forked from mirrors/gecko-dev
		
	 f66247db06
			
		
	
	
		f66247db06
		
	
	
	
	
		
			
			We've removed the ability to reverse flex container's axes internally in bug 1639053. Differential Revision: https://phabricator.services.mozilla.com/D181602
		
			
				
	
	
		
			6016 lines
		
	
	
	
		
			254 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			6016 lines
		
	
	
	
		
			254 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | |
| /* This Source Code Form is subject to the terms of the Mozilla Public
 | |
|  * License, v. 2.0. If a copy of the MPL was not distributed with this
 | |
|  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | |
| 
 | |
| /* rendering object for CSS "display: flex" */
 | |
| 
 | |
| #include "nsFlexContainerFrame.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| 
 | |
| #include "gfxContext.h"
 | |
| #include "mozilla/Baseline.h"
 | |
| #include "mozilla/ComputedStyle.h"
 | |
| #include "mozilla/CSSOrderAwareFrameIterator.h"
 | |
| #include "mozilla/FloatingPoint.h"
 | |
| #include "mozilla/Logging.h"
 | |
| #include "mozilla/PresShell.h"
 | |
| #include "mozilla/StaticPrefs_layout.h"
 | |
| #include "mozilla/WritingModes.h"
 | |
| #include "nsBlockFrame.h"
 | |
| #include "nsContentUtils.h"
 | |
| #include "nsCSSAnonBoxes.h"
 | |
| #include "nsDebug.h"
 | |
| #include "nsDisplayList.h"
 | |
| #include "nsFieldSetFrame.h"
 | |
| #include "nsIFrameInlines.h"
 | |
| #include "nsLayoutUtils.h"
 | |
| #include "nsPlaceholderFrame.h"
 | |
| #include "nsPresContext.h"
 | |
| 
 | |
| using namespace mozilla;
 | |
| using namespace mozilla::layout;
 | |
| 
 | |
| // Convenience typedefs for helper classes that we forward-declare in .h file
 | |
| // (so that nsFlexContainerFrame methods can use them as parameters):
 | |
| using FlexItem = nsFlexContainerFrame::FlexItem;
 | |
| using FlexLine = nsFlexContainerFrame::FlexLine;
 | |
| using FlexboxAxisTracker = nsFlexContainerFrame::FlexboxAxisTracker;
 | |
| using StrutInfo = nsFlexContainerFrame::StrutInfo;
 | |
| using CachedBAxisMeasurement = nsFlexContainerFrame::CachedBAxisMeasurement;
 | |
| 
 | |
| static mozilla::LazyLogModule gFlexContainerLog("FlexContainer");
 | |
| #define FLEX_LOG(...) \
 | |
|   MOZ_LOG(gFlexContainerLog, LogLevel::Debug, (__VA_ARGS__));
 | |
| #define FLEX_LOGV(...) \
 | |
|   MOZ_LOG(gFlexContainerLog, LogLevel::Verbose, (__VA_ARGS__));
 | |
| 
 | |
| // Returns true if aFlexContainer is a frame for some element that has
 | |
| // display:-webkit-{inline-}box (or -moz-{inline-}box). aFlexContainer is
 | |
| // expected to be an instance of nsFlexContainerFrame (enforced with an assert);
 | |
| // otherwise, this function's state-bit-check here is bogus.
 | |
| static bool IsLegacyBox(const nsIFrame* aFlexContainer) {
 | |
|   MOZ_ASSERT(aFlexContainer->IsFlexContainerFrame(),
 | |
|              "only flex containers may be passed to this function");
 | |
|   return aFlexContainer->HasAnyStateBits(
 | |
|       NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX);
 | |
| }
 | |
| 
 | |
| // Returns the OrderState enum we should pass to CSSOrderAwareFrameIterator
 | |
| // (depending on whether aFlexContainer has
 | |
| // NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER state bit).
 | |
| static CSSOrderAwareFrameIterator::OrderState OrderStateForIter(
 | |
|     const nsFlexContainerFrame* aFlexContainer) {
 | |
|   return aFlexContainer->HasAnyStateBits(
 | |
|              NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
 | |
|              ? CSSOrderAwareFrameIterator::OrderState::Ordered
 | |
|              : CSSOrderAwareFrameIterator::OrderState::Unordered;
 | |
| }
 | |
| 
 | |
| // Returns the OrderingProperty enum that we should pass to
 | |
| // CSSOrderAwareFrameIterator (depending on whether it's a legacy box).
 | |
| static CSSOrderAwareFrameIterator::OrderingProperty OrderingPropertyForIter(
 | |
|     const nsFlexContainerFrame* aFlexContainer) {
 | |
|   return IsLegacyBox(aFlexContainer)
 | |
|              ? CSSOrderAwareFrameIterator::OrderingProperty::BoxOrdinalGroup
 | |
|              : CSSOrderAwareFrameIterator::OrderingProperty::Order;
 | |
| }
 | |
| 
 | |
| // Returns the "align-items" value that's equivalent to the legacy "box-align"
 | |
| // value in the given style struct.
 | |
| static StyleAlignFlags ConvertLegacyStyleToAlignItems(
 | |
|     const nsStyleXUL* aStyleXUL) {
 | |
|   // -[moz|webkit]-box-align corresponds to modern "align-items"
 | |
|   switch (aStyleXUL->mBoxAlign) {
 | |
|     case StyleBoxAlign::Stretch:
 | |
|       return StyleAlignFlags::STRETCH;
 | |
|     case StyleBoxAlign::Start:
 | |
|       return StyleAlignFlags::FLEX_START;
 | |
|     case StyleBoxAlign::Center:
 | |
|       return StyleAlignFlags::CENTER;
 | |
|     case StyleBoxAlign::Baseline:
 | |
|       return StyleAlignFlags::BASELINE;
 | |
|     case StyleBoxAlign::End:
 | |
|       return StyleAlignFlags::FLEX_END;
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxAlign enum value");
 | |
|   // Fall back to default value of "align-items" property:
 | |
|   return StyleAlignFlags::STRETCH;
 | |
| }
 | |
| 
 | |
| // Returns the "justify-content" value that's equivalent to the legacy
 | |
| // "box-pack" value in the given style struct.
 | |
| static StyleContentDistribution ConvertLegacyStyleToJustifyContent(
 | |
|     const nsStyleXUL* aStyleXUL) {
 | |
|   // -[moz|webkit]-box-pack corresponds to modern "justify-content"
 | |
|   switch (aStyleXUL->mBoxPack) {
 | |
|     case StyleBoxPack::Start:
 | |
|       return {StyleAlignFlags::FLEX_START};
 | |
|     case StyleBoxPack::Center:
 | |
|       return {StyleAlignFlags::CENTER};
 | |
|     case StyleBoxPack::End:
 | |
|       return {StyleAlignFlags::FLEX_END};
 | |
|     case StyleBoxPack::Justify:
 | |
|       return {StyleAlignFlags::SPACE_BETWEEN};
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxPack enum value");
 | |
|   // Fall back to default value of "justify-content" property:
 | |
|   return {StyleAlignFlags::FLEX_START};
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Converts a "flex-relative" coordinate in a single axis (a main- or cross-axis
 | |
|  * coordinate) into a coordinate in the corresponding physical (x or y) axis. If
 | |
|  * the flex-relative axis in question already maps *directly* to a physical
 | |
|  * axis (i.e. if it's LTR or TTB), then the physical coordinate has the same
 | |
|  * numeric value as the provided flex-relative coordinate. Otherwise, we have to
 | |
|  * subtract the flex-relative coordinate from the flex container's size in that
 | |
|  * axis, to flip the polarity. (So e.g. a main-axis position of 2px in a RTL
 | |
|  * 20px-wide container would correspond to a physical coordinate (x-value) of
 | |
|  * 18px.)
 | |
|  */
 | |
| static nscoord PhysicalCoordFromFlexRelativeCoord(nscoord aFlexRelativeCoord,
 | |
|                                                   nscoord aContainerSize,
 | |
|                                                   mozilla::Side aStartSide) {
 | |
|   if (aStartSide == eSideLeft || aStartSide == eSideTop) {
 | |
|     return aFlexRelativeCoord;
 | |
|   }
 | |
|   return aContainerSize - aFlexRelativeCoord;
 | |
| }
 | |
| 
 | |
| // Check if the size is auto or it is a keyword in the block axis.
 | |
| // |aIsInline| should represent whether aSize is in the inline axis, from the
 | |
| // perspective of the writing mode of the flex item that the size comes from.
 | |
| //
 | |
| // max-content and min-content should behave as property's initial value.
 | |
| // Bug 567039: We treat -moz-fit-content and -moz-available as property's
 | |
| // initial value for now.
 | |
| static inline bool IsAutoOrEnumOnBSize(const StyleSize& aSize, bool aIsInline) {
 | |
|   return aSize.IsAuto() || (!aIsInline && !aSize.IsLengthPercentage());
 | |
| }
 | |
| 
 | |
| // Encapsulates our flex container's main & cross axes. This class is backed by
 | |
| // a FlexboxAxisInfo helper member variable, and it adds some convenience APIs
 | |
| // on top of what that struct offers.
 | |
| class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker {
 | |
|  public:
 | |
|   explicit FlexboxAxisTracker(const nsFlexContainerFrame* aFlexContainer);
 | |
| 
 | |
|   // Accessors:
 | |
|   LogicalAxis MainAxis() const {
 | |
|     return IsRowOriented() ? eLogicalAxisInline : eLogicalAxisBlock;
 | |
|   }
 | |
|   LogicalAxis CrossAxis() const {
 | |
|     return IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline;
 | |
|   }
 | |
| 
 | |
|   LogicalSide MainAxisStartSide() const;
 | |
|   LogicalSide MainAxisEndSide() const {
 | |
|     return GetOppositeSide(MainAxisStartSide());
 | |
|   }
 | |
| 
 | |
|   LogicalSide CrossAxisStartSide() const;
 | |
|   LogicalSide CrossAxisEndSide() const {
 | |
|     return GetOppositeSide(CrossAxisStartSide());
 | |
|   }
 | |
| 
 | |
|   mozilla::Side MainAxisPhysicalStartSide() const {
 | |
|     return mWM.PhysicalSide(MainAxisStartSide());
 | |
|   }
 | |
|   mozilla::Side MainAxisPhysicalEndSide() const {
 | |
|     return mWM.PhysicalSide(MainAxisEndSide());
 | |
|   }
 | |
| 
 | |
|   mozilla::Side CrossAxisPhysicalStartSide() const {
 | |
|     return mWM.PhysicalSide(CrossAxisStartSide());
 | |
|   }
 | |
|   mozilla::Side CrossAxisPhysicalEndSide() const {
 | |
|     return mWM.PhysicalSide(CrossAxisEndSide());
 | |
|   }
 | |
| 
 | |
|   // Returns the flex container's writing mode.
 | |
|   WritingMode GetWritingMode() const { return mWM; }
 | |
| 
 | |
|   // Returns true if our main axis is in the reverse direction of our
 | |
|   // writing mode's corresponding axis. (From 'flex-direction: *-reverse')
 | |
|   bool IsMainAxisReversed() const { return mAxisInfo.mIsMainAxisReversed; }
 | |
|   // Returns true if our cross axis is in the reverse direction of our
 | |
|   // writing mode's corresponding axis. (From 'flex-wrap: *-reverse')
 | |
|   bool IsCrossAxisReversed() const { return mAxisInfo.mIsCrossAxisReversed; }
 | |
| 
 | |
|   bool IsRowOriented() const { return mAxisInfo.mIsRowOriented; }
 | |
|   bool IsColumnOriented() const { return !IsRowOriented(); }
 | |
| 
 | |
|   // aSize is expected to match the flex container's WritingMode.
 | |
|   nscoord MainComponent(const LogicalSize& aSize) const {
 | |
|     return IsRowOriented() ? aSize.ISize(mWM) : aSize.BSize(mWM);
 | |
|   }
 | |
|   int32_t MainComponent(const LayoutDeviceIntSize& aIntSize) const {
 | |
|     return IsMainAxisHorizontal() ? aIntSize.width : aIntSize.height;
 | |
|   }
 | |
| 
 | |
|   // aSize is expected to match the flex container's WritingMode.
 | |
|   nscoord CrossComponent(const LogicalSize& aSize) const {
 | |
|     return IsRowOriented() ? aSize.BSize(mWM) : aSize.ISize(mWM);
 | |
|   }
 | |
|   int32_t CrossComponent(const LayoutDeviceIntSize& aIntSize) const {
 | |
|     return IsMainAxisHorizontal() ? aIntSize.height : aIntSize.width;
 | |
|   }
 | |
| 
 | |
|   // NOTE: aMargin is expected to use the flex container's WritingMode.
 | |
|   nscoord MarginSizeInMainAxis(const LogicalMargin& aMargin) const {
 | |
|     // If we're row-oriented, our main axis is the inline axis.
 | |
|     return IsRowOriented() ? aMargin.IStartEnd(mWM) : aMargin.BStartEnd(mWM);
 | |
|   }
 | |
|   nscoord MarginSizeInCrossAxis(const LogicalMargin& aMargin) const {
 | |
|     // If we're row-oriented, our cross axis is the block axis.
 | |
|     return IsRowOriented() ? aMargin.BStartEnd(mWM) : aMargin.IStartEnd(mWM);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Converts a "flex-relative" point (a main-axis & cross-axis coordinate)
 | |
|    * into a LogicalPoint, using the flex container's writing mode.
 | |
|    *
 | |
|    *  @arg aMainCoord  The main-axis coordinate -- i.e an offset from the
 | |
|    *                   main-start edge of the flex container's content box.
 | |
|    *  @arg aCrossCoord The cross-axis coordinate -- i.e an offset from the
 | |
