forked from mirrors/gecko-dev
		
	 bc62941a4a
			
		
	
	
		bc62941a4a
		
	
	
	
	
		
			
			- Prior to this change, we allowed any timer *except* the first to fire early. Being woken up slightly before our first timer is due was resulting in a lot of "wasted" wake-ups (where we wake up and do nothing other than go back to sleep). - This change results in waking up TimerThread 10% less frequently in my test case of watching a YouTube video. - Made the allowed early firing tolerance be a constant value rather than calculated at run-time. - Also cleaned up some includes. Differential Revision: https://phabricator.services.mozilla.com/D184017
		
			
				
	
	
		
			1474 lines
		
	
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1474 lines
		
	
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| #include "nsTimerImpl.h"
 | |
| #include "TimerThread.h"
 | |
| 
 | |
| #include "GeckoProfiler.h"
 | |
| #include "nsThreadUtils.h"
 | |
| 
 | |
| #include "nsIObserverService.h"
 | |
| #include "mozilla/Services.h"
 | |
| #include "mozilla/ChaosMode.h"
 | |
| #include "mozilla/ArenaAllocator.h"
 | |
| #include "mozilla/ArrayUtils.h"
 | |
| #include "mozilla/OperatorNewExtensions.h"
 | |
| #include "mozilla/StaticPrefs_timer.h"
 | |
| 
 | |
| #include "mozilla/glean/GleanMetrics.h"
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| using namespace mozilla;
 | |
| 
 | |
| // Uncomment the following line to enable runtime stats during development.
 | |
| // #define TIMERS_RUNTIME_STATS
 | |
| 
 | |
| #ifdef TIMERS_RUNTIME_STATS
 | |
| // This class gathers durations and displays some basic stats when destroyed.
 | |
| // It is intended to be used as a static variable (see `AUTO_TIMERS_STATS`
 | |
| // below), to display stats at the end of the program.
 | |
| class StaticTimersStats {
 | |
|  public:
 | |
|   explicit StaticTimersStats(const char* aName) : mName(aName) {}
 | |
| 
 | |
|   ~StaticTimersStats() {
 | |
|     // Using unsigned long long for computations and printfs.
 | |
|     using ULL = unsigned long long;
 | |
|     ULL n = static_cast<ULL>(mCount);
 | |
|     if (n == 0) {
 | |
|       printf("[%d] Timers stats `%s`: (nothing)\n",
 | |
|              int(profiler_current_process_id().ToNumber()), mName);
 | |
|     } else if (ULL sumNs = static_cast<ULL>(mSumDurationsNs); sumNs == 0) {
 | |
|       printf("[%d] Timers stats `%s`: %llu\n",
 | |
|              int(profiler_current_process_id().ToNumber()), mName, n);
 | |
|     } else {
 | |
|       printf("[%d] Timers stats `%s`: %llu ns / %llu = %llu ns, max %llu ns\n",
 | |
|              int(profiler_current_process_id().ToNumber()), mName, sumNs, n,
 | |
|              sumNs / n, static_cast<ULL>(mLongestDurationNs));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void AddDurationFrom(TimeStamp aStart) {
 | |
|     // Duration between aStart and now, rounded to the nearest nanosecond.
 | |
|     DurationNs duration = static_cast<DurationNs>(
 | |
|         (TimeStamp::Now() - aStart).ToMicroseconds() * 1000 + 0.5);
 | |
|     mSumDurationsNs += duration;
 | |
|     ++mCount;
 | |
|     // Update mLongestDurationNs if this one is longer.
 | |
|     for (;;) {
 | |
|       DurationNs longest = mLongestDurationNs;
 | |
|       if (MOZ_LIKELY(longest >= duration)) {
 | |
|         // This duration is not the longest, nothing to do.
 | |
|         break;
 | |
|       }
 | |
|       if (MOZ_LIKELY(mLongestDurationNs.compareExchange(longest, duration))) {
 | |
|         // Successfully updated `mLongestDurationNs` with the new value.
 | |
|         break;
 | |
|       }
 | |
|       // Otherwise someone else just updated `mLongestDurationNs`, we need to
 | |
|       // try again by looping.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void AddCount() {
 | |
|     MOZ_ASSERT(mSumDurationsNs == 0, "Don't mix counts and durations");
 | |
|     ++mCount;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   using DurationNs = uint64_t;
 | |
|   using Count = uint32_t;
 | |
| 
 | |
|   Atomic<DurationNs> mSumDurationsNs{0};
 | |
|   Atomic<DurationNs> mLongestDurationNs{0};
 | |
|   Atomic<Count> mCount{0};
 | |
|   const char* mName;
 | |
| };
 | |
| 
 | |
| // RAII object that measures its scoped lifetime duration and reports it to a
 | |
| // `StaticTimersStats`.
 | |
| class MOZ_RAII AutoTimersStats {
 | |
|  public:
 | |
|   explicit AutoTimersStats(StaticTimersStats& aStats)
 | |
|       : mStats(aStats), mStart(TimeStamp::Now()) {}
 | |
| 
 | |
|   ~AutoTimersStats() { mStats.AddDurationFrom(mStart); }
 | |
| 
 | |
|  private:
 | |
|   StaticTimersStats& mStats;
 | |
|   TimeStamp mStart;
 | |
| };
 | |
| 
 | |
| // Macro that should be used to collect basic statistics from measurements of
 | |
| // block durations, from where this macro is, until the end of its enclosing
 | |
| // scope. The name is used in the static variable name and when displaying stats
 | |
| // at the end of the program; Another location could use the same name but their
 | |
| // stats will not be combined, so use different name if these locations should
 | |
| // be distinguished.
 | |
| #  define AUTO_TIMERS_STATS(name)                  \
 | |
|     static ::StaticTimersStats sStat##name(#name); \
 | |
|     ::AutoTimersStats autoStat##name(sStat##name);
 | |
| 
 | |
| // This macro only counts the number of times it's used, not durations.
 | |
| // Don't mix with AUTO_TIMERS_STATS!
 | |
| #  define COUNT_TIMERS_STATS(name)                 \
 | |
|     static ::StaticTimersStats sStat##name(#name); \
 | |
|     sStat##name.AddCount();
 | |
| 
 | |
| #else  // TIMERS_RUNTIME_STATS
 | |
| 
 | |
| #  define AUTO_TIMERS_STATS(name)
 | |
| #  define COUNT_TIMERS_STATS(name)
 | |
| 
 | |
| #endif  // TIMERS_RUNTIME_STATS else
 | |
| 
 | |
| NS_IMPL_ISUPPORTS_INHERITED(TimerThread, Runnable, nsIObserver)
 | |
| 
 | |
| TimerThread::TimerThread()
 | |
|     : Runnable("TimerThread"),
 | |
|       mInitialized(false),
 | |
|       mMonitor("TimerThread.mMonitor"),
 | |
|       mShutdown(false),
 | |
|       mWaiting(false),
 | |
|       mNotified(false),
 | |
|       mSleeping(false),
 | |
|       mAllowedEarlyFiringMicroseconds(0) {}
 | |
| 
 | |
| TimerThread::~TimerThread() {
 | |
|   mThread = nullptr;
 | |
| 
 | |
|   NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
 | |
| 
 | |
| #if TIMER_THREAD_STATISTICS
 | |
|   {
 | |
|     MonitorAutoLock lock(mMonitor);
 | |
|     PrintStatistics();
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class TimerObserverRunnable : public Runnable {
 | |
|  public:
 | |
|   explicit TimerObserverRunnable(nsIObserver* aObserver)
 | |
|       : mozilla::Runnable("TimerObserverRunnable"), mObserver(aObserver) {}
 | |
| 
 | |
|   NS_DECL_NSIRUNNABLE
 | |
| 
 | |
|  private:
 | |
|   nsCOMPtr<nsIObserver> mObserver;
 | |
| };
 | |
| 
 | |
| NS_IMETHODIMP
 | |
| TimerObserverRunnable::Run() {
 | |
|   nsCOMPtr<nsIObserverService> observerService =
 | |
|       mozilla::services::GetObserverService();
 | |
|   if (observerService) {
 | |
|     observerService->AddObserver(mObserver, "sleep_notification", false);
 | |
|     observerService->AddObserver(mObserver, "wake_notification", false);
 | |
|     observerService->AddObserver(mObserver, "suspend_process_notification",
 | |
|                                  false);
 | |
|     observerService->AddObserver(mObserver, "resume_process_notification",
 | |
|                                  false);
 | |
|   }
 | |
|   return NS_OK;
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
 | |
| // It's needed to avoid contention over the default allocator lock when
 | |
| // firing timer events (see bug 733277).  The thread-safety is required because
 | |
| // nsTimerEvent objects are allocated on the timer thread, and freed on another
 | |
| // thread.  Because TimerEventAllocator has its own lock, contention over that
 | |
| // lock is limited to the allocation and deallocation of nsTimerEvent objects.
