fune/third_party/rust/minimal-lexical/tests/integration_tests.rs
Jan-Erik Rediger 8182bee632 Bug 1768834 - Switch to Glean with UniFFI integration r=glandium,chutten
Upgrades to Glean v50.0.1, which comes with a rewritten core and
UniFFI-powered bindings.
Glean has some API changes, so we swap it over to that. Mostly mechanical changes.
Also upgrades to inherent v1.0 in fog.
This matches what Glean uses internally and gets rid of one duplicated crate.

Also upgrades to glean-parser==6.0.1

One crate duplication now (change in `python/mozbuild/mozbuild/vendor/vendor_rust.py` required).
Some new crates now vendored.
These are transitive dependencies of Glean dependencies, all with valid
licenses and already used in other products (mobile).

Differential Revision: https://phabricator.services.mozilla.com/D146062
2022-06-07 12:37:20 +00:00

228 lines
6.5 KiB
Rust

/// Find and parse sign and get remaining bytes.
#[inline]
fn parse_sign<'a>(bytes: &'a [u8]) -> (bool, &'a [u8]) {
match bytes.get(0) {
Some(&b'+') => (true, &bytes[1..]),
Some(&b'-') => (false, &bytes[1..]),
_ => (true, bytes),
}
}
// Convert u8 to digit.
#[inline]
fn to_digit(c: u8) -> Option<u32> {
(c as char).to_digit(10)
}
// Add digit from exponent.
#[inline]
fn add_digit_i32(value: i32, digit: u32) -> Option<i32> {
return value.checked_mul(10)?.checked_add(digit as i32);
}
// Subtract digit from exponent.
#[inline]
fn sub_digit_i32(value: i32, digit: u32) -> Option<i32> {
return value.checked_mul(10)?.checked_sub(digit as i32);
}
// Convert character to digit.
#[inline]
fn is_digit(c: u8) -> bool {
to_digit(c).is_some()
}
// Split buffer at index.
#[inline]
fn split_at_index<'a>(digits: &'a [u8], index: usize) -> (&'a [u8], &'a [u8]) {
(&digits[..index], &digits[index..])
}
/// Consume until a an invalid digit is found.
///
/// - `digits` - Slice containing 0 or more digits.
#[inline]
fn consume_digits<'a>(digits: &'a [u8]) -> (&'a [u8], &'a [u8]) {
// Consume all digits.
let mut index = 0;
while index < digits.len() && is_digit(digits[index]) {
index += 1;
}
split_at_index(digits, index)
}
// Trim leading 0s.
#[inline]
fn ltrim_zero<'a>(bytes: &'a [u8]) -> &'a [u8] {
let count = bytes.iter().take_while(|&&si| si == b'0').count();
&bytes[count..]
}
// Trim trailing 0s.
#[inline]
fn rtrim_zero<'a>(bytes: &'a [u8]) -> &'a [u8] {
let count = bytes.iter().rev().take_while(|&&si| si == b'0').count();
let index = bytes.len() - count;
&bytes[..index]
}
// PARSERS
// -------
/// Parse the exponent of the float.
///
/// * `exponent` - Slice containing the exponent digits.
/// * `is_positive` - If the exponent sign is positive.
fn parse_exponent(exponent: &[u8], is_positive: bool) -> i32 {
// Parse the sign bit or current data.
let mut value: i32 = 0;
match is_positive {
true => {
for c in exponent {
value = match add_digit_i32(value, to_digit(*c).unwrap()) {
Some(v) => v,
None => return i32::max_value(),
};
}
},
false => {
for c in exponent {
value = match sub_digit_i32(value, to_digit(*c).unwrap()) {
Some(v) => v,
None => return i32::min_value(),
};
}
},
}
value
}
pub fn case_insensitive_starts_with<'a, 'b, Iter1, Iter2>(mut x: Iter1, mut y: Iter2) -> bool
where
Iter1: Iterator<Item = &'a u8>,
Iter2: Iterator<Item = &'b u8>,
{
