forked from mirrors/gecko-dev
		
	
		
			
				
	
	
		
			737 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			737 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| #![allow(clippy::float_cmp, clippy::eq_op, clippy::op_ref)]
 | |
| 
 | |
| extern crate num_traits;
 | |
| extern crate ordered_float;
 | |
| 
 | |
| #[cfg(not(feature = "std"))]
 | |
| pub use num_traits::float::FloatCore as Float;
 | |
| #[cfg(feature = "std")]
 | |
| pub use num_traits::Float;
 | |
| pub use num_traits::{Bounded, FromPrimitive, Num, One, Signed, ToPrimitive, Zero};
 | |
| pub use ordered_float::*;
 | |
| 
 | |
| pub use std::cmp::Ordering::*;
 | |
| pub use std::convert::TryFrom;
 | |
| pub use std::{f32, f64, panic};
 | |
| 
 | |
| pub use std::collections::hash_map::RandomState;
 | |
| pub use std::collections::HashSet;
 | |
| pub use std::hash::*;
 | |
| 
 | |
| fn not_nan<T: Float>(x: T) -> NotNan<T> {
 | |
|     NotNan::new(x).unwrap()
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f32_compare_regular_floats() {
 | |
|     assert_eq!(OrderedFloat(7.0f32).cmp(&OrderedFloat(7.0)), Equal);
 | |
|     assert_eq!(OrderedFloat(8.0f32).cmp(&OrderedFloat(7.0)), Greater);
 | |
|     assert_eq!(OrderedFloat(4.0f32).cmp(&OrderedFloat(7.0)), Less);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f32_compare_regular_floats_op() {
 | |
|     assert!(OrderedFloat(7.0f32) == OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(7.0f32) <= OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(7.0f32) >= OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(8.0f32) > OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(8.0f32) >= OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(4.0f32) < OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(4.0f32) <= OrderedFloat(7.0));
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f32_compare_nan() {
 | |
|     let f32_nan: f32 = Float::nan();
 | |
|     assert_eq!(
 | |
|         OrderedFloat(f32_nan).cmp(&OrderedFloat(Float::nan())),
 | |
|         Equal
 | |
|     );
 | |
|     assert_eq!(
 | |
|         OrderedFloat(f32_nan).cmp(&OrderedFloat(-100000.0f32)),
 | |
|         Greater
 | |
|     );
 | |
|     assert_eq!(
 | |
|         OrderedFloat(-100.0f32).cmp(&OrderedFloat(Float::nan())),
 | |
|         Less
 | |
|     );
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f32_compare_nan_op() {
 | |
|     let f32_nan: OrderedFloat<f32> = OrderedFloat(Float::nan());
 | |
|     assert!(f32_nan == f32_nan);
 | |
|     assert!(f32_nan <= f32_nan);
 | |
|     assert!(f32_nan >= f32_nan);
 | |
|     assert!(f32_nan > OrderedFloat(-100000.0f32));
 | |
|     assert!(f32_nan >= OrderedFloat(-100000.0f32));
 | |
|     assert!(OrderedFloat(-100.0f32) < f32_nan);
 | |
|     assert!(OrderedFloat(-100.0f32) <= f32_nan);
 | |
|     assert!(f32_nan > OrderedFloat(Float::infinity()));
 | |
|     assert!(f32_nan >= OrderedFloat(Float::infinity()));
 | |
|     assert!(f32_nan > OrderedFloat(Float::neg_infinity()));
 | |
|     assert!(f32_nan >= OrderedFloat(Float::neg_infinity()));
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f64_compare_regular_floats() {
 | |
|     assert_eq!(OrderedFloat(7.0f64).cmp(&OrderedFloat(7.0)), Equal);
 | |
|     assert_eq!(OrderedFloat(8.0f64).cmp(&OrderedFloat(7.0)), Greater);
 | |
|     assert_eq!(OrderedFloat(4.0f64).cmp(&OrderedFloat(7.0)), Less);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_zero() {
 | |
|     assert_eq!(NotNan::<f32>::zero(), 0.0f32);
 | |
