fune/third_party/rust/cranelift-codegen/meta-python/cdsl/instructions.py
Benjamin Bouvier da79779db2 Bug 1539406: Bump Cranelift to revision 542d799dd7a3b2cc; r=lth
This is the first time we pin a specific Cranelift commit hash to use in Gecko.
The target-lexicon hack is removed and instead we introduce a vendor patch for
cranelift-codegen/cranelift-wasm themselves.

Notable changes happen in top-level Cargo.toml, .cargo/config.in and
js/src/wasm/cranelift/Cargo.toml; the rest has been generated by `mach vendor
rust`.

Differential Revision: https://phabricator.services.mozilla.com/D27316

--HG--
extra : moz-landing-system : lando
2019-04-15 10:39:28 +00:00

446 lines
16 KiB
Python

"""Classes for defining instructions."""
from __future__ import absolute_import
from . import camel_case
from .types import ValueType
from .operands import Operand
from .formats import InstructionFormat
try:
from typing import Union, Sequence, List, Tuple, Any, TYPE_CHECKING # noqa
from typing import Dict # noqa
if TYPE_CHECKING:
from .ast import Expr, Apply, Var, Def, VarAtomMap # noqa
from .typevar import TypeVar # noqa
from .ti import TypeConstraint # noqa
from .xform import XForm, Rtl
# List of operands for ins/outs:
OpList = Union[Sequence[Operand], Operand]
ConstrList = Union[Sequence[TypeConstraint], TypeConstraint]
MaybeBoundInst = Union['Instruction', 'BoundInstruction']
InstructionSemantics = Sequence[XForm]
SemDefCase = Union[Rtl, Tuple[Rtl, Sequence[TypeConstraint]], XForm]
except ImportError:
pass
class InstructionGroup(object):
"""
Every instruction must belong to exactly one instruction group. A given
target architecture can support instructions from multiple groups, and it
does not necessarily support all instructions in a group.
New instructions are automatically added to the currently open instruction
group.
"""
# The currently open instruction group.
_current = None # type: InstructionGroup
def open(self):
# type: () -> None
"""
Open this instruction group such that future new instructions are
added to this group.
"""
assert InstructionGroup._current is None, (
"Can't open {} since {} is already open"
.format(self, InstructionGroup._current))
InstructionGroup._current = self
def close(self):
# type: () -> None
"""
Close this instruction group. This function should be called before
opening another instruction group.
"""
assert InstructionGroup._current is self, (
"Can't close {}, the open instuction group is {}"
.format(self, InstructionGroup._current))
InstructionGroup._current = None
def __init__(self, name, doc):
# type: (str, str) -> None
self.name = name
self.__doc__ = doc
self.instructions = [] # type: List[Instruction]
self.open()
@staticmethod
def append(inst):
# type: (Instruction) -> None
assert InstructionGroup._current, \
"Open an instruction group before defining instructions."
InstructionGroup._current.instructions.append(inst)
class Instruction(object):
"""
The operands to the instruction are specified as two tuples: ``ins`` and
``outs``. Since the Python singleton tuple syntax is a bit awkward, it is
allowed to specify a singleton as just the operand itself, i.e., `ins=x`
and `ins=(x,)` are both allowed and mean the same thing.
:param name: Instruction mnemonic, also becomes opcode name.
:param doc: Documentation string.
:param ins: Tuple of input operands. This can be a mix of SSA value
operands and other operand kinds.
:param outs: Tuple of output operands. The output operands must be SSA
values or `variable_args`.
:param constraints: Tuple of instruction-specific TypeConstraints.
:param is_terminator: This is a terminator instruction.
:param is_branch: This is a branch instruction.
:param is_indirect_branch: This is an indirect branch instruction.
:param is_call: This is a call instruction.
:param is_return: This is a return instruction.
:param is_ghost: This is a ghost instruction, which has no encoding and no
other register allocation constraints.
:param can_trap: This instruction can trap.
:param can_load: This instruction can load from memory.
:param can_store: This instruction can store to memory.
:param other_side_effects: Instruction has other side effects.
"""
# Boolean instruction attributes that can be passed as keyword arguments to
# the constructor. Map attribute name to doc comment for generated Rust
# code.
ATTRIBS = {
'is_terminator': 'True for instructions that terminate the EBB.',
'is_branch': 'True for all branch or jump instructions.',
'is_indirect_branch':
'True for all indirect branch or jump instructions.',
'is_call': 'Is this a call instruction?',
