forked from mirrors/gecko-dev
ASan builds use more stack space so need a larger stack size. Note that this matches what we already do for the JS overrecursion limit for the main thread. This fixes overrecursion errors from the parser when parsing JS files off-thread on YouTube. Differential Revision: https://phabricator.services.mozilla.com/D135201
965 lines
31 KiB
C++
965 lines
31 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "TaskController.h"
|
|
#include "nsIIdleRunnable.h"
|
|
#include "nsIRunnable.h"
|
|
#include "nsThreadUtils.h"
|
|
#include <algorithm>
|
|
#include <initializer_list>
|
|
#include "GeckoProfiler.h"
|
|
#include "mozilla/EventQueue.h"
|
|
#include "mozilla/BackgroundHangMonitor.h"
|
|
#include "mozilla/InputTaskManager.h"
|
|
#include "mozilla/VsyncTaskManager.h"
|
|
#include "mozilla/IOInterposer.h"
|
|
#include "mozilla/ProfilerRunnable.h"
|
|
#include "mozilla/StaticMutex.h"
|
|
#include "mozilla/SchedulerGroup.h"
|
|
#include "mozilla/ScopeExit.h"
|
|
#include "mozilla/Unused.h"
|
|
#include "nsIThreadInternal.h"
|
|
#include "nsQueryObject.h"
|
|
#include "nsThread.h"
|
|
#include "prenv.h"
|
|
#include "prsystem.h"
|
|
|
|
namespace mozilla {
|
|
|
|
std::unique_ptr<TaskController> TaskController::sSingleton;
|
|
thread_local size_t mThreadPoolIndex = -1;
|
|
std::atomic<uint64_t> Task::sCurrentTaskSeqNo = 0;
|
|
|
|
const int32_t kMinimumPoolThreadCount = 2;
|
|
const int32_t kMaximumPoolThreadCount = 8;
|
|
|
|
/* static */
|
|
int32_t TaskController::GetPoolThreadCount() {
|
|
if (PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT")) {
|
|
return strtol(PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT"), nullptr, 0);
|
|
}
|
|
|
|
int32_t numCores = std::max<int32_t>(1, PR_GetNumberOfProcessors());
|
|
|
|
return std::clamp<int32_t>(numCores, kMinimumPoolThreadCount,
|
|
kMaximumPoolThreadCount);
|
|
}
|
|
|
|
#if defined(MOZ_COLLECTING_RUNNABLE_TELEMETRY)
|
|
# define AUTO_PROFILE_FOLLOWING_TASK(task) \
|
|
nsAutoCString name; \
|
|
(task)->GetName(name); \
|
|
AUTO_PROFILER_LABEL_DYNAMIC_NSCSTRING_NONSENSITIVE("Task", OTHER, name); \
|
|
AUTO_PROFILE_FOLLOWING_RUNNABLE(name);
|
|
#else
|
|
# define AUTO_PROFILE_FOLLOWING_TASK(task)
|
|
#endif
|
|
|
|
bool TaskManager::
|
|
UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
|
|
const MutexAutoLock& aProofOfLock, IterationType aIterationType) {
|
|
mCurrentSuspended = IsSuspended(aProofOfLock);
|
|
|
|
if (aIterationType == IterationType::EVENT_LOOP_TURN && !mCurrentSuspended) {
|
|
int32_t oldModifier = mCurrentPriorityModifier;
|
|
mCurrentPriorityModifier =
|
|
GetPriorityModifierForEventLoopTurn(aProofOfLock);
|
|
|
|
if (mCurrentPriorityModifier != oldModifier) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Task* Task::GetHighestPriorityDependency() {
|
|
Task* currentTask = this;
|
|
|
|
while (!currentTask->mDependencies.empty()) {
|
|
auto iter = currentTask->mDependencies.begin();
|
|
|
|
while (iter != currentTask->mDependencies.end()) {
|
|
if ((*iter)->mCompleted) {
|
|
auto oldIter = iter;
|
|
iter++;
|
|
// Completed tasks are removed here to prevent needlessly keeping them
|
|
// alive or iterating over them in the future.
