forked from mirrors/gecko-dev
		
	 126bd9e1a4
			
		
	
	
		126bd9e1a4
		
	
	
	
	
		
			
			This patch was generated automatically by the "modeline.py" script, available here: https://github.com/amccreight/moz-source-tools/blob/master/modeline.py For every file that is modified in this patch, the changes are as follows: (1) The patch changes the file to use the exact C++ mode lines from the Mozilla coding style guide, available here: https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style#Mode_Line (2) The patch deletes any blank lines between the mode line & the MPL boilerplate comment. (3) If the file previously had the mode lines and MPL boilerplate in a single contiguous C++ comment, then the patch splits them into separate C++ comments, to match the boilerplate in the coding style. MozReview-Commit-ID: 77D61xpSmIl --HG-- extra : rebase_source : c6162fa3cf539a07177a19838324bf368faa162b
		
			
				
	
	
		
			1181 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1181 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| #ifndef _MOZILLA_GFX_SIMD_H_
 | |
| #define _MOZILLA_GFX_SIMD_H_
 | |
| 
 | |
| /**
 | |
|  * Consumers of this file need to #define SIMD_COMPILE_SSE2 before including it
 | |
|  * if they want access to the SSE2 functions.
 | |
|  */
 | |
| 
 | |
| #ifdef SIMD_COMPILE_SSE2
 | |
| #include <xmmintrin.h>
 | |
| #endif
 | |
| 
 | |
| namespace mozilla {
 | |
| namespace gfx {
 | |
| 
 | |
| namespace simd {
 | |
| 
 | |
| template<typename u8x16_t>
 | |
| u8x16_t Load8(const uint8_t* aSource);
 | |
| 
 | |
| template<typename u8x16_t>
 | |
| u8x16_t From8(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h,
 | |
|               uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p);
 | |
| 
 | |
| template<typename u8x16_t>
 | |
| u8x16_t FromZero8();
 | |
| 
 | |
| template<typename i16x8_t>
 | |
| i16x8_t FromI16(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e, int16_t f, int16_t g, int16_t h);
 | |
| 
 | |
| template<typename u16x8_t>
 | |
| u16x8_t FromU16(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h);
 | |
| 
 | |
| template<typename i16x8_t>
 | |
| i16x8_t FromI16(int16_t a);
 | |
| 
 | |
| template<typename u16x8_t>
 | |
| u16x8_t FromU16(uint16_t a);
 | |
| 
 | |
| template<typename i32x4_t>
 | |
| i32x4_t From32(int32_t a, int32_t b, int32_t c, int32_t d);
 | |
| 
 | |
| template<typename i32x4_t>
 | |
| i32x4_t From32(int32_t a);
 | |
| 
 | |
| template<typename f32x4_t>
 | |
| f32x4_t FromF32(float a, float b, float c, float d);
 | |
| 
 | |
| template<typename f32x4_t>
 | |
| f32x4_t FromF32(float a);
 | |
| 
 | |
| // All SIMD backends overload these functions for their SIMD types:
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| // Store 16 bytes to a 16-byte aligned address
 | |
| void Store8(uint8_t* aTarget, u8x16_t aM);
 | |
| 
 | |
| // Fixed shifts
 | |
| template<int32_t aNumberOfBits> i16x8_t ShiftRight16(i16x8_t aM);
 | |
| template<int32_t aNumberOfBits> i32x4_t ShiftRight32(i32x4_t aM);
 | |
| 
 | |
| i16x8_t Add16(i16x8_t aM1, i16x8_t aM2);
 | |
| i32x4_t Add32(i32x4_t aM1, i32x4_t aM2);
 | |
| i16x8_t Sub16(i16x8_t aM1, i16x8_t aM2);
 | |
| i32x4_t Sub32(i32x4_t aM1, i32x4_t aM2);
 | |
| u8x16_t Min8(u8x16_t aM1, iu8x16_t aM2);
 | |
| u8x16_t Max8(u8x16_t aM1, iu8x16_t aM2);
 | |
| i32x4_t Min32(i32x4_t aM1, i32x4_t aM2);
 | |
| i32x4_t Max32(i32x4_t aM1, i32x4_t aM2);
 | |
| 
 | |
| // Truncating i16 -> i16 multiplication
 | |
| i16x8_t Mul16(i16x8_t aM1, i16x8_t aM2);
 | |
| 
 | |
| // Long multiplication i16 -> i32
 | |
| // aFactorsA1B1 = (a1[4] b1[4])
 | |
| // aFactorsA2B2 = (a2[4] b2[4])
 | |
| // aProductA = a1 * a2, aProductB = b1 * b2
 | |
| void Mul16x4x2x2To32x4x2(i16x8_t aFactorsA1B1, i16x8_t aFactorsA2B2,
 | |
|                          i32x4_t& aProductA, i32x4_t& aProductB);
 | |
| 
 | |
| // Long multiplication + pairwise addition i16 -> i32
 | |
| // See the scalar implementation for specifics.
 | |
| i32x4_t MulAdd16x8x2To32x4(i16x8_t aFactorsA, i16x8_t aFactorsB);
 | |
| i32x4_t MulAdd16x8x2To32x4(u16x8_t aFactorsA, u16x8_t aFactorsB);
 | |
| 
 | |
| // Set all four 32-bit components to the value of the component at aIndex.
 | |
| template<int8_t aIndex>
 | |
| i32x4_t Splat32(i32x4_t aM);
 | |
| 
 | |
| // Interpret the input as four 32-bit values, apply Splat32<aIndex> on them,
 | |
| // re-interpret the result as sixteen 8-bit values.