|    *                   cross-start edge of the flex container's content box.
 | |
|    *  @arg aContainerMainSize  The main size of flex container's content box.
 | |
|    *  @arg aContainerCrossSize The cross size of flex container's content box.
 | |
|    *  @return A LogicalPoint, with the flex container's writing mode, that
 | |
|    *          represents the same position. The logical coordinates are
 | |
|    *          relative to the flex container's content box.
 | |
|    */
 | |
|   LogicalPoint LogicalPointFromFlexRelativePoint(
 | |
|       nscoord aMainCoord, nscoord aCrossCoord, nscoord aContainerMainSize,
 | |
|       nscoord aContainerCrossSize) const {
 | |
|     nscoord logicalCoordInMainAxis =
 | |
|         IsMainAxisReversed() ? aContainerMainSize - aMainCoord : aMainCoord;
 | |
|     nscoord logicalCoordInCrossAxis =
 | |
|         IsCrossAxisReversed() ? aContainerCrossSize - aCrossCoord : aCrossCoord;
 | |
| 
 | |
|     return IsRowOriented() ? LogicalPoint(mWM, logicalCoordInMainAxis,
 | |
|                                           logicalCoordInCrossAxis)
 | |
|                            : LogicalPoint(mWM, logicalCoordInCrossAxis,
 | |
|                                           logicalCoordInMainAxis);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Converts a "flex-relative" size (a main-axis & cross-axis size)
 | |
|    * into a LogicalSize, using the flex container's writing mode.
 | |
|    *
 | |
|    *  @arg aMainSize  The main-axis size.
 | |
|    *  @arg aCrossSize The cross-axis size.
 | |
|    *  @return A LogicalSize, with the flex container's writing mode, that
 | |
|    *          represents the same size.
 | |
|    */
 | |
|   LogicalSize LogicalSizeFromFlexRelativeSizes(nscoord aMainSize,
 | |
|                                                nscoord aCrossSize) const {
 | |
|     return IsRowOriented() ? LogicalSize(mWM, aMainSize, aCrossSize)
 | |
|                            : LogicalSize(mWM, aCrossSize, aMainSize);
 | |
|   }
 | |
| 
 | |
|   bool IsMainAxisHorizontal() const {
 | |
|     // If we're row-oriented, and our writing mode is NOT vertical,
 | |
|     // or we're column-oriented and our writing mode IS vertical,
 | |
|     // then our main axis is horizontal. This handles all cases:
 | |
|     return IsRowOriented() != mWM.IsVertical();
 | |
|   }
 | |
| 
 | |
|   // Returns true if this flex item's inline axis in aItemWM is parallel (or
 | |
|   // antiparallel) to the container's main axis. Returns false, otherwise.
 | |
|   //
 | |
|   // Note: this is a helper used before constructing FlexItem. Inside of flex
 | |
|   // reflow code, FlexItem::IsInlineAxisMainAxis() is equivalent & more optimal.
 | |
|   bool IsInlineAxisMainAxis(WritingMode aItemWM) const {
 | |
|     return IsRowOriented() != GetWritingMode().IsOrthogonalTo(aItemWM);
 | |
|   }
 | |
| 
 | |
|   // Maps justify-*: 'left' or 'right' to 'start' or 'end'.
 | |
|   StyleAlignFlags ResolveJustifyLeftRight(const StyleAlignFlags& aFlags) const {
 | |
|     MOZ_ASSERT(
 | |
|         aFlags == StyleAlignFlags::LEFT || aFlags == StyleAlignFlags::RIGHT,
 | |
|         "This helper accepts only 'LEFT' or 'RIGHT' flags!");
 | |
| 
 | |
|     const auto wm = GetWritingMode();
 | |
|     const bool isJustifyLeft = aFlags == StyleAlignFlags::LEFT;
 | |
|     if (IsColumnOriented()) {
 | |
|       if (!wm.IsVertical()) {
 | |
|         // Container's alignment axis (main axis) is *not* parallel to the
 | |
|         // line-left <-> line-right axis or the physical left <-> physical right
 | |
|         // axis, so we map both 'left' and 'right' to 'start'.
 | |
|         return StyleAlignFlags::START;
 | |
|       }
 | |
| 
 | |
|       MOZ_ASSERT(wm.PhysicalAxis(MainAxis()) == eAxisHorizontal,
 | |
|                  "Vertical column-oriented flex container's main axis should "
 | |
|                  "be parallel to physical left <-> right axis!");
 | |
|       // Map 'left' or 'right' to 'start' or 'end', depending on its block flow
 | |
|       // direction.
 | |
|       return isJustifyLeft == wm.IsVerticalLR() ? StyleAlignFlags::START
 | |
|                                                 : StyleAlignFlags::END;
 | |
|     }
 | |
| 
 | |
|     MOZ_ASSERT(MainAxis() == eLogicalAxisInline,
 | |
|                "Row-oriented flex container's main axis should be parallel to "
 | |
|                "line-left <-> line-right axis!");
 | |
| 
 | |
|     // If we get here, we're operating on the flex container's inline axis,
 | |
|     // so we map 'left' to whichever of 'start' or 'end' corresponds to the
 | |
|     // *line-relative* left side; and similar for 'right'.
 | |
|     return isJustifyLeft == wm.IsBidiLTR() ? StyleAlignFlags::START
 | |
|                                            : StyleAlignFlags::END;
 | |
|   }
 | |
| 
 | |
|   // Delete copy-constructor & reassignment operator, to prevent accidental
 | |
|   // (unnecessary) copying.
 | |
|   FlexboxAxisTracker(const FlexboxAxisTracker&) = delete;
 | |
|   FlexboxAxisTracker& operator=(const FlexboxAxisTracker&) = delete;
 | |
| 
 | |
|  private:
 | |
|   const WritingMode mWM;  // The flex container's writing mode.
 | |
|   const FlexboxAxisInfo mAxisInfo;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Represents a flex item.
 | |
|  * Includes the various pieces of input that the Flexbox Layout Algorithm uses
 | |
|  * to resolve a flexible width.
 | |
|  */
 | |
| class nsFlexContainerFrame::FlexItem final {
 | |
|  public:
 | |
|   // Normal constructor:
 | |
|   FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
 | |
|            float aFlexShrink, nscoord aFlexBaseSize, nscoord aMainMinSize,
 | |
|            nscoord aMainMaxSize, nscoord aTentativeCrossSize,
 | |
|            nscoord aCrossMinSize, nscoord aCrossMaxSize,
 | |
|            const FlexboxAxisTracker& aAxisTracker);
 | |
| 
 | |
|   // Simplified constructor, to be used only for generating "struts":
 | |
|   // (NOTE: This "strut" constructor uses the *container's* writing mode, which