 | |
| //
 | |
| // Because this is layered over ArenaAllocator, it never shrinks -- even
 | |
| // "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
 | |
| // for later recycling.  So the amount of memory consumed will always be equal
 | |
| // to the high-water mark consumption.  But nsTimerEvents are small and it's
 | |
| // unusual to have more than a few hundred of them, so this shouldn't be a
 | |
| // problem in practice.
 | |
| 
 | |
| class TimerEventAllocator {
 | |
|  private:
 | |
|   struct FreeEntry {
 | |
|     FreeEntry* mNext;
 | |
|   };
 | |
| 
 | |
|   ArenaAllocator<4096> mPool MOZ_GUARDED_BY(mMonitor);
 | |
|   FreeEntry* mFirstFree MOZ_GUARDED_BY(mMonitor);
 | |
|   mozilla::Monitor mMonitor;
 | |
| 
 | |
|  public:
 | |
|   TimerEventAllocator()
 | |
|       : mPool(), mFirstFree(nullptr), mMonitor("TimerEventAllocator") {}
 | |
| 
 | |
|   ~TimerEventAllocator() = default;
 | |
| 
 | |
|   void* Alloc(size_t aSize);
 | |
|   void Free(void* aPtr);
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| // This is a nsICancelableRunnable because we can dispatch it to Workers and
 | |
| // those can be shut down at any time, and in these cases, Cancel() is called
 | |
| // instead of Run().
 | |
| class nsTimerEvent final : public CancelableRunnable {
 | |
|  public:
 | |
|   NS_IMETHOD Run() override;
 | |
| 
 | |
|   nsresult Cancel() override {
 | |
|     mTimer->Cancel();
 | |
|     return NS_OK;
 | |
|   }
 | |
| 
 | |
| #ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
 | |
|   NS_IMETHOD GetName(nsACString& aName) override;
 | |
| #endif
 | |
| 
 | |
|   explicit nsTimerEvent(already_AddRefed<nsTimerImpl> aTimer,
 | |
|                         ProfilerThreadId aTimerThreadId)
 | |
|       : mozilla::CancelableRunnable("nsTimerEvent"),
 | |
|         mTimer(aTimer),
 | |
|         mGeneration(mTimer->GetGeneration()),
 | |
|         mTimerThreadId(aTimerThreadId) {
 | |
|     // Note: We override operator new for this class, and the override is
 | |
|     // fallible!
 | |
|     sAllocatorUsers++;
 | |
| 
 | |
|     if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug) ||
 | |
|         profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) {
 | |
|       mInitTime = TimeStamp::Now();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static void Init();
 | |
|   static void Shutdown();
 | |
|   static void DeleteAllocatorIfNeeded();
 | |
| 
 | |
|   static void* operator new(size_t aSize) noexcept(true) {
 | |
|     return sAllocator->Alloc(aSize);
 | |
|   }
 | |
|   void operator delete(void* aPtr) {
 | |
|     sAllocator->Free(aPtr);
 | |
|     sAllocatorUsers--;
 | |
|     DeleteAllocatorIfNeeded();
 | |
|   }
 | |
| 
 | |
|   already_AddRefed<nsTimerImpl> ForgetTimer() { return mTimer.forget(); }
 | |
| 
 | |
|  private:
 | |
|   nsTimerEvent(const nsTimerEvent&) = delete;
 | |
|   nsTimerEvent& operator=(const nsTimerEvent&) = delete;
 | |
|   nsTimerEvent& operator=(const nsTimerEvent&&) = delete;
 | |
| 
 | |
|   ~nsTimerEvent() {
 | |
|     MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0,
 | |
|                "This will result in us attempting to deallocate the "
 | |
|                "nsTimerEvent allocator twice");
 | |
|   }
 | |
| 
 | |
|   TimeStamp mInitTime;
 | |
|   RefPtr<nsTimerImpl> mTimer;
 | |
|   const int32_t mGeneration;
 | |
|   ProfilerThreadId mTimerThreadId;
 | |
| 
 | |
|   static TimerEventAllocator* sAllocator;
 | |
| 
 | |
|   static Atomic<int32_t, SequentiallyConsistent> sAllocatorUsers;
 | |
|   static Atomic<bool, SequentiallyConsistent> sCanDeleteAllocator;
 | |
| };
 | |
| 
 | |
| TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
 | |
| Atomic<int32_t, SequentiallyConsistent> nsTimerEvent::sAllocatorUsers;
 | |
| Atomic<bool, SequentiallyConsistent> nsTimerEvent::sCanDeleteAllocator;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| void* TimerEventAllocator::Alloc(size_t aSize) {
 | |
|   MOZ_ASSERT(aSize == sizeof(nsTimerEvent));
 | |
| 
 | |
|   mozilla::MonitorAutoLock lock(mMonitor);
 | |
| 
 | |
|   void* p;
 | |
|   if (mFirstFree) {
 | |
|     p = mFirstFree;
 | |
|     mFirstFree = mFirstFree->mNext;
 | |
|   } else {
 | |
|     p = mPool.Allocate(aSize, fallible);
 | |
|   }
 | |
| 
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| void TimerEventAllocator::Free(void* aPtr) {
 | |
|   mozilla::MonitorAutoLock lock(mMonitor);
 | |
| 
 | |
|   FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);
 | |
| 
 | |
|   entry->mNext = mFirstFree;
 | |
|   mFirstFree = entry;
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| struct TimerMarker {
 | |
|   static constexpr Span<const char> MarkerTypeName() {
 | |
|     return MakeStringSpan("Timer");
 | |
|   }
 | |
|   static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
 | |
|                                    uint32_t aDelay, uint8_t aType,
 | |
|                                    MarkerThreadId aThreadId, bool aCanceled) {
 | |
|     aWriter.IntProperty("delay", aDelay);
 | |
|     if (!aThreadId.IsUnspecified()) {
 | |
|       // Tech note: If `ToNumber()` returns a uint64_t, the conversion to
 | |
|       // int64_t is "implementation-defined" before C++20. This is
 | |
|       // acceptable here, because this is a one-way conversion to a unique
 | |
|       // identifier that's used to visually separate data by thread on the
 | |
|       // front-end.
 | |
|       aWriter.IntProperty(
 | |
|           "threadId", static_cast<int64_t>(aThreadId.ThreadId().ToNumber()));
 | |
|     }
 | |
|     if (aCanceled) {
 | |
|       aWriter.BoolProperty("canceled", true);
 | |
|       // Show a red 'X' as a prefix on the marker chart for canceled timers.
 | |
|       aWriter.StringProperty("prefix", "❌");
 | |
|     }
 | |
| 
 | |
|     // The string property for the timer type is not written when the type is
 | |
|     // one shot, as that's the type used almost all the time, and that would
 | |
|     // consume space in the profiler buffer and then in the profile JSON,
 | |
|     // getting in the way of capturing long power profiles.
 | |
|     // Bug 1815677 might make this cheap to capture.
 | |
|     if (aType != nsITimer::TYPE_ONE_SHOT) {
 | |
|       if (aType == nsITimer::TYPE_REPEATING_SLACK) {
 | |
|         aWriter.StringProperty("ttype", "repeating slack");
 | |
|       } else if (aType == nsITimer::TYPE_REPEATING_PRECISE) {
 | |
|         aWriter.StringProperty("ttype", "repeating precise");
 | |
|       } else if (aType == nsITimer::TYPE_REPEATING_PRECISE_CAN_SKIP) {
 | |
|         aWriter.StringProperty("ttype", "repeating precise can skip");
 | |
|       } else if (aType == nsITimer::TYPE_REPEATING_SLACK_LOW_PRIORITY) {
 | |
|         aWriter.StringProperty("ttype", "repeating slack low priority");
 | |
|       } else if (aType == nsITimer::TYPE_ONE_SHOT_LOW_PRIORITY) {
 | |
|         aWriter.StringProperty("ttype", "low priority");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   static MarkerSchema MarkerTypeDisplay() {
 | |
|     using MS = MarkerSchema;
 | |
|     MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
 | |
|     schema.AddKeyLabelFormat("delay", "Delay", MS::Format::Milliseconds);
 | |
|     schema.AddKeyLabelFormat("ttype", "Timer Type", MS::Format::String);
 | |
|     schema.AddKeyLabelFormat("canceled", "Canceled", MS::Format::String);
 | |
|     schema.SetChartLabel("{marker.data.prefix} {marker.data.delay}");
 | |
|     schema.SetTableLabel(
 | |
|         "{marker.name} - {marker.data.prefix} {marker.data.delay}");
 | |
|     return schema;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct AddRemoveTimerMarker {
 | |
|   static constexpr Span<const char> MarkerTypeName() {
 | |
|     return MakeStringSpan("AddRemoveTimer");
 | |
|   }
 | |
|   static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
 | |
|                                    const ProfilerString8View& aTimerName,
 | |
|                                    uint32_t aDelay, MarkerThreadId aThreadId) {
 | |
|     aWriter.StringProperty("name", aTimerName);
 | |
|     aWriter.IntProperty("delay", aDelay);
 | |
|     if (!aThreadId.IsUnspecified()) {
 | |
|       // Tech note: If `ToNumber()` returns a uint64_t, the conversion to
 | |
|       // int64_t is "implementation-defined" before C++20. This is
 | |
|       // acceptable here, because this is a one-way conversion to a unique
 | |
|       // identifier that's used to visually separate data by thread on the
 | |
|       // front-end.