 | |
| template<int8_t aIndex>
 | |
| u8x16_t Splat32On8(u8x16_t aM);
 | |
| 
 | |
| template<int8_t i0, int8_t i1, int8_t i2, int8_t i3> i32x4 Shuffle32(i32x4 aM);
 | |
| template<int8_t i0, int8_t i1, int8_t i2, int8_t i3> i16x8 ShuffleLo16(i16x8 aM);
 | |
| template<int8_t i0, int8_t i1, int8_t i2, int8_t i3> i16x8 ShuffleHi16(i16x8 aM);
 | |
| 
 | |
| u8x16_t InterleaveLo8(u8x16_t m1, u8x16_t m2);
 | |
| u8x16_t InterleaveHi8(u8x16_t m1, u8x16_t m2);
 | |
| i16x8_t InterleaveLo16(i16x8_t m1, i16x8_t m2);
 | |
| i16x8_t InterleaveHi16(i16x8_t m1, i16x8_t m2);
 | |
| i32x4_t InterleaveLo32(i32x4_t m1, i32x4_t m2);
 | |
| 
 | |
| i16x8_t UnpackLo8x8ToI16x8(u8x16_t m);
 | |
| i16x8_t UnpackHi8x8ToI16x8(u8x16_t m);
 | |
| u16x8_t UnpackLo8x8ToU16x8(u8x16_t m);
 | |
| u16x8_t UnpackHi8x8ToU16x8(u8x16_t m);
 | |
| 
 | |
| i16x8_t PackAndSaturate32To16(i32x4_t m1, i32x4_t m2);
 | |
| u8x16_t PackAndSaturate16To8(i16x8_t m1, i16x8_t m2);
 | |
| u8x16_t PackAndSaturate32To8(i32x4_t m1, i32x4_t m2, i32x4_t m3, const i32x4_t& m4);
 | |
| 
 | |
| i32x4 FastDivideBy255(i32x4 m);
 | |
| i16x8 FastDivideBy255_16(i16x8 m);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // Scalar
 | |
| 
 | |
| struct Scalaru8x16_t {
 | |
|   uint8_t u8[16];
 | |
| };
 | |
| 
 | |
| union Scalari16x8_t {
 | |
|   int16_t i16[8];
 | |
|   uint16_t u16[8];
 | |
| };
 | |
| 
 | |
| typedef Scalari16x8_t Scalaru16x8_t;
 | |
| 
 | |
| struct Scalari32x4_t {
 | |
|   int32_t i32[4];
 | |
| };
 | |
| 
 | |
| struct Scalarf32x4_t {
 | |
|   float f32[4];
 | |
| };
 | |
| 
 | |
| template<>
 | |
| inline Scalaru8x16_t
 | |
| Load8<Scalaru8x16_t>(const uint8_t* aSource)
 | |
| {
 | |
|   return *(Scalaru8x16_t*)aSource;
 | |
| }
 | |
| 
 | |
| inline void Store8(uint8_t* aTarget, Scalaru8x16_t aM)
 | |
| {
 | |
|   *(Scalaru8x16_t*)aTarget = aM;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalaru8x16_t From8<Scalaru8x16_t>(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h,
 | |
|                                           uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p)
 | |
| {
 | |
|   Scalaru8x16_t _m;
 | |
|   _m.u8[0] = a;
 | |
|   _m.u8[1] = b;
 | |
|   _m.u8[2] = c;
 | |
|   _m.u8[3] = d;
 | |
|   _m.u8[4] = e;
 | |
|   _m.u8[5] = f;
 | |
|   _m.u8[6] = g;
 | |
|   _m.u8[7] = h;
 | |
|   _m.u8[8+0] = i;
 | |
|   _m.u8[8+1] = j;
 | |
|   _m.u8[8+2] = k;
 | |
|   _m.u8[8+3] = l;
 | |
|   _m.u8[8+4] = m;
 | |
|   _m.u8[8+5] = n;
 | |
|   _m.u8[8+6] = o;
 | |
|   _m.u8[8+7] = p;
 | |
|   return _m;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalaru8x16_t FromZero8<Scalaru8x16_t>()
 | |
| {
 | |
|   return From8<Scalaru8x16_t>(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalari16x8_t FromI16<Scalari16x8_t>(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e, int16_t f, int16_t g, int16_t h)
 | |
| {
 | |
|   Scalari16x8_t m;
 | |
|   m.i16[0] = a;
 | |
|   m.i16[1] = b;
 | |
|   m.i16[2] = c;
 | |
|   m.i16[3] = d;
 | |
|   m.i16[4] = e;
 | |
|   m.i16[5] = f;
 | |
|   m.i16[6] = g;
 | |
|   m.i16[7] = h;
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalaru16x8_t FromU16<Scalaru16x8_t>(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h)
 | |
| {
 | |
|   Scalaru16x8_t m;
 | |
|   m.u16[0] = a;
 | |
|   m.u16[1] = b;
 | |
|   m.u16[2] = c;
 | |
|   m.u16[3] = d;
 | |
|   m.u16[4] = e;
 | |
|   m.u16[5] = f;
 | |
|   m.u16[6] = g;
 | |
|   m.u16[7] = h;
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalari16x8_t FromI16<Scalari16x8_t>(int16_t a)
 | |
| {
 | |
|   return FromI16<Scalari16x8_t>(a, a, a, a, a, a, a, a);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalaru16x8_t FromU16<Scalaru16x8_t>(uint16_t a)
 | |
| {
 | |
|   return FromU16<Scalaru16x8_t>(a, a, a, a, a, a, a, a);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalari32x4_t From32<Scalari32x4_t>(int32_t a, int32_t b, int32_t c, int32_t d)
 | |
| {
 | |
|   Scalari32x4_t m;
 | |
|   m.i32[0] = a;
 | |
|   m.i32[1] = b;
 | |
|   m.i32[2] = c;
 | |
|   m.i32[3] = d;
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalarf32x4_t FromF32<Scalarf32x4_t>(float a, float b, float c, float d)
 | |
| {
 | |
|   Scalarf32x4_t m;
 | |
|   m.f32[0] = a;
 | |
|   m.f32[1] = b;
 | |
|   m.f32[2] = c;
 | |
|   m.f32[3] = d;
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalarf32x4_t FromF32<Scalarf32x4_t>(float a)
 | |
| {
 | |
|   return FromF32<Scalarf32x4_t>(a, a, a, a);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Scalari32x4_t From32<Scalari32x4_t>(int32_t a)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(a, a, a, a);
 | |
| }
 | |
| 
 | |
| template<int32_t aNumberOfBits>
 | |
| inline Scalari16x8_t ShiftRight16(Scalari16x8_t aM)
 | |
| {
 | |
|   return FromI16<Scalari16x8_t>(uint16_t(aM.i16[0]) >> aNumberOfBits, uint16_t(aM.i16[1]) >> aNumberOfBits,
 | |
|                                uint16_t(aM.i16[2]) >> aNumberOfBits, uint16_t(aM.i16[3]) >> aNumberOfBits,
 | |
|                                uint16_t(aM.i16[4]) >> aNumberOfBits, uint16_t(aM.i16[5]) >> aNumberOfBits,
 | |
|                                uint16_t(aM.i16[6]) >> aNumberOfBits, uint16_t(aM.i16[7]) >> aNumberOfBits);
 | |
| }
 | |
| 
 | |
| template<int32_t aNumberOfBits>
 | |
| inline Scalari32x4_t ShiftRight32(Scalari32x4_t aM)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(aM.i32[0] >> aNumberOfBits, aM.i32[1] >> aNumberOfBits,
 | |