// We use a faster optimization here for ASCII letters, which NaN
// and infinite strings **must** be. [A-Z] is 0x41-0x5A, while
// [a-z] is 0x61-0x7A. Therefore, the xor must be 0 or 32 if they
// are case-insensitive equal, but only if at least 1 of the inputs
// is an ASCII letter.
loop {
let yi = y.next();
if yi.is_none() {
return true;
}
let yi = *yi.unwrap();
let is_not_equal = x.next().map_or(true, |&xi| {
let xor = xi ^ yi;
xor != 0 && xor != 0x20
});
if is_not_equal {
return false;
}
}
}
/// Parse float from input bytes, returning the float and the remaining bytes.
///
/// * `bytes` - Array of bytes leading with float-data.
pub fn parse_float<'a, F>(bytes: &'a [u8]) -> (F, &'a [u8])
where
F: minimal_lexical::Float,
{
let start = bytes;
// Parse the sign.
let (is_positive, bytes) = parse_sign(bytes);
// Check NaN, Inf, Infinity
if case_insensitive_starts_with(bytes.iter(), b"NaN".iter()) {
let mut float = F::from_bits(F::EXPONENT_MASK | (F::HIDDEN_BIT_MASK >> 1));
if !is_positive {
float = -float;
}
return (float, &bytes[3..]);
} else if case_insensitive_starts_with(bytes.iter(), b"Infinity".iter()) {
let mut float = F::from_bits(F::EXPONENT_MASK);
if !is_positive {
float = -float;
}
return (float, &bytes[8..]);
} else if case_insensitive_starts_with(bytes.iter(), b"inf".iter()) {
let mut float = F::from_bits(F::EXPONENT_MASK);
if !is_positive {
float = -float;
}
return (float, &bytes[3..]);
}
// Extract and parse the float components:
// 1. Integer
// 2. Fraction
// 3. Exponent
let (integer_slc, bytes) = consume_digits(bytes);
let (fraction_slc, bytes) = match bytes.first() {
Some(&b'.') => consume_digits(&bytes[1..]),
_ => (&bytes[..0], bytes),
};
let (exponent, bytes) = match bytes.first() {
Some(&b'e') | Some(&b'E') => {
// Extract and parse the exponent.
let (is_positive, bytes) = parse_sign(&bytes[1..]);
let (exponent, bytes) = consume_digits(bytes);
(parse_exponent(exponent, is_positive), bytes)
},
_ => (0, bytes),
};
if bytes.len() == start.len() {
return (F::from_u64(0), bytes);
}
// Note: You may want to check and validate the float data here:
// 1). Many floats require integer or fraction digits, if a fraction
// is present.
// 2). All floats require either integer or fraction digits.
// 3). Some floats do not allow a '+' sign before the significant digits.
// 4). Many floats require exponent digits after the exponent symbol.
// 5). Some floats do not allow a '+' sign before the exponent.
// We now need to trim leading and trailing 0s from the integer
// and fraction, respectively. This is required to make the
// fast and moderate paths more efficient, and for the slow
// path.
let integer_slc = ltrim_zero(integer_slc);
let fraction_slc = rtrim_zero(fraction_slc);
// Create the float and return our data.
let mut float: F =
minimal_lexical::parse_float(integer_slc.iter(), fraction_slc.iter(), exponent);
if !is_positive {
float = -float;
}
(float, bytes)
}
macro_rules! b {
($x:literal) => {
$x.as_bytes()
};
}
#[test]
fn f32_test() {
assert_eq!(
(184467440000000000000.0, b!("\x00\x00006")),
parse_float::<f32>(b"000184467440737095516150\x00\x00006")
);
}
#[test]
fn f64_test() {
assert_eq!(
(184467440737095500000.0, b!("\x00\x00006")),
parse_float::<f64>(b"000184467440737095516150\x00\x00006")
);
}