fune/toolkit/components/telemetry/TelemetryScalar.cpp
Jan-Erik Rediger 33b95c3973 Bug 1470897 - Catch invalid data, show a warning and continue processing. r=chutten
MozReview-Commit-ID: GbbBarULSOR

Differential Revision: https://phabricator.services.mozilla.com/D1951

--HG--
extra : moz-landing-system : lando
2018-07-04 19:14:51 +00:00

3895 lines
127 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsITelemetry.h"
#include "nsIVariant.h"
#include "nsVariant.h"
#include "nsHashKeys.h"
#include "nsBaseHashtable.h"
#include "nsClassHashtable.h"
#include "nsDataHashtable.h"
#include "nsIXPConnect.h"
#include "nsContentUtils.h"
#include "nsThreadUtils.h"
#include "nsJSUtils.h"
#include "nsPrintfCString.h"
#include "mozilla/dom/ContentParent.h"
#include "mozilla/dom/PContent.h"
#include "mozilla/JSONWriter.h"
#include "mozilla/Preferences.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/Unused.h"
#include "TelemetryCommon.h"
#include "TelemetryScalar.h"
#include "TelemetryScalarData.h"
#include "ipc/TelemetryComms.h"
#include "ipc/TelemetryIPCAccumulator.h"
using mozilla::Preferences;
using mozilla::StaticAutoPtr;
using mozilla::StaticMutex;
using mozilla::StaticMutexAutoLock;
using mozilla::Some;
using mozilla::Nothing;
using mozilla::Telemetry::Common::AutoHashtable;
using mozilla::Telemetry::Common::IsExpiredVersion;
using mozilla::Telemetry::Common::CanRecordDataset;
using mozilla::Telemetry::Common::CanRecordProduct;
using mozilla::Telemetry::Common::IsInDataset;
using mozilla::Telemetry::Common::LogToBrowserConsole;
using mozilla::Telemetry::Common::GetNameForProcessID;
using mozilla::Telemetry::Common::GetIDForProcessName;
using mozilla::Telemetry::Common::RecordedProcessType;
using mozilla::Telemetry::Common::IsValidIdentifierString;
using mozilla::Telemetry::Common::GetCurrentProduct;
using mozilla::Telemetry::Common::SupportedProduct;
using mozilla::Telemetry::ScalarActionType;
using mozilla::Telemetry::ScalarAction;
using mozilla::Telemetry::KeyedScalarAction;
using mozilla::Telemetry::ScalarID;
using mozilla::Telemetry::DynamicScalarDefinition;
using mozilla::Telemetry::ScalarVariant;
using mozilla::Telemetry::ProcessID;
namespace TelemetryIPCAccumulator = mozilla::TelemetryIPCAccumulator;
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
// Naming: there are two kinds of functions in this file:
//
// * Functions named internal_*: these can only be reached via an
// interface function (TelemetryScalar::*). If they access shared
// state, they require the interface function to have acquired
// |gTelemetryScalarMutex| to ensure thread safety.
//
// * Functions named TelemetryScalar::*. This is the external interface.
// Entries and exits to these functions are serialised using
// |gTelemetryScalarsMutex|.
//
// Avoiding races and deadlocks:
//
// All functions in the external interface (TelemetryScalar::*) are
// serialised using the mutex |gTelemetryScalarsMutex|. This means
// that the external interface is thread-safe. But it also brings
// a danger of deadlock if any function in the external interface can
// get back to that interface. That is, we will deadlock on any call
// chain like this
//
// TelemetryScalar::* -> .. any functions .. -> TelemetryScalar::*
//
// To reduce the danger of that happening, observe the following rules:
//
// * No function in TelemetryScalar::* may directly call, nor take the
// address of, any other function in TelemetryScalar::*.
//
// * No internal function internal_* may call, nor take the address
// of, any function in TelemetryScalar::*.
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
// PRIVATE TYPES
namespace {
const uint32_t kMaximumNumberOfKeys = 100;
const uint32_t kMaximumKeyStringLength = 72;
const uint32_t kMaximumStringValueLength = 50;
// The category and scalar name maximum lengths are used by the dynamic
// scalar registration function and must match the constants used by
// the 'parse_scalars.py' script for static scalars.
const uint32_t kMaximumCategoryNameLength = 40;
const uint32_t kMaximumScalarNameLength = 40;
const uint32_t kScalarCount =
static_cast<uint32_t>(mozilla::Telemetry::ScalarID::ScalarCount);
// To stop growing unbounded in memory while waiting for scalar deserialization
// to finish, we immediately apply pending operations if the array reaches
// a certain high water mark of elements.
const size_t kScalarActionsArrayHighWaterMark = 10000;
enum class ScalarResult : uint8_t {
// Nothing went wrong.
Ok,
// General Scalar Errors
NotInitialized,
CannotUnpackVariant,
CannotRecordInProcess,
CannotRecordDataset,
KeyedTypeMismatch,
UnknownScalar,
OperationNotSupported,
InvalidType,
InvalidValue,
// Keyed Scalar Errors
KeyIsEmpty,
KeyTooLong,
TooManyKeys,
// String Scalar Errors
StringTooLong,
// Unsigned Scalar Errors
UnsignedNegativeValue,
UnsignedTruncatedValue,
};
// A common identifier for both built-in and dynamic scalars.
struct ScalarKey {
uint32_t id;
bool dynamic;
};
/**
* Scalar information for dynamic definitions.
*/
struct DynamicScalarInfo : BaseScalarInfo {
nsCString mDynamicName;
bool mDynamicExpiration;
DynamicScalarInfo(uint32_t aKind, bool aRecordOnRelease,
bool aExpired, const nsACString& aName,
bool aKeyed, bool aBuiltin)
: BaseScalarInfo(aKind,
aRecordOnRelease ?
nsITelemetry::DATASET_RELEASE_CHANNEL_OPTOUT :
nsITelemetry::DATASET_RELEASE_CHANNEL_OPTIN,
RecordedProcessType::All,
aKeyed,
GetCurrentProduct(),
aBuiltin)
, mDynamicName(aName)
, mDynamicExpiration(aExpired)
{}
// The following functions will read the stored text
// instead of looking it up in the statically generated
// tables.
const char *name() const override;
const char *expiration() const override;
};
const char *
DynamicScalarInfo::name() const
{
return mDynamicName.get();
}
const char *
DynamicScalarInfo::expiration() const
{
// Dynamic scalars can either be expired or not (boolean flag).
// Return an appropriate version string to leverage the scalar expiration
// logic.
return mDynamicExpiration ? "1.0" : "never";
}
typedef nsBaseHashtableET<nsDepCharHashKey, ScalarKey> CharPtrEntryType;
typedef AutoHashtable<CharPtrEntryType> ScalarMapType;
// Dynamic scalar definitions.
StaticAutoPtr<nsTArray<DynamicScalarInfo>> gDynamicScalarInfo;
const BaseScalarInfo&
internal_GetScalarInfo(const StaticMutexAutoLock& lock, const ScalarKey& aId)
{
if (!aId.dynamic) {
return gScalars[aId.id];
}
return (*gDynamicScalarInfo)[aId.id];
}
bool
IsValidEnumId(mozilla::Telemetry::ScalarID aID)
{
return aID < mozilla::Telemetry::ScalarID::ScalarCount;
}
bool
internal_IsValidId(const StaticMutexAutoLock& lock, const ScalarKey& aId)
{
// Please note that this function needs to be called with the scalar
// mutex being acquired: other functions might be messing with
// |gDynamicScalarInfo|.
return aId.dynamic ? (aId.id < gDynamicScalarInfo->Length()) :
IsValidEnumId(static_cast<mozilla::Telemetry::ScalarID>(aId.id));
}
/**
* Convert a nsIVariant to a mozilla::Variant, which is used for
* accumulating child process scalars.
*/
ScalarResult
GetVariantFromIVariant(nsIVariant* aInput, uint32_t aScalarKind,
mozilla::Maybe<ScalarVariant>& aOutput)
{
switch (aScalarKind) {
case nsITelemetry::SCALAR_TYPE_COUNT:
{
uint32_t val = 0;
nsresult rv = aInput->GetAsUint32(&val);
if (NS_FAILED(rv)) {
return ScalarResult::CannotUnpackVariant;
}
aOutput = mozilla::Some(mozilla::AsVariant(val));
break;
}
case nsITelemetry::SCALAR_TYPE_STRING:
{
nsString val;
nsresult rv = aInput->GetAsAString(val);
if (NS_FAILED(rv)) {
return ScalarResult::CannotUnpackVariant;
}
aOutput = mozilla::Some(mozilla::AsVariant(val));
break;
}
case nsITelemetry::SCALAR_TYPE_BOOLEAN:
{
bool val = false;
nsresult rv = aInput->GetAsBool(&val);
if (NS_FAILED(rv)) {
return ScalarResult::CannotUnpackVariant;
}
aOutput = mozilla::Some(mozilla::AsVariant(val));
break;
}
default:
MOZ_ASSERT(false, "Unknown scalar kind.");
return ScalarResult::UnknownScalar;
}
return ScalarResult::Ok;
}
/**
* Write a nsIVariant with a JSONWriter, used for GeckoView persistence.
*/
nsresult
WriteVariantToJSONWriter(uint32_t aScalarType, nsIVariant* aInputValue,
const char* aPropertyName, mozilla::JSONWriter& aWriter)
{
MOZ_ASSERT(aInputValue);
switch (aScalarType) {
case nsITelemetry::SCALAR_TYPE_COUNT:
{
uint32_t val = 0;
nsresult rv = aInputValue->GetAsUint32(&val);
NS_ENSURE_SUCCESS(rv, rv);
aWriter.IntProperty(aPropertyName, val);
break;
}
case nsITelemetry::SCALAR_TYPE_STRING:
{
nsCString val;
nsresult rv = aInputValue->GetAsACString(val);
NS_ENSURE_SUCCESS(rv, rv);
aWriter.StringProperty(aPropertyName, val.get());
break;
}
case nsITelemetry::SCALAR_TYPE_BOOLEAN:
{
bool val = false;
nsresult rv = aInputValue->GetAsBool(&val);
NS_ENSURE_SUCCESS(rv, rv);
aWriter.BoolProperty(aPropertyName, val);
break;
}
default:
MOZ_ASSERT(false, "Unknown scalar kind.");
return NS_ERROR_FAILURE;
}
return NS_OK;
}
// Implements the methods for ScalarInfo.
const char *
ScalarInfo::name() const
{
return &gScalarsStringTable[this->name_offset];
}
const char *
ScalarInfo::expiration() const
{
return &gScalarsStringTable[this->expiration_offset];
}
/**
* The base scalar object, that serves as a common ancestor for storage
* purposes.
*/
class ScalarBase
{
public:
virtual ~ScalarBase() = default;
// Set, Add and SetMaximum functions as described in the Telemetry IDL.
virtual ScalarResult SetValue(nsIVariant* aValue) = 0;
virtual ScalarResult AddValue(nsIVariant* aValue) { return ScalarResult::OperationNotSupported; }
virtual ScalarResult SetMaximum(nsIVariant* aValue) { return ScalarResult::OperationNotSupported; }
// Convenience methods used by the C++ API.
virtual void SetValue(uint32_t aValue) { mozilla::Unused << HandleUnsupported(); }
virtual ScalarResult SetValue(const nsAString& aValue) { return HandleUnsupported(); }
virtual void SetValue(bool aValue) { mozilla::Unused << HandleUnsupported(); }
virtual void AddValue(uint32_t aValue) { mozilla::Unused << HandleUnsupported(); }
virtual void SetMaximum(uint32_t aValue) { mozilla::Unused << HandleUnsupported(); }
// GetValue is used to get the value of the scalar when persisting it to JS.
virtual nsresult GetValue(nsCOMPtr<nsIVariant>& aResult) const = 0;
// To measure the memory stats.
virtual size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const = 0;
private:
ScalarResult HandleUnsupported() const;
};
ScalarResult
ScalarBase::HandleUnsupported() const
{
MOZ_ASSERT(false, "This operation is not support for this scalar type.");
return ScalarResult::OperationNotSupported;
}
/**
* The implementation for the unsigned int scalar type.
*/
class ScalarUnsigned : public ScalarBase
{
public:
using ScalarBase::SetValue;
ScalarUnsigned() : mStorage(0) {};
~ScalarUnsigned() override = default;
ScalarResult SetValue(nsIVariant* aValue) final;
void SetValue(uint32_t aValue) final;
ScalarResult AddValue(nsIVariant* aValue) final;
void AddValue(uint32_t aValue) final;
ScalarResult SetMaximum(nsIVariant* aValue) final;
void SetMaximum(uint32_t aValue) final;
nsresult GetValue(nsCOMPtr<nsIVariant>& aResult) const final;
size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const final;
private:
uint32_t mStorage;
ScalarResult CheckInput(nsIVariant* aValue);
// Prevent copying.
ScalarUnsigned(const ScalarUnsigned& aOther) = delete;
void operator=(const ScalarUnsigned& aOther) = delete;
};
ScalarResult
ScalarUnsigned::SetValue(nsIVariant* aValue)
{
ScalarResult sr = CheckInput(aValue);
if (sr == ScalarResult::UnsignedNegativeValue) {
return sr;
}
if (NS_FAILED(aValue->GetAsUint32(&mStorage))) {
return ScalarResult::InvalidValue;
}
return sr;
}
void
ScalarUnsigned::SetValue(uint32_t aValue)
{
mStorage = aValue;
}
ScalarResult
ScalarUnsigned::AddValue(nsIVariant* aValue)
{
ScalarResult sr = CheckInput(aValue);
if (sr == ScalarResult::UnsignedNegativeValue) {
return sr;
}
uint32_t newAddend = 0;
nsresult rv = aValue->GetAsUint32(&newAddend);
if (NS_FAILED(rv)) {
return ScalarResult::InvalidValue;
}
mStorage += newAddend;
return sr;
}
void
ScalarUnsigned::AddValue(uint32_t aValue)
{
mStorage += aValue;
}
ScalarResult
ScalarUnsigned::SetMaximum(nsIVariant* aValue)
{
ScalarResult sr = CheckInput(aValue);
if (sr == ScalarResult::UnsignedNegativeValue) {
return sr;
}
uint32_t newValue = 0;
nsresult rv = aValue->GetAsUint32(&newValue);
if (NS_FAILED(rv)) {
return ScalarResult::InvalidValue;
}
if (newValue > mStorage) {
mStorage = newValue;
}
return sr;
}
void
ScalarUnsigned::SetMaximum(uint32_t aValue)
{
if (aValue > mStorage) {
mStorage = aValue;
}
}
nsresult
ScalarUnsigned::GetValue(nsCOMPtr<nsIVariant>& aResult) const
{
nsCOMPtr<nsIWritableVariant> outVar(new nsVariant());
nsresult rv = outVar->SetAsUint32(mStorage);
if (NS_FAILED(rv)) {
return rv;
}
aResult = outVar.forget();
return NS_OK;
}
size_t
ScalarUnsigned::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this);
}
ScalarResult
ScalarUnsigned::CheckInput(nsIVariant* aValue)
{
// If this is a floating point value/double, we will probably get truncated.
uint16_t type;
aValue->GetDataType(&type);
if (type == nsIDataType::VTYPE_FLOAT ||
type == nsIDataType::VTYPE_DOUBLE) {
return ScalarResult::UnsignedTruncatedValue;
}
int32_t signedTest;
// If we're able to cast the number to an int, check its sign.
// Warn the user if he's trying to set the unsigned scalar to a negative
// number.
if (NS_SUCCEEDED(aValue->GetAsInt32(&signedTest)) &&
signedTest < 0) {
return ScalarResult::UnsignedNegativeValue;
}
return ScalarResult::Ok;
}
/**
* The implementation for the string scalar type.
*/
class ScalarString : public ScalarBase
{
public:
using ScalarBase::SetValue;
ScalarString() : mStorage(EmptyString()) {};
~ScalarString() override = default;
ScalarResult SetValue(nsIVariant* aValue) final;
ScalarResult SetValue(const nsAString& aValue) final;
nsresult GetValue(nsCOMPtr<nsIVariant>& aResult) const final;
size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const final;
private:
nsString mStorage;
// Prevent copying.