|                                aM.i32[2] >> aNumberOfBits, aM.i32[3] >> aNumberOfBits);
 | |
| }
 | |
| 
 | |
| inline Scalaru16x8_t Add16(Scalaru16x8_t aM1, Scalaru16x8_t aM2)
 | |
| {
 | |
|   return FromU16<Scalaru16x8_t>(aM1.u16[0] + aM2.u16[0], aM1.u16[1] + aM2.u16[1],
 | |
|                                aM1.u16[2] + aM2.u16[2], aM1.u16[3] + aM2.u16[3],
 | |
|                                aM1.u16[4] + aM2.u16[4], aM1.u16[5] + aM2.u16[5],
 | |
|                                aM1.u16[6] + aM2.u16[6], aM1.u16[7] + aM2.u16[7]);
 | |
| }
 | |
| 
 | |
| inline Scalari32x4_t Add32(Scalari32x4_t aM1, Scalari32x4_t aM2)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(aM1.i32[0] + aM2.i32[0], aM1.i32[1] + aM2.i32[1],
 | |
|                                aM1.i32[2] + aM2.i32[2], aM1.i32[3] + aM2.i32[3]);
 | |
| }
 | |
| 
 | |
| inline Scalaru16x8_t Sub16(Scalaru16x8_t aM1, Scalaru16x8_t aM2)
 | |
| {
 | |
|   return FromU16<Scalaru16x8_t>(aM1.u16[0] - aM2.u16[0], aM1.u16[1] - aM2.u16[1],
 | |
|                                aM1.u16[2] - aM2.u16[2], aM1.u16[3] - aM2.u16[3],
 | |
|                                aM1.u16[4] - aM2.u16[4], aM1.u16[5] - aM2.u16[5],
 | |
|                                aM1.u16[6] - aM2.u16[6], aM1.u16[7] - aM2.u16[7]);
 | |
| }
 | |
| 
 | |
| inline Scalari32x4_t Sub32(Scalari32x4_t aM1, Scalari32x4_t aM2)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(aM1.i32[0] - aM2.i32[0], aM1.i32[1] - aM2.i32[1],
 | |
|                                aM1.i32[2] - aM2.i32[2], aM1.i32[3] - aM2.i32[3]);
 | |
| }
 | |
| 
 | |
| inline int32_t
 | |
| umin(int32_t a, int32_t b)
 | |
| {
 | |
|   return a - ((a - b) & -(a > b));
 | |
| }
 | |
| 
 | |
| inline int32_t
 | |
| umax(int32_t a, int32_t b)
 | |
| {
 | |
|   return a - ((a - b) & -(a < b));
 | |
| }
 | |
| 
 | |
| inline Scalaru8x16_t Min8(Scalaru8x16_t aM1, Scalaru8x16_t aM2)
 | |
| {
 | |
|   return From8<Scalaru8x16_t>(umin(aM1.u8[0], aM2.u8[0]), umin(aM1.u8[1], aM2.u8[1]),
 | |
|                               umin(aM1.u8[2], aM2.u8[2]), umin(aM1.u8[3], aM2.u8[3]),
 | |
|                               umin(aM1.u8[4], aM2.u8[4]), umin(aM1.u8[5], aM2.u8[5]),
 | |
|                               umin(aM1.u8[6], aM2.u8[6]), umin(aM1.u8[7], aM2.u8[7]),
 | |
|                               umin(aM1.u8[8+0], aM2.u8[8+0]), umin(aM1.u8[8+1], aM2.u8[8+1]),
 | |
|                               umin(aM1.u8[8+2], aM2.u8[8+2]), umin(aM1.u8[8+3], aM2.u8[8+3]),
 | |
|                               umin(aM1.u8[8+4], aM2.u8[8+4]), umin(aM1.u8[8+5], aM2.u8[8+5]),
 | |
|                               umin(aM1.u8[8+6], aM2.u8[8+6]), umin(aM1.u8[8+7], aM2.u8[8+7]));
 | |
| }
 | |
| 
 | |
| inline Scalaru8x16_t Max8(Scalaru8x16_t aM1, Scalaru8x16_t aM2)
 | |
| {
 | |
|   return From8<Scalaru8x16_t>(umax(aM1.u8[0], aM2.u8[0]), umax(aM1.u8[1], aM2.u8[1]),
 | |
|                               umax(aM1.u8[2], aM2.u8[2]), umax(aM1.u8[3], aM2.u8[3]),
 | |
|                               umax(aM1.u8[4], aM2.u8[4]), umax(aM1.u8[5], aM2.u8[5]),
 | |
|                               umax(aM1.u8[6], aM2.u8[6]), umax(aM1.u8[7], aM2.u8[7]),
 | |
|                               umax(aM1.u8[8+0], aM2.u8[8+0]), umax(aM1.u8[8+1], aM2.u8[8+1]),
 | |
|                               umax(aM1.u8[8+2], aM2.u8[8+2]), umax(aM1.u8[8+3], aM2.u8[8+3]),
 | |
|                               umax(aM1.u8[8+4], aM2.u8[8+4]), umax(aM1.u8[8+5], aM2.u8[8+5]),
 | |
|                               umax(aM1.u8[8+6], aM2.u8[8+6]), umax(aM1.u8[8+7], aM2.u8[8+7]));
 | |
| }
 | |
| 
 | |
| inline Scalari32x4_t Min32(Scalari32x4_t aM1, Scalari32x4_t aM2)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(umin(aM1.i32[0], aM2.i32[0]), umin(aM1.i32[1], aM2.i32[1]),
 | |
|                                umin(aM1.i32[2], aM2.i32[2]), umin(aM1.i32[3], aM2.i32[3]));
 | |
| }
 | |
| 
 | |
| inline Scalari32x4_t Max32(Scalari32x4_t aM1, Scalari32x4_t aM2)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(umax(aM1.i32[0], aM2.i32[0]), umax(aM1.i32[1], aM2.i32[1]),
 | |
|                                umax(aM1.i32[2], aM2.i32[2]), umax(aM1.i32[3], aM2.i32[3]));
 | |
| }
 | |
| 
 | |
| inline Scalaru16x8_t Mul16(Scalaru16x8_t aM1, Scalaru16x8_t aM2)
 | |
| {
 | |
|   return FromU16<Scalaru16x8_t>(uint16_t(int32_t(aM1.u16[0]) * int32_t(aM2.u16[0])), uint16_t(int32_t(aM1.u16[1]) * int32_t(aM2.u16[1])),
 | |
|                                 uint16_t(int32_t(aM1.u16[2]) * int32_t(aM2.u16[2])), uint16_t(int32_t(aM1.u16[3]) * int32_t(aM2.u16[3])),
 | |
|                                 uint16_t(int32_t(aM1.u16[4]) * int32_t(aM2.u16[4])), uint16_t(int32_t(aM1.u16[5]) * int32_t(aM2.u16[5])),
 | |
|                                 uint16_t(int32_t(aM1.u16[6]) * int32_t(aM2.u16[6])), uint16_t(int32_t(aM1.u16[7]) * int32_t(aM2.u16[7])));
 | |
| }
 | |
| 
 | |
| inline void Mul16x4x2x2To32x4x2(Scalari16x8_t aFactorsA1B1,
 | |
|                                 Scalari16x8_t aFactorsA2B2,
 | |
|                                 Scalari32x4_t& aProductA,
 | |
|                                 Scalari32x4_t& aProductB)
 | |
| {
 | |
|   aProductA = From32<Scalari32x4_t>(aFactorsA1B1.i16[0] * aFactorsA2B2.i16[0],
 | |
|                                     aFactorsA1B1.i16[1] * aFactorsA2B2.i16[1],
 | |
|                                     aFactorsA1B1.i16[2] * aFactorsA2B2.i16[2],
 | |
|                                     aFactorsA1B1.i16[3] * aFactorsA2B2.i16[3]);
 | |