'is_return': 'Is this a return instruction?',
'is_ghost': 'Is this a ghost instruction?',
'can_load': 'Can this instruction read from memory?',
'can_store': 'Can this instruction write to memory?',
'can_trap': 'Can this instruction cause a trap?',
'other_side_effects':
'Does this instruction have other side effects besides can_*',
'writes_cpu_flags': 'Does this instruction write to CPU flags?',
}
def __init__(self, name, doc, ins=(), outs=(), constraints=(), **kwargs):
# type: (str, str, OpList, OpList, ConstrList, **Any) -> None
self.name = name
self.camel_name = camel_case(name)
self.__doc__ = doc
self.ins = self._to_operand_tuple(ins)
self.outs = self._to_operand_tuple(outs)
self.constraints = self._to_constraint_tuple(constraints)
self.format = InstructionFormat.lookup(self.ins, self.outs)
self.semantics = None # type: InstructionSemantics
# Opcode number, assigned by gen_instr.py.
self.number = None # type: int
# Indexes into `self.outs` for value results.
# Other results are `variable_args`.
self.value_results = tuple(
i for i, o in enumerate(self.outs) if o.is_value())
# Indexes into `self.ins` for value operands.
self.value_opnums = tuple(
i for i, o in enumerate(self.ins) if o.is_value())
# Indexes into `self.ins` for non-value operands.
self.imm_opnums = tuple(
i for i, o in enumerate(self.ins) if o.is_immediate())
self._verify_polymorphic()
for attr in kwargs:
if attr not in Instruction.ATTRIBS:
raise AssertionError(
"unknown instruction attribute '" + attr + "'")
for attr in Instruction.ATTRIBS:
setattr(self, attr, not not kwargs.get(attr, False))
# Infer the 'writes_cpu_flags' field value.
if 'writes_cpu_flags' not in kwargs:
self.writes_cpu_flags = any(
out.is_cpu_flags() for out in self.outs)
InstructionGroup.append(self)
def __str__(self):
# type: () -> str
prefix = ', '.join(o.name for o in self.outs)
if prefix:
prefix = prefix + ' = '
suffix = ', '.join(o.name for o in self.ins)
return '{}{} {}'.format(prefix, self.name, suffix)
def snake_name(self):
# type: () -> str
"""
Get the snake_case name of this instruction.
Keywords in Rust and Python are altered by appending a '_'
"""
if self.name == 'return':
return 'return_'
else:
return self.name
def blurb(self):
# type: () -> str
"""Get the first line of the doc comment"""
for line in self.__doc__.split('\n'):
line = line.strip()
if line:
return line
return ""
def _verify_polymorphic(self):
# type: () -> None
"""
Check if this instruction is polymorphic, and verify its use of type
variables.
"""
poly_ins = [
i for i in self.value_opnums
if self.ins[i].typevar.free_typevar()]
poly_outs = [
i for i, o in enumerate(self.outs)
if o.is_value() and o.typevar.free_typevar()]
self.is_polymorphic = len(poly_ins) > 0 or len(poly_outs) > 0
if not self.is_polymorphic:
return
# Prefer to use the typevar_operand to infer the controlling typevar.
self.use_typevar_operand = False
typevar_error = None
tv_op = self.format.typevar_operand
if tv_op is not None and tv_op < len(self.value_opnums):
try:
opnum = self.value_opnums[tv_op]
tv = self.ins[opnum].typevar
if tv is tv.free_typevar() or tv.singleton_type() is not None:
self.other_typevars = self._verify_ctrl_typevar(tv)
self.ctrl_typevar = tv
self.use_typevar_operand = True
except RuntimeError as e:
typevar_error = e
if not self.use_typevar_operand:
# The typevar_operand argument doesn't work. Can we infer from the
# first result instead?
if len(self.outs) == 0:
if typevar_error:
raise typevar_error
else:
raise RuntimeError(
"typevar_operand must be a free type variable")
tv = self.outs[0].typevar
if tv is not tv.free_typevar():
raise RuntimeError("first result must be a free type variable")
self.other_typevars = self._verify_ctrl_typevar(tv)
self.ctrl_typevar = tv
def _verify_ctrl_typevar(self, ctrl_typevar):
# type: (TypeVar) -> List[TypeVar]
"""
Verify that the use of TypeVars is consistent with `ctrl_typevar` as
the controlling type variable.
All polymorhic inputs must either be derived from `ctrl_typevar` or be
independent free type variables only used once.
All polymorphic results must be derived from `ctrl_typevar`.
Return list of other type variables used, or raise an error.
"""
other_tvs = [] # type: List[TypeVar]
# Check value inputs.
for opnum in self.value_opnums:
typ = self.ins[opnum].typevar
tv = typ.free_typevar()
# Non-polymorphic or derived from ctrl_typevar is OK.
if tv is None or tv is ctrl_typevar:
continue
# No other derived typevars allowed.
if typ is not tv:
raise RuntimeError(
"{}: type variable {} must be derived from {}"
.format(self.ins[opnum], typ.name, ctrl_typevar))