ScalarString(const ScalarString& aOther) = delete;
void operator=(const ScalarString& aOther) = delete;
};
ScalarResult
ScalarString::SetValue(nsIVariant* aValue)
{
// Check that we got the correct data type.
uint16_t type;
aValue->GetDataType(&type);
if (type != nsIDataType::VTYPE_CHAR &&
type != nsIDataType::VTYPE_WCHAR &&
type != nsIDataType::VTYPE_DOMSTRING &&
type != nsIDataType::VTYPE_CHAR_STR &&
type != nsIDataType::VTYPE_WCHAR_STR &&
type != nsIDataType::VTYPE_STRING_SIZE_IS &&
type != nsIDataType::VTYPE_WSTRING_SIZE_IS &&
type != nsIDataType::VTYPE_UTF8STRING &&
type != nsIDataType::VTYPE_CSTRING &&
type != nsIDataType::VTYPE_ASTRING) {
return ScalarResult::InvalidType;
}
nsAutoString convertedString;
nsresult rv = aValue->GetAsAString(convertedString);
if (NS_FAILED(rv)) {
return ScalarResult::InvalidValue;
}
return SetValue(convertedString);
};
ScalarResult
ScalarString::SetValue(const nsAString& aValue)
{
mStorage = Substring(aValue, 0, kMaximumStringValueLength);
if (aValue.Length() > kMaximumStringValueLength) {
return ScalarResult::StringTooLong;
}
return ScalarResult::Ok;
}
nsresult
ScalarString::GetValue(nsCOMPtr<nsIVariant>& aResult) const
{
nsCOMPtr<nsIWritableVariant> outVar(new nsVariant());
nsresult rv = outVar->SetAsAString(mStorage);
if (NS_FAILED(rv)) {
return rv;
}
aResult = outVar.forget();
return NS_OK;
}
size_t
ScalarString::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
size_t n = aMallocSizeOf(this);
n+= mStorage.SizeOfExcludingThisIfUnshared(aMallocSizeOf);
return n;
}
/**
* The implementation for the boolean scalar type.
*/
class ScalarBoolean : public ScalarBase
{
public:
using ScalarBase::SetValue;
ScalarBoolean() : mStorage(false) {};
~ScalarBoolean() override = default;
ScalarResult SetValue(nsIVariant* aValue) final;
void SetValue(bool aValue) final;
nsresult GetValue(nsCOMPtr<nsIVariant>& aResult) const final;
size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const final;
private:
bool mStorage;
// Prevent copying.
ScalarBoolean(const ScalarBoolean& aOther) = delete;
void operator=(const ScalarBoolean& aOther) = delete;
};
ScalarResult
ScalarBoolean::SetValue(nsIVariant* aValue)
{
// Check that we got the correct data type.
uint16_t type;
aValue->GetDataType(&type);
if (type != nsIDataType::VTYPE_BOOL &&
type != nsIDataType::VTYPE_INT8 &&
type != nsIDataType::VTYPE_INT16 &&
type != nsIDataType::VTYPE_INT32 &&
type != nsIDataType::VTYPE_INT64 &&
type != nsIDataType::VTYPE_UINT8 &&
type != nsIDataType::VTYPE_UINT16 &&
type != nsIDataType::VTYPE_UINT32 &&
type != nsIDataType::VTYPE_UINT64) {
return ScalarResult::InvalidType;
}
if (NS_FAILED(aValue->GetAsBool(&mStorage))) {
return ScalarResult::InvalidValue;
}
return ScalarResult::Ok;
};
void
ScalarBoolean::SetValue(bool aValue)
{
mStorage = aValue;
}
nsresult
ScalarBoolean::GetValue(nsCOMPtr<nsIVariant>& aResult) const
{
nsCOMPtr<nsIWritableVariant> outVar(new nsVariant());
nsresult rv = outVar->SetAsBool(mStorage);
if (NS_FAILED(rv)) {
return rv;
}
aResult = outVar.forget();
return NS_OK;
}
size_t
ScalarBoolean::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this);
}
/**
* Allocate a scalar class given the scalar info.
*
* @param aInfo The informations for the scalar coming from the definition file.
* @return nullptr if the scalar type is unknown, otherwise a valid pointer to the
* scalar type.
*/
ScalarBase*
internal_ScalarAllocate(uint32_t aScalarKind)
{
ScalarBase* scalar = nullptr;
switch (aScalarKind) {
case nsITelemetry::SCALAR_TYPE_COUNT:
scalar = new ScalarUnsigned();
break;
case nsITelemetry::SCALAR_TYPE_STRING:
scalar = new ScalarString();
break;
case nsITelemetry::SCALAR_TYPE_BOOLEAN:
scalar = new ScalarBoolean();
break;
default:
MOZ_ASSERT(false, "Invalid scalar type");
}
return scalar;
}
/**
* The implementation for the keyed scalar type.
*/
class KeyedScalar
{
public:
typedef mozilla::Pair<nsCString, nsCOMPtr<nsIVariant>> KeyValuePair;
explicit KeyedScalar(uint32_t aScalarKind)
: mScalarKind(aScalarKind)
, mMaximumNumberOfKeys(kMaximumNumberOfKeys)
{ };
~KeyedScalar() = default;
// Set, Add and SetMaximum functions as described in the Telemetry IDL.
// These methods implicitly instantiate a Scalar[*] for each key.
ScalarResult SetValue(const nsAString& aKey, nsIVariant* aValue);
ScalarResult AddValue(const nsAString& aKey, nsIVariant* aValue);
ScalarResult SetMaximum(const nsAString& aKey, nsIVariant* aValue);
// Convenience methods used by the C++ API.
void SetValue(const nsAString& aKey, uint32_t aValue);
void SetValue(const nsAString& aKey, bool aValue);
void AddValue(const nsAString& aKey, uint32_t aValue);
void SetMaximum(const nsAString& aKey, uint32_t aValue);
// GetValue is used to get the key-value pairs stored in the keyed scalar
// when persisting it to JS.
nsresult GetValue(nsTArray<KeyValuePair>& aValues) const;
// To measure the memory stats.
size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf);
// To permit more keys than normal.
void SetMaximumNumberOfKeys(uint32_t aMaximumNumberOfKeys)
{
mMaximumNumberOfKeys = aMaximumNumberOfKeys;
};
private:
typedef nsClassHashtable<nsCStringHashKey, ScalarBase> ScalarKeysMapType;
ScalarKeysMapType mScalarKeys;
const uint32_t mScalarKind;
uint32_t mMaximumNumberOfKeys;
ScalarResult GetScalarForKey(const nsAString& aKey, ScalarBase** aRet);
};
ScalarResult
KeyedScalar::SetValue(const nsAString& aKey, nsIVariant* aValue)
{
ScalarBase* scalar = nullptr;
ScalarResult sr = GetScalarForKey(aKey, &scalar);
if (sr != ScalarResult::Ok) {
return sr;
}
return scalar->SetValue(aValue);
}
ScalarResult
KeyedScalar::AddValue(const nsAString& aKey, nsIVariant* aValue)
{
ScalarBase* scalar = nullptr;
ScalarResult sr = GetScalarForKey(aKey, &scalar);
if (sr != ScalarResult::Ok) {
return sr;
}
return scalar->AddValue(aValue);
}
ScalarResult
KeyedScalar::SetMaximum(const nsAString& aKey, nsIVariant* aValue)
{
ScalarBase* scalar = nullptr;
ScalarResult sr = GetScalarForKey(aKey, &scalar);
if (sr != ScalarResult::Ok) {
return sr;
}
return scalar->SetMaximum(aValue);
}
void
KeyedScalar::SetValue(const nsAString& aKey, uint32_t aValue)
{
ScalarBase* scalar = nullptr;
ScalarResult sr = GetScalarForKey(aKey, &scalar);
if (sr != ScalarResult::Ok) {
MOZ_ASSERT(false, "Key too long or too many keys are recorded in the scalar.");
return;
}
return scalar->SetValue(aValue);
}
void
KeyedScalar::SetValue(const nsAString& aKey, bool aValue)
{
ScalarBase* scalar = nullptr;
ScalarResult sr = GetScalarForKey(aKey, &scalar);
if (sr != ScalarResult::Ok) {
MOZ_ASSERT(false, "Key too long or too many keys are recorded in the scalar.");
return;
}
return scalar->SetValue(aValue);
}
void
KeyedScalar::AddValue(const nsAString& aKey, uint32_t aValue)
{
ScalarBase* scalar = nullptr;
ScalarResult sr = GetScalarForKey(aKey, &scalar);
if (sr != ScalarResult::Ok) {
MOZ_ASSERT(false, "Key too long or too many keys are recorded in the scalar.");
return;
}
return scalar->AddValue(aValue);
}
void
KeyedScalar::SetMaximum(const nsAString& aKey, uint32_t aValue)
{
ScalarBase* scalar = nullptr;
ScalarResult sr = GetScalarForKey(aKey, &scalar);
if (sr != ScalarResult::Ok) {
MOZ_ASSERT(false, "Key too long or too many keys are recorded in the scalar.");
return;
}
return scalar->SetMaximum(aValue);
}
/**
* Get a key-value array with the values for the Keyed Scalar.
* @param aValue The array that will hold the key-value pairs.
* @return {nsresult} NS_OK or an error value as reported by the
* the specific scalar objects implementations (e.g.
* ScalarUnsigned).
*/
nsresult
KeyedScalar::GetValue(nsTArray<KeyValuePair>& aValues) const
{
for (auto iter = mScalarKeys.ConstIter(); !iter.Done(); iter.Next()) {
ScalarBase* scalar = static_cast<ScalarBase*>(iter.Data());
// Get the scalar value.
nsCOMPtr<nsIVariant> scalarValue;
nsresult rv = scalar->GetValue(scalarValue);
if (NS_FAILED(rv)) {
return rv;
}
// Append it to value list.
aValues.AppendElement(mozilla::MakePair(nsCString(iter.Key()), scalarValue));
}
return NS_OK;
}
/**
* Get the scalar for the referenced key.
* If there's no such key, instantiate a new Scalar object with the
* same type of the Keyed scalar and create the key.
*/
ScalarResult
KeyedScalar::GetScalarForKey(const nsAString& aKey, ScalarBase** aRet)
{
if (aKey.IsEmpty()) {
return ScalarResult::KeyIsEmpty;
}
if (aKey.Length() > kMaximumKeyStringLength) {
return ScalarResult::KeyTooLong;
}
NS_ConvertUTF16toUTF8 utf8Key(aKey);
ScalarBase* scalar = nullptr;
if (mScalarKeys.Get(utf8Key, &scalar)) {
*aRet = scalar;
return ScalarResult::Ok;
}
if (mScalarKeys.Count() >= mMaximumNumberOfKeys) {
return ScalarResult::TooManyKeys;
}
scalar = internal_ScalarAllocate(mScalarKind);
if (!scalar) {
return ScalarResult::InvalidType;
}
mScalarKeys.Put(utf8Key, scalar);
*aRet = scalar;
return ScalarResult::Ok;
}
size_t
KeyedScalar::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf)
{
size_t n = aMallocSizeOf(this);
for (auto iter = mScalarKeys.Iter(); !iter.Done(); iter.Next()) {
ScalarBase* scalar = static_cast<ScalarBase*>(iter.Data());
n += scalar->SizeOfIncludingThis(aMallocSizeOf);
}
return n;
}
typedef nsUint32HashKey ScalarIDHashKey;
typedef nsUint32HashKey ProcessIDHashKey;
typedef nsClassHashtable<ScalarIDHashKey, ScalarBase> ScalarStorageMapType;
typedef nsClassHashtable<ScalarIDHashKey, KeyedScalar> KeyedScalarStorageMapType;
typedef nsClassHashtable<ProcessIDHashKey, ScalarStorageMapType> ProcessesScalarsMapType;
typedef nsClassHashtable<ProcessIDHashKey, KeyedScalarStorageMapType> ProcessesKeyedScalarsMapType;
typedef mozilla::Tuple<const char*, nsCOMPtr<nsIVariant>, uint32_t> ScalarDataTuple;
typedef nsTArray<ScalarDataTuple> ScalarTupleArray;
typedef nsDataHashtable<ProcessIDHashKey, ScalarTupleArray> ScalarSnapshotTable;
typedef mozilla::Tuple<const char*, nsTArray<KeyedScalar::KeyValuePair>, uint32_t> KeyedScalarDataTuple;
typedef nsTArray<KeyedScalarDataTuple> KeyedScalarTupleArray;
typedef nsDataHashtable<ProcessIDHashKey, KeyedScalarTupleArray> KeyedScalarSnapshotTable;
} // namespace
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
// PRIVATE STATE, SHARED BY ALL THREADS
namespace {
// Set to true once this global state has been initialized.
bool gInitDone = false;
bool gCanRecordBase;
bool gCanRecordExtended;
// The Name -> ID cache map.
ScalarMapType gScalarNameIDMap(kScalarCount);
// The (Process Id -> (Scalar ID -> Scalar Object)) map. This is a nsClassHashtable,
// it owns the scalar instances and takes care of deallocating them when they are
// removed from the map.
ProcessesScalarsMapType gScalarStorageMap;
// As above, for the keyed scalars.
ProcessesKeyedScalarsMapType gKeyedScalarStorageMap;
// Provide separate storage for "dynamic builtin" plain and keyed scalars,
// needed to support "build faster" in local developer builds.
ProcessesScalarsMapType gDynamicBuiltinScalarStorageMap;
ProcessesKeyedScalarsMapType gDynamicBuiltinKeyedScalarStorageMap;
// Whether or not the deserialization of persisted scalars is still in progress.
// This is never the case on Desktop or Fennec.
// Only GeckoView restores persisted scalars.
bool gIsDeserializing = false;
// This batches scalar accumulations that should be applied once loading finished.
StaticAutoPtr<nsTArray<ScalarAction>> gScalarsActions;
StaticAutoPtr<nsTArray<KeyedScalarAction>> gKeyedScalarsActions;
bool
internal_IsScalarDeserializing(const StaticMutexAutoLock& lock)
{
return gIsDeserializing;
}
} // namespace
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
// PRIVATE: Function that may call JS code.
// NOTE: the functions in this section all run without protection from
// |gTelemetryScalarsMutex|. If they held the mutex, there would be the
// possibility of deadlock because the JS_ calls that they make may call
// back into the TelemetryScalar interface, hence trying to re-acquire the mutex.
//
// This means that these functions potentially race against threads, but
// that seems preferable to risking deadlock.
namespace {
/**
* Converts the error code to a human readable error message and prints it to the
* browser console.
*
* @param aScalarName The name of the scalar that raised the error.
* @param aSr The error code.