|     assert!(NotNan::<f32>::zero().is_zero());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_one() {
 | |
|     assert_eq!(NotNan::<f32>::one(), 1.0f32)
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_bounded() {
 | |
|     assert_eq!(NotNan::<f32>::min_value(), <f32 as Bounded>::min_value());
 | |
|     assert_eq!(NotNan::<f32>::max_value(), <f32 as Bounded>::max_value());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_from_primitive() {
 | |
|     assert_eq!(NotNan::<f32>::from_i8(42i8), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_u8(42u8), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_i16(42i16), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_u16(42u16), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_i32(42i32), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_u32(42u32), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_i64(42i64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_u64(42u64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_isize(42isize), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_usize(42usize), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_f32(42f32), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_f32(42f32), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_f64(42f64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_f64(42f64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f32>::from_f32(Float::nan()), None);
 | |
|     assert_eq!(NotNan::<f32>::from_f64(Float::nan()), None);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_to_primitive() {
 | |
|     let x = not_nan(42.0f32);
 | |
|     assert_eq!(x.to_u8(), Some(42u8));
 | |
|     assert_eq!(x.to_i8(), Some(42i8));
 | |
|     assert_eq!(x.to_u16(), Some(42u16));
 | |
|     assert_eq!(x.to_i16(), Some(42i16));
 | |
|     assert_eq!(x.to_u32(), Some(42u32));
 | |
|     assert_eq!(x.to_i32(), Some(42i32));
 | |
|     assert_eq!(x.to_u64(), Some(42u64));
 | |
|     assert_eq!(x.to_i64(), Some(42i64));
 | |
|     assert_eq!(x.to_usize(), Some(42usize));
 | |
|     assert_eq!(x.to_isize(), Some(42isize));
 | |
|     assert_eq!(x.to_f32(), Some(42f32));
 | |
|     assert_eq!(x.to_f32(), Some(42f32));
 | |
|     assert_eq!(x.to_f64(), Some(42f64));
 | |
|     assert_eq!(x.to_f64(), Some(42f64));
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_num() {
 | |
|     assert_eq!(NotNan::<f32>::from_str_radix("42.0", 10).unwrap(), 42.0f32);
 | |
|     assert!(NotNan::<f32>::from_str_radix("NaN", 10).is_err());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_signed() {
 | |
|     assert_eq!(not_nan(42f32).abs(), 42f32);
 | |
|     assert_eq!(not_nan(-42f32).abs(), 42f32);
 | |
| 
 | |
|     assert_eq!(not_nan(50f32).abs_sub(¬_nan(8f32)), 42f32);
 | |
|     assert_eq!(not_nan(8f32).abs_sub(¬_nan(50f32)), 0f32);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_num_cast() {
 | |
|     assert_eq!(
 | |
|         <NotNan<f32> as num_traits::NumCast>::from(42).unwrap(),
 | |
|         42f32
 | |
|     );
 | |
|     assert_eq!(<NotNan<f32> as num_traits::NumCast>::from(f32::nan()), None);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f64_compare_nan() {
 | |
|     let f64_nan: f64 = Float::nan();
 | |
|     assert_eq!(
 | |
|         OrderedFloat(f64_nan).cmp(&OrderedFloat(Float::nan())),
 | |
|         Equal
 | |
|     );
 | |
|     assert_eq!(
 | |
|         OrderedFloat(f64_nan).cmp(&OrderedFloat(-100000.0f64)),
 | |
|         Greater
 | |
|     );
 | |
|     assert_eq!(
 | |