|   aProductB = From32<Scalari32x4_t>(aFactorsA1B1.i16[4] * aFactorsA2B2.i16[4],
 | |
|                                     aFactorsA1B1.i16[5] * aFactorsA2B2.i16[5],
 | |
|                                     aFactorsA1B1.i16[6] * aFactorsA2B2.i16[6],
 | |
|                                     aFactorsA1B1.i16[7] * aFactorsA2B2.i16[7]);
 | |
| }
 | |
| 
 | |
| inline Scalari32x4_t MulAdd16x8x2To32x4(Scalari16x8_t aFactorsA,
 | |
|                                         Scalari16x8_t aFactorsB)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(aFactorsA.i16[0] * aFactorsB.i16[0] + aFactorsA.i16[1] * aFactorsB.i16[1],
 | |
|                                aFactorsA.i16[2] * aFactorsB.i16[2] + aFactorsA.i16[3] * aFactorsB.i16[3],
 | |
|                                aFactorsA.i16[4] * aFactorsB.i16[4] + aFactorsA.i16[5] * aFactorsB.i16[5],
 | |
|                                aFactorsA.i16[6] * aFactorsB.i16[6] + aFactorsA.i16[7] * aFactorsB.i16[7]);
 | |
| }
 | |
| 
 | |
| template<int8_t aIndex>
 | |
| inline void AssertIndex()
 | |
| {
 | |
|   static_assert(aIndex == 0 || aIndex == 1 || aIndex == 2 || aIndex == 3,
 | |
|                 "Invalid splat index");
 | |
| }
 | |
| 
 | |
| template<int8_t aIndex>
 | |
| inline Scalari32x4_t Splat32(Scalari32x4_t aM)
 | |
| {
 | |
|   AssertIndex<aIndex>();
 | |
|   return From32<Scalari32x4_t>(aM.i32[aIndex], aM.i32[aIndex],
 | |
|                                aM.i32[aIndex], aM.i32[aIndex]);
 | |
| }
 | |
| 
 | |
| template<int8_t i>
 | |
| inline Scalaru8x16_t Splat32On8(Scalaru8x16_t aM)
 | |
| {
 | |
|   AssertIndex<i>();
 | |
|   return From8<Scalaru8x16_t>(aM.u8[i*4], aM.u8[i*4+1], aM.u8[i*4+2], aM.u8[i*4+3],
 | |
|                               aM.u8[i*4], aM.u8[i*4+1], aM.u8[i*4+2], aM.u8[i*4+3],
 | |
|                               aM.u8[i*4], aM.u8[i*4+1], aM.u8[i*4+2], aM.u8[i*4+3],
 | |
|                               aM.u8[i*4], aM.u8[i*4+1], aM.u8[i*4+2], aM.u8[i*4+3]);
 | |
| }
 | |
| 
 | |
| template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
 | |
| inline Scalari32x4_t Shuffle32(Scalari32x4_t aM)
 | |
| {
 | |
|   AssertIndex<i0>();
 | |
|   AssertIndex<i1>();
 | |
|   AssertIndex<i2>();
 | |
|   AssertIndex<i3>();
 | |
|   Scalari32x4_t m = aM;
 | |
|   m.i32[0] = aM.i32[i3];
 | |
|   m.i32[1] = aM.i32[i2];
 | |
|   m.i32[2] = aM.i32[i1];
 | |
|   m.i32[3] = aM.i32[i0];
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
 | |
| inline Scalari16x8_t ShuffleLo16(Scalari16x8_t aM)
 | |
| {
 | |
|   AssertIndex<i0>();
 | |
|   AssertIndex<i1>();
 | |
|   AssertIndex<i2>();
 | |
|   AssertIndex<i3>();
 | |
|   Scalari16x8_t m = aM;
 | |
|   m.i16[0] = aM.i16[i3];
 | |
|   m.i16[1] = aM.i16[i2];
 | |
|   m.i16[2] = aM.i16[i1];
 | |
|   m.i16[3] = aM.i16[i0];
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
 | |
| inline Scalari16x8_t ShuffleHi16(Scalari16x8_t aM)
 | |
| {
 | |
|   AssertIndex<i0>();
 | |
|   AssertIndex<i1>();
 | |
|   AssertIndex<i2>();
 | |
|   AssertIndex<i3>();
 | |
|   Scalari16x8_t m = aM;
 | |
|   m.i16[4 + 0] = aM.i16[4 + i3];
 | |
|   m.i16[4 + 1] = aM.i16[4 + i2];
 | |
|   m.i16[4 + 2] = aM.i16[4 + i1];
 | |
|   m.i16[4 + 3] = aM.i16[4 + i0];
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<int8_t aIndexLo, int8_t aIndexHi>
 | |
| inline Scalaru16x8_t Splat16(Scalaru16x8_t aM)
 | |
| {
 | |
|   AssertIndex<aIndexLo>();
 | |
|   AssertIndex<aIndexHi>();
 | |
|   Scalaru16x8_t m;
 | |
|   int16_t chosenValueLo = aM.u16[aIndexLo];
 | |
|   m.u16[0] = chosenValueLo;
 | |
|   m.u16[1] = chosenValueLo;
 | |
|   m.u16[2] = chosenValueLo;
 | |
|   m.u16[3] = chosenValueLo;
 | |
|   int16_t chosenValueHi = aM.u16[4 + aIndexHi];
 | |
|   m.u16[4] = chosenValueHi;
 | |
|   m.u16[5] = chosenValueHi;
 | |
|   m.u16[6] = chosenValueHi;
 | |
|   m.u16[7] = chosenValueHi;
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| inline Scalaru8x16_t
 | |
| InterleaveLo8(Scalaru8x16_t m1, Scalaru8x16_t m2)
 | |
| {
 | |
|   return From8<Scalaru8x16_t>(m1.u8[0], m2.u8[0], m1.u8[1], m2.u8[1],
 | |
|                               m1.u8[2], m2.u8[2], m1.u8[3], m2.u8[3],
 | |
|                               m1.u8[4], m2.u8[4], m1.u8[5], m2.u8[5],
 | |
|                               m1.u8[6], m2.u8[6], m1.u8[7], m2.u8[7]);
 | |
| }
 | |
| 
 | |
| inline Scalaru8x16_t
 | |
| InterleaveHi8(Scalaru8x16_t m1, Scalaru8x16_t m2)
 | |
| {
 | |
|   return From8<Scalaru8x16_t>(m1.u8[8+0], m2.u8[8+0], m1.u8[8+1], m2.u8[8+1],
 | |
|                               m1.u8[8+2], m2.u8[8+2], m1.u8[8+3], m2.u8[8+3],
 | |
|                               m1.u8[8+4], m2.u8[8+4], m1.u8[8+5], m2.u8[8+5],
 | |
|                               m1.u8[8+6], m2.u8[8+6], m1.u8[8+7], m2.u8[8+7]);
 | |
| }
 | |
| 
 | |
| inline Scalaru16x8_t
 | |
| InterleaveLo16(Scalaru16x8_t m1, Scalaru16x8_t m2)
 | |
| {
 | |
|   return FromU16<Scalaru16x8_t>(m1.u16[0], m2.u16[0], m1.u16[1], m2.u16[1],
 | |
|                                m1.u16[2], m2.u16[2], m1.u16[3], m2.u16[3]);
 | |
| }
 | |
| 
 | |
| inline Scalaru16x8_t
 | |
| InterleaveHi16(Scalaru16x8_t m1, Scalaru16x8_t m2)
 | |
| {
 | |
|   return FromU16<Scalaru16x8_t>(m1.u16[4], m2.u16[4], m1.u16[5], m2.u16[5],
 | |
|                                m1.u16[6], m2.u16[6], m1.u16[7], m2.u16[7]);
 | |
| }
 | |
| 
 | |
| inline Scalari32x4_t
 | |
| InterleaveLo32(Scalari32x4_t m1, Scalari32x4_t m2)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(m1.i32[0], m2.i32[0], m1.i32[1], m2.i32[1]);