*/
void
internal_LogScalarError(const nsACString& aScalarName, ScalarResult aSr)
{
nsAutoString errorMessage;
AppendUTF8toUTF16(aScalarName, errorMessage);
switch (aSr) {
case ScalarResult::NotInitialized:
errorMessage.AppendLiteral(u" - Telemetry was not yet initialized.");
break;
case ScalarResult::CannotUnpackVariant:
errorMessage.AppendLiteral(u" - Cannot convert the provided JS value to nsIVariant.");
break;
case ScalarResult::CannotRecordInProcess:
errorMessage.AppendLiteral(u" - Cannot record the scalar in the current process.");
break;
case ScalarResult::KeyedTypeMismatch:
errorMessage.AppendLiteral(u" - Attempting to manage a keyed scalar as a scalar (or vice-versa).");
break;
case ScalarResult::UnknownScalar:
errorMessage.AppendLiteral(u" - Unknown scalar.");
break;
case ScalarResult::OperationNotSupported:
errorMessage.AppendLiteral(u" - The requested operation is not supported on this scalar.");
break;
case ScalarResult::InvalidType:
errorMessage.AppendLiteral(u" - Attempted to set the scalar to an invalid data type.");
break;
case ScalarResult::InvalidValue:
errorMessage.AppendLiteral(u" - Attempted to set the scalar to an incompatible value.");
break;
case ScalarResult::StringTooLong:
AppendUTF8toUTF16(nsPrintfCString(" - Truncating scalar value to %d characters.", kMaximumStringValueLength), errorMessage);
break;
case ScalarResult::KeyIsEmpty:
errorMessage.AppendLiteral(u" - The key must not be empty.");
break;
case ScalarResult::KeyTooLong:
AppendUTF8toUTF16(nsPrintfCString(" - The key length must be limited to %d characters.", kMaximumKeyStringLength), errorMessage);
break;
case ScalarResult::TooManyKeys:
AppendUTF8toUTF16(nsPrintfCString(" - Keyed scalars cannot have more than %d keys.", kMaximumNumberOfKeys), errorMessage);
break;
case ScalarResult::UnsignedNegativeValue:
errorMessage.AppendLiteral(u" - Trying to set an unsigned scalar to a negative number.");
break;
case ScalarResult::UnsignedTruncatedValue:
errorMessage.AppendLiteral(u" - Truncating float/double number.");
break;
default:
// Nothing.
return;
}
LogToBrowserConsole(nsIScriptError::warningFlag, errorMessage);
}
} // namespace
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
// PRIVATE: helpers for the external interface
namespace {
bool
internal_CanRecordBase(const StaticMutexAutoLock& lock)
{
return gCanRecordBase;
}
bool
internal_CanRecordExtended(const StaticMutexAutoLock& lock)
{
return gCanRecordExtended;
}
/**
* Check if the given scalar is a keyed scalar.
*
* @param lock Instance of a lock locking gTelemetryHistogramMutex
* @param aId The scalar identifier.
* @return true if aId refers to a keyed scalar, false otherwise.
*/
bool
internal_IsKeyedScalar(const StaticMutexAutoLock& lock, const ScalarKey& aId)
{
return internal_GetScalarInfo(lock, aId).keyed;
}
/**
* Check if we're allowed to record the given scalar in the current
* process.
*
* @param lock Instance of a lock locking gTelemetryHistogramMutex
* @param aId The scalar identifier.
* @return true if the scalar is allowed to be recorded in the current process, false
* otherwise.
*/
bool
internal_CanRecordProcess(const StaticMutexAutoLock& lock,
const ScalarKey& aId)
{
const BaseScalarInfo &info = internal_GetScalarInfo(lock, aId);
return CanRecordInProcess(info.record_in_processes, XRE_GetProcessType());
}
bool
internal_CanRecordProduct(const StaticMutexAutoLock& lock,
const ScalarKey& aId)
{
const BaseScalarInfo &info = internal_GetScalarInfo(lock, aId);
return CanRecordProduct(info.products);
}
bool
internal_CanRecordForScalarID(const StaticMutexAutoLock& lock,
const ScalarKey& aId)
{
// Get the scalar info from the id.
const BaseScalarInfo &info = internal_GetScalarInfo(lock, aId);
// Can we record at all?
bool canRecordBase = internal_CanRecordBase(lock);
if (!canRecordBase) {
return false;
}
bool canRecordDataset = CanRecordDataset(info.dataset,
canRecordBase,
internal_CanRecordExtended(lock));
if (!canRecordDataset) {
return false;
}
return true;
}
/**
* Check if we are allowed to record the provided scalar.
*
* @param lock Instance of a lock locking gTelemetryHistogramMutex
* @param aId The scalar identifier.
* @param aKeyed Are we attempting to write a keyed scalar?
* @param aForce Whether to allow recording even if the probe is not allowed on the current process.
* This must only be true for GeckoView persistence and recorded actions.
* @return ScalarResult::Ok if we can record, an error code otherwise.
*/
ScalarResult
internal_CanRecordScalar(const StaticMutexAutoLock& lock, const ScalarKey& aId,
bool aKeyed, bool aForce = false)
{
// Make sure that we have a keyed scalar if we are trying to change one.
if (internal_IsKeyedScalar(lock, aId) != aKeyed) {
return ScalarResult::KeyedTypeMismatch;
}
// Are we allowed to record this scalar based on the current Telemetry
// settings?
if (!internal_CanRecordForScalarID(lock, aId)) {
return ScalarResult::CannotRecordDataset;
}
// Can we record in this process?
if (!aForce && !internal_CanRecordProcess(lock, aId)) {
return ScalarResult::CannotRecordInProcess;
}
// Can we record on this product?
if (!internal_CanRecordProduct(lock, aId)) {
return ScalarResult::CannotRecordDataset;
}
return ScalarResult::Ok;
}
/**
* Get the scalar enum id from the scalar name.
*
* @param lock Instance of a lock locking gTelemetryHistogramMutex
* @param aName The scalar name.
* @param aId The output variable to contain the enum.
* @return
* NS_ERROR_FAILURE if this was called before init is completed.
* NS_ERROR_INVALID_ARG if the name can't be found in the scalar definitions.
* NS_OK if the scalar was found and aId contains a valid enum id.
*/
nsresult
internal_GetEnumByScalarName(const StaticMutexAutoLock& lock,
const nsACString& aName,
ScalarKey* aId)
{
if (!gInitDone) {
return NS_ERROR_FAILURE;
}
CharPtrEntryType *entry = gScalarNameIDMap.GetEntry(PromiseFlatCString(aName).get());
if (!entry) {
return NS_ERROR_INVALID_ARG;
}
*aId = entry->mData;
return NS_OK;
}
/**
* Get a scalar object by its enum id. This implicitly allocates the scalar
* object in the storage if it wasn't previously allocated.
*
* @param lock Instance of a lock locking gTelemetryHistogramMutex
* @param aId The scalar identifier.
* @param aProcessStorage This drives the selection of the map to use to store
* the scalar data coming from child processes. This is only meaningful when
* this function is called in parent process. If that's the case, if
* this is not |GeckoProcessType_Default|, the process id is used to
* allocate and store the scalars.
* @param aRes The output variable that stores scalar object.
* @return
* NS_ERROR_INVALID_ARG if the scalar id is unknown.
* NS_ERROR_NOT_AVAILABLE if the scalar is expired.
* NS_OK if the scalar was found. If that's the case, aResult contains a
* valid pointer to a scalar type.
*/
nsresult
internal_GetScalarByEnum(const StaticMutexAutoLock& lock,
const ScalarKey& aId,
ProcessID aProcessStorage,
ScalarBase** aRet)
{
if (!internal_IsValidId(lock, aId)) {
MOZ_ASSERT(false, "Requested a scalar with an invalid id.");
return NS_ERROR_INVALID_ARG;
}
const BaseScalarInfo &info = internal_GetScalarInfo(lock, aId);
// Dynamic scalars fixup: they are always stored in the "dynamic" process,
// unless they are part of the "builtin" Firefox probes. Please note that
// "dynamic builtin" probes are meant to support "artifact" and "build faster"
// builds.
if (aId.dynamic && !info.builtin) {
aProcessStorage = ProcessID::Dynamic;
}
ScalarBase* scalar = nullptr;
ScalarStorageMapType* scalarStorage = nullptr;
// Initialize the scalar storage to the parent storage. This will get
// set to the child storage if needed.
uint32_t storageId = static_cast<uint32_t>(aProcessStorage);
// Put dynamic-builtin scalars (used to support "build faster") in a
// separate storage.
ProcessesScalarsMapType& processStorage =
(aId.dynamic && info.builtin) ? gDynamicBuiltinScalarStorageMap : gScalarStorageMap;
// Get the process-specific storage or create one if it's not
// available.
if (!processStorage.Get(storageId, &scalarStorage)) {
scalarStorage = new ScalarStorageMapType();
processStorage.Put(storageId, scalarStorage);
}
// Check if the scalar is already allocated in the parent or in the child storage.
if (scalarStorage->Get(aId.id, &scalar)) {
// Dynamic scalars can expire at any time during the session (e.g. an
// add-on was updated). Check if it expired.
if (aId.dynamic) {
const DynamicScalarInfo& dynInfo = static_cast<const DynamicScalarInfo&>(info);
if (dynInfo.mDynamicExpiration) {
// The Dynamic scalar is expired.
return NS_ERROR_NOT_AVAILABLE;
}
}
// This was not a dynamic scalar or was not expired.
*aRet = scalar;
return NS_OK;
}
// The scalar storage wasn't already allocated. Check if the scalar is expired and
// then allocate the storage, if needed.
if (IsExpiredVersion(info.expiration())) {
return NS_ERROR_NOT_AVAILABLE;
}
scalar = internal_ScalarAllocate(info.kind);
if (!scalar) {
return NS_ERROR_INVALID_ARG;
}
scalarStorage->Put(aId.id, scalar);
*aRet = scalar;
return NS_OK;
}
void internal_ApplyPendingOperations(const StaticMutexAutoLock& lock);
/**
* Record that the high-water mark for the pending operations list was reached once.
*
* Important:
* This appends one additional operation.
* This needs to happen while still in deserialization mode.
*/
void internal_RecordHighwatermarkReached(const StaticMutexAutoLock& lock)
{
MOZ_ASSERT(gIsDeserializing);
MOZ_ASSERT(gScalarsActions);
// We can't call `internal_RecordScalarAction` here, because we are already
// getting called from there after the high-water mark check.
// But we know that `gScalarsActions` is a valid array and can append directly.
ScalarID id = ScalarID::TELEMETRY_PENDING_OPERATIONS_HIGHWATERMARK_REACHED;
ScalarAction action{
static_cast<uint32_t>(id), false, ScalarActionType::eAdd,
Some(ScalarVariant(1u)), ProcessID::Parent
};
gScalarsActions->AppendElement(action);
}
/**
* Record the given action on a scalar into the pending actions list.
*
* If the pending actions list overflows the high water mark length
* all operations are immediately applied, including the passed action.
*
* @param aScalarAction The action to record.
*/
void
internal_RecordScalarAction(const StaticMutexAutoLock& lock,
const ScalarAction& aScalarAction)
{
// Make sure to have the storage.
if (!gScalarsActions) {
gScalarsActions = new nsTArray<ScalarAction>();
}
// Store the action.
gScalarsActions->AppendElement(aScalarAction);
// If this action overflows the pending actions array, we immediately apply pending operations
// and assume loading is over.
// If loading still happens afterwards, some scalar values might be
// overwritten and inconsistent, but we won't lose operations on otherwise untouched probes.
if (gScalarsActions->Length() > kScalarActionsArrayHighWaterMark) {
internal_RecordHighwatermarkReached(lock);
internal_ApplyPendingOperations(lock);
return;
}
}
/**
* Record the given action on a scalar on the main process into the pending actions list.
*
* If the pending actions list overflows the high water mark length
* all operations are immediately applied, including the passed action.
*
* @param aId The scalar's ID this action applies to
* @param aDynamic Determines if the scalar is dynamic
* @param aAction The action to record
* @param aValue The additional data for the recorded action
*/
void
internal_RecordScalarAction(const StaticMutexAutoLock& lock,
uint32_t aId, bool aDynamic,
ScalarActionType aAction, const ScalarVariant& aValue)
{
internal_RecordScalarAction(lock, ScalarAction{
aId, aDynamic, aAction,
Some(aValue), ProcessID::Parent
});
}
/**
* Record the given action on a keyed scalar into the pending actions list.
*
* If the pending actions list overflows the high water mark length
* all operations are immediately applied, including the passed action.
*
* @param aScalarAction The action to record.
*/
void
internal_RecordKeyedScalarAction(const StaticMutexAutoLock& lock,
const KeyedScalarAction& aScalarAction)
{
// Make sure to have the storage.
if (!gKeyedScalarsActions) {
gKeyedScalarsActions = new nsTArray<KeyedScalarAction>();
}
// Store the action.
gKeyedScalarsActions->AppendElement(aScalarAction);
// If this action overflows the pending actions array, we immediately apply pending operations
// and assume loading is over.
// If loading still happens afterwards, some scalar values might be
// overwritten and inconsistent, but we won't lose operations on otherwise untouched probes.
if (gKeyedScalarsActions->Length() > kScalarActionsArrayHighWaterMark) {
internal_RecordHighwatermarkReached(lock);
internal_ApplyPendingOperations(lock);
return;
}
}
/**
* Record the given action on a keyed scalar on the main process into the pending actions list.
*
* If the pending actions list overflows the high water mark length
* all operations are immediately applied, including the passed action.
*
* @param aId The scalar's ID this action applies to
* @param aDynamic Determines if the scalar is dynamic
* @param aKey The scalar's key
* @param aAction The action to record
* @param aValue The additional data for the recorded action
*/
void
internal_RecordKeyedScalarAction(const StaticMutexAutoLock& lock,
uint32_t aId, bool aDynamic,
const nsAString& aKey,
ScalarActionType aAction,
const ScalarVariant& aValue)
{
internal_RecordKeyedScalarAction(lock, KeyedScalarAction{
aId, aDynamic, aAction, NS_ConvertUTF16toUTF8(aKey),
Some(aValue), ProcessID::Parent
});
}
/**
* Update the scalar with the provided value. This is used by the JS API.
*
* @param lock Instance of a lock locking gTelemetryHistogramMutex
* @param aName The scalar name.
* @param aType The action type for updating the scalar.
* @param aValue The value to use for updating the scalar.
* @param aProcessOverride The process for which the scalar must be updated.
* This must only be used for GeckoView persistence. It must be
* set to the ProcessID::Parent for all the other cases.
* @param aForce Whether to force updating even if load is in progress.
* @return a ScalarResult error value.
*/
ScalarResult
internal_UpdateScalar(const StaticMutexAutoLock& lock, const nsACString& aName,
ScalarActionType aType, nsIVariant* aValue,
ProcessID aProcessOverride = ProcessID::Parent,
bool aForce = false)
{
ScalarKey uniqueId;
nsresult rv = internal_GetEnumByScalarName(lock, aName, &uniqueId);
if (NS_FAILED(rv)) {
return (rv == NS_ERROR_FAILURE) ?
ScalarResult::NotInitialized : ScalarResult::UnknownScalar;
}
ScalarResult sr = internal_CanRecordScalar(lock, uniqueId, false, aForce);
if (sr != ScalarResult::Ok) {
if (sr == ScalarResult::CannotRecordDataset) {
return ScalarResult::Ok;
}
return sr;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
const BaseScalarInfo &info = internal_GetScalarInfo(lock, uniqueId);
// Convert the nsIVariant to a Variant.
mozilla::Maybe<ScalarVariant> variantValue;
sr = GetVariantFromIVariant(aValue, info.kind, variantValue);
if (sr != ScalarResult::Ok) {
MOZ_ASSERT(false, "Unable to convert nsIVariant to mozilla::Variant.");
return sr;
}
TelemetryIPCAccumulator::RecordChildScalarAction(
uniqueId.id, uniqueId.dynamic, aType, variantValue.ref());
return ScalarResult::Ok;
}
if (!aForce && internal_IsScalarDeserializing(lock)) {
const BaseScalarInfo &info = internal_GetScalarInfo(lock, uniqueId);
// Convert the nsIVariant to a Variant.
mozilla::Maybe<ScalarVariant> variantValue;
sr = GetVariantFromIVariant(aValue, info.kind, variantValue);
if (sr != ScalarResult::Ok) {
MOZ_ASSERT(false, "Unable to convert nsIVariant to mozilla::Variant.");
return sr;
}
internal_RecordScalarAction(lock, uniqueId.id, uniqueId.dynamic, aType, variantValue.ref());
return ScalarResult::Ok;
}
// Finally get the scalar.
ScalarBase* scalar = nullptr;
rv = internal_GetScalarByEnum(lock, uniqueId, aProcessOverride, &scalar);
if (NS_FAILED(rv)) {
// Don't throw on expired scalars.
if (rv == NS_ERROR_NOT_AVAILABLE) {
return ScalarResult::Ok;
}
return ScalarResult::UnknownScalar;
}
if (aType == ScalarActionType::eAdd) {
return scalar->AddValue(aValue);
}
if (aType == ScalarActionType::eSet) {
return scalar->SetValue(aValue);
}
return scalar->SetMaximum(aValue);
}
} // namespace
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
// PRIVATE: thread-unsafe helpers for the keyed scalars
namespace {
/**
* Get a keyed scalar object by its enum id. This implicitly allocates the keyed
* scalar object in the storage if it wasn't previously allocated.