 | |
|       aWriter.IntProperty(
 | |
|           "threadId", static_cast<int64_t>(aThreadId.ThreadId().ToNumber()));
 | |
|     }
 | |
|   }
 | |
|   static MarkerSchema MarkerTypeDisplay() {
 | |
|     using MS = MarkerSchema;
 | |
|     MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
 | |
|     schema.AddKeyLabelFormatSearchable("name", "Name", MS::Format::String,
 | |
|                                        MS::Searchable::Searchable);
 | |
|     schema.AddKeyLabelFormat("delay", "Delay", MS::Format::Milliseconds);
 | |
|     schema.SetTableLabel(
 | |
|         "{marker.name} - {marker.data.name} - {marker.data.delay}");
 | |
|     return schema;
 | |
|   }
 | |
| };
 | |
| 
 | |
| void nsTimerEvent::Init() { sAllocator = new TimerEventAllocator(); }
 | |
| 
 | |
| void nsTimerEvent::Shutdown() {
 | |
|   sCanDeleteAllocator = true;
 | |
|   DeleteAllocatorIfNeeded();
 | |
| }
 | |
| 
 | |
| void nsTimerEvent::DeleteAllocatorIfNeeded() {
 | |
|   if (sCanDeleteAllocator && sAllocatorUsers == 0) {
 | |
|     delete sAllocator;
 | |
|     sAllocator = nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
 | |
| NS_IMETHODIMP
 | |
| nsTimerEvent::GetName(nsACString& aName) {
 | |
|   bool current;
 | |
|   MOZ_RELEASE_ASSERT(
 | |
|       NS_SUCCEEDED(mTimer->mEventTarget->IsOnCurrentThread(¤t)) &&
 | |
|       current);
 | |
| 
 | |
|   mTimer->GetName(aName);
 | |
|   return NS_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| NS_IMETHODIMP
 | |
| nsTimerEvent::Run() {
 | |
|   if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
 | |
|     TimeStamp now = TimeStamp::Now();
 | |
|     MOZ_LOG(GetTimerLog(), LogLevel::Debug,
 | |
|             ("[this=%p] time between PostTimerEvent() and Fire(): %fms\n", this,
 | |
|              (now - mInitTime).ToMilliseconds()));
 | |
|   }
 | |
| 
 | |
|   if (profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) {
 | |
|     MutexAutoLock lock(mTimer->mMutex);
 | |
|     nsAutoCString name;
 | |
|     mTimer->GetName(name, lock);
 | |
|     // This adds a marker with the timer name as the marker name, to make it
 | |
|     // obvious which timers are being used. This marker will be useful to
 | |
|     // understand which timers might be added and firing excessively often.
 | |
|     profiler_add_marker(
 | |
|         name, geckoprofiler::category::TIMER,
 | |
|         MarkerOptions(MOZ_LIKELY(mInitTime)
 | |
|                           ? MarkerTiming::Interval(
 | |
|                                 mTimer->mTimeout - mTimer->mDelay, mInitTime)
 | |
|                           : MarkerTiming::IntervalUntilNowFrom(
 | |
|                                 mTimer->mTimeout - mTimer->mDelay),
 | |
|                       MarkerThreadId(mTimerThreadId)),
 | |
|         TimerMarker{}, mTimer->mDelay.ToMilliseconds(), mTimer->mType,
 | |
|         MarkerThreadId::CurrentThread(), false);
 | |
|     // This marker is meant to help understand the behavior of the timer thread.
 | |
|     profiler_add_marker(
 | |
|         "PostTimerEvent", geckoprofiler::category::OTHER,
 | |
|         MarkerOptions(MOZ_LIKELY(mInitTime)
 | |
|                           ? MarkerTiming::IntervalUntilNowFrom(mInitTime)
 | |
|                           : MarkerTiming::InstantNow(),
 | |
|                       MarkerThreadId(mTimerThreadId)),
 | |
|         AddRemoveTimerMarker{}, name, mTimer->mDelay.ToMilliseconds(),
 | |
|         MarkerThreadId::CurrentThread());
 | |
|   }
 | |
| 
 | |
|   mTimer->Fire(mGeneration);
 | |
| 
 | |
|   return NS_OK;
 | |
| }
 | |
| 
 | |
| nsresult TimerThread::Init() {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
|   MOZ_LOG(GetTimerLog(), LogLevel::Debug,
 | |
|           ("TimerThread::Init [%d]\n", mInitialized));
 | |
| 
 | |
|   if (!mInitialized) {
 | |
|     nsTimerEvent::Init();
 | |
| 
 | |
|     // We hold on to mThread to keep the thread alive.
 | |
|     nsresult rv =
 | |
|         NS_NewNamedThread("Timer", getter_AddRefs(mThread), this,
 | |
|                           {.stackSize = nsIThreadManager::DEFAULT_STACK_SIZE,
 | |
|                            .blockDispatch = true});
 | |
|     if (NS_FAILED(rv)) {
 | |
|       mThread = nullptr;
 | |
|     } else {
 | |
|       RefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
 | |
|       if (NS_IsMainThread()) {
 | |
|         r->Run();
 | |
|       } else {
 | |
|         NS_DispatchToMainThread(r);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     mInitialized = true;
 | |
|   }
 | |
| 
 | |
|   if (!mThread) {
 | |
|     return NS_ERROR_FAILURE;
 | |
|   }
 | |
| 
 | |
|   return NS_OK;
 | |
| }
 | |
| 
 | |
| nsresult TimerThread::Shutdown() {
 | |
|   MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n"));
 | |
| 
 | |
|   if (!mThread) {
 | |
|     return NS_ERROR_NOT_INITIALIZED;
 | |
|   }
 | |
| 
 | |
|   nsTArray<RefPtr<nsTimerImpl>> timers;
 | |
|   {
 | |
|     // lock scope
 | |
|     MonitorAutoLock lock(mMonitor);
 | |
| 
 | |
|     mShutdown = true;
 | |
| 
 | |
|     // notify the cond var so that Run() can return
 | |
|     if (mWaiting) {
 | |
|       mNotified = true;
 | |
|       mMonitor.Notify();
 | |
|     }
 | |
| 
 | |
|     // Need to copy content of mTimers array to a local array
 | |
|     // because call to timers' Cancel() (and release its self)
 | |
|     // must not be done under the lock. Destructor of a callback
 | |
|     // might potentially call some code reentering the same lock
 | |
|     // that leads to unexpected behavior or deadlock.
 | |
|     // See bug 422472.
 | |
|     timers.SetCapacity(mTimers.Length());
 | |
|     for (Entry& entry : mTimers) {
 | |
|       if (entry.Value()) {
 | |
|         timers.AppendElement(entry.Take());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     mTimers.Clear();
 | |
|   }
 | |
| 
 | |
|   for (const RefPtr<nsTimerImpl>& timer : timers) {
 | |
|     MOZ_ASSERT(timer);
 | |
|     timer->Cancel();
 | |
|   }
 | |
| 
 | |
|   mThread->Shutdown();  // wait for the thread to die
 | |
| 
 | |
|   nsTimerEvent::Shutdown();
 | |
| 
 | |
|   MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n"));
 | |
|   return NS_OK;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct MicrosecondsToInterval {
 | |
|   PRIntervalTime operator[](size_t aMs) const {
 | |
|     return PR_MicrosecondsToInterval(aMs);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct IntervalComparator {
 | |
|   int operator()(PRIntervalTime aInterval) const {
 | |
|     return (0 < aInterval) ? -1 : 1;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| #ifdef DEBUG
 | |
| void TimerThread::VerifyTimerListConsistency() const {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
| 
 | |
|   // Find the first non-canceled timer (and check its cached timeout if we find
 | |
|   // it).