 | |
|   // we'll use on this FlexItem instead of the child frame's real writing mode.
 | |
|   // This is fine - it doesn't matter what writing mode we use for a
 | |
|   // strut, since it won't render any content and we already know its size.)
 | |
|   FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM,
 | |
|            const FlexboxAxisTracker& aAxisTracker);
 | |
| 
 | |
|   // Clone existing FlexItem for its underlying frame's continuation.
 | |
|   // @param aContinuation a continuation in our next-in-flow chain.
 | |
|   FlexItem CloneFor(nsIFrame* const aContinuation) const {
 | |
|     MOZ_ASSERT(Frame() == aContinuation->FirstInFlow(),
 | |
|                "aContinuation should be in aItem's continuation chain!");
 | |
|     FlexItem item(*this);
 | |
|     item.mFrame = aContinuation;
 | |
|     item.mHadMeasuringReflow = false;
 | |
|     return item;
 | |
|   }
 | |
| 
 | |
|   // Accessors
 | |
|   nsIFrame* Frame() const { return mFrame; }
 | |
|   nscoord FlexBaseSize() const { return mFlexBaseSize; }
 | |
| 
 | |
|   nscoord MainMinSize() const {
 | |
|     MOZ_ASSERT(!mNeedsMinSizeAutoResolution,
 | |
|                "Someone's using an unresolved 'auto' main min-size");
 | |
|     return mMainMinSize;
 | |
|   }
 | |
|   nscoord MainMaxSize() const { return mMainMaxSize; }
 | |
| 
 | |
|   // Note: These return the main-axis position and size of our *content box*.
 | |
|   nscoord MainSize() const { return mMainSize; }
 | |
|   nscoord MainPosition() const { return mMainPosn; }
 | |
| 
 | |
|   nscoord CrossMinSize() const { return mCrossMinSize; }
 | |
|   nscoord CrossMaxSize() const { return mCrossMaxSize; }
 | |
| 
 | |
|   // Note: These return the cross-axis position and size of our *content box*.
 | |
|   nscoord CrossSize() const { return mCrossSize; }
 | |
|   nscoord CrossPosition() const { return mCrossPosn; }
 | |
| 
 | |
|   // Lazy getter for mAscent.
 | |
|   nscoord ResolvedAscent(bool aUseFirstBaseline) const {
 | |
|     // XXXdholbert Two concerns to follow up on here:
 | |
|     // (1) We probably should be checking and reacting to aUseFirstBaseline
 | |
|     // for all of the cases here (e.g. this first one). Maybe we need to store
 | |
|     // two versions of mAscent and choose the appropriate one based on
 | |
|     // aUseFirstBaseline? This is roughly bug 1480850, I think.
 | |
|     // (2) We should be using the *container's* writing-mode (mCBWM) here,
 | |
|     // instead of the item's (mWM). This is essentially bug 1155322.
 | |
|     if (mAscent != ReflowOutput::ASK_FOR_BASELINE) {
 | |
|       return mAscent;
 | |
|     }
 | |
| 
 | |
|     // Use GetFirstLineBaseline() or GetLastLineBaseline() as appropriate:
 | |
|     bool found =
 | |
|         aUseFirstBaseline
 | |
|             ? nsLayoutUtils::GetFirstLineBaseline(mWM, mFrame, &mAscent)
 | |
|             : nsLayoutUtils::GetLastLineBaseline(mWM, mFrame, &mAscent);
 | |
|     if (found) {
 | |
|       return mAscent;
 | |
|     }
 | |
| 
 | |
|     // If the nsLayoutUtils getter fails, then ask the frame directly:
 | |
|     auto baselineGroup = aUseFirstBaseline ? BaselineSharingGroup::First
 | |
|                                            : BaselineSharingGroup::Last;
 | |
|     if (auto baseline = mFrame->GetNaturalBaselineBOffset(
 | |
|             mWM, baselineGroup, BaselineExportContext::Other)) {
 | |
|       // Offset for last baseline from `GetNaturalBaselineBOffset` originates
 | |
|       // from the frame's block end, so convert it back.
 | |
|       mAscent = baselineGroup == BaselineSharingGroup::First
 | |
|                     ? *baseline
 | |
|                     : mFrame->BSize(mWM) - *baseline;
 | |
|       return mAscent;
 | |
|     }
 | |
| 
 | |
|     // We couldn't determine a baseline, so we synthesize one from border box:
 | |
|     mAscent = Baseline::SynthesizeBOffsetFromBorderBox(
 | |
|         mFrame, mWM, BaselineSharingGroup::First);
 | |
|     return mAscent;
 | |
|   }
 | |
| 
 | |
|   // Convenience methods to compute the main & cross size of our *margin-box*.
 | |
|   nscoord OuterMainSize() const {
 | |
|     return mMainSize + MarginBorderPaddingSizeInMainAxis();
 | |
|   }
 | |
| 
 | |
|   nscoord OuterCrossSize() const {
 | |
|     return mCrossSize + MarginBorderPaddingSizeInCrossAxis();
 | |
|   }
 | |
| 
 | |
|   // Convenience methods to synthesize a style main size or a style cross size
 | |
|   // with box-size considered, to provide the size overrides when constructing
 | |
|   // ReflowInput for flex items.
 | |
|   StyleSize StyleMainSize() const {
 | |
|     nscoord mainSize = MainSize();
 | |
|     if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) {
 | |
|       mainSize += BorderPaddingSizeInMainAxis();
 | |
|     }
 | |
|     return StyleSize::LengthPercentage(
 | |
|         LengthPercentage::FromAppUnits(mainSize));
 | |
|   }
 | |
| 
 | |
|   StyleSize StyleCrossSize() const {
 | |
|     nscoord crossSize = CrossSize();
 | |
|     if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) {
 | |
|       crossSize += BorderPaddingSizeInCrossAxis();
 | |
|     }
 | |
|     return StyleSize::LengthPercentage(
 | |
|         LengthPercentage::FromAppUnits(crossSize));
 | |
|   }
 | |
| 
 | |
|   // Returns the distance between this FlexItem's baseline and the cross-start
 | |
|   // edge of its margin-box. Used in baseline alignment.
 | |
|   //
 | |
|   // (This function needs to be told which physical start side we're measuring
 | |
|   // the baseline from, so that it can look up the appropriate components from
 | |
|   // margin.)
 | |
|   nscoord BaselineOffsetFromOuterCrossEdge(mozilla::Side aStartSide,
 | |
|                                            bool aUseFirstLineBaseline) const;
 | |
| 
 | |
|   double ShareOfWeightSoFar() const { return mShareOfWeightSoFar; }
 | |
| 
 | |
|   bool IsFrozen() const { return mIsFrozen; }
 | |
| 
 | |
|   bool HadMinViolation() const {
 | |