|         OrderedFloat(-100.0f64).cmp(&OrderedFloat(Float::nan())),
 | |
|         Less
 | |
|     );
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f64_compare_regular_floats_op() {
 | |
|     assert!(OrderedFloat(7.0) == OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(7.0) <= OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(7.0) >= OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(8.0) > OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(8.0) >= OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(4.0) < OrderedFloat(7.0));
 | |
|     assert!(OrderedFloat(4.0) <= OrderedFloat(7.0));
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f64_compare_nan_op() {
 | |
|     let f64_nan: OrderedFloat<f64> = OrderedFloat(Float::nan());
 | |
|     assert!(f64_nan == f64_nan);
 | |
|     assert!(f64_nan <= f64_nan);
 | |
|     assert!(f64_nan >= f64_nan);
 | |
|     assert!(f64_nan > OrderedFloat(-100000.0));
 | |
|     assert!(f64_nan >= OrderedFloat(-100000.0));
 | |
|     assert!(OrderedFloat(-100.0) < f64_nan);
 | |
|     assert!(OrderedFloat(-100.0) <= f64_nan);
 | |
|     assert!(f64_nan > OrderedFloat(Float::infinity()));
 | |
|     assert!(f64_nan >= OrderedFloat(Float::infinity()));
 | |
|     assert!(f64_nan > OrderedFloat(Float::neg_infinity()));
 | |
|     assert!(f64_nan >= OrderedFloat(Float::neg_infinity()));
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_compare_regular_floats() {
 | |
|     assert_eq!(not_nan(7.0f32).cmp(¬_nan(7.0)), Equal);
 | |
|     assert_eq!(not_nan(8.0f32).cmp(¬_nan(7.0)), Greater);
 | |
|     assert_eq!(not_nan(4.0f32).cmp(¬_nan(7.0)), Less);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_fail_when_constructing_with_nan() {
 | |
|     let f32_nan: f32 = Float::nan();
 | |
|     assert!(NotNan::new(f32_nan).is_err());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan32_calculate_correctly() {
 | |
|     assert_eq!(*(not_nan(5.0f32) + not_nan(4.0f32)), 5.0f32 + 4.0f32);
 | |
|     assert_eq!(*(not_nan(5.0f32) + 4.0f32), 5.0f32 + 4.0f32);
 | |
|     assert_eq!(*(not_nan(5.0f32) - not_nan(4.0f32)), 5.0f32 - 4.0f32);
 | |
|     assert_eq!(*(not_nan(5.0f32) - 4.0f32), 5.0f32 - 4.0f32);
 | |
|     assert_eq!(*(not_nan(5.0f32) * not_nan(4.0f32)), 5.0f32 * 4.0f32);
 | |
|     assert_eq!(*(not_nan(5.0f32) * 4.0f32), 5.0f32 * 4.0f32);
 | |
|     assert_eq!(*(not_nan(8.0f32) / not_nan(4.0f32)), 8.0f32 / 4.0f32);
 | |
|     assert_eq!(*(not_nan(8.0f32) / 4.0f32), 8.0f32 / 4.0f32);
 | |
|     assert_eq!(*(not_nan(8.0f32) % not_nan(4.0f32)), 8.0f32 % 4.0f32);
 | |
|     assert_eq!(*(not_nan(8.0f32) % 4.0f32), 8.0f32 % 4.0f32);
 | |
|     assert_eq!(*(-not_nan(1.0f32)), -1.0f32);
 | |
| 
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f32) + f32::NAN).is_err());
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f32) - f32::NAN).is_err());
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f32) * f32::NAN).is_err());
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f32) / f32::NAN).is_err());
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f32) % f32::NAN).is_err());
 | |
| 
 | |
|     let mut number = not_nan(5.0f32);
 | |
|     number += not_nan(4.0f32);
 | |
|     assert_eq!(*number, 9.0f32);
 | |
|     number -= not_nan(4.0f32);
 | |
|     assert_eq!(*number, 5.0f32);
 | |
|     number *= not_nan(4.0f32);
 | |
|     assert_eq!(*number, 20.0f32);
 | |
|     number /= not_nan(4.0f32);
 | |
|     assert_eq!(*number, 5.0f32);
 | |
|     number %= not_nan(4.0f32);