 | |
|   const size_t timerCount = mTimers.Length();
 | |
|   size_t lastNonCanceledTimerIndex = 0;
 | |
|   while (lastNonCanceledTimerIndex < timerCount &&
 | |
|          !mTimers[lastNonCanceledTimerIndex].Value()) {
 | |
|     ++lastNonCanceledTimerIndex;
 | |
|   }
 | |
|   MOZ_ASSERT(lastNonCanceledTimerIndex == timerCount ||
 | |
|              mTimers[lastNonCanceledTimerIndex].Value());
 | |
|   MOZ_ASSERT(lastNonCanceledTimerIndex == timerCount ||
 | |
|              mTimers[lastNonCanceledTimerIndex].Value()->mTimeout ==
 | |
|                  mTimers[lastNonCanceledTimerIndex].Timeout());
 | |
| 
 | |
|   // Verify that mTimers is sorted and the cached timeouts are consistent.
 | |
|   for (size_t timerIndex = lastNonCanceledTimerIndex + 1;
 | |
|        timerIndex < timerCount; ++timerIndex) {
 | |
|     if (mTimers[timerIndex].Value()) {
 | |
|       MOZ_ASSERT(mTimers[timerIndex].Timeout() ==
 | |
|                  mTimers[timerIndex].Value()->mTimeout);
 | |
|       MOZ_ASSERT(mTimers[timerIndex].Timeout() >=
 | |
|                  mTimers[lastNonCanceledTimerIndex].Timeout());
 | |
|       lastNonCanceledTimerIndex = timerIndex;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| size_t TimerThread::ComputeTimerInsertionIndex(const TimeStamp& timeout) const {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
| 
 | |
|   const size_t timerCount = mTimers.Length();
 | |
| 
 | |
|   size_t firstGtIndex = 0;
 | |
|   while (firstGtIndex < timerCount &&
 | |
|          (!mTimers[firstGtIndex].Value() ||
 | |
|           mTimers[firstGtIndex].Timeout() <= timeout)) {
 | |
|     ++firstGtIndex;
 | |
|   }
 | |
| 
 | |
|   return firstGtIndex;
 | |
| }
 | |
| 
 | |
| TimeStamp TimerThread::ComputeWakeupTimeFromTimers() const {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
| 
 | |
|   // Timer list should be non-empty and first timer should always be
 | |
|   // non-canceled at this point and we rely on that here.
 | |
|   MOZ_ASSERT(!mTimers.IsEmpty());
 | |
|   MOZ_ASSERT(mTimers[0].Value());
 | |
| 
 | |
|   // Overview: Find the last timer in the list that can be "bundled" together in
 | |
|   // the same wake-up with mTimers[0] and use its timeout as our target wake-up
 | |
|   // time.
 | |
| 
 | |
|   // bundleWakeup is when we should wake up in order to be able to fire all of
 | |
|   // the timers in our selected bundle. It will always be the timeout of the
 | |
|   // last timer in the bundle.
 | |
|   TimeStamp bundleWakeup = mTimers[0].Timeout();
 | |
| 
 | |
|   // cutoffTime is the latest that we can wake up for the timers currently
 | |
|   // accepted into the bundle. These needs to be updated as we go through the
 | |
|   // list because later timers may have more strict delay tolerances.
 | |
|   const TimeDuration minTimerDelay = TimeDuration::FromMilliseconds(
 | |
|       StaticPrefs::timer_minimum_firing_delay_tolerance_ms());
 | |
|   const TimeDuration maxTimerDelay = TimeDuration::FromMilliseconds(
 | |
|       StaticPrefs::timer_maximum_firing_delay_tolerance_ms());
 | |
|   TimeStamp cutoffTime =
 | |
|       bundleWakeup + ComputeAcceptableFiringDelay(mTimers[0].Delay(),
 | |
|                                                   minTimerDelay, maxTimerDelay);
 | |
| 
 | |
|   const size_t timerCount = mTimers.Length();
 | |
|   for (size_t entryIndex = 1; entryIndex < timerCount; ++entryIndex) {
 | |
|     const Entry& curEntry = mTimers[entryIndex];
 | |
|     const nsTimerImpl* curTimer = curEntry.Value();
 | |
|     if (!curTimer) {
 | |
|       // Canceled timer - skip it
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const TimeStamp curTimerDue = curEntry.Timeout();
 | |
|     if (curTimerDue > cutoffTime) {
 | |
|       // Can't include this timer in the bundle - it fires too late.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // This timer can be included in the bundle. Update bundleWakeup and
 | |
|     // cutoffTime.
 | |
|     bundleWakeup = curTimerDue;
 | |
|     cutoffTime = std::min(
 | |
|         curTimerDue + ComputeAcceptableFiringDelay(
 | |
|                           curEntry.Delay(), minTimerDelay, maxTimerDelay),
 | |
|         cutoffTime);
 | |
|     MOZ_ASSERT(bundleWakeup <= cutoffTime);
 | |
|   }
 | |
| 
 | |
| #if !defined(XP_WIN)
 | |
|   // Due to the fact that, on Windows, each TimeStamp object holds two distinct
 | |
|   // "values", this assert is not valid there. See bug 1829983 for the details.
 | |
|   MOZ_ASSERT(bundleWakeup - mTimers[0].Timeout() <=
 | |
|              ComputeAcceptableFiringDelay(mTimers[0].Delay(), minTimerDelay,
 | |
|                                           maxTimerDelay));
 | |
| #endif
 | |
| 
 | |
|   return bundleWakeup;
 | |
| }
 | |
| 
 | |
| TimeDuration TimerThread::ComputeAcceptableFiringDelay(
 | |
|     TimeDuration timerDuration, TimeDuration minDelay,
 | |
|     TimeDuration maxDelay) const {
 | |
|   // Use the timer's duration divided by this value as a base for how much
 | |
|   // firing delay a timer can accept. 8 was chosen specifically because it is a
 | |
|   // power of two which means that this division turns nicely into a shift.
 | |
|   constexpr int64_t timerDurationDivider = 8;
 | |
|   static_assert(IsPowerOfTwo(static_cast<uint64_t>(timerDurationDivider)));
 | |
|   const TimeDuration tmp = timerDuration / timerDurationDivider;
 | |
|   return std::min(std::max(minDelay, tmp), maxDelay);
 | |
| }
 | |
| 
 | |
| NS_IMETHODIMP
 | |
| TimerThread::Run() {
 | |
|   MonitorAutoLock lock(mMonitor);
 | |
| 
 | |
|   mProfilerThreadId = profiler_current_thread_id();
 | |
| 
 | |
|   // TODO: Make mAllowedEarlyFiringMicroseconds const and initialize it in the
 | |
|   // constructor.
 | |
|   mAllowedEarlyFiringMicroseconds = 250;
 | |
|   const TimeDuration allowedEarlyFiring =
 | |
|       TimeDuration::FromMicroseconds(mAllowedEarlyFiringMicroseconds);
 | |
| 
 | |
|   bool forceRunNextTimer = false;
 | |
| 
 | |
|   // Queue for tracking of how many timers are fired on each wake-up. We need to
 | |
|   // buffer these locally and only send off to glean occasionally to avoid
 | |
|   // performance hit.
 | |
|   static constexpr size_t kMaxQueuedTimerFired = 128;
 | |
|   size_t queuedTimerFiredCount = 0;
 | |
|   AutoTArray<uint64_t, kMaxQueuedTimerFired> queuedTimersFiredPerWakeup;
 | |
|   queuedTimersFiredPerWakeup.SetLengthAndRetainStorage(kMaxQueuedTimerFired);
 | |
| 
 | |
|   uint64_t timersFiredThisWakeup = 0;
 | |
|   while (!mShutdown) {
 | |
|     // Have to use PRIntervalTime here, since PR_WaitCondVar takes it
 | |
|     TimeDuration waitFor;
 | |
|     bool forceRunThisTimer = forceRunNextTimer;
 | |
|     forceRunNextTimer = false;
 | |
| 
 | |
| #ifdef DEBUG
 | |
|     VerifyTimerListConsistency();
 | |
| #endif
 | |
| 
 | |
|     if (mSleeping) {
 | |
|       // Sleep for 0.1 seconds while not firing timers.