|     MOZ_ASSERT(!mIsFrozen, "min violation has no meaning for frozen items.");
 | |
|     return mHadMinViolation;
 | |
|   }
 | |
| 
 | |
|   bool HadMaxViolation() const {
 | |
|     MOZ_ASSERT(!mIsFrozen, "max violation has no meaning for frozen items.");
 | |
|     return mHadMaxViolation;
 | |
|   }
 | |
| 
 | |
|   bool WasMinClamped() const {
 | |
|     MOZ_ASSERT(mIsFrozen, "min clamping has no meaning for unfrozen items.");
 | |
|     return mHadMinViolation;
 | |
|   }
 | |
| 
 | |
|   bool WasMaxClamped() const {
 | |
|     MOZ_ASSERT(mIsFrozen, "max clamping has no meaning for unfrozen items.");
 | |
|     return mHadMaxViolation;
 | |
|   }
 | |
| 
 | |
|   // Indicates whether this item received a preliminary "measuring" reflow
 | |
|   // before its actual reflow.
 | |
|   bool HadMeasuringReflow() const { return mHadMeasuringReflow; }
 | |
| 
 | |
|   // Indicates whether this item's computed cross-size property is 'auto'.
 | |
|   bool IsCrossSizeAuto() const;
 | |
| 
 | |
|   // Indicates whether the cross-size property is set to something definite,
 | |
|   // for the purpose of preferred aspect ratio calculations.
 | |
|   bool IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const;
 | |
| 
 | |
|   // Indicates whether this item's cross-size has been stretched (from having
 | |
|   // "align-self: stretch" with an auto cross-size and no auto margins in the
 | |
|   // cross axis).
 | |
|   bool IsStretched() const { return mIsStretched; }
 | |
| 
 | |
|   // Indicates whether we need to resolve an 'auto' value for the main-axis
 | |
|   // min-[width|height] property.
 | |
|   bool NeedsMinSizeAutoResolution() const {
 | |
|     return mNeedsMinSizeAutoResolution;
 | |
|   }
 | |
| 
 | |
|   bool HasAnyAutoMargin() const { return mHasAnyAutoMargin; }
 | |
| 
 | |
|   // Indicates whether this item is a "strut" left behind by an element with
 | |
|   // visibility:collapse.
 | |
|   bool IsStrut() const { return mIsStrut; }
 | |
| 
 | |
|   // The main axis and cross axis are relative to mCBWM.
 | |
|   LogicalAxis MainAxis() const { return mMainAxis; }
 | |
|   LogicalAxis CrossAxis() const { return GetOrthogonalAxis(mMainAxis); }
 | |
| 
 | |
|   // IsInlineAxisMainAxis() returns true if this item's inline axis is parallel
 | |
|   // (or antiparallel) to the container's main axis. Otherwise (i.e. if this
 | |
|   // item's inline axis is orthogonal to the container's main axis), this
 | |
|   // function returns false. The next 3 methods are all other ways of asking
 | |
|   // the same question, and only exist for readability at callsites (depending
 | |
|   // on which axes those callsites are reasoning about).
 | |
|   bool IsInlineAxisMainAxis() const { return mIsInlineAxisMainAxis; }
 | |
|   bool IsInlineAxisCrossAxis() const { return !mIsInlineAxisMainAxis; }
 | |
|   bool IsBlockAxisMainAxis() const { return !mIsInlineAxisMainAxis; }
 | |
|   bool IsBlockAxisCrossAxis() const { return mIsInlineAxisMainAxis; }
 | |
| 
 | |
|   WritingMode GetWritingMode() const { return mWM; }
 | |
|   WritingMode ContainingBlockWM() const { return mCBWM; }
 | |
|   StyleAlignSelf AlignSelf() const { return mAlignSelf; }
 | |
|   StyleAlignFlags AlignSelfFlags() const { return mAlignSelfFlags; }
 | |
| 
 | |
|   // Returns the flex factor (flex-grow or flex-shrink), depending on
 | |
|   // 'aIsUsingFlexGrow'.
 | |
|   //
 | |
|   // Asserts fatally if called on a frozen item (since frozen items are not
 | |
|   // flexible).
 | |
|   float GetFlexFactor(bool aIsUsingFlexGrow) {
 | |
|     MOZ_ASSERT(!IsFrozen(), "shouldn't need flex factor after item is frozen");
 | |
| 
 | |
|     return aIsUsingFlexGrow ? mFlexGrow : mFlexShrink;
 | |
|   }
 | |
| 
 | |
|   // Returns the weight that we should use in the "resolving flexible lengths"
 | |
|   // algorithm.  If we're using the flex grow factor, we just return that;
 | |
|   // otherwise, we return the "scaled flex shrink factor" (scaled by our flex
 | |
|   // base size, so that when both large and small items are shrinking, the large
 | |
|   // items shrink more).
 | |
|   //
 | |
|   // I'm calling this a "weight" instead of a "[scaled] flex-[grow|shrink]
 | |
|   // factor", to more clearly distinguish it from the actual flex-grow &
 | |
|   // flex-shrink factors.
 | |
|   //
 | |
|   // Asserts fatally if called on a frozen item (since frozen items are not
 | |
|   // flexible).
 | |
|   float GetWeight(bool aIsUsingFlexGrow) {
 | |
|     MOZ_ASSERT(!IsFrozen(), "shouldn't need weight after item is frozen");
 | |
| 
 | |
|     if (aIsUsingFlexGrow) {
 | |
|       return mFlexGrow;
 | |
|     }
 | |
| 
 | |
|     // We're using flex-shrink --> return mFlexShrink * mFlexBaseSize
 | |
|     if (mFlexBaseSize == 0) {
 | |
|       // Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so
 | |
|       // regardless of mFlexShrink, we should just return 0.
 | |
|       // (This is really a special-case for when mFlexShrink is infinity, to
 | |
|       // avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.)
 | |
|       return 0.0f;
 | |
|     }
 | |
|     return mFlexShrink * mFlexBaseSize;
 | |
|   }
 | |
| 
 | |
|   bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; }
 | |
| 
 | |
|   const AspectRatio& GetAspectRatio() const { return mAspectRatio; }
 | |
|   bool HasAspectRatio() const { return !!mAspectRatio; }
 | |
| 
 | |
|   // Getters for margin:
 | |
|   // ===================
 | |
|   LogicalMargin Margin() const { return mMargin; }
 | |
|   nsMargin PhysicalMargin() const { return mMargin.GetPhysicalMargin(mCBWM); }
 | |
| 
 | |
|   // Returns the margin component for a given LogicalSide in flex container's
 | |
|   // writing-mode.
 | |
|   nscoord GetMarginComponentForSide(LogicalSide aSide) const {
 | |
|     return mMargin.Side(aSide, mCBWM);
 | |
|   }
 | |
| 
 | |
|   // Returns the total space occupied by this item's margins in the given axis
 | |
|   nscoord MarginSizeInMainAxis() const {
 | |