|
|
currentTask->mDependencies.erase(oldIter);
|
|
continue;
|
|
}
|
|
|
|
currentTask = iter->get();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return currentTask == this ? nullptr : currentTask;
|
|
}
|
|
|
|
TaskController* TaskController::Get() {
|
|
MOZ_ASSERT(sSingleton.get());
|
|
return sSingleton.get();
|
|
}
|
|
|
|
bool TaskController::Initialize() {
|
|
MOZ_ASSERT(!sSingleton);
|
|
sSingleton = std::make_unique<TaskController>();
|
|
return sSingleton->InitializeInternal();
|
|
}
|
|
|
|
void ThreadFuncPoolThread(void* aIndex) {
|
|
mThreadPoolIndex = *reinterpret_cast<int32_t*>(aIndex);
|
|
delete reinterpret_cast<int32_t*>(aIndex);
|
|
TaskController::Get()->RunPoolThread();
|
|
}
|
|
|
|
bool TaskController::InitializeInternal() {
|
|
InputTaskManager::Init();
|
|
VsyncTaskManager::Init();
|
|
mMTProcessingRunnable = NS_NewRunnableFunction(
|
|
"TaskController::ExecutePendingMTTasks()",
|
|
[]() { TaskController::Get()->ProcessPendingMTTask(); });
|
|
mMTBlockingProcessingRunnable = NS_NewRunnableFunction(
|
|
"TaskController::ExecutePendingMTTasks()",
|
|
[]() { TaskController::Get()->ProcessPendingMTTask(true); });
|
|
|
|
return true;
|
|
}
|
|
|
|
// We want our default stack size limit to be approximately 2MB, to be safe for
|
|
// JS helper tasks that can use a lot of stack, but expect most threads to use
|
|
// much less. On Linux, however, requesting a stack of 2MB or larger risks the
|
|
// kernel allocating an entire 2MB huge page for it on first access, which we do
|
|
// not want. To avoid this possibility, we subtract 2 standard VM page sizes
|
|
// from our default.
|
|
constexpr PRUint32 sBaseStackSize = 2048 * 1024 - 2 * 4096;
|
|
|
|
// TSan enforces a minimum stack size that's just slightly larger than our
|
|
// default helper stack size. It does this to store blobs of TSan-specific data
|
|
// on each thread's stack. Unfortunately, that means that even though we'll
|
|
// actually receive a larger stack than we requested, the effective usable space
|
|
// of that stack is significantly less than what we expect. To offset TSan
|
|
// stealing our stack space from underneath us, double the default.
|
|
//
|
|
// Similarly, ASan requires more stack space due to red-zones.
|
|
#if defined(MOZ_TSAN) || defined(MOZ_ASAN)
|
|
constexpr PRUint32 sStackSize = 2 * sBaseStackSize;
|
|
#else
|
|
constexpr PRUint32 sStackSize = sBaseStackSize;
|
|
#endif
|
|
|
|
void TaskController::InitializeThreadPool() {
|
|
mPoolInitializationMutex.AssertCurrentThreadOwns();
|
|
MOZ_ASSERT(!mThreadPoolInitialized);
|
|
mThreadPoolInitialized = true;
|
|
|
|
int32_t poolSize = GetPoolThreadCount();
|
|
for (int32_t i = 0; i < poolSize; i++) {
|
|
int32_t* index = new int32_t(i);
|
|
mPoolThreads.push_back(
|
|
{PR_CreateThread(PR_USER_THREAD, ThreadFuncPoolThread, index,
|
|
PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD,
|
|
PR_JOINABLE_THREAD, sStackSize),
|
|
nullptr});
|
|
}
|
|
}
|
|
|
|
/* static */
|
|
size_t TaskController::GetThreadStackSize() { return sStackSize; }
|
|
|
|
void TaskController::SetPerformanceCounterState(
|
|
PerformanceCounterState* aPerformanceCounterState) {
|
|
mPerformanceCounterState = aPerformanceCounterState;
|
|
}
|
|
|
|
/* static */
|
|
void TaskController::Shutdown() {
|
|
InputTaskManager::Cleanup();
|
|
VsyncTaskManager::Cleanup();
|
|
if (sSingleton) {
|
|
sSingleton->ShutdownThreadPoolInternal();
|
|
sSingleton->ShutdownInternal();
|
|
}
|
|
MOZ_ASSERT(!sSingleton);
|
|
}
|
|
|
|
void TaskController::ShutdownThreadPoolInternal() {
|
|
{
|
|
// Prevent racecondition on mShuttingDown and wait.
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
mShuttingDown = true;
|
|
mThreadPoolCV.NotifyAll();
|
|
}
|
|
for (PoolThread& thread : mPoolThreads) {
|
|
PR_JoinThread(thread.mThread);
|
|
}
|
|
}
|
|
|
|
void TaskController::ShutdownInternal() { sSingleton = nullptr; }
|
|
|
|
void TaskController::RunPoolThread() {
|
|
IOInterposer::RegisterCurrentThread();
|
|
|
|
// This is used to hold on to a task to make sure it is released outside the
|
|
// lock. This is required since it's perfectly feasible for task destructors
|
|
// to post events themselves.
|
|
RefPtr<Task> lastTask;
|
|
|
|
nsAutoCString threadName;
|
|
threadName.AppendLiteral("TaskController #");
|
|
threadName.AppendInt(static_cast<int64_t>(mThreadPoolIndex));
|
|
AUTO_PROFILER_REGISTER_THREAD(threadName.BeginReading());
|
|
|
|
MutexAutoLock lock(mGraphMutex);
|
|
while (true) {
|
|
bool ranTask = false;
|
|
|
|
if (!mThreadableTasks.empty()) {
|
|
for (auto iter = mThreadableTasks.begin(); iter != mThreadableTasks.end();
|
|
++iter) {
|
|
// Search for the highest priority dependency of the highest priority
|
|
// task.
