forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			2276 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2276 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| // Overview
 | |
| //---------------------------------------------------------------------------
 | |
| //
 | |
| // This file defines HashMap<Key, Value> and HashSet<T>, hash tables that are
 | |
| // fast and have a nice API.
 | |
| //
 | |
| // Both hash tables have two optional template parameters.
 | |
| //
 | |
| // - HashPolicy. This defines the operations for hashing and matching keys. The
 | |
| //   default HashPolicy is appropriate when both of the following two
 | |
| //   conditions are true.
 | |
| //
 | |
| //   - The key type stored in the table (|Key| for |HashMap<Key, Value>|, |T|
 | |
| //     for |HashSet<T>|) is an integer, pointer, UniquePtr, float, or double.
 | |
| //
 | |
| //   - The type used for lookups (|Lookup|) is the same as the key type. This
 | |
| //     is usually the case, but not always.
 | |
| //
 | |
| //   There is also a |CStringHasher| policy for |char*| keys. If your keys
 | |
| //   don't match any of the above cases, you must provide your own hash policy;
 | |
| //   see the "Hash Policy" section below.
 | |
| //
 | |
| // - AllocPolicy. This defines how allocations are done by the table.
 | |
| //
 | |
| //   - |MallocAllocPolicy| is the default and is usually appropriate; note that
 | |
| //     operations (such as insertions) that might cause allocations are
 | |
| //     fallible and must be checked for OOM. These checks are enforced by the
 | |
| //     use of [[nodiscard]].
 | |
| //
 | |
| //   - |InfallibleAllocPolicy| is another possibility; it allows the
 | |
| //     abovementioned OOM checks to be done with MOZ_ALWAYS_TRUE().
 | |
| //
 | |
| //   Note that entry storage allocation is lazy, and not done until the first
 | |
| //   lookupForAdd(), put(), or putNew() is performed.
 | |
| //
 | |
| //  See AllocPolicy.h for more details.
 | |
| //
 | |
| // Documentation on how to use HashMap and HashSet, including examples, is
 | |
| // present within those classes. Search for "class HashMap" and "class
 | |
| // HashSet".
 | |
| //
 | |
| // Both HashMap and HashSet are implemented on top of a third class, HashTable.
 | |
| // You only need to look at HashTable if you want to understand the
 | |
| // implementation.
 | |
| //
 | |
| // How does mozilla::HashTable (this file) compare with PLDHashTable (and its
 | |
| // subclasses, such as nsTHashtable)?
 | |
| //
 | |
| // - mozilla::HashTable is a lot faster, largely because it uses templates
 | |
| //   throughout *and* inlines everything. PLDHashTable inlines operations much
 | |
| //   less aggressively, and also uses "virtual ops" for operations like hashing
 | |
| //   and matching entries that require function calls.
 | |
| //
 | |
| // - Correspondingly, mozilla::HashTable use is likely to increase executable
 | |
| //   size much more than PLDHashTable.
 | |
| //
 | |
| // - mozilla::HashTable has a nicer API, with a proper HashSet vs. HashMap
 | |
| //   distinction.
 | |
| //
 | |
| // - mozilla::HashTable requires more explicit OOM checking. As mentioned
 | |
| //   above, the use of |InfallibleAllocPolicy| can simplify things.
 | |
| //
 | |
| // - mozilla::HashTable has a default capacity on creation of 32 and a minimum
 | |
| //   capacity of 4. PLDHashTable has a default capacity on creation of 8 and a
 | |
| //   minimum capacity of 8.
 | |
| 
 | |
| #ifndef mozilla_HashTable_h
 | |
| #define mozilla_HashTable_h
 | |
| 
 | |
| #include <utility>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "mozilla/AllocPolicy.h"
 | |
| #include "mozilla/Assertions.h"
 | |
| #include "mozilla/Attributes.h"
 | |
| #include "mozilla/Casting.h"
 | |
| #include "mozilla/HashFunctions.h"
 | |
| #include "mozilla/MathAlgorithms.h"
 | |
| #include "mozilla/Maybe.h"
 | |
| #include "mozilla/MemoryChecking.h"
 | |
| #include "mozilla/MemoryReporting.h"
 | |
| #include "mozilla/Opaque.h"
 | |
| #include "mozilla/OperatorNewExtensions.h"
 | |
| #include "mozilla/ReentrancyGuard.h"
 | |
| #include "mozilla/UniquePtr.h"
 | |
| #include "mozilla/WrappingOperations.h"
 | |
| 
 | |
| namespace mozilla {
 | |
| 
 | |
| template <class, class = void>
 | |
| struct DefaultHasher;
 | |
| 
 | |
| template <class, class>
 | |
| class HashMapEntry;
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| template <typename T>
 | |
| class HashTableEntry;
 | |
| 
 | |
| template <class T, class HashPolicy, class AllocPolicy>
 | |
| class HashTable;
 | |
| 
 | |
| }  // namespace detail
 | |
| 
 | |
| // The "generation" of a hash table is an opaque value indicating the state of
 | |
| // modification of the hash table through its lifetime.  If the generation of
 | |
| // a hash table compares equal at times T1 and T2, then lookups in the hash
 | |
| // table, pointers to (or into) hash table entries, etc. at time T1 are valid
 | |
| // at time T2.  If the generation compares unequal, these computations are all
 | |
| // invalid and must be performed again to be used.
 | |
| //
 | |
| // Generations are meaningfully comparable only with respect to a single hash
 | |
| // table.  It's always nonsensical to compare the generation of distinct hash
 | |
| // tables H1 and H2.
 | |
| using Generation = Opaque<uint64_t>;
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| // HashMap
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| // HashMap is a fast hash-based map from keys to values.
 | |
| //
 | |
| // Template parameter requirements:
 | |
| // - Key/Value: movable, destructible, assignable.
 | |
| // - HashPolicy: see the "Hash Policy" section below.
 | |
| // - AllocPolicy: see AllocPolicy.h.
 | |
| //
 | |
| // Note:
 | |
| // - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
 | |
| //   called by HashMap must not call back into the same HashMap object.
 | |
| //
 | |
| template <class Key, class Value, class HashPolicy = DefaultHasher<Key>,
 | |
|           class AllocPolicy = MallocAllocPolicy>
 | |
| class HashMap {
 | |
|   // -- Implementation details -----------------------------------------------
 | |
| 
 | |
|   // HashMap is not copyable or assignable.
 | |
|   HashMap(const HashMap& hm) = delete;
 | |
|   HashMap& operator=(const HashMap& hm) = delete;
 | |
| 
 | |
|   using TableEntry = HashMapEntry<Key, Value>;
 | |
| 
 | |
|   struct MapHashPolicy : HashPolicy {
 | |
|     using Base = HashPolicy;
 | |
|     using KeyType = Key;
 | |
| 
 | |
|     static const Key& getKey(TableEntry& aEntry) { return aEntry.key(); }
 | |
| 
 | |
|     static void setKey(TableEntry& aEntry, Key& aKey) {
 | |
|       HashPolicy::rekey(aEntry.mutableKey(), aKey);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   using Impl = detail::HashTable<TableEntry, MapHashPolicy, AllocPolicy>;
 | |
|   Impl mImpl;
 | |
| 
 | |
|   friend class Impl::Enum;
 | |
| 
 | |
|  public:
 | |
|   using Lookup = typename HashPolicy::Lookup;
 | |
|   using Entry = TableEntry;
 | |
| 
 | |
|   // -- Initialization -------------------------------------------------------
 | |
| 
 | |
|   explicit HashMap(AllocPolicy aAllocPolicy = AllocPolicy(),
 | |
|                    uint32_t aLen = Impl::sDefaultLen)
 | |
|       : mImpl(std::move(aAllocPolicy), aLen) {}
 | |
| 
 | |
|   explicit HashMap(uint32_t aLen) : mImpl(AllocPolicy(), aLen) {}
 | |
| 
 | |
|   // HashMap is movable.
 | |
|   HashMap(HashMap&& aRhs) = default;
 | |
|   HashMap& operator=(HashMap&& aRhs) = default;
 | |
| 
 | |
|   // -- Status and sizing ----------------------------------------------------
 | |
| 
 | |
|   // The map's current generation.
 | |
|   Generation generation() const { return mImpl.generation(); }
 | |
| 
 | |
|   // Is the map empty?
 | |
|   bool empty() const { return mImpl.empty(); }
 | |
| 
 | |
|   // Number of keys/values in the map.
 | |
|   uint32_t count() const { return mImpl.count(); }
 | |
| 
 | |
|   // Number of key/value slots in the map. Note: resize will happen well before
 | |
|   // count() == capacity().
 | |
|   uint32_t capacity() const { return mImpl.capacity(); }
 | |
| 
 | |
|   // The size of the map's entry storage, in bytes. If the keys/values contain
 | |
|   // pointers to other heap blocks, you must iterate over the map and measure
 | |
|   // them separately; hence the "shallow" prefix.
 | |
|   size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
 | |
|     return mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
 | |
|   }
 | |
|   size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
 | |
|     return aMallocSizeOf(this) +
 | |
|            mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
 | |
|   }
 | |
| 
 | |
|   // Attempt to minimize the capacity(). If the table is empty, this will free
 | |
|   // the empty storage and upon regrowth it will be given the minimum capacity.
 | |
|   void compact() { mImpl.compact(); }
 | |
| 
 | |
|   // Attempt to reserve enough space to fit at least |aLen| elements. This is
 | |
|   // total capacity, including elements already present. Does nothing if the
 | |
|   // map already has sufficient capacity.
 | |
|   [[nodiscard]] bool reserve(uint32_t aLen) { return mImpl.reserve(aLen); }
 | |
| 
 | |
|   // -- Lookups --------------------------------------------------------------
 | |
| 
 | |
|   // Does the map contain a key/value matching |aLookup|?
 | |
|   bool has(const Lookup& aLookup) const {
 | |
|     return mImpl.lookup(aLookup).found();
 | |
|   }
 | |
| 
 | |
|   // Return a Ptr indicating whether a key/value matching |aLookup| is
 | |
|   // present in the map. E.g.:
 | |
|   //
 | |
|   //   using HM = HashMap<int,char>;
 | |
|   //   HM h;
 | |
|   //   if (HM::Ptr p = h.lookup(3)) {
 | |
|   //     assert(p->key() == 3);
 | |
|   //     char val = p->value();
 | |
|   //   }
 | |
|   //
 | |
|   using Ptr = typename Impl::Ptr;
 | |
|   MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
 | |
|     return mImpl.lookup(aLookup);
 | |
|   }
 | |
| 
 | |
|   // Like lookup(), but does not assert if two threads call it at the same
 | |
|   // time. Only use this method when none of the threads will modify the map.
 | |
|   MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
 | |
|     return mImpl.readonlyThreadsafeLookup(aLookup);
 | |
|   }
 | |
| 
 | |
|   // -- Insertions -----------------------------------------------------------
 | |
| 
 | |
|   // Overwrite existing value with |aValue|, or add it if not present. Returns
 | |
|   // false on OOM.
 | |
|   template <typename KeyInput, typename ValueInput>
 | |
|   [[nodiscard]] bool put(KeyInput&& aKey, ValueInput&& aValue) {
 | |
|     return put(aKey, std::forward<KeyInput>(aKey),
 | |
|                std::forward<ValueInput>(aValue));
 | |
|   }
 | |
| 
 | |
|   template <typename KeyInput, typename ValueInput>
 | |
|   [[nodiscard]] bool put(const Lookup& aLookup, KeyInput&& aKey,
 | |
|                          ValueInput&& aValue) {
 | |
|     AddPtr p = lookupForAdd(aLookup);
 | |
|     if (p) {
 | |
|       p->value() = std::forward<ValueInput>(aValue);
 | |
|       return true;
 | |
|     }
 | |
|     return add(p, std::forward<KeyInput>(aKey),
 | |
|                std::forward<ValueInput>(aValue));
 | |
|   }
 | |
| 
 | |
|   // Like put(), but slightly faster. Must only be used when the given key is
 | |
|   // not already present. (In debug builds, assertions check this.)
