | |
| }
 | |
| 
 | |
| void
 | |
| AppendEllipseToPath(PathBuilder* aPathBuilder,
 | |
|                     const Point& aCenter,
 | |
|                     const Size& aDimensions)
 | |
| {
 | |
|   Size halfDim = aDimensions / 2.f;
 | |
|   Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
 | |
|   RectCornerRadii radii(halfDim.width, halfDim.height);
 | |
| 
 | |
|   AppendRoundedRectToPath(aPathBuilder, rect, radii);
 | |
| }
 | |
| 
 | |
| bool
 | |
| SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
 | |
|                                   const DrawTarget& aDrawTarget,
 | |
|                                   Float aLineWidth)
 | |
| {
 | |
|   Matrix mat = aDrawTarget.GetTransform();
 | |
|   if (mat.HasNonTranslation()) {
 | |
|     return false;
 | |
|   }
 | |
|   if (aP1.x != aP2.x && aP1.y != aP2.y) {
 | |
|     return false; // not a horizontal or vertical line
 | |
|   }
 | |
|   Point p1 = aP1 + mat.GetTranslation(); // into device space
 | |
|   Point p2 = aP2 + mat.GetTranslation();
 | |
|   p1.Round();
 | |
|   p2.Round();
 | |
|   p1 -= mat.GetTranslation(); // back into user space
 | |
|   p2 -= mat.GetTranslation();
 | |
| 
 | |
|   aP1 = p1;
 | |
|   aP2 = p2;
 | |
| 
 | |
|   bool lineWidthIsOdd = (int(aLineWidth) % 2) == 1;
 | |
|   if (lineWidthIsOdd) {
 | |
|     if (aP1.x == aP2.x) {
 | |
|       // snap vertical line, adding 0.5 to align it to be mid-pixel:
 | |
|       aP1 += Point(0.5, 0);
 | |
|       aP2 += Point(0.5, 0);
 | |
|     } else {
 | |
|       // snap horizontal line, adding 0.5 to align it to be mid-pixel:
 | |
|       aP1 += Point(0, 0.5);
 | |
|       aP2 += Point(0, 0.5);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void
 | |
| StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget,
 | |
|                         const ColorPattern& aColor,
 | |
|                         const StrokeOptions& aStrokeOptions)
 | |
| {
 | |
|   if (aRect.IsEmpty()) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Point p1 = aRect.TopLeft();
 | |
|   Point p2 = aRect.BottomLeft();
 | |
|   SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
 | |
|                                     aStrokeOptions.mLineWidth);
 | |
|   aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
 | |
| 
 | |
|   p1 = aRect.BottomLeft();
 | |
|   p2 = aRect.BottomRight();
 | |
|   SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
 | |
|                                     aStrokeOptions.mLineWidth);
 | |
|   aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
 | |
| 
 | |
|   p1 = aRect.TopLeft();
 | |
|   p2 = aRect.TopRight();
 | |
|   SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
 | |
|                                     aStrokeOptions.mLineWidth);
 | |
|   aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
 | |
| 
 | |
|   p1 = aRect.TopRight();
 | |
|   p2 = aRect.BottomRight();
 | |
|   SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
 | |
|                                     aStrokeOptions.mLineWidth);
 | |
|   aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
 | |
| }
 | |
| 
 | |
| // The logic for this comes from _cairo_stroke_style_max_distance_from_path
 | |
| Margin
 | |
| MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
 | |
|                  const Matrix& aTransform)
 | |
| {
 | |
|   double styleExpansionFactor = 0.5f;
 | |
| 
 | |
|   if (aStrokeOptions.mLineCap == CapStyle::SQUARE) {
 | |
|     styleExpansionFactor = M_SQRT1_2;
 | |
|   }
 | |
| 
 | |
|   if (aStrokeOptions.mLineJoin == JoinStyle::MITER &&
 | |
|       styleExpansionFactor < M_SQRT2 * aStrokeOptions.mMiterLimit) {
 | |
|     styleExpansionFactor = M_SQRT2 * aStrokeOptions.mMiterLimit;
 | |
|   }
 | |
| 
 | |
|   styleExpansionFactor *= aStrokeOptions.mLineWidth;
 | |
| 
 | |
|   double dx = styleExpansionFactor * hypot(aTransform._11, aTransform._21);
 | |
|   double dy = styleExpansionFactor * hypot(aTransform._22, aTransform._12);
 | |
| 
 | |
|   // Even if the stroke only partially covers a pixel, it must still render to
 | |
|   // full pixels. Round up to compensate for this.
 | |
|   dx = ceil(dx);
 | |
|   dy = ceil(dy);
 | |
| 
 | |
|   return Margin(dy, dx, dy, dx);
 | |
| }
 | |
| 
 | |
| } // namespace gfx
 | |
| } // namespace mozilla
 |