|
|
|
|
// We work with rawptrs to avoid needless refcounting. All our tasks
|
|
// are always kept alive by the graph. If one is removed from the graph
|
|
// it is kept alive by mPoolThreads[mThreadPoolIndex].mCurrentTask.
|
|
Task* task = iter->get();
|
|
|
|
MOZ_ASSERT(!task->mTaskManager);
|
|
|
|
mPoolThreads[mThreadPoolIndex].mEffectiveTaskPriority =
|
|
task->GetPriority();
|
|
|
|
Task* nextTask;
|
|
while ((nextTask = task->GetHighestPriorityDependency())) {
|
|
task = nextTask;
|
|
}
|
|
|
|
if (task->IsMainThreadOnly() || task->mInProgress) {
|
|
continue;
|
|
}
|
|
|
|
mPoolThreads[mThreadPoolIndex].mCurrentTask = task;
|
|
mThreadableTasks.erase(task->mIterator);
|
|
task->mIterator = mThreadableTasks.end();
|
|
task->mInProgress = true;
|
|
|
|
bool taskCompleted = false;
|
|
{
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
lastTask = nullptr;
|
|
AUTO_PROFILE_FOLLOWING_TASK(task);
|
|
taskCompleted = task->Run();
|
|
ranTask = true;
|
|
}
|
|
|
|
task->mInProgress = false;
|
|
|
|
if (!taskCompleted) {
|
|
// Presumably this task was interrupted, leave its dependencies
|
|
// unresolved and reinsert into the queue.
|
|
auto insertion = mThreadableTasks.insert(
|
|
mPoolThreads[mThreadPoolIndex].mCurrentTask);
|
|
MOZ_ASSERT(insertion.second);
|
|
task->mIterator = insertion.first;
|
|
} else {
|
|
task->mCompleted = true;
|
|
#ifdef DEBUG
|
|
task->mIsInGraph = false;
|
|
#endif
|
|
task->mDependencies.clear();
|
|
// This may have unblocked a main thread task. We could do this only
|
|
// if there was a main thread task before this one in the dependency
|
|
// chain.
|
|
mMayHaveMainThreadTask = true;
|
|
// Since this could have multiple dependencies thare are restricted
|
|
// to the main thread. Let's make sure that's awake.
|
|
EnsureMainThreadTasksScheduled();
|
|
|
|
MaybeInterruptTask(GetHighestPriorityMTTask());
|
|
}
|
|
|
|
// Store last task for release next time we release the lock or enter
|
|
// wait state.
|
|
lastTask = mPoolThreads[mThreadPoolIndex].mCurrentTask.forget();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Ensure the last task is released before we enter the wait state.
|
|
if (lastTask) {
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
lastTask = nullptr;
|
|
|
|
// Run another loop iteration, while we were unlocked there was an
|
|
// opportunity for another task to be posted or shutdown to be initiated.
|
|
continue;
|
|
}
|
|
|
|
if (!ranTask) {
|
|
if (mShuttingDown) {
|
|
IOInterposer::UnregisterCurrentThread();
|
|
MOZ_ASSERT(mThreadableTasks.empty());
|
|
return;
|
|
}
|
|
|
|
AUTO_PROFILER_LABEL("TaskController::RunPoolThread", IDLE);
|
|
mThreadPoolCV.Wait();
|
|
}
|
|
}
|
|
}
|
|
|
|
void TaskController::AddTask(already_AddRefed<Task>&& aTask) {
|
|
RefPtr<Task> task(aTask);
|
|
|
|
if (!task->IsMainThreadOnly()) {
|
|
MutexAutoLock lock(mPoolInitializationMutex);
|
|
if (!mThreadPoolInitialized) {
|
|
InitializeThreadPool();
|
|
mThreadPoolInitialized = true;
|
|
}
|
|
}
|
|
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
if (TaskManager* manager = task->GetManager()) {
|
|
if (manager->mTaskCount == 0) {
|
|
mTaskManagers.insert(manager);
|
|
}
|
|
manager->DidQueueTask();
|
|
|
|
// Set this here since if this manager's priority modifier doesn't change
|
|
// we will not reprioritize when iterating over the queue.