 | |
|   template <typename KeyInput, typename ValueInput>
 | |
|   [[nodiscard]] bool putNew(KeyInput&& aKey, ValueInput&& aValue) {
 | |
|     return mImpl.putNew(aKey, std::forward<KeyInput>(aKey),
 | |
|                         std::forward<ValueInput>(aValue));
 | |
|   }
 | |
| 
 | |
|   template <typename KeyInput, typename ValueInput>
 | |
|   [[nodiscard]] bool putNew(const Lookup& aLookup, KeyInput&& aKey,
 | |
|                             ValueInput&& aValue) {
 | |
|     return mImpl.putNew(aLookup, std::forward<KeyInput>(aKey),
 | |
|                         std::forward<ValueInput>(aValue));
 | |
|   }
 | |
| 
 | |
|   // Like putNew(), but should be only used when the table is known to be big
 | |
|   // enough for the insertion, and hashing cannot fail. Typically this is used
 | |
|   // to populate an empty map with known-unique keys after reserving space with
 | |
|   // reserve(), e.g.
 | |
|   //
 | |
|   //   using HM = HashMap<int,char>;
 | |
|   //   HM h;
 | |
|   //   if (!h.reserve(3)) {
 | |
|   //     MOZ_CRASH("OOM");
 | |
|   //   }
 | |
|   //   h.putNewInfallible(1, 'a');    // unique key
 | |
|   //   h.putNewInfallible(2, 'b');    // unique key
 | |
|   //   h.putNewInfallible(3, 'c');    // unique key
 | |
|   //
 | |
|   template <typename KeyInput, typename ValueInput>
 | |
|   void putNewInfallible(KeyInput&& aKey, ValueInput&& aValue) {
 | |
|     mImpl.putNewInfallible(aKey, std::forward<KeyInput>(aKey),
 | |
|                            std::forward<ValueInput>(aValue));
 | |
|   }
 | |
| 
 | |
|   // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
 | |
|   // insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
 | |
|   // |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new key/value. E.g.:
 | |
|   //
 | |
|   //   using HM = HashMap<int,char>;
 | |
|   //   HM h;
 | |
|   //   HM::AddPtr p = h.lookupForAdd(3);
 | |
|   //   if (!p) {
 | |
|   //     if (!h.add(p, 3, 'a')) {
 | |
|   //       return false;
 | |
|   //     }
 | |
|   //   }
 | |
|   //   assert(p->key() == 3);
 | |
|   //   char val = p->value();
 | |
|   //
 | |
|   // N.B. The caller must ensure that no mutating hash table operations occur
 | |
|   // between a pair of lookupForAdd() and add() calls. To avoid looking up the
 | |
|   // key a second time, the caller may use the more efficient relookupOrAdd()
 | |
|   // method. This method reuses part of the hashing computation to more
 | |
|   // efficiently insert the key if it has not been added. For example, a
 | |
|   // mutation-handling version of the previous example:
 | |
|   //
 | |
|   //    HM::AddPtr p = h.lookupForAdd(3);
 | |
|   //    if (!p) {
 | |
|   //      call_that_may_mutate_h();
 | |
|   //      if (!h.relookupOrAdd(p, 3, 'a')) {
 | |
|   //        return false;
 | |
|   //      }
 | |
|   //    }
 | |
|   //    assert(p->key() == 3);
 | |
|   //    char val = p->value();
 | |
|   //
 | |
|   using AddPtr = typename Impl::AddPtr;
 | |
|   MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
 | |
|     return mImpl.lookupForAdd(aLookup);
 | |
|   }
 | |
| 
 | |
|   // Add a key/value. Returns false on OOM.
 | |
|   template <typename KeyInput, typename ValueInput>
 | |
|   [[nodiscard]] bool add(AddPtr& aPtr, KeyInput&& aKey, ValueInput&& aValue) {
 | |
|     return mImpl.add(aPtr, std::forward<KeyInput>(aKey),
 | |
|                      std::forward<ValueInput>(aValue));
 | |
|   }
 | |
| 
 | |
|   // See the comment above lookupForAdd() for details.
 | |
|   template <typename KeyInput, typename ValueInput>
 | |
|   [[nodiscard]] bool relookupOrAdd(AddPtr& aPtr, KeyInput&& aKey,
 | |
|                                    ValueInput&& aValue) {
 | |
|     return mImpl.relookupOrAdd(aPtr, aKey, std::forward<KeyInput>(aKey),
 | |
|                                std::forward<ValueInput>(aValue));
 | |
|   }
 | |
| 
 | |
|   // -- Removal --------------------------------------------------------------
 | |
| 
 | |
|   // Lookup and remove the key/value matching |aLookup|, if present.
 | |
|   void remove(const Lookup& aLookup) {
 | |
|     if (Ptr p = lookup(aLookup)) {
 | |
|       remove(p);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove a previously found key/value (assuming aPtr.found()). The map must
 | |
|   // not have been mutated in the interim.
 | |
|   void remove(Ptr aPtr) { mImpl.remove(aPtr); }
 | |
| 
 | |
|   // Remove all keys/values without changing the capacity.
 | |
|   void clear() { mImpl.clear(); }
 | |
| 
 | |
|   // Like clear() followed by compact().
 | |
|   void clearAndCompact() { mImpl.clearAndCompact(); }
 | |
| 
 | |
|   // -- Rekeying -------------------------------------------------------------
 | |
| 
 | |
|   // Infallibly rekey one entry, if necessary. Requires that template
 | |
|   // parameters Key and HashPolicy::Lookup are the same type.
 | |
|   void rekeyIfMoved(const Key& aOldKey, const Key& aNewKey) {
 | |
|     if (aOldKey != aNewKey) {
 | |
|       rekeyAs(aOldKey, aNewKey, aNewKey);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Infallibly rekey one entry if present, and return whether that happened.
 | |
|   bool rekeyAs(const Lookup& aOldLookup, const Lookup& aNewLookup,
 | |
|                const Key& aNewKey) {
 | |
|     if (Ptr p = lookup(aOldLookup)) {
 | |
|       mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewKey);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // -- Iteration ------------------------------------------------------------
 | |
| 
 | |
|   // |iter()| returns an Iterator:
 | |
|   //
 | |
|   //   HashMap<int, char> h;
 | |
|   //   for (auto iter = h.iter(); !iter.done(); iter.next()) {
 | |
|   //     char c = iter.get().value();
 | |
|   //   }
 | |
|   //
 | |
|   using Iterator = typename Impl::Iterator;
 | |
|   Iterator iter() const { return mImpl.iter(); }
 | |
| 
 | |
|   // |modIter()| returns a ModIterator:
 | |
|   //
 | |
|   //   HashMap<int, char> h;
 | |
|   //   for (auto iter = h.modIter(); !iter.done(); iter.next()) {
 | |
|   //     if (iter.get().value() == 'l') {
 | |
|   //       iter.remove();
 | |
|   //     }
 | |
|   //   }
 | |
|   //
 | |
|   // Table resize may occur in ModIterator's destructor.
 | |
|   using ModIterator = typename Impl::ModIterator;
 | |
|   ModIterator modIter() { return mImpl.modIter(); }
 | |
| 
 | |
|   // These are similar to Iterator/ModIterator/iter(), but use different
 | |
|   // terminology.
 | |
|   using Range = typename Impl::Range;
 | |
|   using Enum = typename Impl::Enum;
 | |
|   Range all() const { return mImpl.all(); }
 | |
| };
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| // HashSet
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| // HashSet is a fast hash-based set of values.
 | |
| //
 | |
| // Template parameter requirements:
 | |
| // - T: movable, destructible, assignable.
 | |
| // - HashPolicy: see the "Hash Policy" section below.
 | |
| // - AllocPolicy: see AllocPolicy.h
 | |
| //
 | |
| // Note:
 | |
| // - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
 | |
| //   HashSet must not call back into the same HashSet object.
 | |
| //
 | |
| template <class T, class HashPolicy = DefaultHasher<T>,
 | |
|           class AllocPolicy = MallocAllocPolicy>
 | |
| class HashSet {
 | |
|   // -- Implementation details -----------------------------------------------
 | |
| 
 | |
|   // HashSet is not copyable or assignable.
 | |
|   HashSet(const HashSet& hs) = delete;
 | |
|   HashSet& operator=(const HashSet& hs) = delete;
 | |
| 
 | |
|   struct SetHashPolicy : HashPolicy {
 | |
|     using Base = HashPolicy;
 | |
|     using KeyType = T;
 | |
| 
 | |
|     static const KeyType& getKey(const T& aT) { return aT; }
 | |
| 
 | |
|     static void setKey(T& aT, KeyType& aKey) { HashPolicy::rekey(aT, aKey); }
 | |
|   };
 | |
| 
 | |
|   using Impl = detail::HashTable<const T, SetHashPolicy, AllocPolicy>;
 | |
|   Impl mImpl;
 | |
| 
 | |
|   friend class Impl::Enum;
 | |
| 
 | |
|  public:
 | |
|   using Lookup = typename HashPolicy::Lookup;
 | |
|   using Entry = T;
 | |
| 
 | |
|   // -- Initialization -------------------------------------------------------
 | |
| 
 | |
|   explicit HashSet(AllocPolicy aAllocPolicy = AllocPolicy(),
 | |
|                    uint32_t aLen = Impl::sDefaultLen)
 | |
|       : mImpl(std::move(aAllocPolicy), aLen) {}
 | |
| 
 | |
|   explicit HashSet(uint32_t aLen) : mImpl(AllocPolicy(), aLen) {}
 | |
| 
 | |
|   // HashSet is movable.
 | |
|   HashSet(HashSet&& aRhs) = default;
 | |
|   HashSet& operator=(HashSet&& aRhs) = default;
 | |
| 
 | |
|   // -- Status and sizing ----------------------------------------------------
 | |
| 
 | |
|   // The set's current generation.
 | |
|   Generation generation() const { return mImpl.generation(); }
 | |
| 
 | |
|   // Is the set empty?
 | |
|   bool empty() const { return mImpl.empty(); }
 | |
| 
 | |
|   // Number of elements in the set.
 | |
|   uint32_t count() const { return mImpl.count(); }
 | |
| 
 | |
|   // Number of element slots in the set. Note: resize will happen well before
 | |
|   // count() == capacity().
 | |
|   uint32_t capacity() const { return mImpl.capacity(); }
 | |
| 
 | |
|   // The size of the set's entry storage, in bytes. If the elements contain
 | |
|   // pointers to other heap blocks, you must iterate over the set and measure
 | |
|   // them separately; hence the "shallow" prefix.
 | |
|   size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
 | |
|     return mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
 | |
|   }
 | |
|   size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
 | |
|     return aMallocSizeOf(this) +
 | |
|            mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
 | |
|   }
 | |
| 
 | |
|   // Attempt to minimize the capacity(). If the table is empty, this will free
 | |
|   // the empty storage and upon regrowth it will be given the minimum capacity.
 | |
|   void compact() { mImpl.compact(); }
 | |
| 
 | |
|   // Attempt to reserve enough space to fit at least |aLen| elements. This is
 | |
|   // total capacity, including elements already present. Does nothing if the
 | |
|   // map already has sufficient capacity.
 | |
|   [[nodiscard]] bool reserve(uint32_t aLen) { return mImpl.reserve(aLen); }
 | |
| 
 | |
|   // -- Lookups --------------------------------------------------------------
 | |
| 
 | |
|   // Does the set contain an element matching |aLookup|?
 | |
|   bool has(const Lookup& aLookup) const {
 | |
|     return mImpl.lookup(aLookup).found();
 | |
|   }
 | |
| 
 | |
|   // Return a Ptr indicating whether an element matching |aLookup| is present
 | |
|   // in the set. E.g.:
 | |
|   //
 | |
|   //   using HS = HashSet<int>;
 | |
|   //   HS h;
 | |
|   //   if (HS::Ptr p = h.lookup(3)) {
 | |
|   //     assert(*p == 3);   // p acts like a pointer to int
 | |
|   //   }
 | |
|   //
 | |
|   using Ptr = typename Impl::Ptr;
 | |
|   MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
 | |
|     return mImpl.lookup(aLookup);
 | |
|   }
 | |
| 
 | |
|   // Like lookup(), but does not assert if two threads call it at the same
 | |
|   // time. Only use this method when none of the threads will modify the set.
 | |
|   MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
 | |
|     return mImpl.readonlyThreadsafeLookup(aLookup);
 | |
|   }
 | |
| 
 | |
|   // -- Insertions -----------------------------------------------------------
 | |
| 
 | |
|   // Add |aU| if it is not present already. Returns false on OOM.
 | |
|   template <typename U>
 | |
|   [[nodiscard]] bool put(U&& aU) {
 | |
|     AddPtr p = lookupForAdd(aU);
 | |
|     return p ? true : add(p, std::forward<U>(aU));
 | |
|   }
 | |
| 
 | |
|   // Like put(), but slightly faster. Must only be used when the given element
 | |
|   // is not already present. (In debug builds, assertions check this.)