# Other free type variables can only be used once each.
if tv in other_tvs:
raise RuntimeError(
"type variable {} can't be used more than once"
.format(tv.name))
other_tvs.append(tv)
# Check outputs.
for result in self.outs:
if not result.is_value():
continue
typ = result.typevar
tv = typ.free_typevar()
# Non-polymorphic or derived from ctrl_typevar is OK.
if tv is None or tv is ctrl_typevar:
continue
raise RuntimeError(
"type variable in output not derived from ctrl_typevar")
return other_tvs
def all_typevars(self):
# type: () -> List[TypeVar]
"""
Get a list of all type variables in the instruction.
"""
if self.is_polymorphic:
return [self.ctrl_typevar] + self.other_typevars
else:
return []
@staticmethod
def _to_operand_tuple(x):
# type: (Union[Sequence[Operand], Operand]) -> Tuple[Operand, ...]
# Allow a single Operand instance instead of the awkward singleton
# tuple syntax.
if isinstance(x, Operand):
y = (x,) # type: Tuple[Operand, ...]
else:
y = tuple(x)
for op in y:
assert isinstance(op, Operand)
return y
@staticmethod
def _to_constraint_tuple(x):
# type: (ConstrList) -> Tuple[TypeConstraint, ...]
"""
Allow a single TypeConstraint instance instead of the awkward singleton
tuple syntax.
"""
# import placed here to avoid circular dependency
from .ti import TypeConstraint # noqa
if isinstance(x, TypeConstraint):
y = (x,) # type: Tuple[TypeConstraint, ...]
else:
y = tuple(x)
for op in y:
assert isinstance(op, TypeConstraint)
return y
def bind(self, *args):
# type: (*ValueType) -> BoundInstruction
"""
Bind a polymorphic instruction to a concrete list of type variable
values.
"""
assert self.is_polymorphic
return BoundInstruction(self, args)
def __getattr__(self, name):
# type: (str) -> BoundInstruction
"""
Bind a polymorphic instruction to a single type variable with dot
syntax:
>>> iadd.i32
"""
assert name != 'any', 'Wildcard not allowed for ctrl_typevar'
return self.bind(ValueType.by_name(name))
def fully_bound(self):
# type: () -> Tuple[Instruction, Tuple[ValueType, ...]]
"""
Verify that all typevars have been bound, and return a
`(inst, typevars)` pair.
This version in `Instruction` itself allows non-polymorphic
instructions to duck-type as `BoundInstruction`\\s.
"""
assert not self.is_polymorphic, self
return (self, ())
def __call__(self, *args):
# type: (*Expr) -> Apply
"""
Create an `ast.Apply` AST node representing the application of this
instruction to the arguments.
"""
from .ast import Apply # noqa
return Apply(self, args)
def set_semantics(self, src, *dsts):
# type: (Union[Def, Apply], *SemDefCase) -> None
"""Set our semantics."""
from semantics import verify_semantics
from .xform import XForm, Rtl
sem = [] # type: List[XForm]
for dst in dsts:
if isinstance(dst, Rtl):
sem.append(XForm(Rtl(src).copy({}), dst))
elif isinstance(dst, XForm):
sem.append(XForm(
dst.src.copy({}),
dst.dst.copy({}),
dst.constraints))
else:
assert isinstance(dst, tuple)
sem.append(XForm(Rtl(src).copy({}), dst[0],
constraints=dst[1]))
verify_semantics(self, Rtl(src), sem)
self.semantics = sem
class BoundInstruction(object):
"""
A polymorphic `Instruction` bound to concrete type variables.
"""
def __init__(self, inst, typevars):
# type: (Instruction, Tuple[ValueType, ...]) -> None
self.inst = inst
self.typevars = typevars
assert len(typevars) <= 1 + len(inst.other_typevars)
def __str__(self):
# type: () -> str
return '.'.join([self.inst.name, ] + list(map(str, self.typevars)))
def bind(self, *args):
# type: (*ValueType) -> BoundInstruction
"""
Bind additional typevars.
"""
return BoundInstruction(self.inst, self.typevars + args)
def __getattr__(self, name):
# type: (str) -> BoundInstruction
"""
Bind an additional typevar dot syntax:
>>> uext.i32.i8
"""
if name == 'any':
# This is a wild card bind represented as a None type variable.
return self.bind(None)
return self.bind(ValueType.by_name(name))
def fully_bound(self):
# type: () -> Tuple[Instruction, Tuple[ValueType, ...]]
"""
Verify that all typevars have been bound, and return a
`(inst, typevars)` pair.
"""
if len(self.typevars) < 1 + len(self.inst.other_typevars):
unb = ', '.join(
str(tv) for tv in
self.inst.other_typevars[len(self.typevars) - 1:])
raise AssertionError("Unbound typevar {} in {}".format(unb, self))
assert len(self.typevars) == 1 + len(self.inst.other_typevars)
return (self.inst, self.typevars)
def __call__(self, *args):
# type: (*Expr) -> Apply
"""
Create an `ast.Apply` AST node representing the application of this
instruction to the arguments.
"""
from .ast import Apply # noqa
return Apply(self, args)