|
|
task->mPriorityModifier = manager->mCurrentPriorityModifier;
|
|
}
|
|
|
|
task->mInsertionTime = TimeStamp::Now();
|
|
|
|
#ifdef DEBUG
|
|
task->mIsInGraph = true;
|
|
|
|
for (const RefPtr<Task>& otherTask : task->mDependencies) {
|
|
MOZ_ASSERT(!otherTask->mTaskManager ||
|
|
otherTask->mTaskManager == task->mTaskManager);
|
|
}
|
|
#endif
|
|
|
|
LogTask::LogDispatch(task);
|
|
|
|
std::pair<std::set<RefPtr<Task>, Task::PriorityCompare>::iterator, bool>
|
|
insertion;
|
|
if (task->IsMainThreadOnly()) {
|
|
insertion = mMainThreadTasks.insert(std::move(task));
|
|
} else {
|
|
insertion = mThreadableTasks.insert(std::move(task));
|
|
}
|
|
(*insertion.first)->mIterator = insertion.first;
|
|
MOZ_ASSERT(insertion.second);
|
|
|
|
MaybeInterruptTask(*insertion.first);
|
|
}
|
|
|
|
void TaskController::WaitForTaskOrMessage() {
|
|
MutexAutoLock lock(mGraphMutex);
|
|
while (!mMayHaveMainThreadTask) {
|
|
AUTO_PROFILER_LABEL("TaskController::WaitForTaskOrMessage", IDLE);
|
|
mMainThreadCV.Wait();
|
|
}
|
|
}
|
|
|
|
void TaskController::ExecuteNextTaskOnlyMainThread() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MutexAutoLock lock(mGraphMutex);
|
|
ExecuteNextTaskOnlyMainThreadInternal(lock);
|
|
}
|
|
|
|
void TaskController::ProcessPendingMTTask(bool aMayWait) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
for (;;) {
|
|
// We only ever process one event here. However we may sometimes
|
|
// not actually process a real event because of suspended tasks.
|
|
// This loop allows us to wait until we've processed something
|
|
// in that scenario.
|
|
|
|
mMTTaskRunnableProcessedTask = ExecuteNextTaskOnlyMainThreadInternal(lock);
|
|
|
|
if (mMTTaskRunnableProcessedTask || !aMayWait) {
|
|
break;
|
|
}
|
|
|
|
BackgroundHangMonitor().NotifyWait();
|
|
|
|
{
|
|
// ProcessNextEvent will also have attempted to wait, however we may have
|
|
// given it a Runnable when all the tasks in our task graph were suspended
|
|
// but we weren't able to cheaply determine that.
|
|
AUTO_PROFILER_LABEL("TaskController::ProcessPendingMTTask", IDLE);
|
|
mMainThreadCV.Wait();
|
|
}
|
|
|
|
BackgroundHangMonitor().NotifyActivity();
|
|
}
|
|
|
|
if (mMayHaveMainThreadTask) {
|
|
EnsureMainThreadTasksScheduled();
|
|
}
|
|
}
|
|
|
|
void TaskController::ReprioritizeTask(Task* aTask, uint32_t aPriority) {
|
|
MutexAutoLock lock(mGraphMutex);
|
|
std::set<RefPtr<Task>, Task::PriorityCompare>* queue = &mMainThreadTasks;
|
|
if (!aTask->IsMainThreadOnly()) {
|
|
queue = &mThreadableTasks;
|
|
}
|
|
|
|
MOZ_ASSERT(aTask->mIterator != queue->end());
|
|
queue->erase(aTask->mIterator);
|
|
|
|
aTask->mPriority = aPriority;
|
|
|
|
auto insertion = queue->insert(aTask);
|
|
MOZ_ASSERT(insertion.second);
|
|
aTask->mIterator = insertion.first;
|
|
|
|
MaybeInterruptTask(aTask);
|
|
}
|
|
|
|
// Code supporting runnable compatibility.
|
|
// Task that wraps a runnable.
|
|
class RunnableTask : public Task {
|
|
public:
|
|
RunnableTask(already_AddRefed<nsIRunnable>&& aRunnable, int32_t aPriority,
|
|
bool aMainThread = true)
|
|
: Task(aMainThread, aPriority), mRunnable(aRunnable) {}
|
|
|
|
virtual bool Run() override {
|
|
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
// If we're on the main thread, we want to record our current
|
|
// runnable's name in a static so that BHR can record it.
|
|
Array<char, nsThread::kRunnableNameBufSize> restoreRunnableName;
|
|
restoreRunnableName[0] = '\0';
|
|
auto clear = MakeScopeExit([&] {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
nsThread::sMainThreadRunnableName = restoreRunnableName;
|
|
});
|
|
nsAutoCString name;
|
|
nsThread::GetLabeledRunnableName(mRunnable, name,
|
|
EventQueuePriority(GetPriority()));
|
|
|
|
restoreRunnableName = nsThread::sMainThreadRunnableName;
|
|
|
|
// Copy the name into sMainThreadRunnableName's buffer, and append a
|
|
// terminating null.