 | |
|   template <typename U>
 | |
|   [[nodiscard]] bool putNew(U&& aU) {
 | |
|     return mImpl.putNew(aU, std::forward<U>(aU));
 | |
|   }
 | |
| 
 | |
|   // Like the other putNew(), but for when |Lookup| is different to |T|.
 | |
|   template <typename U>
 | |
|   [[nodiscard]] bool putNew(const Lookup& aLookup, U&& aU) {
 | |
|     return mImpl.putNew(aLookup, std::forward<U>(aU));
 | |
|   }
 | |
| 
 | |
|   // Like putNew(), but should be only used when the table is known to be big
 | |
|   // enough for the insertion, and hashing cannot fail. Typically this is used
 | |
|   // to populate an empty set with known-unique elements after reserving space
 | |
|   // with reserve(), e.g.
 | |
|   //
 | |
|   //   using HS = HashMap<int>;
 | |
|   //   HS h;
 | |
|   //   if (!h.reserve(3)) {
 | |
|   //     MOZ_CRASH("OOM");
 | |
|   //   }
 | |
|   //   h.putNewInfallible(1);     // unique element
 | |
|   //   h.putNewInfallible(2);     // unique element
 | |
|   //   h.putNewInfallible(3);     // unique element
 | |
|   //
 | |
|   template <typename U>
 | |
|   void putNewInfallible(const Lookup& aLookup, U&& aU) {
 | |
|     mImpl.putNewInfallible(aLookup, std::forward<U>(aU));
 | |
|   }
 | |
| 
 | |
|   // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
 | |
|   // insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
 | |
|   // |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
 | |
|   //
 | |
|   //   using HS = HashSet<int>;
 | |
|   //   HS h;
 | |
|   //   HS::AddPtr p = h.lookupForAdd(3);
 | |
|   //   if (!p) {
 | |
|   //     if (!h.add(p, 3)) {
 | |
|   //       return false;
 | |
|   //     }
 | |
|   //   }
 | |
|   //   assert(*p == 3);   // p acts like a pointer to int
 | |
|   //
 | |
|   // N.B. The caller must ensure that no mutating hash table operations occur
 | |
|   // between a pair of lookupForAdd() and add() calls. To avoid looking up the
 | |
|   // key a second time, the caller may use the more efficient relookupOrAdd()
 | |
|   // method. This method reuses part of the hashing computation to more
 | |
|   // efficiently insert the key if it has not been added. For example, a
 | |
|   // mutation-handling version of the previous example:
 | |
|   //
 | |
|   //    HS::AddPtr p = h.lookupForAdd(3);
 | |
|   //    if (!p) {
 | |
|   //      call_that_may_mutate_h();
 | |
|   //      if (!h.relookupOrAdd(p, 3, 3)) {
 | |
|   //        return false;
 | |
|   //      }
 | |
|   //    }
 | |
|   //    assert(*p == 3);
 | |
|   //
 | |
|   // Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
 | |
|   // entry |t|, where the caller ensures match(l,t).
 | |
|   using AddPtr = typename Impl::AddPtr;
 | |
|   MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
 | |
|     return mImpl.lookupForAdd(aLookup);
 | |
|   }
 | |
| 
 | |
|   // Add an element. Returns false on OOM.
 | |
|   template <typename U>
 | |
|   [[nodiscard]] bool add(AddPtr& aPtr, U&& aU) {
 | |
|     return mImpl.add(aPtr, std::forward<U>(aU));
 | |
|   }
 | |
| 
 | |
|   // See the comment above lookupForAdd() for details.
 | |
|   template <typename U>
 | |
|   [[nodiscard]] bool relookupOrAdd(AddPtr& aPtr, const Lookup& aLookup,
 | |
|                                    U&& aU) {
 | |
|     return mImpl.relookupOrAdd(aPtr, aLookup, std::forward<U>(aU));
 | |
|   }
 | |
| 
 | |
|   // -- Removal --------------------------------------------------------------
 | |
| 
 | |
|   // Lookup and remove the element matching |aLookup|, if present.
 | |
|   void remove(const Lookup& aLookup) {
 | |
|     if (Ptr p = lookup(aLookup)) {
 | |
|       remove(p);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove a previously found element (assuming aPtr.found()). The set must
 | |
|   // not have been mutated in the interim.
 | |
|   void remove(Ptr aPtr) { mImpl.remove(aPtr); }
 | |
| 
 | |
|   // Remove all keys/values without changing the capacity.
 | |
|   void clear() { mImpl.clear(); }
 | |
| 
 | |
|   // Like clear() followed by compact().
 | |
|   void clearAndCompact() { mImpl.clearAndCompact(); }
 | |
| 
 | |
|   // -- Rekeying -------------------------------------------------------------
 | |
| 
 | |
|   // Infallibly rekey one entry, if present. Requires that template parameters
 | |
|   // T and HashPolicy::Lookup are the same type.
 | |
|   void rekeyIfMoved(const Lookup& aOldValue, const T& aNewValue) {
 | |
|     if (aOldValue != aNewValue) {
 | |
|       rekeyAs(aOldValue, aNewValue, aNewValue);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Infallibly rekey one entry if present, and return whether that happened.
 | |
|   bool rekeyAs(const Lookup& aOldLookup, const Lookup& aNewLookup,
 | |
|                const T& aNewValue) {
 | |
|     if (Ptr p = lookup(aOldLookup)) {
 | |
|       mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewValue);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Infallibly replace the current key at |aPtr| with an equivalent key.
 | |
|   // Specifically, both HashPolicy::hash and HashPolicy::match must return
 | |
|   // identical results for the new and old key when applied against all
 | |
|   // possible matching values.
 | |
|   void replaceKey(Ptr aPtr, const Lookup& aLookup, const T& aNewValue) {
 | |
|     MOZ_ASSERT(aPtr.found());
 | |
|     MOZ_ASSERT(*aPtr != aNewValue);
 | |
|     MOZ_ASSERT(HashPolicy::match(*aPtr, aLookup));
 | |
|     MOZ_ASSERT(HashPolicy::match(aNewValue, aLookup));
 | |
|     const_cast<T&>(*aPtr) = aNewValue;
 | |
|     MOZ_ASSERT(*lookup(aLookup) == aNewValue);
 | |
|   }
 | |
|   void replaceKey(Ptr aPtr, const T& aNewValue) {
 | |
|     replaceKey(aPtr, aNewValue, aNewValue);
 | |
|   }
 | |
| 
 | |
|   // -- Iteration ------------------------------------------------------------
 | |
| 
 | |
|   // |iter()| returns an Iterator:
 | |
|   //
 | |
|   //   HashSet<int> h;
 | |
|   //   for (auto iter = h.iter(); !iter.done(); iter.next()) {
 | |
|   //     int i = iter.get();
 | |
|   //   }
 | |
|   //
 | |
|   using Iterator = typename Impl::Iterator;
 | |
|   Iterator iter() const { return mImpl.iter(); }
 | |
| 
 | |
|   // |modIter()| returns a ModIterator:
 | |
|   //
 | |
|   //   HashSet<int> h;
 | |
|   //   for (auto iter = h.modIter(); !iter.done(); iter.next()) {
 | |
|   //     if (iter.get() == 42) {
 | |
|   //       iter.remove();
 | |
|   //     }
 | |
|   //   }
 | |
|   //
 | |
|   // Table resize may occur in ModIterator's destructor.
 | |
|   using ModIterator = typename Impl::ModIterator;
 | |
|   ModIterator modIter() { return mImpl.modIter(); }
 | |
| 
 | |
|   // These are similar to Iterator/ModIterator/iter(), but use different
 | |
|   // terminology.
 | |
|   using Range = typename Impl::Range;
 | |
|   using Enum = typename Impl::Enum;
 | |
|   Range all() const { return mImpl.all(); }
 | |
| };
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| // Hash Policy
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| // A hash policy |HP| for a hash table with key-type |Key| must provide:
 | |
| //
 | |
| //  - a type |HP::Lookup| to use to lookup table entries;
 | |
| //
 | |
| //  - a static member function |HP::hash| that hashes lookup values:
 | |
| //
 | |
| //      static mozilla::HashNumber hash(const Lookup&);
 | |
| //
 | |
| //  - a static member function |HP::match| that tests equality of key and
 | |
| //    lookup values:
 | |
| //
 | |
| //      static bool match(const Key&, const Lookup&);
 | |
| //
 | |
| // Normally, Lookup = Key. In general, though, different values and types of
 | |
| // values can be used to lookup and store. If a Lookup value |l| is not equal
 | |
| // to the added Key value |k|, the user must ensure that |HP::match(k,l)| is
 | |
| // true. E.g.:
 | |
| //
 | |
| //   mozilla::HashSet<Key, HP>::AddPtr p = h.lookup(l);
 | |
| //   if (!p) {
 | |
| //     assert(HP::match(k, l));  // must hold
 | |
| //     h.add(p, k);
 | |
| //   }
 | |
| 
 | |
| // A pointer hashing policy that uses HashGeneric() to create good hashes for
 | |
| // pointers. Note that we don't shift out the lowest k bits because we don't
 | |
| // want to assume anything about the alignment of the pointers.
 | |
| template <typename Key>
 | |
| struct PointerHasher {
 | |
|   using Lookup = Key;
 | |
| 
 | |
|   static HashNumber hash(const Lookup& aLookup) {
 | |
|     size_t word = reinterpret_cast<size_t>(aLookup);
 | |
|     return HashGeneric(word);
 | |
|   }
 | |
| 
 | |
|   static bool match(const Key& aKey, const Lookup& aLookup) {
 | |
|     return aKey == aLookup;
 | |
|   }
 | |
| 
 | |
|   static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
 | |
| };
 | |
| 
 | |
| // The default hash policy, which only works with integers.
 | |
| template <class Key, typename>
 | |
| struct DefaultHasher {
 | |
|   using Lookup = Key;
 | |
| 
 | |
|   static HashNumber hash(const Lookup& aLookup) {
 | |
|     // Just convert the integer to a HashNumber and use that as is. (This
 | |
|     // discards the high 32-bits of 64-bit integers!) ScrambleHashCode() is
 | |
|     // subsequently called on the value to improve the distribution.
 | |
|     return aLookup;
 | |
|   }
 | |
| 
 | |
|   static bool match(const Key& aKey, const Lookup& aLookup) {
 | |
|     // Use builtin or overloaded operator==.
 | |
|     return aKey == aLookup;
 | |
|   }
 | |
| 
 | |
|   static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
 | |
| };
 | |
| 
 | |
| // A DefaultHasher specialization for enums.
 | |
| template <class T>
 | |
| struct DefaultHasher<T, std::enable_if_t<std::is_enum_v<T>>> {
 | |
|   using Key = T;
 | |
|   using Lookup = Key;
 | |
| 
 | |
|   static HashNumber hash(const Lookup& aLookup) { return HashGeneric(aLookup); }
 | |
| 
 | |
|   static bool match(const Key& aKey, const Lookup& aLookup) {
 | |
|     // Use builtin or overloaded operator==.
 | |
|     return aKey == static_cast<Key>(aLookup);
 | |
|   }
 | |
| 
 | |
|   static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
 | |
| };
 | |
| 
 | |
| // A DefaultHasher specialization for pointers.
 | |
| template <class T>
 | |
| struct DefaultHasher<T*> : PointerHasher<T*> {};
 | |
| 
 | |
| // A DefaultHasher specialization for mozilla::UniquePtr.
 | |
| template <class T, class D>
 | |
| struct DefaultHasher<UniquePtr<T, D>> {
 | |
|   using Key = UniquePtr<T, D>;
 | |
|   using Lookup = Key;
 | |
|   using PtrHasher = PointerHasher<T*>;
 | |
| 
 | |
|   static HashNumber hash(const Lookup& aLookup) {
 | |
|     return PtrHasher::hash(aLookup.get());
 | |
|   }
 | |
| 
 | |
|   static bool match(const Key& aKey, const Lookup& aLookup) {
 | |
|     return PtrHasher::match(aKey.get(), aLookup.get());
 | |
|   }
 | |
| 
 | |
|   static void rekey(UniquePtr<T, D>& aKey, UniquePtr<T, D>&& aNewKey) {
 | |
|     aKey = std::move(aNewKey);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A DefaultHasher specialization for doubles.
 | |
| template <>
 | |
| struct DefaultHasher<double> {
 | |
|   using Key = double;
 | |
|   using Lookup = Key;
 | |
| 
 | |
|   static HashNumber hash(const Lookup& aLookup) {
 | |
|     // Just xor the high bits with the low bits, and then treat the bits of the
 | |
|     // result as a uint32_t.