 | |
|     assert_eq!(*number, 1.0f32);
 | |
| 
 | |
|     number = not_nan(5.0f32);
 | |
|     number += 4.0f32;
 | |
|     assert_eq!(*number, 9.0f32);
 | |
|     number -= 4.0f32;
 | |
|     assert_eq!(*number, 5.0f32);
 | |
|     number *= 4.0f32;
 | |
|     assert_eq!(*number, 20.0f32);
 | |
|     number /= 4.0f32;
 | |
|     assert_eq!(*number, 5.0f32);
 | |
|     number %= 4.0f32;
 | |
|     assert_eq!(*number, 1.0f32);
 | |
| 
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f32);
 | |
|         tmp += f32::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f32);
 | |
|         tmp -= f32::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f32);
 | |
|         tmp *= f32::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f32);
 | |
|         tmp /= f32::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f32);
 | |
|         tmp %= f32::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_compare_regular_floats() {
 | |
|     assert_eq!(not_nan(7.0f64).cmp(¬_nan(7.0)), Equal);
 | |
|     assert_eq!(not_nan(8.0f64).cmp(¬_nan(7.0)), Greater);
 | |
|     assert_eq!(not_nan(4.0f64).cmp(¬_nan(7.0)), Less);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_fail_when_constructing_with_nan() {
 | |
|     let f64_nan: f64 = Float::nan();
 | |
|     assert!(NotNan::new(f64_nan).is_err());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_calculate_correctly() {
 | |
|     assert_eq!(*(not_nan(5.0f64) + not_nan(4.0f64)), 5.0f64 + 4.0f64);
 | |
|     assert_eq!(*(not_nan(5.0f64) + 4.0f64), 5.0f64 + 4.0f64);
 | |
|     assert_eq!(*(not_nan(5.0f64) - not_nan(4.0f64)), 5.0f64 - 4.0f64);
 | |
|     assert_eq!(*(not_nan(5.0f64) - 4.0f64), 5.0f64 - 4.0f64);
 | |
|     assert_eq!(*(not_nan(5.0f64) * not_nan(4.0f64)), 5.0f64 * 4.0f64);
 | |
|     assert_eq!(*(not_nan(5.0f64) * 4.0f64), 5.0f64 * 4.0f64);
 | |
|     assert_eq!(*(not_nan(8.0f64) / not_nan(4.0f64)), 8.0f64 / 4.0f64);
 | |
|     assert_eq!(*(not_nan(8.0f64) / 4.0f64), 8.0f64 / 4.0f64);
 | |
|     assert_eq!(*(not_nan(8.0f64) % not_nan(4.0f64)), 8.0f64 % 4.0f64);
 | |
|     assert_eq!(*(not_nan(8.0f64) % 4.0f64), 8.0f64 % 4.0f64);
 | |
|     assert_eq!(*(-not_nan(1.0f64)), -1.0f64);
 | |
| 
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f64) + f64::NAN).is_err());
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f64) - f64::NAN).is_err());
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f64) * f64::NAN).is_err());
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f64) / f64::NAN).is_err());
 | |
|     assert!(panic::catch_unwind(|| not_nan(0.0f64) % f64::NAN).is_err());
 | |
| 
 | |
|     let mut number = not_nan(5.0f64);
 | |
|     number += not_nan(4.0f64);
 | |
|     assert_eq!(*number, 9.0f64);
 | |
|     number -= not_nan(4.0f64);
 | |
|     assert_eq!(*number, 5.0f64);
 | |
|     number *= not_nan(4.0f64);
 | |
|     assert_eq!(*number, 20.0f64);
 | |
|     number /= not_nan(4.0f64);
 | |
|     assert_eq!(*number, 5.0f64);
 | |
|     number %= not_nan(4.0f64);
 | |
|     assert_eq!(*number, 1.0f64);
 | |
| 
 | |
|     number = not_nan(5.0f64);
 | |
|     number += 4.0f64;
 | |
|     assert_eq!(*number, 9.0f64);
 | |
|     number -= 4.0f64;
 | |
|     assert_eq!(*number, 5.0f64);
 | |
|     number *= 4.0f64;
 | |
|     assert_eq!(*number, 20.0f64);
 | |
|     number /= 4.0f64;
 | |
|     assert_eq!(*number, 5.0f64);
 | |
|     number %= 4.0f64;
 | |
|     assert_eq!(*number, 1.0f64);
 | |
| 
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f64);