|
|
uint32_t length = std::min((uint32_t)nsThread::kRunnableNameBufSize - 1,
|
|
(uint32_t)name.Length());
|
|
memcpy(nsThread::sMainThreadRunnableName.begin(), name.BeginReading(),
|
|
length);
|
|
nsThread::sMainThreadRunnableName[length] = '\0';
|
|
#endif
|
|
|
|
mRunnable->Run();
|
|
mRunnable = nullptr;
|
|
return true;
|
|
}
|
|
|
|
void SetIdleDeadline(TimeStamp aDeadline) override {
|
|
nsCOMPtr<nsIIdleRunnable> idleRunnable = do_QueryInterface(mRunnable);
|
|
if (idleRunnable) {
|
|
idleRunnable->SetDeadline(aDeadline);
|
|
}
|
|
}
|
|
|
|
PerformanceCounter* GetPerformanceCounter() const override {
|
|
return nsThread::GetPerformanceCounterBase(mRunnable);
|
|
}
|
|
|
|
virtual bool GetName(nsACString& aName) override {
|
|
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
nsThread::GetLabeledRunnableName(mRunnable, aName,
|
|
EventQueuePriority(GetPriority()));
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
RefPtr<nsIRunnable> mRunnable;
|
|
};
|
|
|
|
void TaskController::DispatchRunnable(already_AddRefed<nsIRunnable>&& aRunnable,
|
|
uint32_t aPriority,
|
|
TaskManager* aManager) {
|
|
RefPtr<RunnableTask> task = new RunnableTask(std::move(aRunnable), aPriority);
|
|
|
|
task->SetManager(aManager);
|
|
TaskController::Get()->AddTask(task.forget());
|
|
}
|
|
|
|
nsIRunnable* TaskController::GetRunnableForMTTask(bool aReallyWait) {
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
while (mMainThreadTasks.empty()) {
|
|
if (!aReallyWait) {
|
|
return nullptr;
|
|
}
|
|
|
|
AUTO_PROFILER_LABEL("TaskController::GetRunnableForMTTask::Wait", IDLE);
|
|
mMainThreadCV.Wait();
|
|
}
|
|
|
|
return aReallyWait ? mMTBlockingProcessingRunnable : mMTProcessingRunnable;
|
|
}
|
|
|
|
bool TaskController::HasMainThreadPendingTasks() {
|
|
auto resetIdleState = MakeScopeExit([&idleManager = mIdleTaskManager] {
|
|
if (idleManager) {
|
|
idleManager->State().ClearCachedIdleDeadline();
|
|
}
|
|
});
|
|
|
|
for (bool considerIdle : {false, true}) {
|
|
if (considerIdle && !mIdleTaskManager) {
|
|
continue;
|
|
}
|
|
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
if (considerIdle) {
|
|
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
|
|
// Temporarily unlock so we can peek our idle deadline.
|
|
// XXX We could do this _before_ we take the lock if the API would let us.
|
|
// We do want to do this before looking at mMainThreadTasks, in case
|
|
// someone adds one while we're unlocked.
|
|
{
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().CachePeekedIdleDeadline(unlock);
|
|
}
|
|
}
|
|
|
|
// Return early if there's no tasks at all.
|
|
if (mMainThreadTasks.empty()) {
|
|
return false;
|
|
}
|
|
|
|
// We can cheaply count how many tasks are suspended.
|
|
uint64_t totalSuspended = 0;
|
|
for (TaskManager* manager : mTaskManagers) {
|
|
DebugOnly<bool> modifierChanged =
|
|
manager
|
|
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
|
|
lock, TaskManager::IterationType::NOT_EVENT_LOOP_TURN);
|
|
MOZ_ASSERT(!modifierChanged);
|
|
|
|
// The idle manager should be suspended unless we're doing the idle pass.
|
|
MOZ_ASSERT(manager != mIdleTaskManager || manager->mCurrentSuspended ||
|
|
considerIdle,
|
|
"Why are idle tasks not suspended here?");
|
|
|
|
if (manager->mCurrentSuspended) {
|
|
// XXX - If managers manage off-main-thread tasks this breaks! This
|
|
// scenario is explicitly not supported.
|
|
//
|
|
// This is only incremented inside the lock -or- decremented on the main
|
|
// thread so this is safe.
|
|
totalSuspended += manager->mTaskCount;
|
|
}
|
|
}
|
|
|
|
// This would break down if we have a non-suspended task depending on a
|
|
// suspended task. This is why for the moment we do not allow tasks
|
|
// to be dependent on tasks managed by another taskmanager.
|
|
if (mMainThreadTasks.size() > totalSuspended) {
|
|
// If mIdleTaskManager->mTaskCount is 0, we never updated the suspended
|
|
// state of mIdleTaskManager above, hence shouldn't even check it here.
|
|
// But in that case idle tasks are not contributing to our suspended task
|
|
// count anyway.