 | |
|     static_assert(sizeof(HashNumber) == 4,
 | |
|                   "subsequent code assumes a four-byte hash");
 | |
|     uint64_t u = BitwiseCast<uint64_t>(aLookup);
 | |
|     return HashNumber(u ^ (u >> 32));
 | |
|   }
 | |
| 
 | |
|   static bool match(const Key& aKey, const Lookup& aLookup) {
 | |
|     return BitwiseCast<uint64_t>(aKey) == BitwiseCast<uint64_t>(aLookup);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A DefaultHasher specialization for floats.
 | |
| template <>
 | |
| struct DefaultHasher<float> {
 | |
|   using Key = float;
 | |
|   using Lookup = Key;
 | |
| 
 | |
|   static HashNumber hash(const Lookup& aLookup) {
 | |
|     // Just use the value as if its bits form an integer. ScrambleHashCode() is
 | |
|     // subsequently called on the value to improve the distribution.
 | |
|     static_assert(sizeof(HashNumber) == 4,
 | |
|                   "subsequent code assumes a four-byte hash");
 | |
|     return HashNumber(BitwiseCast<uint32_t>(aLookup));
 | |
|   }
 | |
| 
 | |
|   static bool match(const Key& aKey, const Lookup& aLookup) {
 | |
|     return BitwiseCast<uint32_t>(aKey) == BitwiseCast<uint32_t>(aLookup);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A hash policy for C strings.
 | |
| struct CStringHasher {
 | |
|   using Key = const char*;
 | |
|   using Lookup = const char*;
 | |
| 
 | |
|   static HashNumber hash(const Lookup& aLookup) { return HashString(aLookup); }
 | |
| 
 | |
|   static bool match(const Key& aKey, const Lookup& aLookup) {
 | |
|     return strcmp(aKey, aLookup) == 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| // Fallible Hashing Interface
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| // Most of the time generating a hash code is infallible, but sometimes it is
 | |
| // necessary to generate hash codes on demand in a way that can fail. Specialize
 | |
| // this class for your own hash policy to provide fallible hashing.
 | |
| //
 | |
| // This is used by MovableCellHasher to handle the fact that generating a unique
 | |
| // ID for cell pointer may fail due to OOM.
 | |
| //
 | |
| // The default implementations of these methods delegate to the usual HashPolicy
 | |
| // implementation and always succeed.
 | |
| template <typename HashPolicy>
 | |
| struct FallibleHashMethods {
 | |
|   // Return true if a hashcode is already available for its argument, and
 | |
|   // sets |aHashOut|. Once this succeeds for a specific argument it
 | |
|   // must continue to do so.
 | |
|   //
 | |
|   // Return false if a hashcode is not already available. This implies that any
 | |
|   // lookup must fail, as the hash code would have to have been successfully
 | |
|   // created on insertion.
 | |
|   template <typename Lookup>
 | |
|   static bool maybeGetHash(Lookup&& aLookup, HashNumber* aHashOut) {
 | |
|     *aHashOut = HashPolicy::hash(aLookup);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Fallible method to ensure a hashcode exists for its argument and create one
 | |
|   // if not. Sets |aHashOut| to the hashcode and retuns true on success. Returns
 | |
|   // false on error, e.g. out of memory.
 | |
|   template <typename Lookup>
 | |
|   static bool ensureHash(Lookup&& aLookup, HashNumber* aHashOut) {
 | |
|     *aHashOut = HashPolicy::hash(aLookup);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename HashPolicy, typename Lookup>
 | |
| static bool MaybeGetHash(Lookup&& aLookup, HashNumber* aHashOut) {
 | |
|   return FallibleHashMethods<typename HashPolicy::Base>::maybeGetHash(
 | |
|       std::forward<Lookup>(aLookup), aHashOut);
 | |
| }
 | |
| 
 | |
| template <typename HashPolicy, typename Lookup>
 | |
| static bool EnsureHash(Lookup&& aLookup, HashNumber* aHashOut) {
 | |
|   return FallibleHashMethods<typename HashPolicy::Base>::ensureHash(
 | |
|       std::forward<Lookup>(aLookup), aHashOut);
 | |
| }
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| // Implementation Details (HashMapEntry, HashTableEntry, HashTable)
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| // Both HashMap and HashSet are implemented by a single HashTable that is even
 | |
| // more heavily parameterized than the other two. This leaves HashTable gnarly
 | |
| // and extremely coupled to HashMap and HashSet; thus code should not use
 | |
| // HashTable directly.
 | |
| 
 | |
| template <class Key, class Value>
 | |
| class HashMapEntry {
 | |
|   Key key_;
 | |
|   Value value_;
 | |
| 
 | |
|   template <class, class, class>
 | |
|   friend class detail::HashTable;
 | |
|   template <class>
 | |
|   friend class detail::HashTableEntry;
 | |
|   template <class, class, class, class>
 | |
|   friend class HashMap;
 | |
| 
 | |
|  public:
 | |
|   template <typename KeyInput, typename ValueInput>
 | |
|   HashMapEntry(KeyInput&& aKey, ValueInput&& aValue)
 | |
|       : key_(std::forward<KeyInput>(aKey)),
 | |
|         value_(std::forward<ValueInput>(aValue)) {}
 | |
| 
 | |
|   HashMapEntry(HashMapEntry&& aRhs) = default;
 | |
|   HashMapEntry& operator=(HashMapEntry&& aRhs) = default;
 | |
| 
 | |
|   using KeyType = Key;
 | |
|   using ValueType = Value;
 | |
| 
 | |
|   const Key& key() const { return key_; }
 | |
| 
 | |
|   // Use this method with caution! If the key is changed such that its hash
 | |
|   // value also changes, the map will be left in an invalid state.
 | |
|   Key& mutableKey() { return key_; }
 | |
| 
 | |
|   const Value& value() const { return value_; }
 | |
|   Value& value() { return value_; }
 | |
| 
 | |
|  private:
 | |
|   HashMapEntry(const HashMapEntry&) = delete;
 | |
|   void operator=(const HashMapEntry&) = delete;
 | |
| };
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| template <class T, class HashPolicy, class AllocPolicy>
 | |
| class HashTable;
 | |
| 
 | |
| template <typename T>
 | |
| class EntrySlot;
 | |
| 
 | |
| template <typename T>
 | |
| class HashTableEntry {
 | |
|  private:
 | |
|   using NonConstT = std::remove_const_t<T>;
 | |
| 
 | |
|   // Instead of having a hash table entry store that looks like this:
 | |
|   //
 | |
|   // +--------+--------+--------+--------+
 | |
|   // | entry0 | entry1 |  ....  | entryN |
 | |
|   // +--------+--------+--------+--------+
 | |
|   //
 | |
|   // where the entries contained their cached hash code, we're going to lay out
 | |
|   // the entry store thusly:
 | |
|   //
 | |
|   // +-------+-------+-------+-------+--------+--------+--------+--------+
 | |
|   // | hash0 | hash1 |  ...  | hashN | entry0 | entry1 |  ....  | entryN |
 | |
|   // +-------+-------+-------+-------+--------+--------+--------+--------+
 | |
|   //
 | |
|   // with all the cached hashes prior to the actual entries themselves.
 | |
|   //
 | |
|   // We do this because implementing the first strategy requires us to make
 | |
|   // HashTableEntry look roughly like:
 | |
|   //
 | |
|   // template <typename T>
 | |
|   // class HashTableEntry {
 | |
|   //   HashNumber mKeyHash;
 | |
|   //   T mValue;
 | |
|   // };
 | |
|   //
 | |
|   // The problem with this setup is that, depending on the layout of `T`, there
 | |
|   // may be platform ABI-mandated padding between `mKeyHash` and the first
 | |
|   // member of `T`. This ABI-mandated padding is wasted space, and can be
 | |
|   // surprisingly common, e.g. when `T` is a single pointer on 64-bit platforms.
 | |
|   // In such cases, we're throwing away a quarter of our entry store on padding,
 | |
|   // which is undesirable.
 | |
|   //
 | |
|   // The second layout above, namely:
 | |
|   //
 | |
|   // +-------+-------+-------+-------+--------+--------+--------+--------+
 | |
|   // | hash0 | hash1 |  ...  | hashN | entry0 | entry1 |  ....  | entryN |
 | |
|   // +-------+-------+-------+-------+--------+--------+--------+--------+
 | |
|   //
 | |
|   // means there is no wasted space between the hashes themselves, and no wasted
 | |
|   // space between the entries themselves.  However, we would also like there to
 | |
|   // be no gap between the last hash and the first entry. The memory allocator
 | |
|   // guarantees the alignment of the start of the hashes. The use of a
 | |
|   // power-of-two capacity of at least 4 guarantees that the alignment of the
 | |
|   // *end* of the hash array is no less than the alignment of the start.
 | |
|   // Finally, the static_asserts here guarantee that the entries themselves
 | |
|   // don't need to be any more aligned than the alignment of the entry store
 | |
|   // itself.
 | |
|   //
 | |
|   // This assertion is safe for 32-bit builds because on both Windows and Linux
 | |
|   // (including Android), the minimum alignment for allocations larger than 8
 | |
|   // bytes is 8 bytes, and the actual data for entries in our entry store is
 | |
|   // guaranteed to have that alignment as well, thanks to the power-of-two
 | |
|   // number of cached hash values stored prior to the entry data.
 | |
| 
 | |
|   // The allocation policy must allocate a table with at least this much
 | |
|   // alignment.
 | |
|   static constexpr size_t kMinimumAlignment = 8;
 | |
| 
 | |
|   static_assert(alignof(HashNumber) <= kMinimumAlignment,
 | |
|                 "[N*2 hashes, N*2 T values] allocation's alignment must be "
 | |
|                 "enough to align each hash");
 | |
|   static_assert(alignof(NonConstT) <= 2 * sizeof(HashNumber),
 | |
|                 "subsequent N*2 T values must not require more than an even "
 | |
|                 "number of HashNumbers provides");
 | |
| 
 | |
|   static const HashNumber sFreeKey = 0;
 | |
|   static const HashNumber sRemovedKey = 1;
 | |
|   static const HashNumber sCollisionBit = 1;
 | |
| 
 | |
|   alignas(NonConstT) unsigned char mValueData[sizeof(NonConstT)];
 | |
| 
 | |
|  private:
 | |
|   template <class, class, class>
 | |
|   friend class HashTable;
 | |
|   template <typename>
 | |
|   friend class EntrySlot;
 | |
| 
 | |
|   // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
 | |
|   // -Werror compile error) to reinterpret_cast<> |mValueData| to |T*|, even
 | |
|   // through |void*|.  Placing the latter cast in these separate functions
 | |
|   // breaks the chain such that affected GCC versions no longer warn/error.
 | |
|   void* rawValuePtr() { return mValueData; }
 | |
| 
 | |
|   static bool isLiveHash(HashNumber hash) { return hash > sRemovedKey; }
 | |
| 
 | |
|   HashTableEntry(const HashTableEntry&) = delete;
 | |
|   void operator=(const HashTableEntry&) = delete;
 | |
| 
 | |
|   NonConstT* valuePtr() { return reinterpret_cast<NonConstT*>(rawValuePtr()); }
 | |
| 
 | |
|   void destroyStoredT() {
 | |
|     NonConstT* ptr = valuePtr();
 | |
|     ptr->~T();
 | |
|     MOZ_MAKE_MEM_UNDEFINED(ptr, sizeof(*ptr));
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   HashTableEntry() = default;
 | |
| 
 | |
|   ~HashTableEntry() { MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this)); }
 | |
| 
 | |
|   void destroy() { destroyStoredT(); }
 | |
| 
 | |
|   void swap(HashTableEntry* aOther, bool aIsLive) {
 | |
|     // This allows types to use Argument-Dependent-Lookup, and thus use a custom
 | |
|     // std::swap, which is needed by types like JS::Heap and such.
 | |
|     using std::swap;
 | |
| 
 | |
|     if (this == aOther) {
 | |
|       return;
 | |
|     }
 | |
|     if (aIsLive) {
 | |
|       swap(*valuePtr(), *aOther->valuePtr());
 | |
|     } else {
 | |
|       *aOther->valuePtr() = std::move(*valuePtr());
 | |
|       destroy();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   T& get() { return *valuePtr(); }
 | |
| 
 | |
|   NonConstT& getMutable() { return *valuePtr(); }
 | |
| };
 | |
| 
 | |
| // A slot represents a cached hash value and its associated entry stored
 | |
| // in the hash table. These two things are not stored in contiguous memory.