*
* @param lock Instance of a lock locking gTelemetryHistogramMutex
* @param aId The scalar identifier.
* @param aProcessStorage This drives the selection of the map to use to store
* the scalar data coming from child processes. This is only meaningful when
* this function is called in parent process. If that's the case, if
* this is not |GeckoProcessType_Default|, the process id is used to
* allocate and store the scalars.
* @param aRet The output variable that stores scalar object.
* @return
* NS_ERROR_INVALID_ARG if the scalar id is unknown or a this is a keyed string
* scalar.
* NS_ERROR_NOT_AVAILABLE if the scalar is expired.
* NS_OK if the scalar was found. If that's the case, aResult contains a
* valid pointer to a scalar type.
*/
nsresult
internal_GetKeyedScalarByEnum(const StaticMutexAutoLock& lock,
const ScalarKey& aId,
ProcessID aProcessStorage,
KeyedScalar** aRet)
{
if (!internal_IsValidId(lock, aId)) {
MOZ_ASSERT(false, "Requested a keyed scalar with an invalid id.");
return NS_ERROR_INVALID_ARG;
}
const BaseScalarInfo &info = internal_GetScalarInfo(lock, aId);
// Dynamic scalars fixup: they are always stored in the "dynamic" process,
// unless they are part of the "builtin" Firefox probes. Please note that
// "dynamic builtin" probes are meant to support "artifact" and "build faster"
// builds.
if (aId.dynamic && !info.builtin) {
aProcessStorage = ProcessID::Dynamic;
}
KeyedScalar* scalar = nullptr;
KeyedScalarStorageMapType* scalarStorage = nullptr;
// Initialize the scalar storage to the parent storage. This will get
// set to the child storage if needed.
uint32_t storageId = static_cast<uint32_t>(aProcessStorage);
// Put dynamic-builtin scalars (used to support "build faster") in a
// separate storage.
ProcessesKeyedScalarsMapType& processStorage =
(aId.dynamic && info.builtin) ? gDynamicBuiltinKeyedScalarStorageMap : gKeyedScalarStorageMap;
// Get the process-specific storage or create one if it's not
// available.
if (!processStorage.Get(storageId, &scalarStorage)) {
scalarStorage = new KeyedScalarStorageMapType();
processStorage.Put(storageId, scalarStorage);
}
if (scalarStorage->Get(aId.id, &scalar)) {
*aRet = scalar;
return NS_OK;
}
if (IsExpiredVersion(info.expiration())) {
return NS_ERROR_NOT_AVAILABLE;
}
// We don't currently support keyed string scalars. Disable them.
if (info.kind == nsITelemetry::SCALAR_TYPE_STRING) {
MOZ_ASSERT(false, "Keyed string scalars are not currently supported.");
return NS_ERROR_INVALID_ARG;
}
scalar = new KeyedScalar(info.kind);
if (!scalar) {
return NS_ERROR_INVALID_ARG;
}
scalarStorage->Put(aId.id, scalar);
*aRet = scalar;
return NS_OK;
}
/**
* Update the keyed scalar with the provided value. This is used by the JS API.
*
* @param lock Instance of a lock locking gTelemetryHistogramMutex
* @param aName The scalar name.
* @param aKey The key name.
* @param aType The action type for updating the scalar.
* @param aValue The value to use for updating the scalar.
* @param aProcessOverride The process for which the scalar must be updated.
* This must only be used for GeckoView persistence. It must be
* set to the ProcessID::Parent for all the other cases.
* @return a ScalarResult error value.
*/
ScalarResult
internal_UpdateKeyedScalar(const StaticMutexAutoLock& lock,
const nsACString& aName, const nsAString& aKey,
ScalarActionType aType, nsIVariant* aValue,
ProcessID aProcessOverride = ProcessID::Parent,
bool aForce = false)
{
ScalarKey uniqueId;
nsresult rv = internal_GetEnumByScalarName(lock, aName, &uniqueId);
if (NS_FAILED(rv)) {
return (rv == NS_ERROR_FAILURE) ?
ScalarResult::NotInitialized : ScalarResult::UnknownScalar;
}
ScalarResult sr = internal_CanRecordScalar(lock, uniqueId, true, aForce);
if (sr != ScalarResult::Ok) {
if (sr == ScalarResult::CannotRecordDataset) {
return ScalarResult::Ok;
}
return sr;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
const BaseScalarInfo &info = internal_GetScalarInfo(lock, uniqueId);
// Convert the nsIVariant to a Variant.
mozilla::Maybe<ScalarVariant> variantValue;
sr = GetVariantFromIVariant(aValue, info.kind, variantValue);
if (sr != ScalarResult::Ok) {
MOZ_ASSERT(false, "Unable to convert nsIVariant to mozilla::Variant.");
return sr;
}
TelemetryIPCAccumulator::RecordChildKeyedScalarAction(
uniqueId.id, uniqueId.dynamic, aKey, aType, variantValue.ref());
return ScalarResult::Ok;
}
if (!aForce && internal_IsScalarDeserializing(lock)) {
const BaseScalarInfo &info = internal_GetScalarInfo(lock, uniqueId);
// Convert the nsIVariant to a Variant.
mozilla::Maybe<ScalarVariant> variantValue;
sr = GetVariantFromIVariant(aValue, info.kind, variantValue);
if (sr != ScalarResult::Ok) {
MOZ_ASSERT(false, "Unable to convert nsIVariant to mozilla::Variant.");
return sr;
}
internal_RecordKeyedScalarAction(lock,
uniqueId.id, uniqueId.dynamic,
aKey, aType, variantValue.ref());
return ScalarResult::Ok;
}
// Finally get the scalar.
KeyedScalar* scalar = nullptr;
rv = internal_GetKeyedScalarByEnum(lock, uniqueId, aProcessOverride, &scalar);
if (NS_FAILED(rv)) {
// Don't throw on expired scalars.
if (rv == NS_ERROR_NOT_AVAILABLE) {
return ScalarResult::Ok;
}
return ScalarResult::UnknownScalar;
}
if (aType == ScalarActionType::eAdd) {
return scalar->AddValue(aKey, aValue);
}
if (aType == ScalarActionType::eSet) {
return scalar->SetValue(aKey, aValue);
}
return scalar->SetMaximum(aKey, aValue);
}
/**
* Helper function to convert an array of |DynamicScalarInfo|
* to |DynamicScalarDefinition| used by the IPC calls.
*/
void
internal_DynamicScalarToIPC(const StaticMutexAutoLock& lock,
const nsTArray<DynamicScalarInfo>& aDynamicScalarInfos,
nsTArray<DynamicScalarDefinition>& aIPCDefs)
{
for (auto info : aDynamicScalarInfos) {
DynamicScalarDefinition stubDefinition;
stubDefinition.type = info.kind;
stubDefinition.dataset = info.dataset;
stubDefinition.expired = info.mDynamicExpiration;
stubDefinition.keyed = info.keyed;
stubDefinition.name = info.mDynamicName;
aIPCDefs.AppendElement(stubDefinition);
}
}
/**
* Broadcasts the dynamic scalar definitions to all the other
* content processes.
*/
void
internal_BroadcastDefinitions(const StaticMutexAutoLock& lock,
const nsTArray<DynamicScalarInfo>& scalarInfos)
{
nsTArray<mozilla::dom::ContentParent*> parents;
mozilla::dom::ContentParent::GetAll(parents);
if (!parents.Length()) {
return;
}
// Convert the internal scalar representation to a stripped down IPC one.
nsTArray<DynamicScalarDefinition> ipcDefinitions;
internal_DynamicScalarToIPC(lock, scalarInfos, ipcDefinitions);
// Broadcast the definitions to the other content processes.
for (auto parent : parents) {
mozilla::Unused << parent->SendAddDynamicScalars(ipcDefinitions);
}
}
void
internal_RegisterScalars(const StaticMutexAutoLock& lock,
const nsTArray<DynamicScalarInfo>& scalarInfos)
{
// Register the new scalars.
if (!gDynamicScalarInfo) {
gDynamicScalarInfo = new nsTArray<DynamicScalarInfo>();
}
for (auto scalarInfo : scalarInfos) {
// Allow expiring scalars that were already registered.
CharPtrEntryType *existingKey = gScalarNameIDMap.GetEntry(scalarInfo.name());
if (existingKey) {
// Change the scalar to expired if needed.
if (scalarInfo.mDynamicExpiration && !scalarInfo.builtin) {
DynamicScalarInfo& scalarData = (*gDynamicScalarInfo)[existingKey->mData.id];
scalarData.mDynamicExpiration = true;
}
continue;
}
gDynamicScalarInfo->AppendElement(scalarInfo);
uint32_t scalarId = gDynamicScalarInfo->Length() - 1;
CharPtrEntryType *entry = gScalarNameIDMap.PutEntry(scalarInfo.name());
entry->mData = ScalarKey{scalarId, true};
}
}
/**
* Creates a snapshot of the desired scalar storage.
* @param {aLock} The proof of lock to access scalar data.
* @param {aScalarsToReflect} The table that will contain the snapshot.
* @param {aDataset} The dataset we're asking the snapshot for.
* @param {aProcessStorage} The scalar storage to take a snapshot of.
* @param {aIsBuiltinDynamic} Whether or not the storage is for dynamic builtin scalars.
* @return NS_OK or the error code describing the failure reason.
*/
nsresult
internal_ScalarSnapshotter(const StaticMutexAutoLock& aLock,
ScalarSnapshotTable& aScalarsToReflect,
unsigned int aDataset,
ProcessesScalarsMapType& aProcessStorage,
bool aIsBuiltinDynamic)
{
// Iterate the scalars in aProcessStorage. The storage may contain empty or yet to be
// initialized scalars from all the supported processes.
for (auto iter = aProcessStorage.Iter(); !iter.Done(); iter.Next()) {
ScalarStorageMapType* scalarStorage = static_cast<ScalarStorageMapType*>(iter.Data());
ScalarTupleArray& processScalars = aScalarsToReflect.GetOrInsert(iter.Key());
// Are we in the "Dynamic" process?
bool isDynamicProcess = ProcessID::Dynamic == static_cast<ProcessID>(iter.Key());
// Iterate each available child storage.
for (auto childIter = scalarStorage->Iter(); !childIter.Done(); childIter.Next()) {
ScalarBase* scalar = static_cast<ScalarBase*>(childIter.Data());
// Get the informations for this scalar.
const BaseScalarInfo& info =
internal_GetScalarInfo(aLock, ScalarKey{childIter.Key(),
aIsBuiltinDynamic ? true : isDynamicProcess});
// Serialize the scalar if it's in the desired dataset.
if (IsInDataset(info.dataset, aDataset)) {
// Get the scalar value.
nsCOMPtr<nsIVariant> scalarValue;
nsresult rv = scalar->GetValue(scalarValue);
if (NS_FAILED(rv)) {
return rv;
}
// Append it to our list.
processScalars.AppendElement(mozilla::MakeTuple(info.name(), scalarValue, info.kind));
}
}
}
return NS_OK;
}
/**
* Creates a snapshot of the desired keyed scalar storage.
* @param {aLock} The proof of lock to access scalar data.
* @param {aScalarsToReflect} The table that will contain the snapshot.
* @param {aDataset} The dataset we're asking the snapshot for.
* @param {aProcessStorage} The scalar storage to take a snapshot of.
* @param {aIsBuiltinDynamic} Whether or not the storage is for dynamic builtin scalars.
* @return NS_OK or the error code describing the failure reason.
*/
nsresult
internal_KeyedScalarSnapshotter(const StaticMutexAutoLock& aLock,
KeyedScalarSnapshotTable& aScalarsToReflect,
unsigned int aDataset,
ProcessesKeyedScalarsMapType& aProcessStorage,
bool aIsBuiltinDynamic)
{
// Iterate the scalars in aProcessStorage. The storage may contain empty or yet
// to be initialized scalars from all the supported processes.
for (auto iter = aProcessStorage.Iter(); !iter.Done(); iter.Next()) {
KeyedScalarStorageMapType* scalarStorage =
static_cast<KeyedScalarStorageMapType*>(iter.Data());
KeyedScalarTupleArray& processScalars = aScalarsToReflect.GetOrInsert(iter.Key());
// Are we in the "Dynamic" process?
bool isDynamicProcess = ProcessID::Dynamic == static_cast<ProcessID>(iter.Key());
for (auto childIter = scalarStorage->Iter(); !childIter.Done(); childIter.Next()) {
KeyedScalar* scalar = static_cast<KeyedScalar*>(childIter.Data());
// Get the informations for this scalar.
const BaseScalarInfo& info =
internal_GetScalarInfo(aLock, ScalarKey{childIter.Key(),
aIsBuiltinDynamic ? true : isDynamicProcess});
// Serialize the scalar if it's in the desired dataset.
if (IsInDataset(info.dataset, aDataset)) {
// Get the keys for this scalar.
nsTArray<KeyedScalar::KeyValuePair> scalarKeyedData;
nsresult rv = scalar->GetValue(scalarKeyedData);
if (NS_FAILED(rv)) {
return rv;
}
// Append it to our list.
processScalars.AppendElement(
mozilla::MakeTuple(info.name(), scalarKeyedData, info.kind));
}
}
}
return NS_OK;
}
/**
* Helper function to get a snapshot of the scalars.
*
* @param {aLock} The proof of lock to access scalar data.
* @param {aScalarsToReflect} The table that will contain the snapshot.
* @param {aDataset} The dataset we're asking the snapshot for.
* @param {aClearScalars} Whether or not to clear the scalar storage.
* @return NS_OK or the error code describing the failure reason.
*/
nsresult
internal_GetScalarSnapshot(const StaticMutexAutoLock& aLock,
ScalarSnapshotTable& aScalarsToReflect,
unsigned int aDataset, bool aClearScalars)
{
// Take a snapshot of the scalars.
nsresult rv = internal_ScalarSnapshotter(aLock,
aScalarsToReflect,
aDataset,
gScalarStorageMap,
false /*aIsBuiltinDynamic*/);
if (NS_FAILED(rv)) {
return rv;
}
// And a snapshot of the dynamic builtin ones.
rv = internal_ScalarSnapshotter(aLock,
aScalarsToReflect,
aDataset,
gDynamicBuiltinScalarStorageMap,
true /*aIsBuiltinDynamic*/);
if (NS_FAILED(rv)) {
return rv;
}
if (aClearScalars) {
// The map already takes care of freeing the allocated memory.
gScalarStorageMap.Clear();
gDynamicBuiltinScalarStorageMap.Clear();
}
return NS_OK;
}
/**
* Helper function to get a snapshot of the keyed scalars.
*
* @param {aLock} The proof of lock to access scalar data.
* @param {aScalarsToReflect} The table that will contain the snapshot.
* @param {aDataset} The dataset we're asking the snapshot for.
* @param {aClearScalars} Whether or not to clear the scalar storage.
* @return NS_OK or the error code describing the failure reason.