|
|
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
|
|
!mIdleTaskManager->mCurrentSuspended) {
|
|
MOZ_ASSERT(considerIdle, "Why is mIdleTaskManager not suspended?");
|
|
// Check whether the idle tasks were really needed to make our "we have
|
|
// an unsuspended task" decision. If they were, we need to force-enable
|
|
// idle tasks until we run our next task.
|
|
if (mMainThreadTasks.size() - mIdleTaskManager->mTaskCount <=
|
|
totalSuspended) {
|
|
mIdleTaskManager->State().EnforcePendingTaskGuarantee();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TaskController::ExecuteNextTaskOnlyMainThreadInternal(
|
|
const MutexAutoLock& aProofOfLock) {
|
|
// Block to make it easier to jump to our cleanup.
|
|
bool taskRan = false;
|
|
do {
|
|
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
|
|
if (taskRan) {
|
|
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
|
|
mIdleTaskManager->IsSuspended(aProofOfLock)) {
|
|
uint32_t activeTasks = mMainThreadTasks.size();
|
|
for (TaskManager* manager : mTaskManagers) {
|
|
if (manager->IsSuspended(aProofOfLock)) {
|
|
activeTasks -= manager->mTaskCount;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!activeTasks) {
|
|
// We have only idle (and maybe other suspended) tasks left, so need
|
|
// to update the idle state. We need to temporarily release the lock
|
|
// while we do that.
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().RequestIdleDeadlineIfNeeded(unlock);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!mIdleTaskManager) {
|
|
break;
|
|
}
|
|
|
|
if (mIdleTaskManager->mTaskCount) {
|
|
// We have idle tasks that we may not have gotten above because
|
|
// our idle state is not up to date. We need to update the idle state
|
|
// and try again. We need to temporarily release the lock while we do
|
|
// that.
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().UpdateCachedIdleDeadline(unlock);
|
|
} else {
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().RanOutOfTasks(unlock);
|
|
}
|
|
|
|
// When we unlocked, someone may have queued a new task on us. So try to
|
|
// see whether we can run things again.
|
|
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
|
|
} while (false);
|
|
|
|
if (mIdleTaskManager) {
|
|
// The pending task guarantee is not needed anymore, since we just tried
|
|
// running a task
|
|
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
|
|
|
|
if (mMainThreadTasks.empty()) {
|
|
// XXX the IdlePeriodState API demands we have a MutexAutoUnlock for it.
|
|
// Otherwise we could perhaps just do this after we exit the locked block,
|
|
// by pushing the lock down into this method. Though it's not clear that
|
|
// we could check mMainThreadTasks.size() once we unlock, and whether we
|
|
// could maybe substitute mMayHaveMainThreadTask for that check.
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().RanOutOfTasks(unlock);
|
|
}
|
|
}
|
|
|
|
return taskRan;
|
|
}
|
|
|
|
bool TaskController::DoExecuteNextTaskOnlyMainThreadInternal(
|
|
const MutexAutoLock& aProofOfLock) {
|
|
nsCOMPtr<nsIThread> mainIThread;
|
|
NS_GetMainThread(getter_AddRefs(mainIThread));
|
|
|
|
nsThread* mainThread = static_cast<nsThread*>(mainIThread.get());
|
|
if (mainThread) {
|
|
mainThread->SetRunningEventDelay(TimeDuration(), TimeStamp());
|
|
}
|
|
|
|
uint32_t totalSuspended = 0;
|
|
for (TaskManager* manager : mTaskManagers) {
|
|
bool modifierChanged =
|
|
manager
|
|
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
|
|
aProofOfLock, TaskManager::IterationType::EVENT_LOOP_TURN);
|
|
if (modifierChanged) {
|
|
ProcessUpdatedPriorityModifier(manager);
|
|
}
|
|
if (manager->mCurrentSuspended) {
|
|
totalSuspended += manager->mTaskCount;
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(mMainThreadTasks.size() >= totalSuspended);
|
|
|
|
// This would break down if we have a non-suspended task depending on a
|
|
// suspended task. This is why for the moment we do not allow tasks
|
|
// to be dependent on tasks managed by another taskmanager.
|
|
if (mMainThreadTasks.size() > totalSuspended) {
|
|
for (auto iter = mMainThreadTasks.begin(); iter != mMainThreadTasks.end();
|
|
iter++) {
|
|
Task* task = iter->get();
|
|
|
|
if (task->mTaskManager && task->mTaskManager->mCurrentSuspended) {
|
|
// Even though we may want to run some dependencies of this task, we
|
|
// will run them at their own priority level and not the priority
|
|
// level of their dependents.