 | |
| template <class T>
 | |
| class EntrySlot {
 | |
|   using NonConstT = std::remove_const_t<T>;
 | |
| 
 | |
|   using Entry = HashTableEntry<T>;
 | |
| 
 | |
|   Entry* mEntry;
 | |
|   HashNumber* mKeyHash;
 | |
| 
 | |
|   template <class, class, class>
 | |
|   friend class HashTable;
 | |
| 
 | |
|   EntrySlot(Entry* aEntry, HashNumber* aKeyHash)
 | |
|       : mEntry(aEntry), mKeyHash(aKeyHash) {}
 | |
| 
 | |
|  public:
 | |
|   static bool isLiveHash(HashNumber hash) { return hash > Entry::sRemovedKey; }
 | |
| 
 | |
|   EntrySlot(const EntrySlot&) = default;
 | |
|   EntrySlot(EntrySlot&& aOther) = default;
 | |
| 
 | |
|   EntrySlot& operator=(const EntrySlot&) = default;
 | |
|   EntrySlot& operator=(EntrySlot&&) = default;
 | |
| 
 | |
|   bool operator==(const EntrySlot& aRhs) const { return mEntry == aRhs.mEntry; }
 | |
| 
 | |
|   bool operator<(const EntrySlot& aRhs) const { return mEntry < aRhs.mEntry; }
 | |
| 
 | |
|   EntrySlot& operator++() {
 | |
|     ++mEntry;
 | |
|     ++mKeyHash;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   void destroy() { mEntry->destroy(); }
 | |
| 
 | |
|   void swap(EntrySlot& aOther) {
 | |
|     mEntry->swap(aOther.mEntry, aOther.isLive());
 | |
|     std::swap(*mKeyHash, *aOther.mKeyHash);
 | |
|   }
 | |
| 
 | |
|   T& get() const { return mEntry->get(); }
 | |
| 
 | |
|   NonConstT& getMutable() { return mEntry->getMutable(); }
 | |
| 
 | |
|   bool isFree() const { return *mKeyHash == Entry::sFreeKey; }
 | |
| 
 | |
|   void clearLive() {
 | |
|     MOZ_ASSERT(isLive());
 | |
|     *mKeyHash = Entry::sFreeKey;
 | |
|     mEntry->destroyStoredT();
 | |
|   }
 | |
| 
 | |
|   void clear() {
 | |
|     if (isLive()) {
 | |
|       mEntry->destroyStoredT();
 | |
|     }
 | |
|     MOZ_MAKE_MEM_UNDEFINED(mEntry, sizeof(*mEntry));
 | |
|     *mKeyHash = Entry::sFreeKey;
 | |
|   }
 | |
| 
 | |
|   bool isRemoved() const { return *mKeyHash == Entry::sRemovedKey; }
 | |
| 
 | |
|   void removeLive() {
 | |
|     MOZ_ASSERT(isLive());
 | |
|     *mKeyHash = Entry::sRemovedKey;
 | |
|     mEntry->destroyStoredT();
 | |
|   }
 | |
| 
 | |
|   bool isLive() const { return isLiveHash(*mKeyHash); }
 | |
| 
 | |
|   void setCollision() {
 | |
|     MOZ_ASSERT(isLive());
 | |
|     *mKeyHash |= Entry::sCollisionBit;
 | |
|   }
 | |
|   void unsetCollision() { *mKeyHash &= ~Entry::sCollisionBit; }
 | |
|   bool hasCollision() const { return *mKeyHash & Entry::sCollisionBit; }
 | |
|   bool matchHash(HashNumber hn) {
 | |
|     return (*mKeyHash & ~Entry::sCollisionBit) == hn;
 | |
|   }
 | |
|   HashNumber getKeyHash() const { return *mKeyHash & ~Entry::sCollisionBit; }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   void setLive(HashNumber aHashNumber, Args&&... aArgs) {
 | |
|     MOZ_ASSERT(!isLive());
 | |
|     *mKeyHash = aHashNumber;
 | |
|     new (KnownNotNull, mEntry->valuePtr()) T(std::forward<Args>(aArgs)...);
 | |
|     MOZ_ASSERT(isLive());
 | |
|   }
 | |
| 
 | |
|   Entry* toEntry() const { return mEntry; }
 | |
| };
 | |
| 
 | |
| template <class T, class HashPolicy, class AllocPolicy>
 | |
| class HashTable : private AllocPolicy {
 | |
|   friend class mozilla::ReentrancyGuard;
 | |
| 
 | |
|   using NonConstT = std::remove_const_t<T>;
 | |
|   using Key = typename HashPolicy::KeyType;
 | |
|   using Lookup = typename HashPolicy::Lookup;
 | |
| 
 | |
|  public:
 | |
|   using Entry = HashTableEntry<T>;
 | |
|   using Slot = EntrySlot<T>;
 | |
| 
 | |
|   template <typename F>
 | |
|   static void forEachSlot(char* aTable, uint32_t aCapacity, F&& f) {
 | |
|     auto hashes = reinterpret_cast<HashNumber*>(aTable);
 | |
|     auto entries = reinterpret_cast<Entry*>(&hashes[aCapacity]);
 | |
|     Slot slot(entries, hashes);
 | |
|     for (size_t i = 0; i < size_t(aCapacity); ++i) {
 | |
|       f(slot);
 | |
|       ++slot;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // A nullable pointer to a hash table element. A Ptr |p| can be tested
 | |
|   // either explicitly |if (p.found()) p->...| or using boolean conversion
 | |
|   // |if (p) p->...|. Ptr objects must not be used after any mutating hash
 | |
|   // table operations unless |generation()| is tested.
 | |
|   class Ptr {
 | |
|     friend class HashTable;
 | |
| 
 | |
|     Slot mSlot;
 | |
| #ifdef DEBUG
 | |
|     const HashTable* mTable;
 | |
|     Generation mGeneration;
 | |
| #endif
 | |
| 
 | |
|    protected:
 | |
|     Ptr(Slot aSlot, const HashTable& aTable)
 | |
|         : mSlot(aSlot)
 | |
| #ifdef DEBUG
 | |
|           ,
 | |
|           mTable(&aTable),
 | |
|           mGeneration(aTable.generation())
 | |
| #endif
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     // This constructor is used only by AddPtr() within lookupForAdd().
 | |
|     explicit Ptr(const HashTable& aTable)
 | |
|         : mSlot(nullptr, nullptr)
 | |
| #ifdef DEBUG
 | |
|           ,
 | |
|           mTable(&aTable),
 | |
|           mGeneration(aTable.generation())
 | |
| #endif
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     bool isValid() const { return !!mSlot.toEntry(); }
 | |
| 
 | |
|    public:
 | |
|     Ptr()
 | |
|         : mSlot(nullptr, nullptr)
 | |
| #ifdef DEBUG
 | |
|           ,
 | |
|           mTable(nullptr),
 | |
|           mGeneration(0)
 | |
| #endif
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     bool found() const {
 | |
|       if (!isValid()) {
 | |
|         return false;
 | |
|       }
 | |
| #ifdef DEBUG
 | |
|       MOZ_ASSERT(mGeneration == mTable->generation());
 | |
| #endif
 | |
|       return mSlot.isLive();
 | |
|     }
 | |
| 
 | |
|     explicit operator bool() const { return found(); }
 | |
| 
 | |
|     bool operator==(const Ptr& aRhs) const {
 | |
|       MOZ_ASSERT(found() && aRhs.found());
 | |
|       return mSlot == aRhs.mSlot;
 | |
|     }
 | |
| 
 | |
|     bool operator!=(const Ptr& aRhs) const {
 | |
| #ifdef DEBUG
 | |
|       MOZ_ASSERT(mGeneration == mTable->generation());
 | |
| #endif
 | |
|       return !(*this == aRhs);
 | |
|     }
 | |
| 
 | |
|     T& operator*() const {
 | |
| #ifdef DEBUG
 | |
|       MOZ_ASSERT(found());
 | |
|       MOZ_ASSERT(mGeneration == mTable->generation());
 | |
| #endif
 | |
|       return mSlot.get();
 | |
|     }
 | |
| 
 | |
|     T* operator->() const {
 | |
| #ifdef DEBUG
 | |
|       MOZ_ASSERT(found());
 | |
|       MOZ_ASSERT(mGeneration == mTable->generation());
 | |
| #endif
 | |
|       return &mSlot.get();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // A Ptr that can be used to add a key after a failed lookup.
 | |
|   class AddPtr : public Ptr {
 | |
|     friend class HashTable;
 | |
| 
 | |
|     HashNumber mKeyHash;
 | |
| #ifdef DEBUG
 | |
|     uint64_t mMutationCount;
 | |
| #endif
 | |
| 
 | |
|     AddPtr(Slot aSlot, const HashTable& aTable, HashNumber aHashNumber)
 | |
|         : Ptr(aSlot, aTable),
 | |
|           mKeyHash(aHashNumber)
 | |
| #ifdef DEBUG
 | |
|           ,
 | |
|           mMutationCount(aTable.mMutationCount)
 | |
| #endif
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     // This constructor is used when lookupForAdd() is performed on a table
 | |
|     // lacking entry storage; it leaves mSlot null but initializes everything
 | |
|     // else.
 | |
|     AddPtr(const HashTable& aTable, HashNumber aHashNumber)
 | |
|         : Ptr(aTable),
 | |
|           mKeyHash(aHashNumber)
 | |
| #ifdef DEBUG
 | |
|           ,
 | |
|           mMutationCount(aTable.mMutationCount)
 | |
| #endif
 | |
|     {
 | |
|       MOZ_ASSERT(isLive());
 | |
|     }
 | |
| 
 | |
|     bool isLive() const { return isLiveHash(mKeyHash); }
 | |
| 
 | |
|    public:
 | |
|     AddPtr() : mKeyHash(0) {}
 | |
|   };
 | |
| 
 | |
|   // A hash table iterator that (mostly) doesn't allow table modifications.
 | |
|   // As with Ptr/AddPtr, Iterator objects must not be used after any mutating
 | |
|   // hash table operation unless the |generation()| is tested.
 | |
|   class Iterator {
 | |
|     void moveToNextLiveEntry() {
 | |
|       while (++mCur < mEnd && !mCur.isLive()) {
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|    protected:
 | |
|     friend class HashTable;
 | |
| 
 | |
|     explicit Iterator(const HashTable& aTable)
 | |
|         : mCur(aTable.slotForIndex(0)),
 | |
|           mEnd(aTable.slotForIndex(aTable.capacity()))
 | |
| #ifdef DEBUG
 | |
|           ,
 | |
|           mTable(aTable),
 | |
|           mMutationCount(aTable.mMutationCount),
 | |
|           mGeneration(aTable.generation()),
 | |
|           mValidEntry(true)
 | |
| #endif
 | |
|     {
 | |
|       if (!done() && !mCur.isLive()) {
 | |
|         moveToNextLiveEntry();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Slot mCur;
 | |
|     Slot mEnd;
 | |
| #ifdef DEBUG
 | |
|     const HashTable& mTable;
 | |
|     uint64_t mMutationCount;
 | |
|     Generation mGeneration;
 | |
|     bool mValidEntry;
 | |
| #endif
 | |
| 
 | |
|    public:
 | |
|     bool done() const {
 | |
|       MOZ_ASSERT(mGeneration == mTable.generation());
 | |
|       MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
 | |
|       return mCur == mEnd;
 | |
|     }
 | |
| 
 | |
|     T& get() const {
 | |
|       MOZ_ASSERT(!done());
 | |
|       MOZ_ASSERT(mValidEntry);
 | |
|       MOZ_ASSERT(mGeneration == mTable.generation());
 | |
|       MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
 | |
|       return mCur.get();
 | |
|     }
 | |
| 
 | |
|     void next() {
 | |
|       MOZ_ASSERT(!done());
 | |
|       MOZ_ASSERT(mGeneration == mTable.generation());
 | |
|       MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
 | |
|       moveToNextLiveEntry();
 | |
| #ifdef DEBUG
 | |
|       mValidEntry = true;
 | |
| #endif
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // A hash table iterator that permits modification, removal and rekeying.
 | |
|   // Since rehashing when elements were removed during enumeration would be
 | |
|   // bad, it is postponed until the ModIterator is destructed. Since the
 | |
|   // ModIterator's destructor touches the hash table, the user must ensure
 | |
|   // that the hash table is still alive when the destructor runs.