 | |
| }
 | |
| 
 | |
| inline Scalari16x8_t
 | |
| UnpackLo8x8ToI16x8(Scalaru8x16_t aM)
 | |
| {
 | |
|   Scalari16x8_t m;
 | |
|   m.i16[0] = aM.u8[0];
 | |
|   m.i16[1] = aM.u8[1];
 | |
|   m.i16[2] = aM.u8[2];
 | |
|   m.i16[3] = aM.u8[3];
 | |
|   m.i16[4] = aM.u8[4];
 | |
|   m.i16[5] = aM.u8[5];
 | |
|   m.i16[6] = aM.u8[6];
 | |
|   m.i16[7] = aM.u8[7];
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| inline Scalari16x8_t
 | |
| UnpackHi8x8ToI16x8(Scalaru8x16_t aM)
 | |
| {
 | |
|   Scalari16x8_t m;
 | |
|   m.i16[0] = aM.u8[8+0];
 | |
|   m.i16[1] = aM.u8[8+1];
 | |
|   m.i16[2] = aM.u8[8+2];
 | |
|   m.i16[3] = aM.u8[8+3];
 | |
|   m.i16[4] = aM.u8[8+4];
 | |
|   m.i16[5] = aM.u8[8+5];
 | |
|   m.i16[6] = aM.u8[8+6];
 | |
|   m.i16[7] = aM.u8[8+7];
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| inline Scalaru16x8_t
 | |
| UnpackLo8x8ToU16x8(Scalaru8x16_t aM)
 | |
| {
 | |
|   return FromU16<Scalaru16x8_t>(uint16_t(aM.u8[0]), uint16_t(aM.u8[1]), uint16_t(aM.u8[2]), uint16_t(aM.u8[3]),
 | |
|                                 uint16_t(aM.u8[4]), uint16_t(aM.u8[5]), uint16_t(aM.u8[6]), uint16_t(aM.u8[7]));
 | |
| }
 | |
| 
 | |
| inline Scalaru16x8_t
 | |
| UnpackHi8x8ToU16x8(Scalaru8x16_t aM)
 | |
| {
 | |
|   return FromU16<Scalaru16x8_t>(aM.u8[8+0], aM.u8[8+1], aM.u8[8+2], aM.u8[8+3],
 | |
|                                 aM.u8[8+4], aM.u8[8+5], aM.u8[8+6], aM.u8[8+7]);
 | |
| }
 | |
| 
 | |
| template<uint8_t aNumBytes>
 | |
| inline Scalaru8x16_t
 | |
| Rotate8(Scalaru8x16_t a1234, Scalaru8x16_t a5678)
 | |
| {
 | |
|   Scalaru8x16_t m;
 | |
|   for (uint8_t i = 0; i < 16; i++) {
 | |
|     uint8_t sourceByte = i + aNumBytes;
 | |
|     m.u8[i] = sourceByte < 16 ? a1234.u8[sourceByte] : a5678.u8[sourceByte - 16];
 | |
|   }
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| inline int16_t
 | |
| SaturateTo16(T a)
 | |
| {
 | |
|   return int16_t(a >= INT16_MIN ? (a <= INT16_MAX ? a : INT16_MAX) : INT16_MIN);
 | |
| }
 | |
| 
 | |
| inline Scalari16x8_t
 | |
| PackAndSaturate32To16(Scalari32x4_t m1, Scalari32x4_t m2)
 | |
| {
 | |
|   Scalari16x8_t m;
 | |
|   m.i16[0] = SaturateTo16(m1.i32[0]);
 | |
|   m.i16[1] = SaturateTo16(m1.i32[1]);
 | |
|   m.i16[2] = SaturateTo16(m1.i32[2]);
 | |
|   m.i16[3] = SaturateTo16(m1.i32[3]);
 | |
|   m.i16[4] = SaturateTo16(m2.i32[0]);
 | |
|   m.i16[5] = SaturateTo16(m2.i32[1]);
 | |
|   m.i16[6] = SaturateTo16(m2.i32[2]);
 | |
|   m.i16[7] = SaturateTo16(m2.i32[3]);
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| inline uint16_t
 | |
| SaturateToU16(T a)
 | |
| {
 | |
|   return uint16_t(umin(a & -(a >= 0), INT16_MAX));
 | |
| }
 | |
| 
 | |
| inline Scalaru16x8_t
 | |
| PackAndSaturate32ToU16(Scalari32x4_t m1, Scalari32x4_t m2)
 | |
| {
 | |
|   Scalaru16x8_t m;
 | |
|   m.u16[0] = SaturateToU16(m1.i32[0]);
 | |
|   m.u16[1] = SaturateToU16(m1.i32[1]);
 | |
|   m.u16[2] = SaturateToU16(m1.i32[2]);
 | |
|   m.u16[3] = SaturateToU16(m1.i32[3]);
 | |
|   m.u16[4] = SaturateToU16(m2.i32[0]);
 | |
|   m.u16[5] = SaturateToU16(m2.i32[1]);
 | |
|   m.u16[6] = SaturateToU16(m2.i32[2]);
 | |
|   m.u16[7] = SaturateToU16(m2.i32[3]);
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| inline uint8_t
 | |
| SaturateTo8(T a)
 | |
| {
 | |
|   return uint8_t(umin(a & -(a >= 0), 255));
 | |
| }
 | |
| 
 | |
| inline Scalaru8x16_t
 | |
| PackAndSaturate32To8(Scalari32x4_t m1, Scalari32x4_t m2, Scalari32x4_t m3, const Scalari32x4_t& m4)
 | |
| {
 | |
|   Scalaru8x16_t m;
 | |
|   m.u8[0]  = SaturateTo8(m1.i32[0]);
 | |
|   m.u8[1]  = SaturateTo8(m1.i32[1]);
 | |
|   m.u8[2]  = SaturateTo8(m1.i32[2]);
 | |
|   m.u8[3]  = SaturateTo8(m1.i32[3]);
 | |
|   m.u8[4]  = SaturateTo8(m2.i32[0]);
 | |
|   m.u8[5]  = SaturateTo8(m2.i32[1]);
 | |
|   m.u8[6]  = SaturateTo8(m2.i32[2]);
 | |
|   m.u8[7]  = SaturateTo8(m2.i32[3]);
 | |
|   m.u8[8]  = SaturateTo8(m3.i32[0]);
 | |
|   m.u8[9]  = SaturateTo8(m3.i32[1]);
 | |
|   m.u8[10] = SaturateTo8(m3.i32[2]);
 | |
|   m.u8[11] = SaturateTo8(m3.i32[3]);
 | |
|   m.u8[12] = SaturateTo8(m4.i32[0]);
 | |
|   m.u8[13] = SaturateTo8(m4.i32[1]);
 | |
|   m.u8[14] = SaturateTo8(m4.i32[2]);
 | |
|   m.u8[15] = SaturateTo8(m4.i32[3]);
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| inline Scalaru8x16_t
 | |
| PackAndSaturate16To8(Scalari16x8_t m1, Scalari16x8_t m2)
 | |
| {
 | |
|   Scalaru8x16_t m;
 | |
|   m.u8[0]  = SaturateTo8(m1.i16[0]);
 | |
|   m.u8[1]  = SaturateTo8(m1.i16[1]);
 | |
|   m.u8[2]  = SaturateTo8(m1.i16[2]);
 | |
|   m.u8[3]  = SaturateTo8(m1.i16[3]);
 | |
|   m.u8[4]  = SaturateTo8(m1.i16[4]);
 | |
|   m.u8[5]  = SaturateTo8(m1.i16[5]);
 | |
|   m.u8[6]  = SaturateTo8(m1.i16[6]);
 | |
|   m.u8[7]  = SaturateTo8(m1.i16[7]);
 | |
|   m.u8[8]  = SaturateTo8(m2.i16[0]);
 | |
|   m.u8[9]  = SaturateTo8(m2.i16[1]);
 | |
|   m.u8[10] = SaturateTo8(m2.i16[2]);
 | |
|   m.u8[11] = SaturateTo8(m2.i16[3]);
 | |
|   m.u8[12] = SaturateTo8(m2.i16[4]);
 | |
|   m.u8[13] = SaturateTo8(m2.i16[5]);
 | |
|   m.u8[14] = SaturateTo8(m2.i16[6]);
 | |
|   m.u8[15] = SaturateTo8(m2.i16[7]);
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| // Fast approximate division by 255. It has the property that
 | |
| // for all 0 <= n <= 255*255, FAST_DIVIDE_BY_255(n) == n/255.
 | |
| // But it only uses two adds and two shifts instead of an
 | |
| // integer division (which is expensive on many processors).