|
|
continue;
|
|
}
|
|
|
|
task = GetFinalDependency(task);
|
|
|
|
if (!task->IsMainThreadOnly() || task->mInProgress ||
|
|
(task->mTaskManager && task->mTaskManager->mCurrentSuspended)) {
|
|
continue;
|
|
}
|
|
|
|
mCurrentTasksMT.push(task);
|
|
mMainThreadTasks.erase(task->mIterator);
|
|
task->mIterator = mMainThreadTasks.end();
|
|
task->mInProgress = true;
|
|
TaskManager* manager = task->GetManager();
|
|
bool result = false;
|
|
|
|
{
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
if (manager) {
|
|
manager->WillRunTask();
|
|
if (manager != mIdleTaskManager) {
|
|
// Notify the idle period state that we're running a non-idle task.
|
|
// This needs to happen while our mutex is not locked!
|
|
mIdleTaskManager->State().FlagNotIdle();
|
|
} else {
|
|
TimeStamp idleDeadline =
|
|
mIdleTaskManager->State().GetCachedIdleDeadline();
|
|
MOZ_ASSERT(
|
|
idleDeadline,
|
|
"How can we not have a deadline if our manager is enabled?");
|
|
task->SetIdleDeadline(idleDeadline);
|
|
}
|
|
}
|
|
if (mIdleTaskManager) {
|
|
// We found a task to run; we can clear the idle deadline on our idle
|
|
// task manager. This _must_ be done before we actually run the task,
|
|
// because running the task could reenter via spinning the event loop
|
|
// and we want to make sure there's no cached idle deadline at that
|
|
// point. But we have to make sure we do it after out SetIdleDeadline
|
|
// call above, in the case when the task is actually an idle task.
|
|
mIdleTaskManager->State().ClearCachedIdleDeadline();
|
|
}
|
|
|
|
TimeStamp now = TimeStamp::Now();
|
|
|
|
if (mainThread) {
|
|
if (task->GetPriority() < uint32_t(EventQueuePriority::InputHigh)) {
|
|
mainThread->SetRunningEventDelay(TimeDuration(), now);
|
|
} else {
|
|
mainThread->SetRunningEventDelay(now - task->mInsertionTime, now);
|
|
}
|
|
}
|
|
|
|
PerformanceCounterState::Snapshot snapshot =
|
|
mPerformanceCounterState->RunnableWillRun(
|
|
task->GetPerformanceCounter(), now,
|
|
manager == mIdleTaskManager);
|
|
|
|
{
|
|
LogTask::Run log(task);
|
|
AUTO_PROFILE_FOLLOWING_TASK(task);
|
|
result = task->Run();
|
|
}
|
|
|
|
// Task itself should keep manager alive.
|
|
if (manager) {
|
|
manager->DidRunTask();
|
|
}
|
|
|
|
mPerformanceCounterState->RunnableDidRun(std::move(snapshot));
|
|
}
|
|
|
|
// Task itself should keep manager alive.
|
|
if (manager && result && manager->mTaskCount == 0) {
|
|
mTaskManagers.erase(manager);
|
|
}
|
|
|
|
task->mInProgress = false;
|
|
|
|
if (!result) {
|
|
// Presumably this task was interrupted, leave its dependencies
|
|
// unresolved and reinsert into the queue.
|
|
auto insertion =
|
|
mMainThreadTasks.insert(std::move(mCurrentTasksMT.top()));
|
|
MOZ_ASSERT(insertion.second);
|
|
task->mIterator = insertion.first;
|
|
manager->WillRunTask();
|
|
} else {
|
|
task->mCompleted = true;
|
|
#ifdef DEBUG
|
|
task->mIsInGraph = false;
|
|
#endif
|
|
// Clear dependencies to release references.
|
|
task->mDependencies.clear();
|
|
|
|
if (!mThreadableTasks.empty()) {
|
|
// Since this could have multiple dependencies thare are not
|
|
// restricted to the main thread. Let's wake up our thread pool.
|
|
// There is a cost to this, it's possible we will want to wake up
|
|
// only as many threads as we have unblocked tasks, but we currently
|
|
// have no way to determine that easily.
|
|
mThreadPoolCV.NotifyAll();
|
|
}
|
|
}
|
|
|
|
mCurrentTasksMT.pop();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
mMayHaveMainThreadTask = false;
|
|
if (mIdleTaskManager) {
|
|
// We did not find a task to run. We still need to clear the cached idle
|
|
// deadline on our idle state, because that deadline was only relevant to
|
|
// the execution of this function. Had we found a task, we would have
|
|
// cleared the deadline before running that task.
|
|
mIdleTaskManager->State().ClearCachedIdleDeadline();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Task* TaskController::GetFinalDependency(Task* aTask) {
|
|
Task* nextTask;
|
|
|
|
while ((nextTask = aTask->GetHighestPriorityDependency())) {
|
|
aTask = nextTask;
|
|
}
|
|
|
|
return aTask;
|
|
}
|
|
|
|
void TaskController::MaybeInterruptTask(Task* aTask) {
|
|
mGraphMutex.AssertCurrentThreadOwns();
|
|
|
|
if (!aTask) {
|
|
return;
|
|
}
|
|
|
|
// This optimization prevents many slow lookups in long chains of similar
|
|
// priority.