 | |
|       uint32_t milliseconds = 100;
 | |
|       if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
 | |
|         milliseconds = ChaosMode::randomUint32LessThan(200);
 | |
|       }
 | |
|       waitFor = TimeDuration::FromMilliseconds(milliseconds);
 | |
|     } else {
 | |
|       waitFor = TimeDuration::Forever();
 | |
|       TimeStamp now = TimeStamp::Now();
 | |
| 
 | |
| #if TIMER_THREAD_STATISTICS
 | |
|       if (!mNotified && !mIntendedWakeupTime.IsNull() &&
 | |
|           now < mIntendedWakeupTime) {
 | |
|         ++mEarlyWakeups;
 | |
|         const double earlinessms = (mIntendedWakeupTime - now).ToMilliseconds();
 | |
|         mTotalEarlyWakeupTime += earlinessms;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       RemoveLeadingCanceledTimersInternal();
 | |
| 
 | |
|       if (!mTimers.IsEmpty()) {
 | |
|         if (now + allowedEarlyFiring >= mTimers[0].Value()->mTimeout ||
 | |
|             forceRunThisTimer) {
 | |
|         next:
 | |
|           // NB: AddRef before the Release under RemoveTimerInternal to avoid
 | |
|           // mRefCnt passing through zero, in case all other refs than the one
 | |
|           // from mTimers have gone away (the last non-mTimers[i]-ref's Release
 | |
|           // must be racing with us, blocked in gThread->RemoveTimer waiting
 | |
|           // for TimerThread::mMonitor, under nsTimerImpl::Release.
 | |
| 
 | |
|           RefPtr<nsTimerImpl> timerRef(mTimers[0].Take());
 | |
|           RemoveFirstTimerInternal();
 | |
|           MOZ_LOG(GetTimerLog(), LogLevel::Debug,
 | |
|                   ("Timer thread woke up %fms from when it was supposed to\n",
 | |
|                    fabs((now - timerRef->mTimeout).ToMilliseconds())));
 | |
| 
 | |
|           // We are going to let the call to PostTimerEvent here handle the
 | |
|           // release of the timer so that we don't end up releasing the timer
 | |
|           // on the TimerThread instead of on the thread it targets.
 | |
|           {
 | |
|             ++timersFiredThisWakeup;
 | |
|             LogTimerEvent::Run run(timerRef.get());
 | |
|             PostTimerEvent(timerRef.forget());
 | |
|           }
 | |
| 
 | |
|           if (mShutdown) {
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // Update now, as PostTimerEvent plus the locking may have taken a
 | |
|           // tick or two, and we may goto next below.
 | |
|           now = TimeStamp::Now();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       RemoveLeadingCanceledTimersInternal();
 | |
| 
 | |
|       if (!mTimers.IsEmpty()) {
 | |
|         TimeStamp timeout = mTimers[0].Value()->mTimeout;
 | |
| 
 | |
|         // Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer
 | |
|         // is due now or overdue.
 | |
|         //
 | |
|         // Note that we can only sleep for integer values of a certain
 | |
|         // resolution. We use mAllowedEarlyFiringMicroseconds, calculated
 | |
|         // before, to do the optimal rounding (i.e., of how to decide what
 | |
|         // interval is so small we should not wait at all).
 | |
|         double microseconds = (timeout - now).ToMicroseconds();
 | |
| 
 | |
|         // The mean value of sFractions must be 1 to ensure that the average of
 | |
|         // a long sequence of timeouts converges to the actual sum of their
 | |
|         // times.
 | |
|         static constexpr double sChaosFractions[] = {0.0, 0.25, 0.5, 0.75,
 | |
|                                                      1.0, 1.75, 2.75};
 | |
|         if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
 | |
|           microseconds *= sChaosFractions[ChaosMode::randomUint32LessThan(
 | |
|               ArrayLength(sChaosFractions))];
 | |
|           forceRunNextTimer = true;
 | |
|         }
 | |
| 
 | |
|         if (microseconds < mAllowedEarlyFiringMicroseconds) {
 | |
|           forceRunNextTimer = false;
 | |
|           goto next;  // round down; execute event now
 | |
|         }
 | |
| 
 | |
|         // TECHNICAL NOTE: Determining waitFor (by subtracting |now| from our
 | |
|         // desired wake-up time) at this point is not ideal. For one thing, the
 | |
|         // |now| that we have at this point is somewhat old. Secondly, there is
 | |
|         // quite a bit of code between here and where we actually use waitFor to
 | |
|         // request sleep. If I am thinking about this correctly, both of these
 | |
|         // will contribute to us requesting more sleep than is actually needed
 | |
|         // to wake up at our desired time. We could avoid this problem by only
 | |
|         // determining our desired wake-up time here and then calculating the
 | |
|         // wait time when we're actually about to sleep.
 | |
|         const TimeStamp wakeupTime = ComputeWakeupTimeFromTimers();
 | |
|         waitFor = wakeupTime - now;
 | |
| 
 | |
|         // If this were to fail that would mean that we had more timers that we
 | |
|         // should have fired.
 | |
|         MOZ_ASSERT(!waitFor.IsZero());
 | |
| 
 | |
|         if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
 | |
|           // If chaos mode is active then mess with the amount of time that we
 | |
|           // request to sleep (without changing what we record as our expected
 | |
|           // wake-up time). This will simulate unintended early/late wake-ups.
 | |
|           const double waitInMs = waitFor.ToMilliseconds();
 | |
|           const double chaosWaitInMs =
 | |
|               waitInMs * sChaosFractions[ChaosMode::randomUint32LessThan(
 | |
|                              ArrayLength(sChaosFractions))];
 | |
|           waitFor = TimeDuration::FromMilliseconds(chaosWaitInMs);
 | |
|         }
 | |
| 
 | |
|         mIntendedWakeupTime = wakeupTime;
 | |
|       } else {
 | |
|         mIntendedWakeupTime = TimeStamp{};
 | |
|       }
 | |
| 
 | |
|       if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
 | |
|         if (waitFor == TimeDuration::Forever())
 | |
|           MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting forever\n"));
 | |
|         else
 | |
|           MOZ_LOG(GetTimerLog(), LogLevel::Debug,
 | |
|                   ("waiting for %f\n", waitFor.ToMilliseconds()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     {
 | |
|       // About to sleep - let's make note of how many timers we processed and
 | |
|       // see if we should send out a new batch of telemetry.
 | |
|       queuedTimersFiredPerWakeup[queuedTimerFiredCount] = timersFiredThisWakeup;
 | |
|       ++queuedTimerFiredCount;
 | |
|       if (queuedTimerFiredCount == kMaxQueuedTimerFired) {
 | |
|         glean::timer_thread::timers_fired_per_wakeup.AccumulateSamples(
 | |
|             queuedTimersFiredPerWakeup);
 | |
|         queuedTimerFiredCount = 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| #if TIMER_THREAD_STATISTICS
 | |
|     {
 | |
|       size_t bucketIndex = 0;
 | |
|       while (bucketIndex < sTimersFiredPerWakeupBucketCount - 1 &&
 | |
|              timersFiredThisWakeup >
 | |
|                  sTimersFiredPerWakeupThresholds[bucketIndex]) {
 | |
|         ++bucketIndex;
 | |
|       }
 | |
|       MOZ_ASSERT(bucketIndex < sTimersFiredPerWakeupBucketCount);
 | |
|       ++mTimersFiredPerWakeup[bucketIndex];
 | |
| 
 | |
|       ++mTotalWakeupCount;
 | |
|       if (mNotified) {
 | |
|         ++mTimersFiredPerNotifiedWakeup[bucketIndex];
 | |
|         ++mTotalNotifiedWakeupCount;
 | |
|       } else {
 | |
|         ++mTimersFiredPerUnnotifiedWakeup[bucketIndex];
 | |
|         ++mTotalUnnotifiedWakeupCount;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     timersFiredThisWakeup = 0;
 | |
| 
 | |
|     mWaiting = true;
 | |
|     mNotified = false;
 | |
| 
 | |
|     {
 | |
|       AUTO_PROFILER_TRACING_MARKER("TimerThread", "Wait", OTHER);
 | |
|       mMonitor.Wait(waitFor);
 | |
|     }
 | |
|     if (mNotified) {
 | |
|       forceRunNextTimer = false;
 | |
|     }
 | |
|     mWaiting = false;
 | |
|   }
 | |
| 
 | |
|   // About to shut down - let's send out the final batch of timers fired counts.
 | |
|   if (queuedTimerFiredCount != 0) {
 | |
|     queuedTimersFiredPerWakeup.SetLengthAndRetainStorage(queuedTimerFiredCount);
 | |
|     glean::timer_thread::timers_fired_per_wakeup.AccumulateSamples(
 | |
|         queuedTimersFiredPerWakeup);
 | |
|   }
 | |
| 
 | |
|   return NS_OK;
 | |
| }
 | |
| 
 | |
| nsresult TimerThread::AddTimer(nsTimerImpl* aTimer,
 | |
|                                const MutexAutoLock& aProofOfLock) {
 | |
|   MonitorAutoLock lock(mMonitor);
 | |
|   AUTO_TIMERS_STATS(TimerThread_AddTimer);
 | |
| 
 | |
|   if (!aTimer->mEventTarget) {
 | |
|     return NS_ERROR_NOT_INITIALIZED;
 | |
|   }
 | |
| 
 | |
|   nsresult rv = Init();
 | |
|   if (NS_FAILED(rv)) {
 | |
|     return rv;
 | |
|   }
 | |
| 
 | |
|   // Awaken the timer thread if:
 | |
|   // - This timer needs to fire *before* the Timer Thread is scheduled to wake
 | |
|   //   up.