 | |
| //
 | |
| // equivalent to v/255
 | |
| template<class B, class A>
 | |
| inline B FastDivideBy255(A v)
 | |
| {
 | |
|   return ((v << 8) + v + 255) >> 16;
 | |
| }
 | |
| 
 | |
| inline Scalaru16x8_t
 | |
| FastDivideBy255_16(Scalaru16x8_t m)
 | |
| {
 | |
|   return FromU16<Scalaru16x8_t>(FastDivideBy255<uint16_t>(int32_t(m.u16[0])),
 | |
|                                 FastDivideBy255<uint16_t>(int32_t(m.u16[1])),
 | |
|                                 FastDivideBy255<uint16_t>(int32_t(m.u16[2])),
 | |
|                                 FastDivideBy255<uint16_t>(int32_t(m.u16[3])),
 | |
|                                 FastDivideBy255<uint16_t>(int32_t(m.u16[4])),
 | |
|                                 FastDivideBy255<uint16_t>(int32_t(m.u16[5])),
 | |
|                                 FastDivideBy255<uint16_t>(int32_t(m.u16[6])),
 | |
|                                 FastDivideBy255<uint16_t>(int32_t(m.u16[7])));
 | |
| }
 | |
| 
 | |
| inline Scalari32x4_t
 | |
| FastDivideBy255(Scalari32x4_t m)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(FastDivideBy255<int32_t>(m.i32[0]),
 | |
|                                FastDivideBy255<int32_t>(m.i32[1]),
 | |
|                                FastDivideBy255<int32_t>(m.i32[2]),
 | |
|                                FastDivideBy255<int32_t>(m.i32[3]));
 | |
| }
 | |
| 
 | |
| inline Scalaru8x16_t
 | |
| Pick(Scalaru8x16_t mask, Scalaru8x16_t a, Scalaru8x16_t b)
 | |
| {
 | |
|   return From8<Scalaru8x16_t>((a.u8[0] & (~mask.u8[0])) | (b.u8[0] & mask.u8[0]),
 | |
|                               (a.u8[1] & (~mask.u8[1])) | (b.u8[1] & mask.u8[1]),
 | |
|                               (a.u8[2] & (~mask.u8[2])) | (b.u8[2] & mask.u8[2]),
 | |
|                               (a.u8[3] & (~mask.u8[3])) | (b.u8[3] & mask.u8[3]),
 | |
|                               (a.u8[4] & (~mask.u8[4])) | (b.u8[4] & mask.u8[4]),
 | |
|                               (a.u8[5] & (~mask.u8[5])) | (b.u8[5] & mask.u8[5]),
 | |
|                               (a.u8[6] & (~mask.u8[6])) | (b.u8[6] & mask.u8[6]),
 | |
|                               (a.u8[7] & (~mask.u8[7])) | (b.u8[7] & mask.u8[7]),
 | |
|                               (a.u8[8+0] & (~mask.u8[8+0])) | (b.u8[8+0] & mask.u8[8+0]),
 | |
|                               (a.u8[8+1] & (~mask.u8[8+1])) | (b.u8[8+1] & mask.u8[8+1]),
 | |
|                               (a.u8[8+2] & (~mask.u8[8+2])) | (b.u8[8+2] & mask.u8[8+2]),
 | |
|                               (a.u8[8+3] & (~mask.u8[8+3])) | (b.u8[8+3] & mask.u8[8+3]),
 | |
|                               (a.u8[8+4] & (~mask.u8[8+4])) | (b.u8[8+4] & mask.u8[8+4]),
 | |
|                               (a.u8[8+5] & (~mask.u8[8+5])) | (b.u8[8+5] & mask.u8[8+5]),
 | |
|                               (a.u8[8+6] & (~mask.u8[8+6])) | (b.u8[8+6] & mask.u8[8+6]),
 | |
|                               (a.u8[8+7] & (~mask.u8[8+7])) | (b.u8[8+7] & mask.u8[8+7]));
 | |
| }
 | |
| 
 | |
| inline Scalari32x4_t
 | |
| Pick(Scalari32x4_t mask, Scalari32x4_t a, Scalari32x4_t b)
 | |
| {
 | |
|   return From32<Scalari32x4_t>((a.i32[0] & (~mask.i32[0])) | (b.i32[0] & mask.i32[0]),
 | |
|                                (a.i32[1] & (~mask.i32[1])) | (b.i32[1] & mask.i32[1]),
 | |
|                                (a.i32[2] & (~mask.i32[2])) | (b.i32[2] & mask.i32[2]),
 | |
|                                (a.i32[3] & (~mask.i32[3])) | (b.i32[3] & mask.i32[3]));
 | |
| }
 | |
| 
 | |
| inline Scalarf32x4_t MixF32(Scalarf32x4_t a, Scalarf32x4_t b, float t)
 | |
| {
 | |
|   return FromF32<Scalarf32x4_t>(a.f32[0] + (b.f32[0] - a.f32[0]) * t,
 | |
|                                 a.f32[1] + (b.f32[1] - a.f32[1]) * t,
 | |
|                                 a.f32[2] + (b.f32[2] - a.f32[2]) * t,
 | |
|                                 a.f32[3] + (b.f32[3] - a.f32[3]) * t);
 | |
| }
 | |
| 
 | |
| inline Scalarf32x4_t WSumF32(Scalarf32x4_t a, Scalarf32x4_t b, float wa, float wb)
 | |
| {
 | |
|   return FromF32<Scalarf32x4_t>(a.f32[0] * wa + b.f32[0] * wb,
 | |
|                                 a.f32[1] * wa + b.f32[1] * wb,
 | |
|                                 a.f32[2] * wa + b.f32[2] * wb,
 | |
|                                 a.f32[3] * wa + b.f32[3] * wb);
 | |
| }
 | |
| 
 | |
| inline Scalarf32x4_t AbsF32(Scalarf32x4_t a)
 | |
| {
 | |
|   return FromF32<Scalarf32x4_t>(fabs(a.f32[0]),
 | |
|                                 fabs(a.f32[1]),
 | |
|                                 fabs(a.f32[2]),
 | |
|                                 fabs(a.f32[3]));
 | |
| }
 | |
| 
 | |
| inline Scalarf32x4_t AddF32(Scalarf32x4_t a, Scalarf32x4_t b)
 | |
| {
 | |
|   return FromF32<Scalarf32x4_t>(a.f32[0] + b.f32[0],
 | |
|                                 a.f32[1] + b.f32[1],
 | |
|                                 a.f32[2] + b.f32[2],
 | |
|                                 a.f32[3] + b.f32[3]);
 | |
| }
 | |
| 
 | |
| inline Scalarf32x4_t MulF32(Scalarf32x4_t a, Scalarf32x4_t b)
 | |
| {
 | |
|   return FromF32<Scalarf32x4_t>(a.f32[0] * b.f32[0],
 | |
|                                 a.f32[1] * b.f32[1],
 | |
|                                 a.f32[2] * b.f32[2],
 | |
|                                 a.f32[3] * b.f32[3]);
 | |
| }
 | |
| 
 | |
| inline Scalarf32x4_t DivF32(Scalarf32x4_t a, Scalarf32x4_t b)
 | |
| {
 | |
|   return FromF32<Scalarf32x4_t>(a.f32[0] / b.f32[0],
 | |
|                                 a.f32[1] / b.f32[1],
 | |
|                                 a.f32[2] / b.f32[2],
 | |
|                                 a.f32[3] / b.f32[3]);
 | |
| }
 | |
| 
 | |
| template<uint8_t aIndex>
 | |
| inline Scalarf32x4_t SplatF32(Scalarf32x4_t m)
 | |
| {
 | |
|   AssertIndex<aIndex>();
 | |
|   return FromF32<Scalarf32x4_t>(m.f32[aIndex],
 | |
|                                 m.f32[aIndex],
 | |
|                                 m.f32[aIndex],