|
|
if (!aTask->mDependencies.empty()) {
|
|
Task* firstDependency = aTask->mDependencies.begin()->get();
|
|
if (aTask->GetPriority() <= firstDependency->GetPriority() &&
|
|
!firstDependency->mCompleted &&
|
|
aTask->IsMainThreadOnly() == firstDependency->IsMainThreadOnly()) {
|
|
// This task has the same or a higher priority as one of its dependencies,
|
|
// never any need to interrupt.
|
|
return;
|
|
}
|
|
}
|
|
|
|
Task* finalDependency = GetFinalDependency(aTask);
|
|
|
|
if (finalDependency->mInProgress) {
|
|
// No need to wake anything, we can't schedule this task right now anyway.
|
|
return;
|
|
}
|
|
|
|
if (aTask->IsMainThreadOnly()) {
|
|
mMayHaveMainThreadTask = true;
|
|
|
|
EnsureMainThreadTasksScheduled();
|
|
|
|
if (mCurrentTasksMT.empty()) {
|
|
return;
|
|
}
|
|
|
|
// We could go through the steps above here and interrupt an off main
|
|
// thread task in case it has a lower priority.
|
|
if (!finalDependency->IsMainThreadOnly()) {
|
|
return;
|
|
}
|
|
|
|
if (mCurrentTasksMT.top()->GetPriority() < aTask->GetPriority()) {
|
|
mCurrentTasksMT.top()->RequestInterrupt(aTask->GetPriority());
|
|
}
|
|
} else {
|
|
Task* lowestPriorityTask = nullptr;
|
|
for (PoolThread& thread : mPoolThreads) {
|
|
if (!thread.mCurrentTask) {
|
|
mThreadPoolCV.Notify();
|
|
// There's a free thread, no need to interrupt anything.
|
|
return;
|
|
}
|
|
|
|
if (!lowestPriorityTask) {
|
|
lowestPriorityTask = thread.mCurrentTask.get();
|
|
continue;
|
|
}
|
|
|
|
// This should possibly select the lowest priority task which was started
|
|
// the latest. But for now we ignore that optimization.
|
|
// This also doesn't guarantee a task is interruptable, so that's an
|
|
// avenue for improvements as well.
|
|
if (lowestPriorityTask->GetPriority() > thread.mEffectiveTaskPriority) {
|
|
lowestPriorityTask = thread.mCurrentTask.get();
|
|
}
|
|
}
|
|
|
|
if (lowestPriorityTask->GetPriority() < aTask->GetPriority()) {
|
|
lowestPriorityTask->RequestInterrupt(aTask->GetPriority());
|
|
}
|
|
|
|
// We choose not to interrupt main thread tasks for tasks which may be
|
|
// executed off the main thread.
|
|
}
|
|
}
|
|
|
|
Task* TaskController::GetHighestPriorityMTTask() {
|
|
mGraphMutex.AssertCurrentThreadOwns();
|
|
|
|
if (!mMainThreadTasks.empty()) {
|
|
return mMainThreadTasks.begin()->get();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void TaskController::EnsureMainThreadTasksScheduled() {
|
|
if (mObserver) {
|
|
mObserver->OnDispatchedEvent();
|
|
}
|
|
if (mExternalCondVar) {
|
|
mExternalCondVar->Notify();
|
|
}
|
|
mMainThreadCV.Notify();
|
|
}
|
|
|
|
void TaskController::ProcessUpdatedPriorityModifier(TaskManager* aManager) {
|
|
mGraphMutex.AssertCurrentThreadOwns();
|
|
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
|
|
int32_t modifier = aManager->mCurrentPriorityModifier;
|
|
|
|
std::vector<RefPtr<Task>> storedTasks;
|
|
// Find all relevant tasks.
|
|
for (auto iter = mMainThreadTasks.begin(); iter != mMainThreadTasks.end();) {
|
|
if ((*iter)->mTaskManager == aManager) {
|
|
storedTasks.push_back(*iter);
|
|
iter = mMainThreadTasks.erase(iter);
|
|
} else {
|
|
iter++;
|
|
}
|
|
}
|
|
|
|
// Reinsert found tasks with their new priorities.
|
|
for (RefPtr<Task>& ref : storedTasks) {
|
|
// Kept alive at first by the vector and then by mMainThreadTasks.
|
|
Task* task = ref;
|
|
task->mPriorityModifier = modifier;
|
|
auto insertion = mMainThreadTasks.insert(std::move(ref));
|
|
MOZ_ASSERT(insertion.second);
|
|
task->mIterator = insertion.first;
|
|
}
|
|
}
|
|
|
|
} // namespace mozilla
|