 | |
|   class ModIterator : public Iterator {
 | |
|     friend class HashTable;
 | |
| 
 | |
|     HashTable& mTable;
 | |
|     bool mRekeyed;
 | |
|     bool mRemoved;
 | |
| 
 | |
|     // ModIterator is movable but not copyable.
 | |
|     ModIterator(const ModIterator&) = delete;
 | |
|     void operator=(const ModIterator&) = delete;
 | |
| 
 | |
|    protected:
 | |
|     explicit ModIterator(HashTable& aTable)
 | |
|         : Iterator(aTable), mTable(aTable), mRekeyed(false), mRemoved(false) {}
 | |
| 
 | |
|    public:
 | |
|     MOZ_IMPLICIT ModIterator(ModIterator&& aOther)
 | |
|         : Iterator(aOther),
 | |
|           mTable(aOther.mTable),
 | |
|           mRekeyed(aOther.mRekeyed),
 | |
|           mRemoved(aOther.mRemoved) {
 | |
|       aOther.mRekeyed = false;
 | |
|       aOther.mRemoved = false;
 | |
|     }
 | |
| 
 | |
|     // Removes the current element from the table, leaving |get()|
 | |
|     // invalid until the next call to |next()|.
 | |
|     void remove() {
 | |
|       mTable.remove(this->mCur);
 | |
|       mRemoved = true;
 | |
| #ifdef DEBUG
 | |
|       this->mValidEntry = false;
 | |
|       this->mMutationCount = mTable.mMutationCount;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     NonConstT& getMutable() {
 | |
|       MOZ_ASSERT(!this->done());
 | |
|       MOZ_ASSERT(this->mValidEntry);
 | |
|       MOZ_ASSERT(this->mGeneration == this->Iterator::mTable.generation());
 | |
|       MOZ_ASSERT(this->mMutationCount == this->Iterator::mTable.mMutationCount);
 | |
|       return this->mCur.getMutable();
 | |
|     }
 | |
| 
 | |
|     // Removes the current element and re-inserts it into the table with
 | |
|     // a new key at the new Lookup position.  |get()| is invalid after
 | |
|     // this operation until the next call to |next()|.
 | |
|     void rekey(const Lookup& l, const Key& k) {
 | |
|       MOZ_ASSERT(&k != &HashPolicy::getKey(this->mCur.get()));
 | |
|       Ptr p(this->mCur, mTable);
 | |
|       mTable.rekeyWithoutRehash(p, l, k);
 | |
|       mRekeyed = true;
 | |
| #ifdef DEBUG
 | |
|       this->mValidEntry = false;
 | |
|       this->mMutationCount = mTable.mMutationCount;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     void rekey(const Key& k) { rekey(k, k); }
 | |
| 
 | |
|     // Potentially rehashes the table.
 | |
|     ~ModIterator() {
 | |
|       if (mRekeyed) {
 | |
|         mTable.mGen++;
 | |
|         mTable.infallibleRehashIfOverloaded();
 | |
|       }
 | |
| 
 | |
|       if (mRemoved) {
 | |
|         mTable.compact();
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Range is similar to Iterator, but uses different terminology.
 | |
|   class Range {
 | |
|     friend class HashTable;
 | |
| 
 | |
|     Iterator mIter;
 | |
| 
 | |
|    protected:
 | |
|     explicit Range(const HashTable& table) : mIter(table) {}
 | |
| 
 | |
|    public:
 | |
|     bool empty() const { return mIter.done(); }
 | |
| 
 | |
|     T& front() const { return mIter.get(); }
 | |
| 
 | |
|     void popFront() { return mIter.next(); }
 | |
|   };
 | |
| 
 | |
|   // Enum is similar to ModIterator, but uses different terminology.
 | |
|   class Enum {
 | |
|     ModIterator mIter;
 | |
| 
 | |
|     // Enum is movable but not copyable.
 | |
|     Enum(const Enum&) = delete;
 | |
|     void operator=(const Enum&) = delete;
 | |
| 
 | |
|    public:
 | |
|     template <class Map>
 | |
|     explicit Enum(Map& map) : mIter(map.mImpl) {}
 | |
| 
 | |
|     MOZ_IMPLICIT Enum(Enum&& other) : mIter(std::move(other.mIter)) {}
 | |
| 
 | |
|     bool empty() const { return mIter.done(); }
 | |
| 
 | |
|     T& front() const { return mIter.get(); }
 | |
| 
 | |
|     void popFront() { return mIter.next(); }
 | |
| 
 | |
|     void removeFront() { mIter.remove(); }
 | |
| 
 | |
|     NonConstT& mutableFront() { return mIter.getMutable(); }
 | |
| 
 | |
|     void rekeyFront(const Lookup& aLookup, const Key& aKey) {
 | |
|       mIter.rekey(aLookup, aKey);
 | |
|     }
 | |
| 
 | |
|     void rekeyFront(const Key& aKey) { mIter.rekey(aKey); }
 | |
|   };
 | |
| 
 | |
|   // HashTable is movable
 | |
|   HashTable(HashTable&& aRhs) : AllocPolicy(std::move(aRhs)) { moveFrom(aRhs); }
 | |
|   HashTable& operator=(HashTable&& aRhs) {
 | |
|     MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited");
 | |
|     if (mTable) {
 | |
|       destroyTable(*this, mTable, capacity());
 | |
|     }
 | |
|     AllocPolicy::operator=(std::move(aRhs));
 | |
|     moveFrom(aRhs);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   void moveFrom(HashTable& aRhs) {
 | |
|     mGen = aRhs.mGen;
 | |
|     mHashShift = aRhs.mHashShift;
 | |
|     mTable = aRhs.mTable;
 | |
|     mEntryCount = aRhs.mEntryCount;
 | |
|     mRemovedCount = aRhs.mRemovedCount;
 | |
| #ifdef DEBUG
 | |
|     mMutationCount = aRhs.mMutationCount;
 | |
|     mEntered = aRhs.mEntered;
 | |
| #endif
 | |
|     aRhs.mTable = nullptr;
 | |
|     aRhs.clearAndCompact();
 | |
|   }
 | |
| 
 | |
|   // HashTable is not copyable or assignable
 | |
|   HashTable(const HashTable&) = delete;
 | |
|   void operator=(const HashTable&) = delete;
 | |
| 
 | |
|   static const uint32_t CAP_BITS = 30;
 | |
| 
 | |
|  public:
 | |
|   uint64_t mGen : 56;       // entry storage generation number
 | |
|   uint64_t mHashShift : 8;  // multiplicative hash shift
 | |
|   char* mTable;             // entry storage
 | |
|   uint32_t mEntryCount;     // number of entries in mTable
 | |
|   uint32_t mRemovedCount;   // removed entry sentinels in mTable
 | |
| 
 | |
| #ifdef DEBUG
 | |
|   uint64_t mMutationCount;
 | |
|   mutable bool mEntered;
 | |
| #endif
 | |
| 
 | |
|   // The default initial capacity is 32 (enough to hold 16 elements), but it
 | |
|   // can be as low as 4.
 | |
|   static const uint32_t sDefaultLen = 16;
 | |
|   static const uint32_t sMinCapacity = 4;
 | |
|   // See the comments in HashTableEntry about this value.
 | |
|   static_assert(sMinCapacity >= 4, "too-small sMinCapacity breaks assumptions");
 | |
|   static const uint32_t sMaxInit = 1u << (CAP_BITS - 1);
 | |
|   static const uint32_t sMaxCapacity = 1u << CAP_BITS;
 | |
| 
 | |
|   // Hash-table alpha is conceptually a fraction, but to avoid floating-point
 | |
|   // math we implement it as a ratio of integers.
 | |
|   static const uint8_t sAlphaDenominator = 4;
 | |
|   static const uint8_t sMinAlphaNumerator = 1;  // min alpha: 1/4
 | |
|   static const uint8_t sMaxAlphaNumerator = 3;  // max alpha: 3/4
 | |
| 
 | |
|   static const HashNumber sFreeKey = Entry::sFreeKey;
 | |
|   static const HashNumber sRemovedKey = Entry::sRemovedKey;
 | |
|   static const HashNumber sCollisionBit = Entry::sCollisionBit;
 | |
| 
 | |
|   static uint32_t bestCapacity(uint32_t aLen) {
 | |
|     static_assert(
 | |
|         (sMaxInit * sAlphaDenominator) / sAlphaDenominator == sMaxInit,
 | |
|         "multiplication in numerator below could overflow");
 | |
|     static_assert(
 | |
|         sMaxInit * sAlphaDenominator <= UINT32_MAX - sMaxAlphaNumerator,
 | |
|         "numerator calculation below could potentially overflow");
 | |
| 
 | |
|     // Callers should ensure this is true.
 | |
|     MOZ_ASSERT(aLen <= sMaxInit);
 | |
| 
 | |
|     // Compute the smallest capacity allowing |aLen| elements to be
 | |
|     // inserted without rehashing: ceil(aLen / max-alpha).  (Ceiling
 | |
|     // integral division: <http://stackoverflow.com/a/2745086>.)
 | |
|     uint32_t capacity = (aLen * sAlphaDenominator + sMaxAlphaNumerator - 1) /
 | |
|                         sMaxAlphaNumerator;
 | |
|     capacity = (capacity < sMinCapacity) ? sMinCapacity : RoundUpPow2(capacity);
 | |
| 
 | |
|     MOZ_ASSERT(capacity >= aLen);
 | |
|     MOZ_ASSERT(capacity <= sMaxCapacity);
 | |
| 
 | |
|     return capacity;
 | |
|   }
 | |
| 
 | |
|   static uint32_t hashShift(uint32_t aLen) {
 | |
|     // Reject all lengths whose initial computed capacity would exceed
 | |
|     // sMaxCapacity. Round that maximum aLen down to the nearest power of two
 | |
|     // for speedier code.
 | |
|     if (MOZ_UNLIKELY(aLen > sMaxInit)) {
 | |
|       MOZ_CRASH("initial length is too large");
 | |
|     }
 | |
| 
 | |
|     return kHashNumberBits - mozilla::CeilingLog2(bestCapacity(aLen));
 | |
|   }
 | |
| 
 | |
|   static bool isLiveHash(HashNumber aHash) { return Entry::isLiveHash(aHash); }
 | |
| 
 | |
|   static HashNumber prepareHash(HashNumber aInputHash) {
 | |
|     HashNumber keyHash = ScrambleHashCode(aInputHash);
 | |
| 
 | |
|     // Avoid reserved hash codes.
 | |
|     if (!isLiveHash(keyHash)) {
 | |
|       keyHash -= (sRemovedKey + 1);
 | |
|     }
 | |
|     return keyHash & ~sCollisionBit;
 | |
|   }
 | |
| 
 | |
|   enum FailureBehavior { DontReportFailure = false, ReportFailure = true };
 | |
| 
 | |
|   // Fake a struct that we're going to alloc. See the comments in
 | |
|   // HashTableEntry about how the table is laid out, and why it's safe.