 | |
|                                 m.f32[aIndex]);
 | |
| }
 | |
| 
 | |
| inline Scalari32x4_t F32ToI32(Scalarf32x4_t m)
 | |
| {
 | |
|   return From32<Scalari32x4_t>(int32_t(floor(m.f32[0] + 0.5f)),
 | |
|                                int32_t(floor(m.f32[1] + 0.5f)),
 | |
|                                int32_t(floor(m.f32[2] + 0.5f)),
 | |
|                                int32_t(floor(m.f32[3] + 0.5f)));
 | |
| }
 | |
| 
 | |
| #ifdef SIMD_COMPILE_SSE2
 | |
| 
 | |
| // SSE2
 | |
| 
 | |
| template<>
 | |
| inline __m128i
 | |
| Load8<__m128i>(const uint8_t* aSource)
 | |
| {
 | |
|   return _mm_load_si128((const __m128i*)aSource);
 | |
| }
 | |
| 
 | |
| inline void Store8(uint8_t* aTarget, __m128i aM)
 | |
| {
 | |
|   _mm_store_si128((__m128i*)aTarget, aM);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128i FromZero8<__m128i>()
 | |
| {
 | |
|   return _mm_setzero_si128();
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128i From8<__m128i>(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h,
 | |
|                               uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p)
 | |
| {
 | |
|   return _mm_setr_epi16((b << 8) + a, (d << 8) + c, (e << 8) + f, (h << 8) + g,
 | |
|                         (j << 8) + i, (l << 8) + k, (m << 8) + n, (p << 8) + o);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128i FromI16<__m128i>(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e, int16_t f, int16_t g, int16_t h)
 | |
| {
 | |
|   return _mm_setr_epi16(a, b, c, d, e, f, g, h);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128i FromU16<__m128i>(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h)
 | |
| {
 | |
|   return _mm_setr_epi16(a, b, c, d, e, f, g, h);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128i FromI16<__m128i>(int16_t a)
 | |
| {
 | |
|   return _mm_set1_epi16(a);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128i FromU16<__m128i>(uint16_t a)
 | |
| {
 | |
|   return _mm_set1_epi16((int16_t)a);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128i From32<__m128i>(int32_t a, int32_t b, int32_t c, int32_t d)
 | |
| {
 | |
|   return _mm_setr_epi32(a, b, c, d);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128i From32<__m128i>(int32_t a)
 | |
| {
 | |
|   return _mm_set1_epi32(a);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128 FromF32<__m128>(float a, float b, float c, float d)
 | |
| {
 | |
|   return _mm_setr_ps(a, b, c, d);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline __m128 FromF32<__m128>(float a)
 | |
| {
 | |
|   return _mm_set1_ps(a);
 | |
| }
 | |
| 
 | |
| template<int32_t aNumberOfBits>
 | |
| inline __m128i ShiftRight16(__m128i aM)
 | |
| {
 | |
|   return _mm_srli_epi16(aM, aNumberOfBits);
 | |
| }
 | |
| 
 | |
| template<int32_t aNumberOfBits>
 | |
| inline __m128i ShiftRight32(__m128i aM)
 | |
| {
 | |
|   return _mm_srai_epi32(aM, aNumberOfBits);
 | |
| }
 | |
| 
 | |
| inline __m128i Add16(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   return _mm_add_epi16(aM1, aM2);
 | |
| }
 | |
| 
 | |
| inline __m128i Add32(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   return _mm_add_epi32(aM1, aM2);
 | |
| }
 | |
| 
 | |
| inline __m128i Sub16(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   return _mm_sub_epi16(aM1, aM2);
 | |
| }
 | |
| 
 | |
| inline __m128i Sub32(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   return _mm_sub_epi32(aM1, aM2);
 | |
| }
 | |
| 
 | |
| inline __m128i Min8(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   return _mm_min_epu8(aM1, aM2);
 | |
| }
 | |
| 
 | |
| inline __m128i Max8(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   return _mm_max_epu8(aM1, aM2);
 | |
| }
 | |
| 
 | |
| inline __m128i Min32(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   __m128i m1_minus_m2 = _mm_sub_epi32(aM1, aM2);
 | |
|   __m128i m1_greater_than_m2 = _mm_cmpgt_epi32(aM1, aM2);
 | |
|   return _mm_sub_epi32(aM1, _mm_and_si128(m1_minus_m2, m1_greater_than_m2));
 | |
| }
 | |
| 
 | |
| inline __m128i Max32(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   __m128i m1_minus_m2 = _mm_sub_epi32(aM1, aM2);
 | |
|   __m128i m2_greater_than_m1 = _mm_cmpgt_epi32(aM2, aM1);
 | |
|   return _mm_sub_epi32(aM1, _mm_and_si128(m1_minus_m2, m2_greater_than_m1));
 | |
| }
 | |
| 
 | |
| inline __m128i Mul16(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   return _mm_mullo_epi16(aM1, aM2);
 | |
| }
 | |
| 
 | |
| inline __m128i MulU16(__m128i aM1, __m128i aM2)
 | |
| {
 | |
|   return _mm_mullo_epi16(aM1, aM2);
 | |
| }
 | |
| 
 | |
| inline void Mul16x4x2x2To32x4x2(__m128i aFactorsA1B1,
 | |
|                                 __m128i aFactorsA2B2,
 | |
|                                 __m128i& aProductA,
 | |
|                                 __m128i& aProductB)
 | |
| {
 | |
|   __m128i prodAB_lo = _mm_mullo_epi16(aFactorsA1B1, aFactorsA2B2);
 | |
|   __m128i prodAB_hi = _mm_mulhi_epi16(aFactorsA1B1, aFactorsA2B2);
 | |
|   aProductA = _mm_unpacklo_epi16(prodAB_lo, prodAB_hi);
 | |
|   aProductB = _mm_unpackhi_epi16(prodAB_lo, prodAB_hi);
 | |
| }
 | |
| 
 | |
| inline __m128i MulAdd16x8x2To32x4(__m128i aFactorsA,
 | |
|                                   __m128i aFactorsB)
 | |
| {
 | |
|   return _mm_madd_epi16(aFactorsA, aFactorsB);
 | |
| }
 | |
| 
 | |
| template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
 | |
| inline __m128i Shuffle32(__m128i aM)
 | |
| {
 | |
|   AssertIndex<i0>();
 | |
|   AssertIndex<i1>();
 | |
|   AssertIndex<i2>();
 | |
|   AssertIndex<i3>();
 | |
|   return _mm_shuffle_epi32(aM, _MM_SHUFFLE(i0, i1, i2, i3));
 | |
| }
 | |
| 
 | |
| template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
 | |
| inline __m128i ShuffleLo16(__m128i aM)
 | |
| {
 | |
|   AssertIndex<i0>();
 | |
|   AssertIndex<i1>();