 | |
|   // AND/OR
 | |
|   // - The delay is 0, which is usually meant to be run as soon as possible.
 | |
|   //   Note: Even if the thread is scheduled to wake up now/soon, on some
 | |
|   //   systems there could be a significant delay compared to notifying, which
 | |
|   //   is almost immediate; and some users of 0-delay depend on it being this
 | |
|   //   fast!
 | |
|   const TimeDuration minTimerDelay = TimeDuration::FromMilliseconds(
 | |
|       StaticPrefs::timer_minimum_firing_delay_tolerance_ms());
 | |
|   const TimeDuration maxTimerDelay = TimeDuration::FromMilliseconds(
 | |
|       StaticPrefs::timer_maximum_firing_delay_tolerance_ms());
 | |
|   const TimeDuration firingDelay = ComputeAcceptableFiringDelay(
 | |
|       aTimer->mDelay, minTimerDelay, maxTimerDelay);
 | |
|   const bool firingBeforeNextWakeup =
 | |
|       mIntendedWakeupTime.IsNull() ||
 | |
|       (aTimer->mTimeout + firingDelay < mIntendedWakeupTime);
 | |
|   const bool wakeUpTimerThread =
 | |
|       mWaiting && (firingBeforeNextWakeup || aTimer->mDelay.IsZero());
 | |
| 
 | |
| #if TIMER_THREAD_STATISTICS
 | |
|   if (mTotalTimersAdded == 0) {
 | |
|     mFirstTimerAdded = TimeStamp::Now();
 | |
|   }
 | |
|   ++mTotalTimersAdded;
 | |
| #endif
 | |
| 
 | |
|   // Add the timer to our list.
 | |
|   if (!AddTimerInternal(*aTimer)) {
 | |
|     return NS_ERROR_OUT_OF_MEMORY;
 | |
|   }
 | |
| 
 | |
|   if (wakeUpTimerThread) {
 | |
|     mNotified = true;
 | |
|     mMonitor.Notify();
 | |
|   }
 | |
| 
 | |
|   if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) {
 | |
|     nsAutoCString name;
 | |
|     aTimer->GetName(name, aProofOfLock);
 | |
| 
 | |
|     nsLiteralCString prefix("Anonymous_");
 | |
|     profiler_add_marker(
 | |
|         "AddTimer", geckoprofiler::category::OTHER,
 | |
|         MarkerOptions(MarkerThreadId(mProfilerThreadId),
 | |
|                       MarkerStack::MaybeCapture(
 | |
|                           name.Equals("nonfunction:JS") ||
 | |
|                           StringHead(name, prefix.Length()) == prefix)),
 | |
|         AddRemoveTimerMarker{}, name, aTimer->mDelay.ToMilliseconds(),
 | |
|         MarkerThreadId::CurrentThread());
 | |
|   }
 | |
| 
 | |
|   return NS_OK;
 | |
| }
 | |
| 
 | |
| nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer,
 | |
|                                   const MutexAutoLock& aProofOfLock) {
 | |
|   MonitorAutoLock lock(mMonitor);
 | |
|   AUTO_TIMERS_STATS(TimerThread_RemoveTimer);
 | |
| 
 | |
|   // Remove the timer from our array.  Tell callers that aTimer was not found
 | |
|   // by returning NS_ERROR_NOT_AVAILABLE.
 | |
| 
 | |
|   if (!RemoveTimerInternal(*aTimer)) {
 | |
|     return NS_ERROR_NOT_AVAILABLE;
 | |
|   }
 | |
| 
 | |
| #if TIMER_THREAD_STATISTICS
 | |
|   ++mTotalTimersRemoved;
 | |
| #endif
 | |
| 
 | |
|   // Note: The timer thread is *not* awoken.
 | |
|   // The removed-timer entry is just left null, and will be reused (by a new or
 | |
|   // re-set timer) or discarded (when the timer thread logic handles non-null
 | |
|   // timers around it).
 | |
|   // If this was the front timer, and in the unlikely case that its entry is not
 | |
|   // soon reused by a re-set timer, the timer thread will wake up at the
 | |
|   // previously-scheduled time, but will quickly notice that there is no actual
 | |
|   // pending timer, and will restart its wait until the following real timeout.
 | |
| 
 | |
|   if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) {
 | |
|     nsAutoCString name;
 | |
|     aTimer->GetName(name, aProofOfLock);
 | |
| 
 | |
|     nsLiteralCString prefix("Anonymous_");
 | |
|     // This marker is meant to help understand the behavior of the timer thread.
 | |
|     profiler_add_marker(
 | |
|         "RemoveTimer", geckoprofiler::category::OTHER,
 | |
|         MarkerOptions(MarkerThreadId(mProfilerThreadId),
 | |
|                       MarkerStack::MaybeCapture(
 | |
|                           name.Equals("nonfunction:JS") ||
 | |
|                           StringHead(name, prefix.Length()) == prefix)),
 | |
|         AddRemoveTimerMarker{}, name, aTimer->mDelay.ToMilliseconds(),
 | |
|         MarkerThreadId::CurrentThread());
 | |
|     // This adds a marker with the timer name as the marker name, to make it
 | |
|     // obvious which timers are being used. This marker will be useful to
 | |
|     // understand which timers might be added and removed excessively often.
 | |
|     profiler_add_marker(name, geckoprofiler::category::TIMER,
 | |
|                         MarkerOptions(MarkerTiming::IntervalUntilNowFrom(
 | |
|                                           aTimer->mTimeout - aTimer->mDelay),
 | |
|                                       MarkerThreadId(mProfilerThreadId)),
 | |
|                         TimerMarker{}, aTimer->mDelay.ToMilliseconds(),
 | |
|                         aTimer->mType, MarkerThreadId::CurrentThread(), true);
 | |
|   }
 | |
| 
 | |
|   return NS_OK;
 | |
| }
 | |
| 
 | |
| TimeStamp TimerThread::FindNextFireTimeForCurrentThread(TimeStamp aDefault,
 | |
|                                                         uint32_t aSearchBound) {
 | |
|   MonitorAutoLock lock(mMonitor);
 | |
|   AUTO_TIMERS_STATS(TimerThread_FindNextFireTimeForCurrentThread);
 | |
| 
 | |
|   for (const Entry& entry : mTimers) {
 | |
|     const nsTimerImpl* timer = entry.Value();
 | |
|     if (timer) {
 | |
|       if (entry.Timeout() > aDefault) {
 | |
|         return aDefault;
 | |
|       }
 | |
| 
 | |
|       // Don't yield to timers created with the *_LOW_PRIORITY type.
 | |
|       if (!timer->IsLowPriority()) {
 | |
|         bool isOnCurrentThread = false;
 | |
|         nsresult rv =
 | |
|             timer->mEventTarget->IsOnCurrentThread(&isOnCurrentThread);
 | |
|         if (NS_SUCCEEDED(rv) && isOnCurrentThread) {
 | |
|           return entry.Timeout();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (aSearchBound == 0) {
 | |
|         // Return the currently highest timeout when we reach the bound.
 | |
|         // This won't give accurate information if we stop before finding
 | |
|         // any timer for the current thread, but at least won't report too
 | |
|         // long idle period.
 | |
|         return timer->mTimeout;
 | |
|       }
 | |
| 
 | |
|       --aSearchBound;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // No timers for this thread, return the default.
 | |
|   return aDefault;
 | |
| }
 | |
| 
 | |
| // This function must be called from within a lock
 | |
| // Also: we hold the mutex for the nsTimerImpl.
 | |
| bool TimerThread::AddTimerInternal(nsTimerImpl& aTimer) {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
|   aTimer.mMutex.AssertCurrentThreadOwns();
 | |
|   AUTO_TIMERS_STATS(TimerThread_AddTimerInternal);
 | |
|   if (mShutdown) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   LogTimerEvent::LogDispatch(&aTimer);
 | |
| 
 | |
|   const TimeStamp& timeout = aTimer.mTimeout;
 | |
|   const size_t insertionIndex = ComputeTimerInsertionIndex(timeout);
 | |
| 
 | |
|   if (insertionIndex != 0 && !mTimers[insertionIndex - 1].Value()) {
 | |
|     // Very common scenario in practice: The timer just before the insertion
 | |
|     // point is canceled, overwrite it.