|     return mMargin.StartEnd(MainAxis(), mCBWM);
 | |
|   }
 | |
|   nscoord MarginSizeInCrossAxis() const {
 | |
|     return mMargin.StartEnd(CrossAxis(), mCBWM);
 | |
|   }
 | |
| 
 | |
|   // Getters for border/padding
 | |
|   // ==========================
 | |
|   // Returns the total space occupied by this item's borders and padding in
 | |
|   // the given axis
 | |
|   LogicalMargin BorderPadding() const { return mBorderPadding; }
 | |
|   nscoord BorderPaddingSizeInMainAxis() const {
 | |
|     return mBorderPadding.StartEnd(MainAxis(), mCBWM);
 | |
|   }
 | |
|   nscoord BorderPaddingSizeInCrossAxis() const {
 | |
|     return mBorderPadding.StartEnd(CrossAxis(), mCBWM);
 | |
|   }
 | |
| 
 | |
|   // Getter for combined margin/border/padding
 | |
|   // =========================================
 | |
|   // Returns the total space occupied by this item's margins, borders and
 | |
|   // padding in the given axis
 | |
|   nscoord MarginBorderPaddingSizeInMainAxis() const {
 | |
|     return MarginSizeInMainAxis() + BorderPaddingSizeInMainAxis();
 | |
|   }
 | |
|   nscoord MarginBorderPaddingSizeInCrossAxis() const {
 | |
|     return MarginSizeInCrossAxis() + BorderPaddingSizeInCrossAxis();
 | |
|   }
 | |
| 
 | |
|   // Setters
 | |
|   // =======
 | |
|   // Helper to set the resolved value of min-[width|height]:auto for the main
 | |
|   // axis. (Should only be used if NeedsMinSizeAutoResolution() returns true.)
 | |
|   void UpdateMainMinSize(nscoord aNewMinSize) {
 | |
|     NS_ASSERTION(aNewMinSize >= 0,
 | |
|                  "How did we end up with a negative min-size?");
 | |
|     MOZ_ASSERT(
 | |
|         mMainMaxSize == NS_UNCONSTRAINEDSIZE || mMainMaxSize >= aNewMinSize,
 | |
|         "Should only use this function for resolving min-size:auto, "
 | |
|         "and main max-size should be an upper-bound for resolved val");
 | |
|     MOZ_ASSERT(
 | |
|         mNeedsMinSizeAutoResolution &&
 | |
|             (mMainMinSize == 0 || mFrame->IsThemed(mFrame->StyleDisplay())),
 | |
|         "Should only use this function for resolving min-size:auto, "
 | |
|         "so we shouldn't already have a nonzero min-size established "
 | |
|         "(unless it's a themed-widget-imposed minimum size)");
 | |
| 
 | |
|     if (aNewMinSize > mMainMinSize) {
 | |
|       mMainMinSize = aNewMinSize;
 | |
|       // Also clamp main-size to be >= new min-size:
 | |
|       mMainSize = std::max(mMainSize, aNewMinSize);
 | |
|     }
 | |
|     mNeedsMinSizeAutoResolution = false;
 | |
|   }
 | |
| 
 | |
|   // This sets our flex base size, and then sets our main size to the
 | |
|   // resulting "hypothetical main size" (the base size clamped to our
 | |
|   // main-axis [min,max] sizing constraints).
 | |
|   void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) {
 | |
|     MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_UNCONSTRAINEDSIZE,
 | |
|                "flex base size shouldn't change after we're frozen "
 | |
|                "(unless we're just resolving an intrinsic size)");
 | |
|     mFlexBaseSize = aNewFlexBaseSize;
 | |
| 
 | |
|     // Before we've resolved flexible lengths, we keep mMainSize set to
 | |
|     // the 'hypothetical main size', which is the flex base size, clamped
 | |
|     // to the [min,max] range:
 | |
|     mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize);
 | |
| 
 | |
|     FLEX_LOGV(
 | |
|         "Set flex base size: %d, hypothetical main size: %d for flex item %p",
 | |
|         mFlexBaseSize, mMainSize, mFrame);
 | |
|   }
 | |
| 
 | |
|   // Setters used while we're resolving flexible lengths
 | |
|   // ---------------------------------------------------
 | |
| 
 | |
|   // Sets the main-size of our flex item's content-box.
 | |
|   void SetMainSize(nscoord aNewMainSize) {
 | |
|     MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen");
 | |
|     mMainSize = aNewMainSize;
 | |
|   }
 | |
| 
 | |
|   void SetShareOfWeightSoFar(double aNewShare) {
 | |
|     MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0,
 | |
|                "shouldn't be giving this item any share of the weight "
 | |
|                "after it's frozen");
 | |
|     mShareOfWeightSoFar = aNewShare;
 | |
|   }
 | |
| 
 | |
|   void Freeze() {
 | |
|     mIsFrozen = true;
 | |
|     // Now that we are frozen, the meaning of mHadMinViolation and
 | |
|     // mHadMaxViolation changes to indicate min and max clamping. Clear
 | |
|     // both of the member variables so that they are ready to be set
 | |
|     // as clamping state later, if necessary.
 | |
|     mHadMinViolation = false;
 | |
|     mHadMaxViolation = false;
 | |
|   }
 | |
| 
 | |
|   void SetHadMinViolation() {
 | |
|     MOZ_ASSERT(!mIsFrozen,
 | |
|                "shouldn't be changing main size & having violations "
 | |
|                "after we're frozen");
 | |
|     mHadMinViolation = true;
 | |
|   }
 | |
|   void SetHadMaxViolation() {
 | |
|     MOZ_ASSERT(!mIsFrozen,
 | |
|                "shouldn't be changing main size & having violations "
 | |
|                "after we're frozen");
 | |
|     mHadMaxViolation = true;
 | |
|   }
 | |
|   void ClearViolationFlags() {
 | |
|     MOZ_ASSERT(!mIsFrozen,
 | |
|                "shouldn't be altering violation flags after we're "
 | |
|                "frozen");
 | |
|     mHadMinViolation = mHadMaxViolation = false;
 | |
|   }
 | |
| 
 | |
|   void SetWasMinClamped() {
 | |
|     MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
 | |
|     // This reuses the mHadMinViolation member variable to track clamping
 | |
|     // events. This is allowable because mHadMinViolation only reflects
 | |
|     // a violation up until the item is frozen.
 | |
|     MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
 | |
|     mHadMinViolation = true;
 | |
|   }
 | |
|   void SetWasMaxClamped() {
 | |
|     MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
 | |
|     // This reuses the mHadMaxViolation member variable to track clamping