 | |
|   AssertIndex<i2>();
 | |
|   AssertIndex<i3>();
 | |
|   return _mm_shufflelo_epi16(aM, _MM_SHUFFLE(i0, i1, i2, i3));
 | |
| }
 | |
| 
 | |
| template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
 | |
| inline __m128i ShuffleHi16(__m128i aM)
 | |
| {
 | |
|   AssertIndex<i0>();
 | |
|   AssertIndex<i1>();
 | |
|   AssertIndex<i2>();
 | |
|   AssertIndex<i3>();
 | |
|   return _mm_shufflehi_epi16(aM, _MM_SHUFFLE(i0, i1, i2, i3));
 | |
| }
 | |
| 
 | |
| template<int8_t aIndex>
 | |
| inline __m128i Splat32(__m128i aM)
 | |
| {
 | |
|   return Shuffle32<aIndex,aIndex,aIndex,aIndex>(aM);
 | |
| }
 | |
| 
 | |
| template<int8_t aIndex>
 | |
| inline __m128i Splat32On8(__m128i aM)
 | |
| {
 | |
|   return Shuffle32<aIndex,aIndex,aIndex,aIndex>(aM);
 | |
| }
 | |
| 
 | |
| template<int8_t aIndexLo, int8_t aIndexHi>
 | |
| inline __m128i Splat16(__m128i aM)
 | |
| {
 | |
|   AssertIndex<aIndexLo>();
 | |
|   AssertIndex<aIndexHi>();
 | |
|   return ShuffleHi16<aIndexHi,aIndexHi,aIndexHi,aIndexHi>(
 | |
|            ShuffleLo16<aIndexLo,aIndexLo,aIndexLo,aIndexLo>(aM));
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| UnpackLo8x8ToI16x8(__m128i m)
 | |
| {
 | |
|   __m128i zero = _mm_set1_epi8(0);
 | |
|   return _mm_unpacklo_epi8(m, zero);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| UnpackHi8x8ToI16x8(__m128i m)
 | |
| {
 | |
|   __m128i zero = _mm_set1_epi8(0);
 | |
|   return _mm_unpackhi_epi8(m, zero);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| UnpackLo8x8ToU16x8(__m128i m)
 | |
| {
 | |
|   __m128i zero = _mm_set1_epi8(0);
 | |
|   return _mm_unpacklo_epi8(m, zero);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| UnpackHi8x8ToU16x8(__m128i m)
 | |
| {
 | |
|   __m128i zero = _mm_set1_epi8(0);
 | |
|   return _mm_unpackhi_epi8(m, zero);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| InterleaveLo8(__m128i m1, __m128i m2)
 | |
| {
 | |
|   return _mm_unpacklo_epi8(m1, m2);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| InterleaveHi8(__m128i m1, __m128i m2)
 | |
| {
 | |
|   return _mm_unpackhi_epi8(m1, m2);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| InterleaveLo16(__m128i m1, __m128i m2)
 | |
| {
 | |
|   return _mm_unpacklo_epi16(m1, m2);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| InterleaveHi16(__m128i m1, __m128i m2)
 | |
| {
 | |
|   return _mm_unpackhi_epi16(m1, m2);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| InterleaveLo32(__m128i m1, __m128i m2)
 | |
| {
 | |
|   return _mm_unpacklo_epi32(m1, m2);
 | |
| }
 | |
| 
 | |
| template<uint8_t aNumBytes>
 | |
| inline __m128i
 | |
| Rotate8(__m128i a1234, __m128i a5678)
 | |
| {
 | |
|   return _mm_or_si128(_mm_srli_si128(a1234, aNumBytes), _mm_slli_si128(a5678, 16 - aNumBytes));
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| PackAndSaturate32To16(__m128i m1, __m128i m2)
 | |
| {
 | |
|   return _mm_packs_epi32(m1, m2);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| PackAndSaturate32ToU16(__m128i m1, __m128i m2)
 | |
| {
 | |
|   return _mm_packs_epi32(m1, m2);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| PackAndSaturate32To8(__m128i m1, __m128i m2, __m128i m3, const __m128i& m4)
 | |
| {
 | |
|   // Pack into 8 16bit signed integers (saturating).
 | |
|   __m128i m12 = _mm_packs_epi32(m1, m2);
 | |
|   __m128i m34 = _mm_packs_epi32(m3, m4);
 | |
| 
 | |
|   // Pack into 16 8bit unsigned integers (saturating).
 | |
|   return _mm_packus_epi16(m12, m34);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| PackAndSaturate16To8(__m128i m1, __m128i m2)
 | |
| {
 | |
|   // Pack into 16 8bit unsigned integers (saturating).
 | |
|   return _mm_packus_epi16(m1, m2);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| FastDivideBy255(__m128i m)
 | |
| {
 | |
|   // v = m << 8
 | |
|   __m128i v = _mm_slli_epi32(m, 8);
 | |
|   // v = v + (m + (255,255,255,255))
 | |
|   v = _mm_add_epi32(v, _mm_add_epi32(m, _mm_set1_epi32(255)));
 | |
|   // v = v >> 16
 | |
|   return _mm_srai_epi32(v, 16);
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| FastDivideBy255_16(__m128i m)
 | |
| {
 | |
|   __m128i zero = _mm_set1_epi16(0);
 | |
|   __m128i lo = _mm_unpacklo_epi16(m, zero);
 | |
|   __m128i hi = _mm_unpackhi_epi16(m, zero);
 | |
|   return _mm_packs_epi32(FastDivideBy255(lo), FastDivideBy255(hi));
 | |
| }
 | |
| 
 | |
| inline __m128i
 | |
| Pick(__m128i mask, __m128i a, __m128i b)
 | |
| {
 | |
|   return _mm_or_si128(_mm_andnot_si128(mask, a), _mm_and_si128(mask, b));
 | |
| }
 | |
| 
 | |
| inline __m128 MixF32(__m128 a, __m128 b, float t)
 | |
| {
 | |
|   return _mm_add_ps(a, _mm_mul_ps(_mm_sub_ps(b, a), _mm_set1_ps(t)));
 | |
| }
 | |
| 
 | |
| inline __m128 WSumF32(__m128 a, __m128 b, float wa, float wb)
 | |
| {
 | |
|   return _mm_add_ps(_mm_mul_ps(a, _mm_set1_ps(wa)), _mm_mul_ps(b, _mm_set1_ps(wb)));
 | |
| }
 | |
| 
 | |
| inline __m128 AbsF32(__m128 a)
 | |
| {
 | |
|   return _mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a), a);
 | |
| }
 | |
| 
 | |
| inline __m128 AddF32(__m128 a, __m128 b)
 | |
| {
 | |
|   return _mm_add_ps(a, b);
 | |
| }
 | |
| 
 | |
| inline __m128 MulF32(__m128 a, __m128 b)
 | |
| {
 | |
|   return _mm_mul_ps(a, b);
 | |
| }
 | |
| 
 | |
| inline __m128 DivF32(__m128 a, __m128 b)
 | |
| {
 | |
|   return _mm_div_ps(a, b);
 | |
| }
 | |
| 
 | |
| template<uint8_t aIndex>
 | |
| inline __m128 SplatF32(__m128 m)
 | |
| {
 | |
|   AssertIndex<aIndex>();
 | |
|   return _mm_shuffle_ps(m, m, _MM_SHUFFLE(aIndex, aIndex, aIndex, aIndex));
 | |
| }
 | |
| 
 | |
| inline __m128i F32ToI32(__m128 m)
 | |
| {
 | |
|   return _mm_cvtps_epi32(m);
 | |
| }
 | |
| 
 | |
| #endif // SIMD_COMPILE_SSE2
 | |
| 
 | |
| } // namespace simd
 | |
| 
 | |
| } // namespace gfx
 | |
| } // namespace mozilla
 | |
| 
 | |
| #endif // _MOZILLA_GFX_SIMD_H_
 |