 | |
|         tmp += f64::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f64);
 | |
|         tmp -= f64::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f64);
 | |
|         tmp *= f64::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f64);
 | |
|         tmp /= f64::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
|     assert!(panic::catch_unwind(|| {
 | |
|         let mut tmp = not_nan(0.0f64);
 | |
|         tmp %= f64::NAN;
 | |
|     })
 | |
|     .is_err());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_zero() {
 | |
|     assert_eq!(NotNan::<f64>::zero(), not_nan(0.0f64));
 | |
|     assert!(NotNan::<f64>::zero().is_zero());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_one() {
 | |
|     assert_eq!(NotNan::<f64>::one(), not_nan(1.0f64))
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_bounded() {
 | |
|     assert_eq!(NotNan::<f64>::min_value(), <f64 as Bounded>::min_value());
 | |
|     assert_eq!(NotNan::<f64>::max_value(), <f64 as Bounded>::max_value());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_from_primitive() {
 | |
|     assert_eq!(NotNan::<f64>::from_i8(42i8), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_u8(42u8), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_i16(42i16), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_u16(42u16), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_i32(42i32), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_u32(42u32), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_i64(42i64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_u64(42u64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_isize(42isize), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_usize(42usize), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_f64(42f64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_f64(42f64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_f64(42f64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_f64(42f64), Some(not_nan(42.0)));
 | |
|     assert_eq!(NotNan::<f64>::from_f64(Float::nan()), None);
 | |
|     assert_eq!(NotNan::<f64>::from_f64(Float::nan()), None);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_to_primitive() {
 | |
|     let x = not_nan(42.0f64);
 | |
|     assert_eq!(x.to_u8(), Some(42u8));
 | |
|     assert_eq!(x.to_i8(), Some(42i8));
 | |
|     assert_eq!(x.to_u16(), Some(42u16));
 | |
|     assert_eq!(x.to_i16(), Some(42i16));
 | |
|     assert_eq!(x.to_u32(), Some(42u32));
 | |
|     assert_eq!(x.to_i32(), Some(42i32));
 | |
|     assert_eq!(x.to_u64(), Some(42u64));
 | |
|     assert_eq!(x.to_i64(), Some(42i64));
 | |
|     assert_eq!(x.to_usize(), Some(42usize));
 | |
|     assert_eq!(x.to_isize(), Some(42isize));
 | |
|     assert_eq!(x.to_f64(), Some(42f64));
 | |
|     assert_eq!(x.to_f64(), Some(42f64));
 | |
|     assert_eq!(x.to_f64(), Some(42f64));
 | |
|     assert_eq!(x.to_f64(), Some(42f64));
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_num() {
 | |
|     assert_eq!(
 | |
|         NotNan::<f64>::from_str_radix("42.0", 10).unwrap(),
 | |
|         not_nan(42.0f64)
 | |
|     );
 | |
|     assert!(NotNan::<f64>::from_str_radix("NaN", 10).is_err());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_signed() {
 | |
|     assert_eq!(not_nan(42f64).abs(), not_nan(42f64));
 | |
|     assert_eq!(not_nan(-42f64).abs(), not_nan(42f64));
 | |
| 
 | |
|     assert_eq!(not_nan(50f64).abs_sub(¬_nan(8f64)), not_nan(42f64));
 | |