*/
nsresult
internal_GetKeyedScalarSnapshot(const StaticMutexAutoLock& aLock,
KeyedScalarSnapshotTable& aScalarsToReflect,
unsigned int aDataset, bool aClearScalars)
{
// Take a snapshot of the scalars.
nsresult rv = internal_KeyedScalarSnapshotter(aLock,
aScalarsToReflect,
aDataset,
gKeyedScalarStorageMap,
false /*aIsBuiltinDynamic*/);
if (NS_FAILED(rv)) {
return rv;
}
// And a snapshot of the dynamic builtin ones.
rv = internal_KeyedScalarSnapshotter(aLock,
aScalarsToReflect,
aDataset,
gDynamicBuiltinKeyedScalarStorageMap,
true /*aIsBuiltinDynamic*/);
if (NS_FAILED(rv)) {
return rv;
}
if (aClearScalars) {
// The map already takes care of freeing the allocated memory.
gKeyedScalarStorageMap.Clear();
gDynamicBuiltinKeyedScalarStorageMap.Clear();
}
return NS_OK;
}
} // namespace
// helpers for recording/applying scalar operations
namespace {
void
internal_ApplyScalarActions(const StaticMutexAutoLock& lock,
const nsTArray<mozilla::Telemetry::ScalarAction>& aScalarActions,
const mozilla::Maybe<ProcessID>& aProcessType = Nothing())
{
if (!internal_CanRecordBase(lock)) {
return;
}
for (auto& upd : aScalarActions) {
ScalarKey uniqueId{upd.mId, upd.mDynamic};
if (NS_WARN_IF(!internal_IsValidId(lock, uniqueId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
continue;
}
if (internal_IsKeyedScalar(lock, uniqueId)) {
continue;
}
// Are we allowed to record this scalar? We don't need to check for
// allowed processes here, that's taken care of when recording
// in child processes.
if (!internal_CanRecordForScalarID(lock, uniqueId)) {
continue;
}
// Either we got passed a process type or it was explicitely set on the recorded action.
// It should never happen that it is set to an invalid value (such as ProcessID::Count)
ProcessID processType = aProcessType.valueOr(upd.mProcessType);
MOZ_ASSERT(processType != ProcessID::Count);
// Refresh the data in the parent process with the data coming from the child
// processes.
ScalarBase* scalar = nullptr;
nsresult rv = internal_GetScalarByEnum(lock, uniqueId, processType,
&scalar);
if (NS_FAILED(rv)) {
NS_WARNING("NS_FAILED internal_GetScalarByEnum for CHILD");
continue;
}
if (upd.mData.isNothing()) {
MOZ_ASSERT(false, "There is no data in the ScalarActionType.");
continue;
}
// Get the type of this scalar from the scalar ID. We already checked
// for its validity a few lines above.
const uint32_t scalarType = internal_GetScalarInfo(lock, uniqueId).kind;
// Extract the data from the mozilla::Variant.
switch (upd.mActionType)
{
case ScalarActionType::eSet:
{
switch (scalarType)
{
case nsITelemetry::SCALAR_TYPE_COUNT:
if (!upd.mData->is<uint32_t>()) {
NS_WARNING("Attempting to set a count scalar to a non-integer.");
continue;
}
scalar->SetValue(upd.mData->as<uint32_t>());
break;
case nsITelemetry::SCALAR_TYPE_BOOLEAN:
if (!upd.mData->is<bool>()) {
NS_WARNING("Attempting to set a boolean scalar to a non-boolean.");
continue;
}
scalar->SetValue(upd.mData->as<bool>());
break;
case nsITelemetry::SCALAR_TYPE_STRING:
if (!upd.mData->is<nsString>()) {
NS_WARNING("Attempting to set a string scalar to a non-string.");
continue;
}
scalar->SetValue(upd.mData->as<nsString>());
break;
}
break;
}
case ScalarActionType::eAdd:
{
if (scalarType != nsITelemetry::SCALAR_TYPE_COUNT) {
NS_WARNING("Attempting to add on a non count scalar.");
continue;
}
// We only support adding uint32_t.
if (!upd.mData->is<uint32_t>()) {
NS_WARNING("Attempting to add to a count scalar with a non-integer.");
continue;
}
scalar->AddValue(upd.mData->as<uint32_t>());
break;
}
case ScalarActionType::eSetMaximum:
{
if (scalarType != nsITelemetry::SCALAR_TYPE_COUNT) {
NS_WARNING("Attempting to setMaximum on a non count scalar.");
continue;
}
// We only support SetMaximum on uint32_t.
if (!upd.mData->is<uint32_t>()) {
NS_WARNING("Attempting to setMaximum a count scalar to a non-integer.");
continue;
}
scalar->SetMaximum(upd.mData->as<uint32_t>());
break;
}
default:
NS_WARNING("Unsupported action coming from scalar child updates.");
}
}
}
void
internal_ApplyKeyedScalarActions(const StaticMutexAutoLock& lock,
const nsTArray<mozilla::Telemetry::KeyedScalarAction>& aScalarActions,
const mozilla::Maybe<ProcessID>& aProcessType = Nothing())
{
if (!internal_CanRecordBase(lock)) {
return;
}
for (auto& upd : aScalarActions) {
ScalarKey uniqueId{upd.mId, upd.mDynamic};
if (NS_WARN_IF(!internal_IsValidId(lock, uniqueId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
continue;
}
if (!internal_IsKeyedScalar(lock, uniqueId)) {
continue;
}
// Are we allowed to record this scalar? We don't need to check for
// allowed processes here, that's taken care of when recording
// in child processes.
if (!internal_CanRecordForScalarID(lock, uniqueId)) {
continue;
}
// Either we got passed a process type or it was explicitely set on the recorded action.
// It should never happen that it is set to an invalid value (such as ProcessID::Count)
ProcessID processType = aProcessType.valueOr(upd.mProcessType);
MOZ_ASSERT(processType != ProcessID::Count);
// Refresh the data in the parent process with the data coming from the child
// processes.
KeyedScalar* scalar = nullptr;
nsresult rv = internal_GetKeyedScalarByEnum(lock, uniqueId, processType,
&scalar);
if (NS_FAILED(rv)) {
NS_WARNING("NS_FAILED internal_GetScalarByEnum for CHILD");
continue;
}
if (upd.mData.isNothing()) {
MOZ_ASSERT(false, "There is no data in the KeyedScalarAction.");
continue;
}
// Get the type of this scalar from the scalar ID. We already checked
// for its validity a few lines above.
const uint32_t scalarType = internal_GetScalarInfo(lock, uniqueId).kind;
// Extract the data from the mozilla::Variant.
switch (upd.mActionType)
{
case ScalarActionType::eSet:
{
switch (scalarType)
{
case nsITelemetry::SCALAR_TYPE_COUNT:
if (!upd.mData->is<uint32_t>()) {
NS_WARNING("Attempting to set a count scalar to a non-integer.");
continue;
}
scalar->SetValue(NS_ConvertUTF8toUTF16(upd.mKey), upd.mData->as<uint32_t>());
break;
case nsITelemetry::SCALAR_TYPE_BOOLEAN:
if (!upd.mData->is<bool>()) {
NS_WARNING("Attempting to set a boolean scalar to a non-boolean.");
continue;
}
scalar->SetValue(NS_ConvertUTF8toUTF16(upd.mKey), upd.mData->as<bool>());
break;
default:
NS_WARNING("Unsupported type coming from scalar child updates.");
}
break;
}
case ScalarActionType::eAdd:
{
if (scalarType != nsITelemetry::SCALAR_TYPE_COUNT) {
NS_WARNING("Attempting to add on a non count scalar.");
continue;
}
// We only support adding on uint32_t.
if (!upd.mData->is<uint32_t>()) {
NS_WARNING("Attempting to add to a count scalar with a non-integer.");
continue;
}
scalar->AddValue(NS_ConvertUTF8toUTF16(upd.mKey), upd.mData->as<uint32_t>());
break;
}
case ScalarActionType::eSetMaximum:
{
if (scalarType != nsITelemetry::SCALAR_TYPE_COUNT) {
NS_WARNING("Attempting to setMaximum on a non count scalar.");
continue;
}
// We only support SetMaximum on uint32_t.
if (!upd.mData->is<uint32_t>()) {
NS_WARNING("Attempting to setMaximum a count scalar to a non-integer.");
continue;
}
scalar->SetMaximum(NS_ConvertUTF8toUTF16(upd.mKey), upd.mData->as<uint32_t>());
break;
}
default:
NS_WARNING("Unsupported action coming from keyed scalar child updates.");
}
}
}
void
internal_ApplyPendingOperations(const StaticMutexAutoLock& lock)
{
if (gScalarsActions && gScalarsActions->Length() > 0) {
internal_ApplyScalarActions(lock, *gScalarsActions);
gScalarsActions->Clear();
}
if (gKeyedScalarsActions && gKeyedScalarsActions->Length() > 0) {
internal_ApplyKeyedScalarActions(lock, *gKeyedScalarsActions);
gKeyedScalarsActions->Clear();
}
// After all pending operations are applied deserialization is done
gIsDeserializing = false;
}
} // namespace
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
// EXTERNALLY VISIBLE FUNCTIONS in namespace TelemetryScalars::
// This is a StaticMutex rather than a plain Mutex (1) so that
// it gets initialised in a thread-safe manner the first time
// it is used, and (2) because it is never de-initialised, and
// a normal Mutex would show up as a leak in BloatView. StaticMutex
// also has the "OffTheBooks" property, so it won't show as a leak
// in BloatView.
// Another reason to use a StaticMutex instead of a plain Mutex is
// that, due to the nature of Telemetry, we cannot rely on having a
// mutex initialized in InitializeGlobalState. Unfortunately, we
// cannot make sure that no other function is called before this point.
static StaticMutex gTelemetryScalarsMutex;
void
TelemetryScalar::InitializeGlobalState(bool aCanRecordBase, bool aCanRecordExtended)
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
MOZ_ASSERT(!gInitDone, "TelemetryScalar::InitializeGlobalState "
"may only be called once");
gCanRecordBase = aCanRecordBase;
gCanRecordExtended = aCanRecordExtended;
// Populate the static scalar name->id cache. Note that the scalar names are
// statically allocated and come from the automatically generated TelemetryScalarData.h.
uint32_t scalarCount = static_cast<uint32_t>(mozilla::Telemetry::ScalarID::ScalarCount);
for (uint32_t i = 0; i < scalarCount; i++) {
CharPtrEntryType *entry = gScalarNameIDMap.PutEntry(gScalars[i].name());
entry->mData = ScalarKey{i, false};
}
// To summarize dynamic events we need a dynamic scalar.
const nsTArray<DynamicScalarInfo> initialDynamicScalars({
DynamicScalarInfo{
nsITelemetry::SCALAR_TYPE_COUNT,
true /* recordOnRelease */,
false /* expired */,
nsAutoCString("telemetry.dynamic_event_counts"),
true /* keyed */,
false /* built-in */,
},
});
internal_RegisterScalars(locker, initialDynamicScalars);
gInitDone = true;
}
void
TelemetryScalar::DeInitializeGlobalState()
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
gCanRecordBase = false;
gCanRecordExtended = false;
gScalarNameIDMap.Clear();
gScalarStorageMap.Clear();
gKeyedScalarStorageMap.Clear();
gDynamicBuiltinScalarStorageMap.Clear();
gDynamicBuiltinKeyedScalarStorageMap.Clear();
gDynamicScalarInfo = nullptr;
gInitDone = false;
}
void
TelemetryScalar::DeserializationStarted()
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
gIsDeserializing = true;
}
void
TelemetryScalar::ApplyPendingOperations()
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
internal_ApplyPendingOperations(locker);
}
void
TelemetryScalar::SetCanRecordBase(bool b)
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
gCanRecordBase = b;
}
void
TelemetryScalar::SetCanRecordExtended(bool b) {
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
gCanRecordExtended = b;
}
/**
* Adds the value to the given scalar.
*
* @param aName The scalar name.
* @param aVal The numeric value to add to the scalar.
* @param aCx The JS context.
* @return NS_OK (always) so that the JS API call doesn't throw. In case of errors,
* a warning level message is printed in the browser console.
*/
nsresult
TelemetryScalar::Add(const nsACString& aName, JS::HandleValue aVal, JSContext* aCx)
{
// Unpack the aVal to nsIVariant. This uses the JS context.
nsCOMPtr<nsIVariant> unpackedVal;
nsresult rv =
nsContentUtils::XPConnect()->JSToVariant(aCx, aVal, getter_AddRefs(unpackedVal));
if (NS_FAILED(rv)) {
internal_LogScalarError(aName, ScalarResult::CannotUnpackVariant);
return NS_OK;
}
ScalarResult sr;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
sr = internal_UpdateScalar(locker, aName, ScalarActionType::eAdd,
unpackedVal);
}
// Warn the user about the error if we need to.
if (sr != ScalarResult::Ok) {
internal_LogScalarError(aName, sr);
}
return NS_OK;
}
/**
* Adds the value to the given scalar.
*
* @param aName The scalar name.
* @param aKey The key name.
* @param aVal The numeric value to add to the scalar.
* @param aCx The JS context.
* @return NS_OK (always) so that the JS API call doesn't throw. In case of errors,
* a warning level message is printed in the browser console.
*/
nsresult
TelemetryScalar::Add(const nsACString& aName, const nsAString& aKey, JS::HandleValue aVal,
JSContext* aCx)
{
// Unpack the aVal to nsIVariant. This uses the JS context.
nsCOMPtr<nsIVariant> unpackedVal;
nsresult rv =
nsContentUtils::XPConnect()->JSToVariant(aCx, aVal, getter_AddRefs(unpackedVal));
if (NS_FAILED(rv)) {
internal_LogScalarError(aName, ScalarResult::CannotUnpackVariant);
return NS_OK;
}
ScalarResult sr;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
sr = internal_UpdateKeyedScalar(locker, aName, aKey,
ScalarActionType::eAdd,
unpackedVal);
}
// Warn the user about the error if we need to.
if (sr != ScalarResult::Ok) {
internal_LogScalarError(aName, sr);
}
return NS_OK;
}
/**
* Adds the value to the given scalar.
*
* @param aId The scalar enum id.
* @param aVal The numeric value to add to the scalar.
*/
void
TelemetryScalar::Add(mozilla::Telemetry::ScalarID aId, uint32_t aValue)
{
if (NS_WARN_IF(!IsValidEnumId(aId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
return;
}
ScalarKey uniqueId{static_cast<uint32_t>(aId), false};
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (internal_CanRecordScalar(locker, uniqueId, false) != ScalarResult::Ok) {
// We can't record this scalar. Bail out.
return;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
TelemetryIPCAccumulator::RecordChildScalarAction(uniqueId.id, uniqueId.dynamic,
ScalarActionType::eAdd,
ScalarVariant(aValue));
return;
}
if (internal_IsScalarDeserializing(locker)) {
internal_RecordScalarAction(locker, uniqueId.id, uniqueId.dynamic,
ScalarActionType::eAdd,
ScalarVariant(aValue));
return;
}
ScalarBase* scalar = nullptr;
nsresult rv = internal_GetScalarByEnum(locker, uniqueId, ProcessID::Parent,
&scalar);
if (NS_FAILED(rv)) {
return;
}
scalar->AddValue(aValue);
}
/**
* Adds the value to the given keyed scalar.
*
* @param aId The scalar enum id.
* @param aKey The key name.
* @param aVal The numeric value to add to the scalar.
*/
void
TelemetryScalar::Add(mozilla::Telemetry::ScalarID aId, const nsAString& aKey,
uint32_t aValue)
{
if (NS_WARN_IF(!IsValidEnumId(aId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
return;
}
ScalarKey uniqueId{static_cast<uint32_t>(aId), false};
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (internal_CanRecordScalar(locker, uniqueId, true) != ScalarResult::Ok) {
// We can't record this scalar. Bail out.
return;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
TelemetryIPCAccumulator::RecordChildKeyedScalarAction(uniqueId.id, uniqueId.dynamic,
aKey, ScalarActionType::eAdd, ScalarVariant(aValue));
return;
}
if (internal_IsScalarDeserializing(locker)) {
internal_RecordKeyedScalarAction(locker, uniqueId.id, uniqueId.dynamic,
aKey,
ScalarActionType::eAdd,
ScalarVariant(aValue));
return;
}
KeyedScalar* scalar = nullptr;
nsresult rv = internal_GetKeyedScalarByEnum(locker, uniqueId,
ProcessID::Parent,
&scalar);
if (NS_FAILED(rv)) {
return;
}
scalar->AddValue(aKey, aValue);
}
/**
* Sets the scalar to the given value.
*
* @param aName The scalar name.
* @param aVal The value to set the scalar to.
* @param aCx The JS context.
* @return NS_OK (always) so that the JS API call doesn't throw. In case of errors,
* a warning level message is printed in the browser console.