 | |
|     AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_overwrite_before);
 | |
|     mTimers[insertionIndex - 1] = Entry{aTimer};
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const size_t length = mTimers.Length();
 | |
|   if (insertionIndex == length) {
 | |
|     // We're at the end (including it's the very first insertion), add new timer
 | |
|     // at the end.
 | |
|     AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_append);
 | |
|     return mTimers.AppendElement(Entry{aTimer}, mozilla::fallible);
 | |
|   }
 | |
| 
 | |
|   if (!mTimers[insertionIndex].Value()) {
 | |
|     // The timer at the insertion point is canceled, overwrite it.
 | |
|     AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_overwrite);
 | |
|     mTimers[insertionIndex] = Entry{aTimer};
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The new timer has to be inserted.
 | |
|   AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_insert);
 | |
|   // The capacity should be checked first, because if it needs to be increased
 | |
|   // and the memory allocation fails, only the new timer should be lost.
 | |
|   if (length == mTimers.Capacity() && mTimers[length - 1].Value()) {
 | |
|     // We have reached capacity, and the last entry is not canceled, so we
 | |
|     // really want to increase the capacity in case the extra slot is required.
 | |
|     // To force-expand the array, append a canceled-timer entry with a timestamp
 | |
|     // far in the future.
 | |
|     // This empty Entry may be used below to receive the moved-from previous
 | |
|     // entry. If not, it may be used in a later call if we need to append a new
 | |
|     // timer at the end.
 | |
|     AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_insert_expand);
 | |
|     if (!mTimers.AppendElement(
 | |
|             Entry{mTimers[length - 1].Timeout() +
 | |
|                   TimeDuration::FromSeconds(365.0 * 24.0 * 60.0 * 60.0)},
 | |
|             mozilla::fallible)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Extract the timer at the insertion point, and put the new timer in its
 | |
|   // place.
 | |
|   Entry extractedEntry = std::exchange(mTimers[insertionIndex], Entry{aTimer});
 | |
|   // Following entries can be pushed until we hit a canceled timer or the end.
 | |
|   for (size_t i = insertionIndex + 1; i < length; ++i) {
 | |
|     Entry& entryRef = mTimers[i];
 | |
|     if (!entryRef.Value()) {
 | |
|       // Canceled entry, overwrite it with the extracted entry from before.
 | |
|       COUNT_TIMERS_STATS(TimerThread_AddTimerInternal_insert_overwrite);
 | |
|       entryRef = std::move(extractedEntry);
 | |
|       return true;
 | |
|     }
 | |
|     // Write extracted entry from before, and extract current entry.
 | |
|     COUNT_TIMERS_STATS(TimerThread_AddTimerInternal_insert_shifts);
 | |
|     std::swap(entryRef, extractedEntry);
 | |
|   }
 | |
|   // We've reached the end of the list, with still one extracted entry to
 | |
|   // re-insert. We've checked the capacity above, this cannot fail.
 | |
|   COUNT_TIMERS_STATS(TimerThread_AddTimerInternal_insert_append);
 | |
|   mTimers.AppendElement(std::move(extractedEntry));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // This function must be called from within a lock
 | |
| // Also: we hold the mutex for the nsTimerImpl.
 | |
| bool TimerThread::RemoveTimerInternal(nsTimerImpl& aTimer) {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
|   aTimer.mMutex.AssertCurrentThreadOwns();
 | |
|   AUTO_TIMERS_STATS(TimerThread_RemoveTimerInternal);
 | |
|   if (!aTimer.IsInTimerThread()) {
 | |
|     COUNT_TIMERS_STATS(TimerThread_RemoveTimerInternal_not_in_list);
 | |
|     return false;
 | |
|   }
 | |
|   AUTO_TIMERS_STATS(TimerThread_RemoveTimerInternal_in_list);
 | |
|   for (auto& entry : mTimers) {
 | |
|     if (entry.Value() == &aTimer) {
 | |
|       entry.Forget();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   MOZ_ASSERT(!aTimer.IsInTimerThread(),
 | |
|              "Not found in the list but it should be!?");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void TimerThread::RemoveLeadingCanceledTimersInternal() {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
|   AUTO_TIMERS_STATS(TimerThread_RemoveLeadingCanceledTimersInternal);
 | |
| 
 | |
|   size_t toRemove = 0;
 | |
|   while (toRemove < mTimers.Length() && !mTimers[toRemove].Value()) {
 | |
|     ++toRemove;
 | |
|   }
 | |
|   mTimers.RemoveElementsAt(0, toRemove);
 | |
| }
 | |
| 
 | |
| void TimerThread::RemoveFirstTimerInternal() {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
|   AUTO_TIMERS_STATS(TimerThread_RemoveFirstTimerInternal);
 | |
|   MOZ_ASSERT(!mTimers.IsEmpty());
 | |
|   mTimers.RemoveElementAt(0);
 | |
| }
 | |
| 
 | |
| void TimerThread::PostTimerEvent(already_AddRefed<nsTimerImpl> aTimerRef) {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
|   AUTO_TIMERS_STATS(TimerThread_PostTimerEvent);
 | |
| 
 | |
|   RefPtr<nsTimerImpl> timer(aTimerRef);
 | |
| 
 | |
| #if TIMER_THREAD_STATISTICS
 | |
|   const double actualFiringDelay =
 | |
|       std::max((TimeStamp::Now() - timer->mTimeout).ToMilliseconds(), 0.0);
 | |
|   if (mNotified) {
 | |
|     ++mTotalTimersFiredNotified;
 | |
|     mTotalActualTimerFiringDelayNotified += actualFiringDelay;
 | |
|   } else {
 | |
|     ++mTotalTimersFiredUnnotified;
 | |
|     mTotalActualTimerFiringDelayUnnotified += actualFiringDelay;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if (!timer->mEventTarget) {
 | |
|     NS_ERROR("Attempt to post timer event to NULL event target");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // XXX we may want to reuse this nsTimerEvent in the case of repeating timers.
 | |
| 
 | |
|   // Since we already addref'd 'timer', we don't need to addref here.
 | |
|   // We will release either in ~nsTimerEvent(), or pass the reference back to
 | |
|   // the caller. We need to copy the generation number from this timer into the
 | |
|   // event, so we can avoid firing a timer that was re-initialized after being
 | |
|   // canceled.
 | |
| 
 | |
|   nsCOMPtr<nsIEventTarget> target = timer->mEventTarget;
 | |
| 
 | |
|   void* p = nsTimerEvent::operator new(sizeof(nsTimerEvent));
 | |
|   if (!p) {
 | |
|     return;
 | |
|   }
 | |
|   RefPtr<nsTimerEvent> event =
 | |
|       ::new (KnownNotNull, p) nsTimerEvent(timer.forget(), mProfilerThreadId);
 | |
| 
 | |
|   nsresult rv;
 | |
|   {
 | |
|     // We release mMonitor around the Dispatch because if the Dispatch interacts
 | |
|     // with the timer API we'll deadlock.
 | |
|     MonitorAutoUnlock unlock(mMonitor);
 | |
|     rv = target->Dispatch(event, NS_DISPATCH_NORMAL);
 | |
|     if (NS_FAILED(rv)) {
 | |
|       timer = event->ForgetTimer();
 | |
|       // We do this to avoid possible deadlock by taking the two locks in a
 | |
|       // different order than is used in RemoveTimer().  RemoveTimer() has
 | |
|       // aTimer->mMutex first.   We use timer.get() to keep static analysis
 | |
|       // happy
 | |
|       // NOTE: I'm not sure that any of the below is actually necessary. It
 | |
|       // seems to me that the timer that we're trying to fire will have already
 | |
|       // been removed prior to this.