|     assert_eq!(not_nan(8f64).abs_sub(¬_nan(50f64)), not_nan(0f64));
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_num_cast() {
 | |
|     assert_eq!(
 | |
|         <NotNan<f64> as num_traits::NumCast>::from(42),
 | |
|         Some(not_nan(42f64))
 | |
|     );
 | |
|     assert_eq!(<NotNan<f64> as num_traits::NumCast>::from(f64::nan()), None);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn hash_zero_and_neg_zero_to_the_same_hc() {
 | |
|     let state = RandomState::new();
 | |
|     let mut h1 = state.build_hasher();
 | |
|     let mut h2 = state.build_hasher();
 | |
|     OrderedFloat::from(0f64).hash(&mut h1);
 | |
|     OrderedFloat::from(-0f64).hash(&mut h2);
 | |
|     assert_eq!(h1.finish(), h2.finish());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn hash_inf_and_neg_inf_to_different_hcs() {
 | |
|     let state = RandomState::new();
 | |
|     let mut h1 = state.build_hasher();
 | |
|     let mut h2 = state.build_hasher();
 | |
|     OrderedFloat::from(f64::INFINITY).hash(&mut h1);
 | |
|     OrderedFloat::from(f64::NEG_INFINITY).hash(&mut h2);
 | |
|     assert!(h1.finish() != h2.finish());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn hash_is_good_for_whole_numbers() {
 | |
|     let state = RandomState::new();
 | |
|     let limit = 10000;
 | |
| 
 | |
|     let mut set = ::std::collections::HashSet::with_capacity(limit);
 | |
|     for i in 0..limit {
 | |
|         let mut h = state.build_hasher();
 | |
|         OrderedFloat::from(i as f64).hash(&mut h);
 | |
|         set.insert(h.finish());
 | |
|     }
 | |
| 
 | |
|     // This allows 100 collisions, which is far too
 | |
|     // many, but should guard against transient issues
 | |
|     // that will result from using RandomState
 | |
|     let pct_unique = set.len() as f64 / limit as f64;
 | |
|     assert!(0.99f64 < pct_unique, "percent-unique={}", pct_unique);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn hash_is_good_for_fractional_numbers() {
 | |
|     let state = RandomState::new();
 | |
|     let limit = 10000;
 | |
| 
 | |
|     let mut set = ::std::collections::HashSet::with_capacity(limit);
 | |
|     for i in 0..limit {
 | |
|         let mut h = state.build_hasher();
 | |
|         OrderedFloat::from(i as f64 * (1f64 / limit as f64)).hash(&mut h);
 | |
|         set.insert(h.finish());
 | |
|     }
 | |
| 
 | |
|     // This allows 100 collisions, which is far too
 | |
|     // many, but should guard against transient issues
 | |
|     // that will result from using RandomState
 | |
|     let pct_unique = set.len() as f64 / limit as f64;
 | |
|     assert!(0.99f64 < pct_unique, "percent-unique={}", pct_unique);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_add_fails_on_nan() {
 | |
|     let a = not_nan(std::f32::INFINITY);
 | |
|     let b = not_nan(std::f32::NEG_INFINITY);
 | |
|     let _c = a + b;
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_add_fails_on_nan_ref() {
 | |
|     let a = not_nan(std::f32::INFINITY);
 | |
|     let b = not_nan(std::f32::NEG_INFINITY);
 | |
|     let _c = a + &b;
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_add_fails_on_nan_ref_ref() {
 | |
|     let a = not_nan(std::f32::INFINITY);
 | |
|     let b = not_nan(std::f32::NEG_INFINITY);
 | |
|     let _c = &a + &b;
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_add_fails_on_nan_t_ref() {
 | |
|     let a = not_nan(std::f32::INFINITY);
 | |
|     let b = std::f32::NEG_INFINITY;
 | |
|     let _c = a + &b;