*/
nsresult
TelemetryScalar::Set(const nsACString& aName, JS::HandleValue aVal, JSContext* aCx)
{
// Unpack the aVal to nsIVariant. This uses the JS context.
nsCOMPtr<nsIVariant> unpackedVal;
nsresult rv =
nsContentUtils::XPConnect()->JSToVariant(aCx, aVal, getter_AddRefs(unpackedVal));
if (NS_FAILED(rv)) {
internal_LogScalarError(aName, ScalarResult::CannotUnpackVariant);
return NS_OK;
}
ScalarResult sr;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
sr = internal_UpdateScalar(locker, aName, ScalarActionType::eSet,
unpackedVal);
}
// Warn the user about the error if we need to.
if (sr != ScalarResult::Ok) {
internal_LogScalarError(aName, sr);
}
return NS_OK;
}
/**
* Sets the keyed scalar to the given value.
*
* @param aName The scalar name.
* @param aKey The key name.
* @param aVal The value to set the scalar to.
* @param aCx The JS context.
* @return NS_OK (always) so that the JS API call doesn't throw. In case of errors,
* a warning level message is printed in the browser console.
*/
nsresult
TelemetryScalar::Set(const nsACString& aName, const nsAString& aKey, JS::HandleValue aVal,
JSContext* aCx)
{
// Unpack the aVal to nsIVariant. This uses the JS context.
nsCOMPtr<nsIVariant> unpackedVal;
nsresult rv =
nsContentUtils::XPConnect()->JSToVariant(aCx, aVal, getter_AddRefs(unpackedVal));
if (NS_FAILED(rv)) {
internal_LogScalarError(aName, ScalarResult::CannotUnpackVariant);
return NS_OK;
}
ScalarResult sr;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
sr = internal_UpdateKeyedScalar(locker, aName, aKey,
ScalarActionType::eSet,
unpackedVal);
}
// Warn the user about the error if we need to.
if (sr != ScalarResult::Ok) {
internal_LogScalarError(aName, sr);
}
return NS_OK;
}
/**
* Sets the scalar to the given numeric value.
*
* @param aId The scalar enum id.
* @param aValue The numeric, unsigned value to set the scalar to.
*/
void
TelemetryScalar::Set(mozilla::Telemetry::ScalarID aId, uint32_t aValue)
{
if (NS_WARN_IF(!IsValidEnumId(aId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
return;
}
ScalarKey uniqueId{static_cast<uint32_t>(aId), false};
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (internal_CanRecordScalar(locker, uniqueId, false) != ScalarResult::Ok) {
// We can't record this scalar. Bail out.
return;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
TelemetryIPCAccumulator::RecordChildScalarAction(uniqueId.id, uniqueId.dynamic,
ScalarActionType::eSet,
ScalarVariant(aValue));
return;
}
if (internal_IsScalarDeserializing(locker)) {
internal_RecordScalarAction(locker, uniqueId.id, uniqueId.dynamic,
ScalarActionType::eSet,
ScalarVariant(aValue));
return;
}
ScalarBase* scalar = nullptr;
nsresult rv = internal_GetScalarByEnum(locker, uniqueId, ProcessID::Parent,
&scalar);
if (NS_FAILED(rv)) {
return;
}
scalar->SetValue(aValue);
}
/**
* Sets the scalar to the given string value.
*
* @param aId The scalar enum id.
* @param aValue The string value to set the scalar to.
*/
void
TelemetryScalar::Set(mozilla::Telemetry::ScalarID aId, const nsAString& aValue)
{
if (NS_WARN_IF(!IsValidEnumId(aId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
return;
}
ScalarKey uniqueId{static_cast<uint32_t>(aId), false};
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (internal_CanRecordScalar(locker, uniqueId, false) != ScalarResult::Ok) {
// We can't record this scalar. Bail out.
return;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
TelemetryIPCAccumulator::RecordChildScalarAction(uniqueId.id, uniqueId.dynamic,
ScalarActionType::eSet,
ScalarVariant(nsString(aValue)));
return;
}
if (internal_IsScalarDeserializing(locker)) {
internal_RecordScalarAction(locker, uniqueId.id, uniqueId.dynamic,
ScalarActionType::eSet,
ScalarVariant(nsString(aValue)));
return;
}
ScalarBase* scalar = nullptr;
nsresult rv = internal_GetScalarByEnum(locker, uniqueId, ProcessID::Parent,
&scalar);
if (NS_FAILED(rv)) {
return;
}
scalar->SetValue(aValue);
}
/**
* Sets the scalar to the given boolean value.
*
* @param aId The scalar enum id.
* @param aValue The boolean value to set the scalar to.
*/
void
TelemetryScalar::Set(mozilla::Telemetry::ScalarID aId, bool aValue)
{
if (NS_WARN_IF(!IsValidEnumId(aId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
return;
}
ScalarKey uniqueId{static_cast<uint32_t>(aId), false};
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (internal_CanRecordScalar(locker, uniqueId, false) != ScalarResult::Ok) {
// We can't record this scalar. Bail out.
return;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
TelemetryIPCAccumulator::RecordChildScalarAction(uniqueId.id, uniqueId.dynamic,
ScalarActionType::eSet,
ScalarVariant(aValue));
return;
}
if (internal_IsScalarDeserializing(locker)) {
internal_RecordScalarAction(locker, uniqueId.id, uniqueId.dynamic,
ScalarActionType::eSet,
ScalarVariant(aValue));
return;
}
ScalarBase* scalar = nullptr;
nsresult rv = internal_GetScalarByEnum(locker, uniqueId, ProcessID::Parent,
&scalar);
if (NS_FAILED(rv)) {
return;
}
scalar->SetValue(aValue);
}
/**
* Sets the keyed scalar to the given numeric value.
*
* @param aId The scalar enum id.
* @param aKey The scalar key.
* @param aValue The numeric, unsigned value to set the scalar to.
*/
void
TelemetryScalar::Set(mozilla::Telemetry::ScalarID aId, const nsAString& aKey,
uint32_t aValue)
{
if (NS_WARN_IF(!IsValidEnumId(aId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
return;
}
ScalarKey uniqueId{static_cast<uint32_t>(aId), false};
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (internal_CanRecordScalar(locker, uniqueId, true) != ScalarResult::Ok) {
// We can't record this scalar. Bail out.
return;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
TelemetryIPCAccumulator::RecordChildKeyedScalarAction(uniqueId.id, uniqueId.dynamic,
aKey, ScalarActionType::eSet, ScalarVariant(aValue));
return;
}
if (internal_IsScalarDeserializing(locker)) {
internal_RecordKeyedScalarAction(locker, uniqueId.id, uniqueId.dynamic,
aKey,
ScalarActionType::eSet,
ScalarVariant(aValue));
return;
}
KeyedScalar* scalar = nullptr;
nsresult rv = internal_GetKeyedScalarByEnum(locker, uniqueId,
ProcessID::Parent,
&scalar);
if (NS_FAILED(rv)) {
return;
}
scalar->SetValue(aKey, aValue);
}
/**
* Sets the scalar to the given boolean value.
*
* @param aId The scalar enum id.
* @param aKey The scalar key.
* @param aValue The boolean value to set the scalar to.
*/
void
TelemetryScalar::Set(mozilla::Telemetry::ScalarID aId, const nsAString& aKey,
bool aValue)
{
if (NS_WARN_IF(!IsValidEnumId(aId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
return;
}
ScalarKey uniqueId{static_cast<uint32_t>(aId), false};
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (internal_CanRecordScalar(locker, uniqueId, true) != ScalarResult::Ok) {
// We can't record this scalar. Bail out.
return;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
TelemetryIPCAccumulator::RecordChildKeyedScalarAction(uniqueId.id, uniqueId.dynamic,
aKey, ScalarActionType::eSet, ScalarVariant(aValue));
return;
}
if (internal_IsScalarDeserializing(locker)) {
internal_RecordKeyedScalarAction(locker, uniqueId.id, uniqueId.dynamic,
aKey,
ScalarActionType::eSet,
ScalarVariant(aValue));
return;
}
KeyedScalar* scalar = nullptr;
nsresult rv = internal_GetKeyedScalarByEnum(locker, uniqueId,
ProcessID::Parent,
&scalar);
if (NS_FAILED(rv)) {
return;
}
scalar->SetValue(aKey, aValue);
}
/**
* Sets the scalar to the maximum of the current and the passed value.
*
* @param aName The scalar name.
* @param aVal The numeric value to set the scalar to.
* @param aCx The JS context.
* @return NS_OK (always) so that the JS API call doesn't throw. In case of errors,
* a warning level message is printed in the browser console.
*/
nsresult
TelemetryScalar::SetMaximum(const nsACString& aName, JS::HandleValue aVal, JSContext* aCx)
{
// Unpack the aVal to nsIVariant. This uses the JS context.
nsCOMPtr<nsIVariant> unpackedVal;
nsresult rv =
nsContentUtils::XPConnect()->JSToVariant(aCx, aVal, getter_AddRefs(unpackedVal));
if (NS_FAILED(rv)) {
internal_LogScalarError(aName, ScalarResult::CannotUnpackVariant);
return NS_OK;
}
ScalarResult sr;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
sr = internal_UpdateScalar(locker, aName, ScalarActionType::eSetMaximum,
unpackedVal);
}
// Warn the user about the error if we need to.
if (sr != ScalarResult::Ok) {
internal_LogScalarError(aName, sr);
}
return NS_OK;
}
/**
* Sets the scalar to the maximum of the current and the passed value.
*
* @param aName The scalar name.
* @param aKey The key name.
* @param aVal The numeric value to set the scalar to.
* @param aCx The JS context.
* @return NS_OK (always) so that the JS API call doesn't throw. In case of errors,
* a warning level message is printed in the browser console.
*/
nsresult
TelemetryScalar::SetMaximum(const nsACString& aName, const nsAString& aKey, JS::HandleValue aVal,
JSContext* aCx)
{
// Unpack the aVal to nsIVariant. This uses the JS context.
nsCOMPtr<nsIVariant> unpackedVal;
nsresult rv =
nsContentUtils::XPConnect()->JSToVariant(aCx, aVal, getter_AddRefs(unpackedVal));
if (NS_FAILED(rv)) {
internal_LogScalarError(aName, ScalarResult::CannotUnpackVariant);
return NS_OK;
}
ScalarResult sr;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
sr = internal_UpdateKeyedScalar(locker, aName, aKey,
ScalarActionType::eSetMaximum,
unpackedVal);
}
// Warn the user about the error if we need to.
if (sr != ScalarResult::Ok) {
internal_LogScalarError(aName, sr);
}
return NS_OK;
}
/**
* Sets the scalar to the maximum of the current and the passed value.
*
* @param aId The scalar enum id.
* @param aValue The numeric value to set the scalar to.
*/
void
TelemetryScalar::SetMaximum(mozilla::Telemetry::ScalarID aId, uint32_t aValue)
{
if (NS_WARN_IF(!IsValidEnumId(aId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
return;
}
ScalarKey uniqueId{static_cast<uint32_t>(aId), false};
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (internal_CanRecordScalar(locker, uniqueId, false) != ScalarResult::Ok) {
// We can't record this scalar. Bail out.
return;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
TelemetryIPCAccumulator::RecordChildScalarAction(uniqueId.id, uniqueId.dynamic,
ScalarActionType::eSetMaximum,
ScalarVariant(aValue));
return;
}
if (internal_IsScalarDeserializing(locker)) {
internal_RecordScalarAction(locker, uniqueId.id, uniqueId.dynamic,
ScalarActionType::eSetMaximum,
ScalarVariant(aValue));
return;
}
ScalarBase* scalar = nullptr;
nsresult rv = internal_GetScalarByEnum(locker, uniqueId, ProcessID::Parent,
&scalar);
if (NS_FAILED(rv)) {
return;
}
scalar->SetMaximum(aValue);
}
/**
* Sets the keyed scalar to the maximum of the current and the passed value.
*
* @param aId The scalar enum id.
* @param aKey The key name.
* @param aValue The numeric value to set the scalar to.
*/
void
TelemetryScalar::SetMaximum(mozilla::Telemetry::ScalarID aId, const nsAString& aKey,
uint32_t aValue)
{
if (NS_WARN_IF(!IsValidEnumId(aId))) {
MOZ_ASSERT_UNREACHABLE("Scalar usage requires valid ids.");
return;
}
ScalarKey uniqueId{static_cast<uint32_t>(aId), false};
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (internal_CanRecordScalar(locker, uniqueId, true) != ScalarResult::Ok) {
// We can't record this scalar. Bail out.
return;
}
// Accumulate in the child process if needed.
if (!XRE_IsParentProcess()) {
TelemetryIPCAccumulator::RecordChildKeyedScalarAction(uniqueId.id, uniqueId.dynamic,
aKey, ScalarActionType::eSetMaximum, ScalarVariant(aValue));
return;
}
if (internal_IsScalarDeserializing(locker)) {
internal_RecordKeyedScalarAction(locker, uniqueId.id, uniqueId.dynamic,
aKey,
ScalarActionType::eSetMaximum,
ScalarVariant(aValue));
return;
}
KeyedScalar* scalar = nullptr;
nsresult rv = internal_GetKeyedScalarByEnum(locker, uniqueId, ProcessID::Parent,
&scalar);
if (NS_FAILED(rv)) {
return;
}
scalar->SetMaximum(aKey, aValue);
}
/**
* Serializes the scalars from the given dataset to a json-style object and resets them.
* The returned structure looks like:
* {"process": {"category1.probe":1,"category1.other_probe":false,...}, ... }.
*
* @param aDataset DATASET_RELEASE_CHANNEL_OPTOUT or DATASET_RELEASE_CHANNEL_OPTIN.
* @param aClear Whether to clear out the scalars after snapshotting.
*/
nsresult
TelemetryScalar::CreateSnapshots(unsigned int aDataset, bool aClearScalars, JSContext* aCx,
uint8_t optional_argc, JS::MutableHandle<JS::Value> aResult)
{
MOZ_ASSERT(XRE_IsParentProcess(),
"Snapshotting scalars should only happen in the parent processes.");
// If no arguments were passed in, apply the default value.
if (!optional_argc) {
aClearScalars = false;
}
JS::Rooted<JSObject*> root_obj(aCx, JS_NewPlainObject(aCx));
if (!root_obj) {
return NS_ERROR_FAILURE;
}
aResult.setObject(*root_obj);
// Return `{}` in child processes.
if (!XRE_IsParentProcess()) {
return NS_OK;
}
// Only lock the mutex while accessing our data, without locking any JS related code.
ScalarSnapshotTable scalarsToReflect;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
nsresult rv =
internal_GetScalarSnapshot(locker, scalarsToReflect, aDataset, aClearScalars);
if (NS_FAILED(rv)) {
return rv;
}
}
// Reflect it to JS.
for (auto iter = scalarsToReflect.Iter(); !iter.Done(); iter.Next()) {
ScalarTupleArray& processScalars = iter.Data();
const char* processName = GetNameForProcessID(ProcessID(iter.Key()));
// Create the object that will hold the scalars for this process and add it
// to the returned root object.
JS::RootedObject processObj(aCx, JS_NewPlainObject(aCx));
if (!processObj ||
!JS_DefineProperty(aCx, root_obj, processName, processObj, JSPROP_ENUMERATE)) {
return NS_ERROR_FAILURE;
}
for (ScalarTupleArray::size_type i = 0; i < processScalars.Length(); i++) {
const ScalarDataTuple& scalar = processScalars[i];
// Convert it to a JS Val.
JS::Rooted<JS::Value> scalarJsValue(aCx);
nsresult rv =
nsContentUtils::XPConnect()->VariantToJS(aCx, processObj, mozilla::Get<1>(scalar), &scalarJsValue);
if (NS_FAILED(rv)) {
return rv;
}
// Add it to the scalar object.
if (!JS_DefineProperty(aCx, processObj, mozilla::Get<0>(scalar), scalarJsValue, JSPROP_ENUMERATE)) {
return NS_ERROR_FAILURE;
}
}
}
return NS_OK;
}
/**
* Serializes the scalars from the given dataset to a json-style object and resets them.