 | |
|   struct FakeSlot {
 | |
|     unsigned char c[sizeof(HashNumber) + sizeof(typename Entry::NonConstT)];
 | |
|   };
 | |
| 
 | |
|   static char* createTable(AllocPolicy& aAllocPolicy, uint32_t aCapacity,
 | |
|                            FailureBehavior aReportFailure = ReportFailure) {
 | |
|     FakeSlot* fake =
 | |
|         aReportFailure
 | |
|             ? aAllocPolicy.template pod_malloc<FakeSlot>(aCapacity)
 | |
|             : aAllocPolicy.template maybe_pod_malloc<FakeSlot>(aCapacity);
 | |
| 
 | |
|     MOZ_ASSERT((reinterpret_cast<uintptr_t>(fake) % Entry::kMinimumAlignment) ==
 | |
|                0);
 | |
| 
 | |
|     char* table = reinterpret_cast<char*>(fake);
 | |
|     if (table) {
 | |
|       forEachSlot(table, aCapacity, [&](Slot& slot) {
 | |
|         *slot.mKeyHash = sFreeKey;
 | |
|         new (KnownNotNull, slot.toEntry()) Entry();
 | |
|       });
 | |
|     }
 | |
|     return table;
 | |
|   }
 | |
| 
 | |
|   static void destroyTable(AllocPolicy& aAllocPolicy, char* aOldTable,
 | |
|                            uint32_t aCapacity) {
 | |
|     forEachSlot(aOldTable, aCapacity, [&](const Slot& slot) {
 | |
|       if (slot.isLive()) {
 | |
|         slot.toEntry()->destroyStoredT();
 | |
|       }
 | |
|     });
 | |
|     freeTable(aAllocPolicy, aOldTable, aCapacity);
 | |
|   }
 | |
| 
 | |
|   static void freeTable(AllocPolicy& aAllocPolicy, char* aOldTable,
 | |
|                         uint32_t aCapacity) {
 | |
|     FakeSlot* fake = reinterpret_cast<FakeSlot*>(aOldTable);
 | |
|     aAllocPolicy.free_(fake, aCapacity);
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   HashTable(AllocPolicy aAllocPolicy, uint32_t aLen)
 | |
|       : AllocPolicy(std::move(aAllocPolicy)),
 | |
|         mGen(0),
 | |
|         mHashShift(hashShift(aLen)),
 | |
|         mTable(nullptr),
 | |
|         mEntryCount(0),
 | |
|         mRemovedCount(0)
 | |
| #ifdef DEBUG
 | |
|         ,
 | |
|         mMutationCount(0),
 | |
|         mEntered(false)
 | |
| #endif
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   explicit HashTable(AllocPolicy aAllocPolicy)
 | |
|       : HashTable(aAllocPolicy, sDefaultLen) {}
 | |
| 
 | |
|   ~HashTable() {
 | |
|     if (mTable) {
 | |
|       destroyTable(*this, mTable, capacity());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   HashNumber hash1(HashNumber aHash0) const { return aHash0 >> mHashShift; }
 | |
| 
 | |
|   struct DoubleHash {
 | |
|     HashNumber mHash2;
 | |
|     HashNumber mSizeMask;
 | |
|   };
 | |
| 
 | |
|   DoubleHash hash2(HashNumber aCurKeyHash) const {
 | |
|     uint32_t sizeLog2 = kHashNumberBits - mHashShift;
 | |
|     DoubleHash dh = {((aCurKeyHash << sizeLog2) >> mHashShift) | 1,
 | |
|                      (HashNumber(1) << sizeLog2) - 1};
 | |
|     return dh;
 | |
|   }
 | |
| 
 | |
|   static HashNumber applyDoubleHash(HashNumber aHash1,
 | |
|                                     const DoubleHash& aDoubleHash) {
 | |
|     return WrappingSubtract(aHash1, aDoubleHash.mHash2) & aDoubleHash.mSizeMask;
 | |
|   }
 | |
| 
 | |
|   static MOZ_ALWAYS_INLINE bool match(T& aEntry, const Lookup& aLookup) {
 | |
|     return HashPolicy::match(HashPolicy::getKey(aEntry), aLookup);
 | |
|   }
 | |
| 
 | |
|   enum LookupReason { ForNonAdd, ForAdd };
 | |
| 
 | |
|   Slot slotForIndex(HashNumber aIndex) const {
 | |
|     auto hashes = reinterpret_cast<HashNumber*>(mTable);
 | |
|     auto entries = reinterpret_cast<Entry*>(&hashes[capacity()]);
 | |
|     return Slot(&entries[aIndex], &hashes[aIndex]);
 | |
|   }
 | |
| 
 | |
|   // Warning: in order for readonlyThreadsafeLookup() to be safe this
 | |
|   // function must not modify the table in any way when Reason==ForNonAdd.
 | |
|   template <LookupReason Reason>
 | |
|   MOZ_ALWAYS_INLINE Slot lookup(const Lookup& aLookup,
 | |
|                                 HashNumber aKeyHash) const {
 | |
|     MOZ_ASSERT(isLiveHash(aKeyHash));
 | |
|     MOZ_ASSERT(!(aKeyHash & sCollisionBit));
 | |
|     MOZ_ASSERT(mTable);
 | |
| 
 | |
|     // Compute the primary hash address.
 | |
|     HashNumber h1 = hash1(aKeyHash);
 | |
|     Slot slot = slotForIndex(h1);
 | |
| 
 | |
|     // Miss: return space for a new entry.
 | |
|     if (slot.isFree()) {
 | |
|       return slot;
 | |
|     }
 | |
| 
 | |
|     // Hit: return entry.
 | |
|     if (slot.matchHash(aKeyHash) && match(slot.get(), aLookup)) {
 | |
|       return slot;
 | |
|     }
 | |
| 
 | |
|     // Collision: double hash.
 | |
|     DoubleHash dh = hash2(aKeyHash);
 | |
| 
 | |
|     // Save the first removed entry pointer so we can recycle later.
 | |
|     Maybe<Slot> firstRemoved;
 | |
| 
 | |
|     while (true) {
 | |
|       if (Reason == ForAdd && !firstRemoved) {
 | |
|         if (MOZ_UNLIKELY(slot.isRemoved())) {
 | |
|           firstRemoved.emplace(slot);
 | |
|         } else {
 | |
|           slot.setCollision();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       h1 = applyDoubleHash(h1, dh);
 | |
| 
 | |
|       slot = slotForIndex(h1);
 | |
|       if (slot.isFree()) {
 | |
|         return firstRemoved.refOr(slot);
 | |
|       }
 | |
| 
 | |
|       if (slot.matchHash(aKeyHash) && match(slot.get(), aLookup)) {
 | |
|         return slot;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This is a copy of lookup() hardcoded to the assumptions:
 | |
|   //   1. the lookup is for an add;
 | |
|   //   2. the key, whose |keyHash| has been passed, is not in the table.
 | |
|   Slot findNonLiveSlot(HashNumber aKeyHash) {
 | |
|     MOZ_ASSERT(!(aKeyHash & sCollisionBit));
 | |
|     MOZ_ASSERT(mTable);
 | |
| 
 | |
|     // We assume 'aKeyHash' has already been distributed.
 | |
| 
 | |
|     // Compute the primary hash address.
 | |
|     HashNumber h1 = hash1(aKeyHash);
 | |
|     Slot slot = slotForIndex(h1);
 | |
| 
 | |
|     // Miss: return space for a new entry.
 | |
|     if (!slot.isLive()) {
 | |
|       return slot;
 | |
|     }
 | |
| 
 | |
|     // Collision: double hash.
 | |
|     DoubleHash dh = hash2(aKeyHash);
 | |
| 
 | |
|     while (true) {
 | |
|       slot.setCollision();
 | |
| 
 | |
|       h1 = applyDoubleHash(h1, dh);
 | |
| 
 | |
|       slot = slotForIndex(h1);
 | |
|       if (!slot.isLive()) {
 | |
|         return slot;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   enum RebuildStatus { NotOverloaded, Rehashed, RehashFailed };
 | |
| 
 | |
|   RebuildStatus changeTableSize(
 | |
|       uint32_t newCapacity, FailureBehavior aReportFailure = ReportFailure) {
 | |
|     MOZ_ASSERT(IsPowerOfTwo(newCapacity));
 | |
|     MOZ_ASSERT(!!mTable == !!capacity());
 | |
| 
 | |
|     // Look, but don't touch, until we succeed in getting new entry store.
 | |
|     char* oldTable = mTable;
 | |
|     uint32_t oldCapacity = capacity();
 | |
|     uint32_t newLog2 = mozilla::CeilingLog2(newCapacity);
 | |
| 
 | |
|     if (MOZ_UNLIKELY(newCapacity > sMaxCapacity)) {
 | |
|       if (aReportFailure) {
 | |
|         this->reportAllocOverflow();
 | |
|       }
 | |
|       return RehashFailed;
 | |
|     }
 | |
| 
 | |
|     char* newTable = createTable(*this, newCapacity, aReportFailure);
 | |
|     if (!newTable) {
 | |
|       return RehashFailed;
 | |
|     }
 | |
| 
 | |
|     // We can't fail from here on, so update table parameters.
 | |
|     mHashShift = kHashNumberBits - newLog2;
 | |
|     mRemovedCount = 0;
 | |
|     mGen++;
 | |
|     mTable = newTable;
 | |
| 
 | |
|     // Copy only live entries, leaving removed ones behind.
 | |
|     forEachSlot(oldTable, oldCapacity, [&](Slot& slot) {
 | |
|       if (slot.isLive()) {
 | |
|         HashNumber hn = slot.getKeyHash();
 | |
|         findNonLiveSlot(hn).setLive(
 | |
|             hn, std::move(const_cast<typename Entry::NonConstT&>(slot.get())));
 | |
|       }
 | |
| 
 | |
|       slot.clear();
 | |
|     });
 | |
| 
 | |
|     // All entries have been destroyed, no need to destroyTable.
 | |
|     freeTable(*this, oldTable, oldCapacity);
 | |
|     return Rehashed;
 | |
|   }
 | |
| 
 | |
|   RebuildStatus rehashIfOverloaded(
 | |
|       FailureBehavior aReportFailure = ReportFailure) {
 | |
|     static_assert(sMaxCapacity <= UINT32_MAX / sMaxAlphaNumerator,
 | |
|                   "multiplication below could overflow");
 | |
| 
 | |
|     // Note: if capacity() is zero, this will always succeed, which is
 | |
|     // what we want.
 | |
|     bool overloaded = mEntryCount + mRemovedCount >=
 | |
|                       capacity() * sMaxAlphaNumerator / sAlphaDenominator;
 | |
| 
 | |
|     if (!overloaded) {
 | |
|       return NotOverloaded;
 | |
|     }
 | |
| 
 | |
|     // Succeed if a quarter or more of all entries are removed. Note that this
 | |
|     // always succeeds if capacity() == 0 (i.e. entry storage has not been
 | |
|     // allocated), which is what we want, because it means changeTableSize()
 | |
|     // will allocate the requested capacity rather than doubling it.
 | |
|     bool manyRemoved = mRemovedCount >= (capacity() >> 2);
 | |
|     uint32_t newCapacity = manyRemoved ? rawCapacity() : rawCapacity() * 2;
 | |
|     return changeTableSize(newCapacity, aReportFailure);
 | |
|   }
 | |
| 
 | |
|   void infallibleRehashIfOverloaded() {
 | |
|     if (rehashIfOverloaded(DontReportFailure) == RehashFailed) {
 | |
|       rehashTableInPlace();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void remove(Slot& aSlot) {
 | |
|     MOZ_ASSERT(mTable);
 | |
| 
 | |
|     if (aSlot.hasCollision()) {
 | |
|       aSlot.removeLive();
 | |
|       mRemovedCount++;
 | |
|     } else {
 | |
|       aSlot.clearLive();
 | |
|     }
 | |
|     mEntryCount--;
 | |
| #ifdef DEBUG
 | |
|     mMutationCount++;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   void shrinkIfUnderloaded() {
 | |
|     static_assert(sMaxCapacity <= UINT32_MAX / sMinAlphaNumerator,
 | |
|                   "multiplication below could overflow");
 | |
|     bool underloaded =
 | |
|         capacity() > sMinCapacity &&
 | |
|         mEntryCount <= capacity() * sMinAlphaNumerator / sAlphaDenominator;
 | |
| 
 | |
|     if (underloaded) {
 | |
|       (void)changeTableSize(capacity() / 2, DontReportFailure);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This is identical to changeTableSize(currentSize), but without requiring
 | |
|   // a second table.  We do this by recycling the collision bits to tell us if
 | |
|   // the element is already inserted or still waiting to be inserted.  Since
 | |
|   // already-inserted elements win any conflicts, we get the same table as we
 | |
|   // would have gotten through random insertion order.
 | |
|   void rehashTableInPlace() {
 | |
|     mRemovedCount = 0;
 | |
|     mGen++;
 | |
|     forEachSlot(mTable, capacity(), [&](Slot& slot) { slot.unsetCollision(); });
 | |
|     for (uint32_t i = 0; i < capacity();) {
 | |
|       Slot src = slotForIndex(i);
 | |
| 
 | |
|       if (!src.isLive() || src.hasCollision()) {
 | |
|         ++i;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       HashNumber keyHash = src.getKeyHash();
 | |
|       HashNumber h1 = hash1(keyHash);
 | |
|       DoubleHash dh = hash2(keyHash);
 | |
|       Slot tgt = slotForIndex(h1);
 | |
|       while (true) {
 | |
|         if (!tgt.hasCollision()) {
 | |
|           src.swap(tgt);
 | |
|           tgt.setCollision();
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         h1 = applyDoubleHash(h1, dh);
 | |
|         tgt = slotForIndex(h1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // TODO: this algorithm leaves collision bits on *all* elements, even if
 | |
|     // they are on no collision path. We have the option of setting the
 | |
|     // collision bits correctly on a subsequent pass or skipping the rehash
 | |
|     // unless we are totally filled with tombstones: benchmark to find out
 | |
|     // which approach is best.