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_add_fails_on_nan_ref_t_ref() {
 | |
|     let a = not_nan(std::f32::INFINITY);
 | |
|     let b = std::f32::NEG_INFINITY;
 | |
|     let _c = &a + &b;
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_add_fails_on_nan_ref_t() {
 | |
|     let a = not_nan(std::f32::INFINITY);
 | |
|     let b = std::f32::NEG_INFINITY;
 | |
|     let _c = &a + b;
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_add_assign_fails_on_nan_ref() {
 | |
|     let mut a = not_nan(std::f32::INFINITY);
 | |
|     let b = not_nan(std::f32::NEG_INFINITY);
 | |
|     a += &b;
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_add_assign_fails_on_nan_t_ref() {
 | |
|     let mut a = not_nan(std::f32::INFINITY);
 | |
|     let b = std::f32::NEG_INFINITY;
 | |
|     a += &b;
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_add_assign_fails_on_nan_t() {
 | |
|     let mut a = not_nan(std::f32::INFINITY);
 | |
|     let b = std::f32::NEG_INFINITY;
 | |
|     a += b;
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn add() {
 | |
|     assert_eq!(not_nan(0.0) + not_nan(0.0), 0.0);
 | |
|     assert_eq!(not_nan(0.0) + ¬_nan(0.0), 0.0);
 | |
|     assert_eq!(¬_nan(0.0) + not_nan(0.0), 0.0);
 | |
|     assert_eq!(¬_nan(0.0) + ¬_nan(0.0), 0.0);
 | |
|     assert_eq!(not_nan(0.0) + 0.0, 0.0);
 | |
|     assert_eq!(not_nan(0.0) + &0.0, 0.0);
 | |
|     assert_eq!(¬_nan(0.0) + 0.0, 0.0);
 | |
|     assert_eq!(¬_nan(0.0) + &0.0, 0.0);
 | |
| 
 | |
|     assert_eq!(OrderedFloat(0.0) + OrderedFloat(0.0), 0.0);
 | |
|     assert_eq!(OrderedFloat(0.0) + &OrderedFloat(0.0), 0.0);
 | |
|     assert_eq!(&OrderedFloat(0.0) + OrderedFloat(0.0), 0.0);
 | |
|     assert_eq!(OrderedFloat(0.0) + 0.0, 0.0);
 | |
|     assert_eq!(OrderedFloat(0.0) + &0.0, 0.0);
 | |
|     assert_eq!(&OrderedFloat(0.0) + 0.0, 0.0);
 | |
|     assert_eq!(&OrderedFloat(0.0) + &0.0, 0.0);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f32_neg() {
 | |
|     assert_eq!(OrderedFloat(-7.0f32), -OrderedFloat(7.0f32));
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn ordered_f64_neg() {
 | |
|     assert_eq!(OrderedFloat(-7.0f64), -OrderedFloat(7.0f64));
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_sum_fails_on_nan() {
 | |
|     let a = not_nan(std::f32::INFINITY);
 | |
|     let b = not_nan(std::f32::NEG_INFINITY);
 | |
|     let _c: NotNan<_> = [a, b].iter().sum();
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| #[should_panic]
 | |
| fn test_product_fails_on_nan() {
 | |
|     let a = not_nan(std::f32::INFINITY);
 | |
|     let b = not_nan(0f32);
 | |
|     let _c: NotNan<_> = [a, b].iter().product();
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan64_sum_product() {
 | |
|     let a = not_nan(2138.1237);
 | |
|     let b = not_nan(132f64);
 | |
|     let c = not_nan(5.1);
 | |
| 
 | |
|     assert_eq!(
 | |
|         std::iter::empty::<NotNan<f64>>().sum::<NotNan<_>>(),
 | |
|         NotNan::new(0f64).unwrap()
 | |
|     );
 | |
|     assert_eq!([a].iter().sum::<NotNan<_>>(), a);
 | |
|     assert_eq!([a, b].iter().sum::<NotNan<_>>(), a + b);
 | |
|     assert_eq!([a, b, c].iter().sum::<NotNan<_>>(), a + b + c);
 | |
| 
 | |
|     assert_eq!(
 | |
|         std::iter::empty::<NotNan<f64>>().product::<NotNan<_>>(),
 | |
|         NotNan::new(1f64).unwrap()
 | |
|     );
 | |
|     assert_eq!([a].iter().product::<NotNan<_>>(), a);
 | |
|     assert_eq!([a, b].iter().product::<NotNan<_>>(), a * b);
 | |
|     assert_eq!([a, b, c].iter().product::<NotNan<_>>(), a * b * c);