* The returned structure looks like:
* { "process": { "category1.probe": { "key_1": 2, "key_2": 1, ... }, ... }, ... }
*
* @param aDataset DATASET_RELEASE_CHANNEL_OPTOUT or DATASET_RELEASE_CHANNEL_OPTIN.
* @param aClear Whether to clear out the keyed scalars after snapshotting.
*/
nsresult
TelemetryScalar::CreateKeyedSnapshots(unsigned int aDataset, bool aClearScalars, JSContext* aCx,
uint8_t optional_argc, JS::MutableHandle<JS::Value> aResult)
{
MOZ_ASSERT(XRE_IsParentProcess(),
"Snapshotting scalars should only happen in the parent processes.");
// If no arguments were passed in, apply the default value.
if (!optional_argc) {
aClearScalars = false;
}
JS::Rooted<JSObject*> root_obj(aCx, JS_NewPlainObject(aCx));
if (!root_obj) {
return NS_ERROR_FAILURE;
}
aResult.setObject(*root_obj);
// Return `{}` in child processes.
if (!XRE_IsParentProcess()) {
return NS_OK;
}
// Only lock the mutex while accessing our data, without locking any JS related code.
KeyedScalarSnapshotTable scalarsToReflect;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
nsresult rv =
internal_GetKeyedScalarSnapshot(locker, scalarsToReflect, aDataset, aClearScalars);
if (NS_FAILED(rv)) {
return rv;
}
}
// Reflect it to JS.
for (auto iter = scalarsToReflect.Iter(); !iter.Done(); iter.Next()) {
KeyedScalarTupleArray& processScalars = iter.Data();
const char* processName = GetNameForProcessID(ProcessID(iter.Key()));
// Create the object that will hold the scalars for this process and add it
// to the returned root object.
JS::RootedObject processObj(aCx, JS_NewPlainObject(aCx));
if (!processObj ||
!JS_DefineProperty(aCx, root_obj, processName, processObj, JSPROP_ENUMERATE)) {
return NS_ERROR_FAILURE;
}
for (KeyedScalarTupleArray::size_type i = 0; i < processScalars.Length(); i++) {
const KeyedScalarDataTuple& keyedScalarData = processScalars[i];
// Go through each keyed scalar and create a keyed scalar object.
// This object will hold the values for all the keyed scalar keys.
JS::RootedObject keyedScalarObj(aCx, JS_NewPlainObject(aCx));
// Define a property for each scalar key, then add it to the keyed scalar
// object.
const nsTArray<KeyedScalar::KeyValuePair>& keyProps = mozilla::Get<1>(keyedScalarData);
for (uint32_t i = 0; i < keyProps.Length(); i++) {
const KeyedScalar::KeyValuePair& keyData = keyProps[i];
// Convert the value for the key to a JSValue.
JS::Rooted<JS::Value> keyJsValue(aCx);
nsresult rv =
nsContentUtils::XPConnect()->VariantToJS(aCx, keyedScalarObj, keyData.second(), &keyJsValue);
if (NS_FAILED(rv)) {
return rv;
}
// Add the key to the scalar representation.
const NS_ConvertUTF8toUTF16 key(keyData.first());
if (!JS_DefineUCProperty(aCx, keyedScalarObj, key.Data(), key.Length(), keyJsValue, JSPROP_ENUMERATE)) {
return NS_ERROR_FAILURE;
}
}
// Add the scalar to the root object.
if (!JS_DefineProperty(aCx, processObj, mozilla::Get<0>(keyedScalarData), keyedScalarObj, JSPROP_ENUMERATE)) {
return NS_ERROR_FAILURE;
}
}
}
return NS_OK;
}
nsresult
TelemetryScalar::RegisterScalars(const nsACString& aCategoryName,
JS::Handle<JS::Value> aScalarData,
bool aBuiltin,
JSContext* cx)
{
MOZ_ASSERT(XRE_IsParentProcess(),
"Dynamic scalars should only be created in the parent process.");
if (!IsValidIdentifierString(aCategoryName, kMaximumCategoryNameLength, true, false)) {
JS_ReportErrorASCII(cx, "Invalid category name %s.",
PromiseFlatCString(aCategoryName).get());
return NS_ERROR_INVALID_ARG;
}
if (!aScalarData.isObject()) {
JS_ReportErrorASCII(cx, "Scalar data parameter should be an object");
return NS_ERROR_INVALID_ARG;
}
JS::RootedObject obj(cx, &aScalarData.toObject());
JS::Rooted<JS::IdVector> scalarPropertyIds(cx, JS::IdVector(cx));
if (!JS_Enumerate(cx, obj, &scalarPropertyIds)) {
return NS_ERROR_FAILURE;
}
// Collect the scalar data into local storage first.
// Only after successfully validating all contained scalars will we register
// them into global storage.
nsTArray<DynamicScalarInfo> newScalarInfos;
for (size_t i = 0, n = scalarPropertyIds.length(); i < n; i++) {
nsAutoJSString scalarName;
if (!scalarName.init(cx, scalarPropertyIds[i])) {
return NS_ERROR_FAILURE;
}
if (!IsValidIdentifierString(NS_ConvertUTF16toUTF8(scalarName), kMaximumScalarNameLength,
false, true)) {
JS_ReportErrorASCII(cx, "Invalid scalar name %s.",
PromiseFlatCString(NS_ConvertUTF16toUTF8(scalarName)).get());
return NS_ERROR_INVALID_ARG;
}
// Join the category and the probe names.
nsPrintfCString fullName("%s.%s",
PromiseFlatCString(aCategoryName).get(),
NS_ConvertUTF16toUTF8(scalarName).get());
JS::RootedValue value(cx);
if (!JS_GetPropertyById(cx, obj, scalarPropertyIds[i], &value) || !value.isObject()) {
return NS_ERROR_FAILURE;
}
JS::RootedObject scalarDef(cx, &value.toObject());
// Get the scalar's kind.
if (!JS_GetProperty(cx, scalarDef, "kind", &value)
|| !value.isInt32()) {
JS_ReportErrorASCII(cx, "Invalid or missing 'kind' for scalar %s.",
PromiseFlatCString(fullName).get());
return NS_ERROR_FAILURE;
}
uint32_t kind = static_cast<uint32_t>(value.toInt32());
// Get the optional scalar's recording policy (default to false).
bool hasProperty = false;
bool recordOnRelease = false;
if (JS_HasProperty(cx, scalarDef, "record_on_release", &hasProperty) && hasProperty) {
if (!JS_GetProperty(cx, scalarDef, "record_on_release", &value) || !value.isBoolean()) {
JS_ReportErrorASCII(cx, "Invalid 'record_on_release' for scalar %s.",
PromiseFlatCString(fullName).get());
return NS_ERROR_FAILURE;
}
recordOnRelease = static_cast<bool>(value.toBoolean());
}
// Get the optional scalar's keyed (default to false).
bool keyed = false;
if (JS_HasProperty(cx, scalarDef, "keyed", &hasProperty) && hasProperty) {
if (!JS_GetProperty(cx, scalarDef, "keyed", &value) || !value.isBoolean()) {
JS_ReportErrorASCII(cx, "Invalid 'keyed' for scalar %s.",
PromiseFlatCString(fullName).get());
return NS_ERROR_FAILURE;
}
keyed = static_cast<bool>(value.toBoolean());
}
// Get the optional scalar's expired state (default to false).
bool expired = false;
if (JS_HasProperty(cx, scalarDef, "expired", &hasProperty) && hasProperty) {
if (!JS_GetProperty(cx, scalarDef, "expired", &value) || !value.isBoolean()) {
JS_ReportErrorASCII(cx, "Invalid 'expired' for scalar %s.",
PromiseFlatCString(fullName).get());
return NS_ERROR_FAILURE;
}
expired = static_cast<bool>(value.toBoolean());
}
// We defer the actual registration here in case any other event description is invalid.
// In that case we don't need to roll back any partial registration.
newScalarInfos.AppendElement(DynamicScalarInfo{
kind, recordOnRelease, expired, fullName, keyed, aBuiltin
});
}
// Register the dynamic definition on the parent process.
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
::internal_RegisterScalars(locker, newScalarInfos);
// Propagate the registration to all the content-processes. Please note that
// this does not require to hold the mutex.
::internal_BroadcastDefinitions(locker, newScalarInfos);
}
return NS_OK;
}
/**
* Count in Scalars how many of which events were recorded. See bug 1440673
*
* Event Telemetry unfortunately cannot use vanilla ScalarAdd because it needs
* to summarize events recorded in different processes to the
* telemetry.event_counts of the same process. Including "dynamic".
*
* @param aUniqueEventName - expected to be category#object#method
* @param aProcessType - the process of the event being summarized
* @param aDynamic - whether the event being summarized was dynamic
*/
void
TelemetryScalar::SummarizeEvent(const nsCString& aUniqueEventName,
ProcessID aProcessType, bool aDynamic)
{
MOZ_ASSERT(XRE_IsParentProcess(), "Only summarize events in the parent process");
if (!XRE_IsParentProcess()) {
return;
}
StaticMutexAutoLock lock(gTelemetryScalarsMutex);
ScalarKey scalarKey{static_cast<uint32_t>(ScalarID::TELEMETRY_EVENT_COUNTS), aDynamic};
if (aDynamic) {
nsresult rv = internal_GetEnumByScalarName(lock,
nsAutoCString("telemetry.dynamic_event_counts"),
&scalarKey);
if (NS_FAILED(rv)) {
NS_WARNING("NS_FAILED getting ScalarKey for telemetry.dynamic_event_counts");
return;
}
}
KeyedScalar* scalar = nullptr;
nsresult rv = internal_GetKeyedScalarByEnum(lock, scalarKey, aProcessType, &scalar);
if (NS_FAILED(rv)) {
NS_WARNING("NS_FAILED getting keyed scalar for event summary. Wut.");
return;
}
static uint32_t sMaxEventSummaryKeys =
Preferences::GetUint("toolkit.telemetry.maxEventSummaryKeys", 500);
// Set this each time as it may have been cleared and recreated between calls
scalar->SetMaximumNumberOfKeys(sMaxEventSummaryKeys);
scalar->AddValue(NS_ConvertASCIItoUTF16(aUniqueEventName), 1);
}
/**
* Resets all the stored scalars. This is intended to be only used in tests.
*/
void
TelemetryScalar::ClearScalars()
{
MOZ_ASSERT(XRE_IsParentProcess(), "Scalars should only be cleared in the parent process.");
if (!XRE_IsParentProcess()) {
return;
}
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
gScalarStorageMap.Clear();
gKeyedScalarStorageMap.Clear();
gDynamicBuiltinScalarStorageMap.Clear();
gDynamicBuiltinKeyedScalarStorageMap.Clear();
gScalarsActions = nullptr;
gKeyedScalarsActions = nullptr;
}
size_t
TelemetryScalar::GetMapShallowSizesOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf)
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
return gScalarNameIDMap.ShallowSizeOfExcludingThis(aMallocSizeOf);
}
size_t
TelemetryScalar::GetScalarSizesOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf)
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
size_t n = 0;
auto getSizeOf = [aMallocSizeOf](auto &storageMap)
{
size_t partial = 0;
for (auto iter = storageMap.Iter(); !iter.Done(); iter.Next()) {
auto scalarStorage = iter.UserData();
for (auto childIter = scalarStorage->Iter(); !childIter.Done(); childIter.Next()) {
auto scalar = childIter.UserData();
partial += scalar->SizeOfIncludingThis(aMallocSizeOf);
}
}
return partial;
};
// Account for all the storage used for the different scalar types.
n += getSizeOf(gScalarStorageMap);
n += getSizeOf(gKeyedScalarStorageMap);
n += getSizeOf(gDynamicBuiltinScalarStorageMap);
n += getSizeOf(gDynamicBuiltinKeyedScalarStorageMap);
return n;
}
void
TelemetryScalar::UpdateChildData(ProcessID aProcessType,
const nsTArray<mozilla::Telemetry::ScalarAction>& aScalarActions)
{
MOZ_ASSERT(XRE_IsParentProcess(),
"The stored child processes scalar data must be updated from the parent process.");
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
// If scalars are still being deserialized, we need to record the incoming
// operations as well.
if (internal_IsScalarDeserializing(locker)) {
for (const ScalarAction& action : aScalarActions) {
// We're only getting immutable access, so let's copy it
ScalarAction copy = action;
// Fix up the process type
copy.mProcessType = aProcessType;
internal_RecordScalarAction(locker, copy);
}
return;
}
internal_ApplyScalarActions(locker, aScalarActions, Some(aProcessType));
}
void
TelemetryScalar::UpdateChildKeyedData(ProcessID aProcessType,
const nsTArray<mozilla::Telemetry::KeyedScalarAction>& aScalarActions)
{
MOZ_ASSERT(XRE_IsParentProcess(),
"The stored child processes keyed scalar data must be updated from the parent process.");
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
// If scalars are still being deserialized, we need to record the incoming
// operations as well.
if (internal_IsScalarDeserializing(locker)) {
for (const KeyedScalarAction& action : aScalarActions) {
// We're only getting immutable access, so let's copy it
KeyedScalarAction copy = action;
// Fix up the process type
copy.mProcessType = aProcessType;
internal_RecordKeyedScalarAction(locker, copy);
}
return;
}
internal_ApplyKeyedScalarActions(locker, aScalarActions, Some(aProcessType));
}
void
TelemetryScalar::RecordDiscardedData(ProcessID aProcessType,
const mozilla::Telemetry::DiscardedData& aDiscardedData)
{
MOZ_ASSERT(XRE_IsParentProcess(),
"Discarded Data must be updated from the parent process.");
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
if (!internal_CanRecordBase(locker)) {
return;
}
ScalarBase* scalar = nullptr;
mozilla::DebugOnly<nsresult> rv;
rv = internal_GetScalarByEnum(locker,
ScalarKey{static_cast<uint32_t>(ScalarID::TELEMETRY_DISCARDED_ACCUMULATIONS), false},
aProcessType, &scalar);
MOZ_ASSERT(NS_SUCCEEDED(rv));
scalar->AddValue(aDiscardedData.mDiscardedHistogramAccumulations);
rv = internal_GetScalarByEnum(locker,
ScalarKey{static_cast<uint32_t>(ScalarID::TELEMETRY_DISCARDED_KEYED_ACCUMULATIONS), false},
aProcessType, &scalar);
MOZ_ASSERT(NS_SUCCEEDED(rv));
scalar->AddValue(aDiscardedData.mDiscardedKeyedHistogramAccumulations);
rv = internal_GetScalarByEnum(locker,
ScalarKey{static_cast<uint32_t>(ScalarID::TELEMETRY_DISCARDED_SCALAR_ACTIONS), false},
aProcessType, &scalar);
MOZ_ASSERT(NS_SUCCEEDED(rv));
scalar->AddValue(aDiscardedData.mDiscardedScalarActions);
rv = internal_GetScalarByEnum(locker,
ScalarKey{static_cast<uint32_t>(ScalarID::TELEMETRY_DISCARDED_KEYED_SCALAR_ACTIONS), false},
aProcessType, &scalar);
MOZ_ASSERT(NS_SUCCEEDED(rv));
scalar->AddValue(aDiscardedData.mDiscardedKeyedScalarActions);
rv = internal_GetScalarByEnum(locker,
ScalarKey{static_cast<uint32_t>(ScalarID::TELEMETRY_DISCARDED_CHILD_EVENTS), false},
aProcessType, &scalar);
MOZ_ASSERT(NS_SUCCEEDED(rv));
scalar->AddValue(aDiscardedData.mDiscardedChildEvents);
}
/**
* Get the dynamic scalar definitions in an IPC-friendly
* structure.