 | |
|   }
 | |
| 
 | |
|   // Prefer to use putNewInfallible; this function does not check
 | |
|   // invariants.
 | |
|   template <typename... Args>
 | |
|   void putNewInfallibleInternal(HashNumber aKeyHash, Args&&... aArgs) {
 | |
|     MOZ_ASSERT(mTable);
 | |
| 
 | |
|     Slot slot = findNonLiveSlot(aKeyHash);
 | |
| 
 | |
|     if (slot.isRemoved()) {
 | |
|       mRemovedCount--;
 | |
|       aKeyHash |= sCollisionBit;
 | |
|     }
 | |
| 
 | |
|     slot.setLive(aKeyHash, std::forward<Args>(aArgs)...);
 | |
|     mEntryCount++;
 | |
| #ifdef DEBUG
 | |
|     mMutationCount++;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   void clear() {
 | |
|     forEachSlot(mTable, capacity(), [&](Slot& slot) { slot.clear(); });
 | |
|     mRemovedCount = 0;
 | |
|     mEntryCount = 0;
 | |
| #ifdef DEBUG
 | |
|     mMutationCount++;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // Resize the table down to the smallest capacity that doesn't overload the
 | |
|   // table. Since we call shrinkIfUnderloaded() on every remove, you only need
 | |
|   // to call this after a bulk removal of items done without calling remove().
 | |
|   void compact() {
 | |
|     if (empty()) {
 | |
|       // Free the entry storage.
 | |
|       freeTable(*this, mTable, capacity());
 | |
|       mGen++;
 | |
|       mHashShift = hashShift(0);  // gives minimum capacity on regrowth
 | |
|       mTable = nullptr;
 | |
|       mRemovedCount = 0;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     uint32_t bestCapacity = this->bestCapacity(mEntryCount);
 | |
|     MOZ_ASSERT(bestCapacity <= capacity());
 | |
| 
 | |
|     if (bestCapacity < capacity()) {
 | |
|       (void)changeTableSize(bestCapacity, DontReportFailure);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void clearAndCompact() {
 | |
|     clear();
 | |
|     compact();
 | |
|   }
 | |
| 
 | |
|   [[nodiscard]] bool reserve(uint32_t aLen) {
 | |
|     if (aLen == 0) {
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (MOZ_UNLIKELY(aLen > sMaxInit)) {
 | |
|       this->reportAllocOverflow();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     uint32_t bestCapacity = this->bestCapacity(aLen);
 | |
|     if (bestCapacity <= capacity()) {
 | |
|       return true;  // Capacity is already sufficient.
 | |
|     }
 | |
| 
 | |
|     RebuildStatus status = changeTableSize(bestCapacity, ReportFailure);
 | |
|     MOZ_ASSERT(status != NotOverloaded);
 | |
|     return status != RehashFailed;
 | |
|   }
 | |
| 
 | |
|   Iterator iter() const { return Iterator(*this); }
 | |
| 
 | |
|   ModIterator modIter() { return ModIterator(*this); }
 | |
| 
 | |
|   Range all() const { return Range(*this); }
 | |
| 
 | |
|   bool empty() const { return mEntryCount == 0; }
 | |
| 
 | |
|   uint32_t count() const { return mEntryCount; }
 | |
| 
 | |
|   uint32_t rawCapacity() const { return 1u << (kHashNumberBits - mHashShift); }
 | |
| 
 | |
|   uint32_t capacity() const { return mTable ? rawCapacity() : 0; }
 | |
| 
 | |
|   Generation generation() const { return Generation(mGen); }
 | |
| 
 | |
|   size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
 | |
|     return aMallocSizeOf(mTable);
 | |
|   }
 | |
| 
 | |
|   size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
 | |
|     return aMallocSizeOf(this) + shallowSizeOfExcludingThis(aMallocSizeOf);
 | |
|   }
 | |
| 
 | |
|   MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
 | |
|     if (empty()) {
 | |
|       return Ptr();
 | |
|     }
 | |
| 
 | |
|     HashNumber inputHash;
 | |
|     if (!MaybeGetHash<HashPolicy>(aLookup, &inputHash)) {
 | |
|       return Ptr();
 | |
|     }
 | |
| 
 | |
|     HashNumber keyHash = prepareHash(inputHash);
 | |
|     return Ptr(lookup<ForNonAdd>(aLookup, keyHash), *this);
 | |
|   }
 | |
| 
 | |
|   MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
 | |
|     ReentrancyGuard g(*this);
 | |
|     return readonlyThreadsafeLookup(aLookup);
 | |
|   }
 | |
| 
 | |
|   MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
 | |
|     ReentrancyGuard g(*this);
 | |
| 
 | |
|     HashNumber inputHash;
 | |
|     if (!EnsureHash<HashPolicy>(aLookup, &inputHash)) {
 | |
|       return AddPtr();
 | |
|     }
 | |
| 
 | |
|     HashNumber keyHash = prepareHash(inputHash);
 | |
| 
 | |
|     if (!mTable) {
 | |
|       return AddPtr(*this, keyHash);
 | |
|     }
 | |
| 
 | |
|     // Directly call the constructor in the return statement to avoid
 | |
|     // excess copying when building with Visual Studio 2017.
 | |
|     // See bug 1385181.
 | |
|     return AddPtr(lookup<ForAdd>(aLookup, keyHash), *this, keyHash);
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   [[nodiscard]] bool add(AddPtr& aPtr, Args&&... aArgs) {
 | |
|     ReentrancyGuard g(*this);
 | |
|     MOZ_ASSERT_IF(aPtr.isValid(), mTable);
 | |
|     MOZ_ASSERT_IF(aPtr.isValid(), aPtr.mTable == this);
 | |
|     MOZ_ASSERT(!aPtr.found());
 | |
|     MOZ_ASSERT(!(aPtr.mKeyHash & sCollisionBit));
 | |
| 
 | |
|     // Check for error from ensureHash() here.
 | |
|     if (!aPtr.isLive()) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     MOZ_ASSERT(aPtr.mGeneration == generation());
 | |
| #ifdef DEBUG
 | |
|     MOZ_ASSERT(aPtr.mMutationCount == mMutationCount);
 | |
| #endif
 | |
| 
 | |
|     if (!aPtr.isValid()) {
 | |
|       MOZ_ASSERT(!mTable && mEntryCount == 0);
 | |
|       uint32_t newCapacity = rawCapacity();
 | |
|       RebuildStatus status = changeTableSize(newCapacity, ReportFailure);
 | |
|       MOZ_ASSERT(status != NotOverloaded);
 | |
|       if (status == RehashFailed) {
 | |
|         return false;
 | |
|       }
 | |
|       aPtr.mSlot = findNonLiveSlot(aPtr.mKeyHash);
 | |
| 
 | |
|     } else if (aPtr.mSlot.isRemoved()) {
 | |
|       // Changing an entry from removed to live does not affect whether we are
 | |
|       // overloaded and can be handled separately.
 | |
|       if (!this->checkSimulatedOOM()) {
 | |
|         return false;
 | |
|       }
 | |
|       mRemovedCount--;
 | |
|       aPtr.mKeyHash |= sCollisionBit;
 | |
| 
 | |
|     } else {
 | |
|       // Preserve the validity of |aPtr.mSlot|.
 | |
|       RebuildStatus status = rehashIfOverloaded();
 | |
|       if (status == RehashFailed) {
 | |
|         return false;
 | |
|       }
 | |
|       if (status == NotOverloaded && !this->checkSimulatedOOM()) {
 | |
|         return false;
 | |
|       }
 | |
|       if (status == Rehashed) {
 | |
|         aPtr.mSlot = findNonLiveSlot(aPtr.mKeyHash);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     aPtr.mSlot.setLive(aPtr.mKeyHash, std::forward<Args>(aArgs)...);
 | |
|     mEntryCount++;
 | |
| #ifdef DEBUG
 | |
|     mMutationCount++;
 | |
|     aPtr.mGeneration = generation();
 | |
|     aPtr.mMutationCount = mMutationCount;
 | |
| #endif
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Note: |aLookup| may reference pieces of arguments in |aArgs|, so this
 | |
|   // function must take care not to use |aLookup| after moving |aArgs|.
 | |
|   template <typename... Args>
 | |
|   void putNewInfallible(const Lookup& aLookup, Args&&... aArgs) {
 | |
|     MOZ_ASSERT(!lookup(aLookup).found());
 | |
|     ReentrancyGuard g(*this);
 | |
|     HashNumber keyHash = prepareHash(HashPolicy::hash(aLookup));
 | |
|     putNewInfallibleInternal(keyHash, std::forward<Args>(aArgs)...);
 | |
|   }
 | |
| 
 | |
|   // Note: |aLookup| may alias arguments in |aArgs|, so this function must take
 | |
|   // care not to use |aLookup| after moving |aArgs|.
 | |
|   template <typename... Args>
 | |
|   [[nodiscard]] bool putNew(const Lookup& aLookup, Args&&... aArgs) {
 | |
|     MOZ_ASSERT(!lookup(aLookup).found());
 | |
|     ReentrancyGuard g(*this);
 | |
|     if (!this->checkSimulatedOOM()) {
 | |
|       return false;
 | |
|     }
 | |
|     HashNumber inputHash;
 | |
|     if (!EnsureHash<HashPolicy>(aLookup, &inputHash)) {
 | |
|       return false;
 | |
|     }
 | |
|     HashNumber keyHash = prepareHash(inputHash);
 | |
|     if (rehashIfOverloaded() == RehashFailed) {
 | |
|       return false;
 | |
|     }
 | |
|     putNewInfallibleInternal(keyHash, std::forward<Args>(aArgs)...);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Note: |aLookup| may be a reference pieces of arguments in |aArgs|, so this
 | |
|   // function must take care not to use |aLookup| after moving |aArgs|.
 | |
|   template <typename... Args>
 | |
|   [[nodiscard]] bool relookupOrAdd(AddPtr& aPtr, const Lookup& aLookup,
 | |
|                                    Args&&... aArgs) {
 | |
|     // Check for error from ensureHash() here.
 | |
|     if (!aPtr.isLive()) {
 | |
|       return false;
 | |
|     }
 | |
| #ifdef DEBUG
 | |
|     aPtr.mGeneration = generation();
 | |
|     aPtr.mMutationCount = mMutationCount;
 | |
| #endif
 | |
|     if (mTable) {
 | |
|       ReentrancyGuard g(*this);
 | |
|       // Check that aLookup has not been destroyed.
 | |
|       MOZ_ASSERT(prepareHash(HashPolicy::hash(aLookup)) == aPtr.mKeyHash);
 | |
|       aPtr.mSlot = lookup<ForAdd>(aLookup, aPtr.mKeyHash);
 | |
|       if (aPtr.found()) {
 | |
|         return true;
 | |
|       }
 | |
|     } else {
 | |
|       // Clear aPtr so it's invalid; add() will allocate storage and redo the
 | |
|       // lookup.
 | |
|       aPtr.mSlot = Slot(nullptr, nullptr);
 | |
|     }
 | |
|     return add(aPtr, std::forward<Args>(aArgs)...);
 | |
|   }
 | |
| 
 | |
|   void remove(Ptr aPtr) {
 | |
|     MOZ_ASSERT(mTable);
 | |
|     ReentrancyGuard g(*this);
 | |
|     MOZ_ASSERT(aPtr.found());
 | |
|     MOZ_ASSERT(aPtr.mGeneration == generation());
 | |
|     remove(aPtr.mSlot);
 | |
|     shrinkIfUnderloaded();
 | |
|   }
 | |
| 
 | |
|   void rekeyWithoutRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey) {
 | |
|     MOZ_ASSERT(mTable);
 | |
|     ReentrancyGuard g(*this);
 | |
|     MOZ_ASSERT(aPtr.found());
 | |
|     MOZ_ASSERT(aPtr.mGeneration == generation());
 | |
|     typename HashTableEntry<T>::NonConstT t(std::move(*aPtr));
 | |
|     HashPolicy::setKey(t, const_cast<Key&>(aKey));
 | |
|     remove(aPtr.mSlot);
 | |
|     HashNumber keyHash = prepareHash(HashPolicy::hash(aLookup));
 | |
|     putNewInfallibleInternal(keyHash, std::move(t));
 | |
|   }
 | |
| 
 | |
|   void rekeyAndMaybeRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey) {
 | |
|     rekeyWithoutRehash(aPtr, aLookup, aKey);
 | |
|     infallibleRehashIfOverloaded();
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace detail
 | |
| }  // namespace mozilla
 | |
| 
 | |
| #endif /* mozilla_HashTable_h */
 | 