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan_usage_in_const_context() {
 | |
|     const A: NotNan<f32> = unsafe { NotNan::new_unchecked(111f32) };
 | |
|     assert_eq!(A, NotNan::new(111f32).unwrap());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn not_nan_panic_safety() {
 | |
|     let catch_op = |mut num, op: fn(&mut NotNan<_>)| {
 | |
|         let mut num_ref = panic::AssertUnwindSafe(&mut num);
 | |
|         #[allow(clippy::needless_borrow)] // mut-borrow needed for msrv 1.36.0
 | |
|         let _ = panic::catch_unwind(move || op(&mut num_ref));
 | |
|         num
 | |
|     };
 | |
| 
 | |
|     assert!(!catch_op(not_nan(f32::INFINITY), |a| *a += f32::NEG_INFINITY).is_nan());
 | |
|     assert!(!catch_op(not_nan(f32::INFINITY), |a| *a -= f32::INFINITY).is_nan());
 | |
|     assert!(!catch_op(not_nan(0.0), |a| *a *= f32::INFINITY).is_nan());
 | |
|     assert!(!catch_op(not_nan(0.0), |a| *a /= 0.0).is_nan());
 | |
|     assert!(!catch_op(not_nan(0.0), |a| *a %= 0.0).is_nan());
 | |
| }
 | |
| 
 | |
| #[test]
 | |
| fn from_ref() {
 | |
|     let f = 1.0f32;
 | |
|     let o: &OrderedFloat<f32> = (&f).into();
 | |
|     assert_eq!(*o, 1.0f32);
 | |
| 
 | |
|     let mut f = 1.0f64;
 | |
|     let o: &OrderedFloat<f64> = (&f).into();
 | |
|     assert_eq!(*o, 1.0f64);
 | |
| 
 | |
|     let o: &mut OrderedFloat<f64> = (&mut f).into();
 | |
|     assert_eq!(*o, 1.0f64);
 | |
|     *o = OrderedFloat(2.0);
 | |
|     assert_eq!(*o, 2.0f64);
 | |
|     assert_eq!(f, 2.0f64);
 | |
| }
 | |
| 
 | |
| #[cfg(feature = "arbitrary")]
 | |
| mod arbitrary_test {
 | |
|     use super::{NotNan, OrderedFloat};
 | |
|     use arbitrary::{Arbitrary, Unstructured};
 | |
| 
 | |
|     #[test]
 | |
|     fn exhaustive() {
 | |
|         // Exhaustively search all patterns of sign and exponent bits plus a few mantissa bits.
 | |
|         for high_bytes in 0..=u16::MAX {
 | |
|             let [h1, h2] = high_bytes.to_be_bytes();
 | |
| 
 | |
|             // Each of these should not
 | |
|             //   * panic,
 | |
|             //   * return an error, or
 | |
|             //   * need more bytes than given.
 | |
|             let n32: NotNan<f32> = Unstructured::new(&[h1, h2, h1, h2])
 | |
|                 .arbitrary()
 | |
|                 .expect("NotNan<f32> failure");
 | |
|             let n64: NotNan<f64> = Unstructured::new(&[h1, h2, h1, h2, h1, h2, h1, h2])
 | |
|                 .arbitrary()
 | |
|                 .expect("NotNan<f64> failure");
 | |
|             let _: OrderedFloat<f32> = Unstructured::new(&[h1, h2, h1, h2])
 | |
|                 .arbitrary()
 | |
|                 .expect("OrderedFloat<f32> failure");
 | |
|             let _: OrderedFloat<f64> = Unstructured::new(&[h1, h2, h1, h2, h1, h2, h1, h2])
 | |
|                 .arbitrary()
 | |
|                 .expect("OrderedFloat<f64> failure");
 | |
| 
 | |
|             // Check for violation of NotNan's property of never containing a NaN.
 | |
|             assert!(!n32.into_inner().is_nan());
 | |
|             assert!(!n64.into_inner().is_nan());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn size_hints() {
 | |
|         assert_eq!(NotNan::<f32>::size_hint(0), (4, Some(4)));
 | |
|         assert_eq!(NotNan::<f64>::size_hint(0), (8, Some(8)));
 | |
|         assert_eq!(OrderedFloat::<f32>::size_hint(0), (4, Some(4)));
 | |
|         assert_eq!(OrderedFloat::<f64>::size_hint(0), (8, Some(8)));
 | |
|     }
 | |
| }
 | 