*/
void
TelemetryScalar::GetDynamicScalarDefinitions(
nsTArray<DynamicScalarDefinition> &aDefArray)
{
MOZ_ASSERT(XRE_IsParentProcess());
if (!gDynamicScalarInfo) {
// Don't have dynamic scalar definitions. Bail out!
return;
}
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
internal_DynamicScalarToIPC(locker, *gDynamicScalarInfo, aDefArray);
}
/**
* This adds the dynamic scalar definitions coming from
* the parent process to this child process. If a dynamic
* scalar definition is already defined, check if the new definition
* makes the scalar expired and eventually update the expiration
* state.
*/
void
TelemetryScalar::AddDynamicScalarDefinitions(
const nsTArray<DynamicScalarDefinition>& aDefs)
{
MOZ_ASSERT(!XRE_IsParentProcess());
nsTArray<DynamicScalarInfo> dynamicStubs;
// Populate the definitions array before acquiring the lock.
for (auto def : aDefs) {
bool recordOnRelease = def.dataset == nsITelemetry::DATASET_RELEASE_CHANNEL_OPTOUT;
dynamicStubs.AppendElement(DynamicScalarInfo{
def.type,
recordOnRelease,
def.expired,
def.name,
def.keyed,
false /* builtin */});
}
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
internal_RegisterScalars(locker, dynamicStubs);
}
}
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
// PUBLIC: GeckoView serialization/deserialization functions.
/**
* Write the scalar data to the provided Json object, for
* GeckoView measurement persistence. The output format is the same one used
* for snapshotting the scalars.
*
* @param {aWriter} The JSON object to write to.
* @returns NS_OK or a failure value explaining why persistence failed.
*/
nsresult
TelemetryScalar::SerializeScalars(mozilla::JSONWriter& aWriter)
{
// Get a copy of the data, without clearing.
ScalarSnapshotTable scalarsToReflect;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
// For persistence, we care about all the datasets. Worst case, they
// will be empty.
nsresult rv = internal_GetScalarSnapshot(locker,
scalarsToReflect,
nsITelemetry::DATASET_RELEASE_CHANNEL_OPTIN,
false /*aClearScalars*/);
if (NS_FAILED(rv)) {
return rv;
}
}
// Persist the scalars to the JSON object.
for (auto iter = scalarsToReflect.Iter(); !iter.Done(); iter.Next()) {
ScalarTupleArray& processScalars = iter.Data();
const char* processName = GetNameForProcessID(ProcessID(iter.Key()));
aWriter.StartObjectProperty(processName);
for (const ScalarDataTuple& scalar : processScalars) {
nsresult rv = WriteVariantToJSONWriter(mozilla::Get<2>(scalar) /*aScalarType*/,
mozilla::Get<1>(scalar) /*aInputValue*/,
mozilla::Get<0>(scalar) /*aPropertyName*/,
aWriter /*aWriter*/);
if (NS_FAILED(rv)) {
// Skip this scalar if we failed to write it. We don't bail out just
// yet as we may salvage other scalars. We eventually need to call EndObject.
continue;
}
}
aWriter.EndObject();
}
return NS_OK;
}
/**
* Write the keyed scalar data to the provided Json object, for
* GeckoView measurement persistence. The output format is the same
* one used for snapshotting the keyed scalars.
*
* @param {aWriter} The JSON object to write to.
* @returns NS_OK or a failure value explaining why persistence failed.
*/
nsresult
TelemetryScalar::SerializeKeyedScalars(mozilla::JSONWriter& aWriter)
{
// Get a copy of the data, without clearing.
KeyedScalarSnapshotTable keyedScalarsToReflect;
{
StaticMutexAutoLock locker(gTelemetryScalarsMutex);
// For persistence, we care about all the datasets. Worst case, they
// will be empty.
nsresult rv = internal_GetKeyedScalarSnapshot(locker,
keyedScalarsToReflect,
nsITelemetry::DATASET_RELEASE_CHANNEL_OPTIN,
false /*aClearScalars*/);
if (NS_FAILED(rv)) {
return rv;
}
}
// Persist the scalars to the JSON object.
for (auto iter = keyedScalarsToReflect.Iter(); !iter.Done(); iter.Next()) {
KeyedScalarTupleArray& processScalars = iter.Data();
const char* processName = GetNameForProcessID(ProcessID(iter.Key()));
aWriter.StartObjectProperty(processName);
for (const KeyedScalarDataTuple& keyedScalarData : processScalars) {
aWriter.StartObjectProperty(mozilla::Get<0>(keyedScalarData));
// Define a property for each scalar key, then add it to the keyed scalar
// object.
const nsTArray<KeyedScalar::KeyValuePair>& keyProps = mozilla::Get<1>(keyedScalarData);
for (const KeyedScalar::KeyValuePair& keyData : keyProps) {
nsresult rv = WriteVariantToJSONWriter(mozilla::Get<2>(keyedScalarData) /*aScalarType*/,
keyData.second() /*aInputValue*/,
PromiseFlatCString(keyData.first()).get() /*aOutKey*/,
aWriter /*aWriter*/);
if (NS_FAILED(rv)) {
// Skip this scalar if we failed to write it. We don't bail out just
// yet as we may salvage other scalars. We eventually need to call EndObject.
continue;
}
}
aWriter.EndObject();
}
aWriter.EndObject();
}
return NS_OK;
}
/**
* Load the persisted measurements from a Json object and inject them
* in the relevant process storage.
*
* @param {aData} The input Json object.
* @returns NS_OK if loading was performed, an error code explaining the
* failure reason otherwise.
*/
nsresult
TelemetryScalar::DeserializePersistedScalars(JSContext* aCx, JS::HandleValue aData)
{
MOZ_ASSERT(XRE_IsParentProcess(), "Only load scalars in the parent process");
if (!XRE_IsParentProcess()) {
return NS_ERROR_FAILURE;
}
typedef mozilla::Pair<nsCString, nsCOMPtr<nsIVariant>> PersistedScalarPair;
typedef nsTArray<PersistedScalarPair> PersistedScalarArray;
typedef nsDataHashtable<ProcessIDHashKey, PersistedScalarArray> PeristedScalarStorage;
PeristedScalarStorage scalarsToUpdate;
// Before updating the scalars, we need to get the data out of the JS
// wrappers. We can't hold the scalars mutex while handling JS stuff.
// Build a <scalar name, value> map.
JS::RootedObject scalarDataObj(aCx, &aData.toObject());
JS::Rooted<JS::IdVector> processes(aCx, JS::IdVector(aCx));
if (!JS_Enumerate(aCx, scalarDataObj, &processes)) {
// We can't even enumerate the processes in the loaded data, so
// there is nothing we could recover from the persistence file. Bail out.
JS_ClearPendingException(aCx);
return NS_ERROR_FAILURE;
}
// The following block of code attempts to extract as much data as possible
// from the serialized JSON, even in case of light data corruptions: if, for example,
// the data for a single process is corrupted or is in an unexpected form, we press on
// and attempt to load the data for the other processes.
JS::RootedId process(aCx);
for (auto& processVal : processes) {
// This is required as JS API calls require an Handle<jsid> and not a
// plain jsid.
process = processVal;
// Get the process name.
nsAutoJSString processNameJS;
if (!processNameJS.init(aCx, process)) {
JS_ClearPendingException(aCx);
continue;
}
// Make sure it's valid. Note that this is safe to call outside
// of a locked section.
NS_ConvertUTF16toUTF8 processName(processNameJS);
ProcessID processID = GetIDForProcessName(processName.get());
if (processID == ProcessID::Count) {
NS_WARNING(nsPrintfCString("Failed to get process ID for %s", processName.get()).get());
continue;
}
// And its probes.
JS::RootedValue processData(aCx);
if (!JS_GetPropertyById(aCx, scalarDataObj, process, &processData)) {
JS_ClearPendingException(aCx);
continue;
}
if (!processData.isObject()) {
// |processData| should be an object containing scalars. If this is
// not the case, silently skip and try to load the data for the other
// processes.
continue;
}
// Iterate through each scalar.
JS::RootedObject processDataObj(aCx, &processData.toObject());
JS::Rooted<JS::IdVector> scalars(aCx, JS::IdVector(aCx));
if (!JS_Enumerate(aCx, processDataObj, &scalars)) {
JS_ClearPendingException(aCx);
continue;
}
JS::RootedId scalar(aCx);
for (auto& scalarVal : scalars) {
scalar = scalarVal;
// Get the scalar name.
nsAutoJSString scalarName;
if (!scalarName.init(aCx, scalar)) {
JS_ClearPendingException(aCx);
continue;
}
// Get the scalar value as a JS value.
JS::RootedValue scalarValue(aCx);
if (!JS_GetPropertyById(aCx, processDataObj, scalar, &scalarValue)) {
JS_ClearPendingException(aCx);
continue;
}
if (scalarValue.isNullOrUndefined()) {
// We can't set scalars to null or undefined values, skip this
// and try to load other scalars.
continue;
}
// Unpack the aVal to nsIVariant.
nsCOMPtr<nsIVariant> unpackedVal;
nsresult rv =
nsContentUtils::XPConnect()->JSToVariant(aCx, scalarValue, getter_AddRefs(unpackedVal));
if (NS_FAILED(rv)) {
JS_ClearPendingException(aCx);
continue;
}
// Add the scalar to the map.
PersistedScalarArray& processScalars =
scalarsToUpdate.GetOrInsert(static_cast<uint32_t>(processID));
processScalars.AppendElement(
mozilla::MakePair(nsCString(NS_ConvertUTF16toUTF8(scalarName)), unpackedVal));
}
}
// Now that all the JS specific operations are finished, update the scalars.
{
StaticMutexAutoLock lock(gTelemetryScalarsMutex);
for (auto iter = scalarsToUpdate.ConstIter(); !iter.Done(); iter.Next()) {
PersistedScalarArray& processScalars = iter.Data();
for (PersistedScalarArray::size_type i = 0; i < processScalars.Length(); i++) {
mozilla::Unused << internal_UpdateScalar(lock,
processScalars[i].first(),
ScalarActionType::eSet,
processScalars[i].second(),
ProcessID(iter.Key()),
true /* aForce */);
}
}
}
return NS_OK;
}
/**
* Load the persisted measurements from a Json object and injects them
* in the relevant process storage.
*
* @param {aData} The input Json object.
* @returns NS_OK if loading was performed, an error code explaining the
* failure reason otherwise.
*/
nsresult
TelemetryScalar::DeserializePersistedKeyedScalars(JSContext* aCx, JS::HandleValue aData)
{
MOZ_ASSERT(XRE_IsParentProcess(), "Only load scalars in the parent process");
if (!XRE_IsParentProcess()) {
return NS_ERROR_FAILURE;
}
typedef mozilla::Tuple<nsCString, nsString, nsCOMPtr<nsIVariant>> PersistedKeyedScalarTuple;
typedef nsTArray<PersistedKeyedScalarTuple> PersistedKeyedScalarArray;
typedef nsDataHashtable<ProcessIDHashKey, PersistedKeyedScalarArray> PeristedKeyedScalarStorage;
PeristedKeyedScalarStorage scalarsToUpdate;
// Before updating the keyed scalars, we need to get the data out of the JS
// wrappers. We can't hold the scalars mutex while handling JS stuff.
// Build a <scalar name, value> map.
JS::RootedObject scalarDataObj(aCx, &aData.toObject());
JS::Rooted<JS::IdVector> processes(aCx, JS::IdVector(aCx));
if (!JS_Enumerate(aCx, scalarDataObj, &processes)) {
// We can't even enumerate the processes in the loaded data, so
// there is nothing we could recover from the persistence file. Bail out.
JS_ClearPendingException(aCx);
return NS_ERROR_FAILURE;
}
// The following block of code attempts to extract as much data as possible
// from the serialized JSON, even in case of light data corruptions: if, for example,
// the data for a single process is corrupted or is in an unexpected form, we press on
// and attempt to load the data for the other processes.
JS::RootedId process(aCx);
for (auto& processVal : processes) {
process = processVal;
// Get the process name.
nsAutoJSString processNameJS;
if (!processNameJS.init(aCx, process)) {
JS_ClearPendingException(aCx);
continue;
}
// Make sure it's valid. Note that this is safe to call outside
// of a locked section.
NS_ConvertUTF16toUTF8 processName(processNameJS);
ProcessID processID = GetIDForProcessName(processName.get());
if (processID == ProcessID::Count) {
NS_WARNING(nsPrintfCString("Failed to get process ID for %s", processName.get()).get());
continue;
}
// And its probes.
JS::RootedValue processData(aCx);
if (!JS_GetPropertyById(aCx, scalarDataObj, process, &processData)) {
JS_ClearPendingException(aCx);
continue;
}
if (!processData.isObject()) {
// |processData| should be an object containing scalars. If this is
// not the case, silently skip and try to load the data for the other
// processes.
continue;
}
// Iterate through each keyed scalar.
JS::RootedObject processDataObj(aCx, &processData.toObject());
JS::Rooted<JS::IdVector> keyedScalars(aCx, JS::IdVector(aCx));
if (!JS_Enumerate(aCx, processDataObj, &keyedScalars)) {
JS_ClearPendingException(aCx);
continue;
}
JS::RootedId keyedScalar(aCx);
for (auto& keyedScalarVal : keyedScalars) {
keyedScalar = keyedScalarVal;
// Get the scalar name.
nsAutoJSString scalarName;
if (!scalarName.init(aCx, keyedScalar)) {
JS_ClearPendingException(aCx);
continue;
}
// Get the data for this keyed scalar.
JS::RootedValue keyedScalarData(aCx);
if (!JS_GetPropertyById(aCx, processDataObj, keyedScalar, &keyedScalarData)) {
JS_ClearPendingException(aCx);
continue;
}
if (!keyedScalarData.isObject()) {
// Keyed scalar data need to be an object. If that's not the case, skip it
// and try to load the rest of the data.
continue;
}
// Get the keys in the keyed scalar.
JS::RootedObject keyedScalarDataObj(aCx, &keyedScalarData.toObject());
JS::Rooted<JS::IdVector> keys(aCx, JS::IdVector(aCx));
if (!JS_Enumerate(aCx, keyedScalarDataObj, &keys)) {
JS_ClearPendingException(aCx);
continue;
}
JS::RootedId key(aCx);
for (auto keyVal : keys) {
key = keyVal;
// Get the process name.
nsAutoJSString keyName;
if (!keyName.init(aCx, key)) {
JS_ClearPendingException(aCx);
continue;
}
// Get the scalar value as a JS value.
JS::RootedValue scalarValue(aCx);
if (!JS_GetPropertyById(aCx, keyedScalarDataObj, key, &scalarValue)) {
JS_ClearPendingException(aCx);
continue;
}
if (scalarValue.isNullOrUndefined()) {
// We can't set scalars to null or undefined values, skip this
// and try to load other scalars.
continue;
}
// Unpack the aVal to nsIVariant.
nsCOMPtr<nsIVariant> unpackedVal;
nsresult rv =
nsContentUtils::XPConnect()->JSToVariant(aCx, scalarValue, getter_AddRefs(unpackedVal));
if (NS_FAILED(rv)) {
JS_ClearPendingException(aCx);
continue;
}
// Add the scalar to the map.
PersistedKeyedScalarArray& processScalars =
scalarsToUpdate.GetOrInsert(static_cast<uint32_t>(processID));
processScalars.AppendElement(
mozilla::MakeTuple(nsCString(NS_ConvertUTF16toUTF8(scalarName)),
nsString(keyName), unpackedVal));
}
}
}
// Now that all the JS specific operations are finished, update the scalars.
{
StaticMutexAutoLock lock(gTelemetryScalarsMutex);
for (auto iter = scalarsToUpdate.ConstIter(); !iter.Done(); iter.Next()) {
PersistedKeyedScalarArray& processScalars = iter.Data();
for (PersistedKeyedScalarArray::size_type i = 0; i < processScalars.Length(); i++) {
mozilla::Unused << internal_UpdateKeyedScalar(lock,
mozilla::Get<0>(processScalars[i]),
mozilla::Get<1>(processScalars[i]),
ScalarActionType::eSet,
mozilla::Get<2>(processScalars[i]),
ProcessID(iter.Key()),
true /* aForce */);
}
}
}
return NS_OK;
}