 | |
|       MutexAutoLock lock1(timer.get()->mMutex);
 | |
|       MonitorAutoLock lock2(mMonitor);
 | |
|       RemoveTimerInternal(*timer);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TimerThread::DoBeforeSleep() {
 | |
|   // Mainthread
 | |
|   MonitorAutoLock lock(mMonitor);
 | |
|   mSleeping = true;
 | |
| }
 | |
| 
 | |
| // Note: wake may be notified without preceding sleep notification
 | |
| void TimerThread::DoAfterSleep() {
 | |
|   // Mainthread
 | |
|   MonitorAutoLock lock(mMonitor);
 | |
|   mSleeping = false;
 | |
| 
 | |
|   // Wake up the timer thread to re-process the array to ensure the sleep delay
 | |
|   // is correct, and fire any expired timers (perhaps quite a few)
 | |
|   mNotified = true;
 | |
|   PROFILER_MARKER_UNTYPED("AfterSleep", OTHER,
 | |
|                           MarkerThreadId(mProfilerThreadId));
 | |
|   mMonitor.Notify();
 | |
| }
 | |
| 
 | |
| NS_IMETHODIMP
 | |
| TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic,
 | |
|                      const char16_t* /* aData */) {
 | |
|   if (StaticPrefs::timer_ignore_sleep_wake_notifications()) {
 | |
|     return NS_OK;
 | |
|   }
 | |
| 
 | |
|   if (strcmp(aTopic, "sleep_notification") == 0 ||
 | |
|       strcmp(aTopic, "suspend_process_notification") == 0) {
 | |
|     DoBeforeSleep();
 | |
|   } else if (strcmp(aTopic, "wake_notification") == 0 ||
 | |
|              strcmp(aTopic, "resume_process_notification") == 0) {
 | |
|     DoAfterSleep();
 | |
|   }
 | |
| 
 | |
|   return NS_OK;
 | |
| }
 | |
| 
 | |
| uint32_t TimerThread::AllowedEarlyFiringMicroseconds() {
 | |
|   MonitorAutoLock lock(mMonitor);
 | |
|   return mAllowedEarlyFiringMicroseconds;
 | |
| }
 | |
| 
 | |
| #if TIMER_THREAD_STATISTICS
 | |
| void TimerThread::PrintStatistics() const {
 | |
|   mMonitor.AssertCurrentThreadOwns();
 | |
| 
 | |
|   const TimeStamp freshNow = TimeStamp::Now();
 | |
|   const double timeElapsed = mFirstTimerAdded.IsNull()
 | |
|                                  ? 0.0
 | |
|                                  : (freshNow - mFirstTimerAdded).ToSeconds();
 | |
|   printf_stderr("TimerThread Stats (Total time %8.2fs)\n", timeElapsed);
 | |
| 
 | |
|   printf_stderr("Added: %6llu Removed: %6llu Fired: %6llu\n", mTotalTimersAdded,
 | |
|                 mTotalTimersRemoved,
 | |
|                 mTotalTimersFiredNotified + mTotalTimersFiredUnnotified);
 | |
| 
 | |
|   auto PrintTimersFiredBucket =
 | |
|       [](const AutoTArray<size_t, sTimersFiredPerWakeupBucketCount>& buckets,
 | |
|          const size_t wakeupCount, const size_t timersFiredCount,
 | |
|          const double totalTimerDelay, const char* label) {
 | |
|         printf_stderr("%s : [", label);
 | |
|         for (size_t bucketVal : buckets) {
 | |
|           printf_stderr(" %5llu", bucketVal);
 | |
|         }
 | |
|         printf_stderr(
 | |
|             " ] Wake-ups/timer %6llu / %6llu (%7.4f) Avg Timer Delay %7.4f\n",
 | |
|             wakeupCount, timersFiredCount,
 | |
|             static_cast<double>(wakeupCount) / timersFiredCount,
 | |
|             totalTimerDelay / timersFiredCount);
 | |
|       };
 | |
| 
 | |
|   printf_stderr("Wake-ups:\n");
 | |
|   PrintTimersFiredBucket(
 | |
|       mTimersFiredPerWakeup, mTotalWakeupCount,
 | |
|       mTotalTimersFiredNotified + mTotalTimersFiredUnnotified,
 | |
|       mTotalActualTimerFiringDelayNotified +
 | |
|           mTotalActualTimerFiringDelayUnnotified,
 | |
|       "Total      ");
 | |
|   PrintTimersFiredBucket(mTimersFiredPerNotifiedWakeup,
 | |
|                          mTotalNotifiedWakeupCount, mTotalTimersFiredNotified,
 | |
|                          mTotalActualTimerFiringDelayNotified, "Notified   ");
 | |
|   PrintTimersFiredBucket(mTimersFiredPerUnnotifiedWakeup,
 | |
|                          mTotalUnnotifiedWakeupCount,
 | |
|                          mTotalTimersFiredUnnotified,
 | |
|                          mTotalActualTimerFiringDelayUnnotified, "Unnotified ");
 | |
| 
 | |
|   printf_stderr("Early Wake-ups: %6llu Avg: %7.4fms\n", mEarlyWakeups,
 | |
|                 mTotalEarlyWakeupTime / mEarlyWakeups);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* This nsReadOnlyTimer class is used for the values returned by the
 | |
|  * TimerThread::GetTimers method.
 | |
|  * It is not possible to return a strong reference to the nsTimerImpl
 | |
|  * instance (that could extend the lifetime of the timer and cause it to fire
 | |
|  * a callback pointing to already freed memory) or a weak reference
 | |
|  * (nsSupportsWeakReference doesn't support freeing the referee on a thread
 | |
|  * that isn't the thread that owns the weak reference), so instead the timer
 | |
|  * name, delay and type are copied to a new object. */
 | |
| class nsReadOnlyTimer final : public nsITimer {
 | |
|  public:
 | |
|   explicit nsReadOnlyTimer(const nsACString& aName, uint32_t aDelay,
 | |
|                            uint32_t aType)
 | |
|       : mName(aName), mDelay(aDelay), mType(aType) {}
 | |
|   NS_DECL_ISUPPORTS
 | |
| 
 | |
|   NS_IMETHOD Init(nsIObserver* aObserver, uint32_t aDelayInMs,
 | |
|                   uint32_t aType) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD InitWithCallback(nsITimerCallback* aCallback, uint32_t aDelayInMs,
 | |
|                               uint32_t aType) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD InitHighResolutionWithCallback(nsITimerCallback* aCallback,
 | |
|                                             const mozilla::TimeDuration& aDelay,
 | |
|                                             uint32_t aType) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD Cancel(void) override { return NS_ERROR_NOT_IMPLEMENTED; }
 | |
|   NS_IMETHOD InitWithNamedFuncCallback(nsTimerCallbackFunc aCallback,
 | |
|                                        void* aClosure, uint32_t aDelay,
 | |
|                                        uint32_t aType,
 | |
|                                        const char* aName) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD InitHighResolutionWithNamedFuncCallback(
 | |
|       nsTimerCallbackFunc aCallback, void* aClosure,
 | |
|       const mozilla::TimeDuration& aDelay, uint32_t aType,
 | |
|       const char* aName) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
| 
 | |
|   NS_IMETHOD GetName(nsACString& aName) override {
 | |
|     aName = mName;
 | |
|     return NS_OK;
 | |
|   }
 | |
|   NS_IMETHOD GetDelay(uint32_t* aDelay) override {
 | |
|     *aDelay = mDelay;
 | |
|     return NS_OK;
 | |
|   }
 | |
|   NS_IMETHOD SetDelay(uint32_t aDelay) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD GetType(uint32_t* aType) override {
 | |
|     *aType = mType;
 | |
|     return NS_OK;
 | |
|   }
 | |
|   NS_IMETHOD SetType(uint32_t aType) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD GetClosure(void** aClosure) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD GetCallback(nsITimerCallback** aCallback) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD GetTarget(nsIEventTarget** aTarget) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD SetTarget(nsIEventTarget* aTarget) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   NS_IMETHOD GetAllowedEarlyFiringMicroseconds(
 | |
|       uint32_t* aAllowedEarlyFiringMicroseconds) override {
 | |
|     return NS_ERROR_NOT_IMPLEMENTED;
 | |
|   }
 | |
|   size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) override {
 | |
|     return sizeof(*this);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   nsCString mName;
 | |
|   uint32_t mDelay;
 | |
|   uint32_t mType;
 | |
|   ~nsReadOnlyTimer() = default;
 | |
| };
 | |
| 
 | |
| NS_IMPL_ISUPPORTS(nsReadOnlyTimer, nsITimer)
 | |
| 
 | |
| nsresult TimerThread::GetTimers(nsTArray<RefPtr<nsITimer>>& aRetVal) {
 | |
|   nsTArray<RefPtr<nsTimerImpl>> timers;
 | |
|   {
 | |
|     MonitorAutoLock lock(mMonitor);
 | |
|     for (const auto& entry : mTimers) {
 | |
|       nsTimerImpl* timer = entry.Value();
 | |
|       if (!timer) {
 | |
|         continue;
 | |
|       }
 | |
|       timers.AppendElement(timer);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (nsTimerImpl* timer : timers) {
 | |
|     nsAutoCString name;
 | |
|     timer->GetName(name);
 | |
| 
 | |
|     uint32_t delay;
 | |
|     timer->GetDelay(&delay);
 | |
| 
 | |
|     uint32_t type;
 | |
|     timer->GetType(&type);
 | |
| 
 | |
|     aRetVal.AppendElement(new nsReadOnlyTimer(name, delay, type));
 | |
|   }
 | |
| 
 | |
|   return NS_OK;
 | |
| }
 |