 | |
|     // events. This is allowable because mHadMaxViolation only reflects
 | |
|     // a violation up until the item is frozen.
 | |
|     MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
 | |
|     mHadMaxViolation = true;
 | |
|   }
 | |
| 
 | |
|   // Setters for values that are determined after we've resolved our main size
 | |
|   // -------------------------------------------------------------------------
 | |
| 
 | |
|   // Sets the main-axis position of our flex item's content-box.
 | |
|   // (This is the distance between the main-start edge of the flex container
 | |
|   // and the main-start edge of the flex item's content-box.)
 | |
|   void SetMainPosition(nscoord aPosn) {
 | |
|     MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
 | |
|     mMainPosn = aPosn;
 | |
|   }
 | |
| 
 | |
|   // Sets the cross-size of our flex item's content-box.
 | |
|   void SetCrossSize(nscoord aCrossSize) {
 | |
|     MOZ_ASSERT(!mIsStretched,
 | |
|                "Cross size shouldn't be modified after it's been stretched");
 | |
|     mCrossSize = aCrossSize;
 | |
|   }
 | |
| 
 | |
|   // Sets the cross-axis position of our flex item's content-box.
 | |
|   // (This is the distance between the cross-start edge of the flex container
 | |
|   // and the cross-start edge of the flex item.)
 | |
|   void SetCrossPosition(nscoord aPosn) {
 | |
|     MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
 | |
|     mCrossPosn = aPosn;
 | |
|   }
 | |
| 
 | |
|   // After a FlexItem has had a reflow, this method can be used to cache its
 | |
|   // (possibly-unresolved) ascent, in case it's needed later for
 | |
|   // baseline-alignment or to establish the container's baseline.
 | |
|   // (NOTE: This can be marked 'const' even though it's modifying mAscent,
 | |
|   // because mAscent is mutable. It's nice for this to be 'const', because it
 | |
|   // means our final reflow can iterate over const FlexItem pointers, and we
 | |
|   // can be sure it's not modifying those FlexItems, except via this method.)
 | |
|   void SetAscent(nscoord aAscent) const {
 | |
|     mAscent = aAscent;  // NOTE: this may be ASK_FOR_BASELINE
 | |
|   }
 | |
| 
 | |
|   void SetHadMeasuringReflow() { mHadMeasuringReflow = true; }
 | |
| 
 | |
|   void SetIsStretched() {
 | |
|     MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
 | |
|     mIsStretched = true;
 | |
|   }
 | |
| 
 | |
|   // Setter for margin components (for resolving "auto" margins)
 | |
|   void SetMarginComponentForSide(LogicalSide aSide, nscoord aLength) {
 | |
|     MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
 | |
|     mMargin.Side(aSide, mCBWM) = aLength;
 | |
|   }
 | |
| 
 | |
|   void ResolveStretchedCrossSize(nscoord aLineCrossSize);
 | |
| 
 | |
|   // Resolves flex base size if flex-basis' used value is 'content', using this
 | |
|   // item's preferred aspect ratio and cross size.
 | |
|   void ResolveFlexBaseSizeFromAspectRatio(const ReflowInput& aItemReflowInput);
 | |
| 
 | |
|   uint32_t NumAutoMarginsInMainAxis() const {
 | |
|     return NumAutoMarginsInAxis(MainAxis());
 | |
|   };
 | |
| 
 | |
|   uint32_t NumAutoMarginsInCrossAxis() const {
 | |
|     return NumAutoMarginsInAxis(CrossAxis());
 | |
|   };
 | |
| 
 | |
|   // Once the main size has been resolved, should we bother doing layout to
 | |
|   // establish the cross size?
 | |
|   bool CanMainSizeInfluenceCrossSize() const;
 | |
| 
 | |
|   // Returns a main size, clamped by any definite min and max cross size
 | |
|   // converted through the preferred aspect ratio. The caller is responsible for
 | |
|   // ensuring that the flex item's preferred aspect ratio is not zero.
 | |
|   nscoord ClampMainSizeViaCrossAxisConstraints(
 | |
|       nscoord aMainSize, const ReflowInput& aItemReflowInput) const;
 | |
| 
 | |
|   // Indicates whether we think this flex item needs a "final" reflow
 | |
|   // (after its final flexed size & final position have been determined).
 | |
|   //
 | |
|   // @param aParentReflowInput the flex container's reflow input.
 | |
|   // @return true if such a reflow is needed, or false if we believe it can
 | |
|   // simply be moved to its final position and skip the reflow.
 | |
|   bool NeedsFinalReflow(const ReflowInput& aParentReflowInput) const;
 | |
| 
 | |
|   // Gets the block frame that contains the flex item's content.  This is
 | |
|   // Frame() itself or one of its descendants.
 | |
|   nsBlockFrame* BlockFrame() const;
 | |
| 
 | |
|  protected:
 | |
|   bool IsMinSizeAutoResolutionNeeded() const;
 | |
| 
 | |
|   uint32_t NumAutoMarginsInAxis(LogicalAxis aAxis) const;
 | |
| 
 | |
|   // Values that we already know in constructor, and remain unchanged:
 | |
|   // The flex item's frame.
 | |
|   nsIFrame* mFrame = nullptr;
 | |
|   float mFlexGrow = 0.0f;
 | |
|   float mFlexShrink = 0.0f;
 | |
|   AspectRatio mAspectRatio;
 | |
| 
 | |
|   // The flex item's writing mode.
 | |
|   WritingMode mWM;
 | |
| 
 | |
|   // The flex container's writing mode.
 | |
|   WritingMode mCBWM;
 | |
| 
 | |
|   // The flex container's main axis in flex container's writing mode.
 | |
|   LogicalAxis mMainAxis;
 | |
| 
 | |
|   // Stored in flex container's writing mode.
 | |
|   LogicalMargin mBorderPadding;
 | |
| 
 | |
|   // Stored in flex container's writing mode. Its value can change when we
 | |
|   // resolve "auto" marigns.
 | |
|   LogicalMargin mMargin;
 | |
| 
 | |
|   // These are non-const so that we can lazily update them with the item's
 | |
|   // intrinsic size (obtained via a "measuring" reflow), when necessary.
 | |
|   // (e.g. for "flex-basis:auto;height:auto" & "min-height:auto")
 | |
|   nscoord mFlexBaseSize = 0;
 | |
|   nscoord mMainMinSize = 0;
 | |
|   nscoord mMainMaxSize = 0;
 | |
| 
 | |
|   // mCrossMinSize and mCrossMaxSize are not changed after constructor.
 | |
|   nscoord mCrossMinSize = 0;
 | |
|   nscoord mCrossMaxSize = 0;
 | |
| 
 | |
|   // Values that we compute after constructor:
 | |
|   nscoord mMainSize = 0;
 | |
|   nscoord mMainPosn = 0;
 | |
|   nscoord mCrossSize = 0;
 | |
|   nscoord mCrossPosn = 0;
 | |
| 
 | |
|   // Mutable b/c it's set & resolved lazily, sometimes via const pointer. See
 | |
|   // comment above SetAscent().
 | |
|   // We initialize this to ASK_FOR_BASELINE, and opportunistically fill it in
 | |
|   // with a real value if we end up reflowing this flex item. (But if we don't
 | |
|   // reflow this flex item, then this sentinel tells us that we don't know it
 | |
|   // yet & anyone who cares will need to explicitly request it.)
 | |
|   mutable nscoord mAscent = ReflowOutput::ASK_FOR_BASELINE;
 | |
| 
 | |
|   // Temporary state, while we're resolving flexible widths (for our main size)
 | |
|   // XXXdholbert To save space, we could use a union to make these variables
 | |
|   // overlay the same memory as some other member vars that aren't touched
 | |
|   // until after main-size has been resolved. In particular, these could share
 | |
|   // memory with mMainPosn through mAscent, and mIsStretched.
 | |
|   double mShareOfWeightSoFar = 0.0;
 | |
| 
 | |
|   bool mIsFrozen = false;
 | |
|   bool mHadMinViolation = false;
 | |
|   bool mHadMaxViolation = false;
 | |
| 
 | |
|   // Did this item get a preliminary reflow, to measure its desired height?
 | |
|   bool mHadMeasuringReflow = false;
 | |
| 
 | |
|   // See IsStretched() documentation.
 | |
|   bool mIsStretched = false;
 | |
| 
 | |
|   // Is this item a "strut" left behind by an element with visibility:collapse?
 | |
|   bool mIsStrut = false;
 | |
| 
 | |
|   // See IsInlineAxisMainAxis() documentation. This is not changed after
 | |
|   // constructor.
 | |
|   bool mIsInlineAxisMainAxis = true;
 | |
| 
 | |
|   // Does this item need to resolve a min-[width|height]:auto (in main-axis)?
 | |
|   //
 | |
|   // Note: mNeedsMinSizeAutoResolution needs to be declared towards the end of
 | |
|   // the member variables since it's initialized in a method that depends on
 | |
|   // other members declared above such as mCBWM, mMainAxis, and
 | |
|   // mIsInlineAxisMainAxis.
 | |
|   bool mNeedsMinSizeAutoResolution = false;
 | |
| 
 | |
|   // Should we take care to treat this item's resolved BSize as indefinite?
 | |
|   bool mTreatBSizeAsIndefinite = false;
 | |
| 
 | |
|   // Does this item have an auto margin in either main or cross axis?
 | |
|   bool mHasAnyAutoMargin = false;
 | |
| 
 | |
|   // My "align-self" computed value (with "auto" swapped out for parent"s
 | |
|   // "align-items" value, in our constructor).
 | |
|   StyleAlignSelf mAlignSelf{StyleAlignFlags::AUTO};
 | |
| 
 | |
|   // Flags for 'align-self' (safe/unsafe/legacy).
 | |
|   StyleAlignFlags mAlignSelfFlags{0};
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Represents a single flex line in a flex container.
 | |
|  * Manages an array of the FlexItems that are in the line.
 | |
|  */
 | |
| class nsFlexContainerFrame::FlexLine final {
 | |
|  public:
 | |
|   explicit FlexLine(nscoord aMainGapSize) : mMainGapSize(aMainGapSize) {}
 | |
| 
 | |
|   nscoord SumOfGaps() const {
 | |
|     return NumItems() > 0 ? (NumItems() - 1) * mMainGapSize : 0;
 | |
|   }
 | |
| 
 | |
|   // Returns the sum of our FlexItems' outer hypothetical main sizes plus the
 | |
|   // sum of main axis {row,column}-gaps between items.
 | |
|   // ("outer" = margin-box, and "hypothetical" = before flexing)
 | |
|   AuCoord64 TotalOuterHypotheticalMainSize() const {
 | |
|     return mTotalOuterHypotheticalMainSize;
 | |
|   }
 | |
| 
 | |
|   // Accessors for our FlexItems & information about them:
 | |
|   //
 | |
|   // Note: Using IsEmpty() to ensure that the FlexLine is non-empty before
 | |
|   // calling FirstItem() or LastItem().
 | |
|   FlexItem& FirstItem() { return mItems[0]; }
 | |
|   const FlexItem& FirstItem() const { return mItems[0]; }
 | |
| 
 | |
|   FlexItem& LastItem() { return mItems.LastElement(); }
 | |
|   const FlexItem& LastItem() const { return mItems.LastElement(); }
 | |
| 
 | |
|   bool IsEmpty() const { return mItems.IsEmpty(); }
 | |
| 
 | |
|   uint32_t NumItems() const { return mItems.Length(); }
 | |
| 
 | |
|   nsTArray<FlexItem>& Items() { return mItems; }
 | |
|   const nsTArray<FlexItem>& Items() const { return mItems; }
 | |
| 
 | |
|   // Adds the last flex item's hypothetical outer main-size and
 | |
|   // margin/border/padding to our totals. This should be called exactly once for
 | |
|   // each flex item, after we've determined that this line is the correct home
 | |
|   // for that item.
 | |
|   void AddLastItemToMainSizeTotals() {
 | |
|     const FlexItem& lastItem = Items().LastElement();
 | |
| 
 | |
|     // Update our various bookkeeping member-vars:
 | |
|     if (lastItem.IsFrozen()) {
 | |
|       mNumFrozenItems++;
 | |
|     }
 | |
| 
 | |
|     mTotalItemMBP += lastItem.MarginBorderPaddingSizeInMainAxis();
 | |
|     mTotalOuterHypotheticalMainSize += lastItem.OuterMainSize();
 | |
| 
 | |
|     // If the item added was not the first item in the line, we add in any gap
 | |
|     // space as needed.
 | |
|     if (NumItems() >= 2) {
 | |
|       mTotalOuterHypotheticalMainSize += mMainGapSize;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Computes the cross-size and baseline position of this FlexLine, based on
 | |
|   // its FlexItems.
 | |
|   void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker);
 | |
| 
 | |
|   // Returns the cross-size of this line.
 | |
|   nscoord LineCrossSize() const { return mLineCrossSize; }
 | |
| 
 | |
|   // Setter for line cross-size -- needed for cases where the flex container
 | |
|   // imposes a cross-size on the line. (e.g. for single-line flexbox, or for
 | |
|   // multi-line flexbox with 'align-content: stretch')
 | |
|   void SetLineCrossSize(nscoord aLineCrossSize) {
 | |
|     mLineCrossSize = aLineCrossSize;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the offset within this line where any baseline-aligned FlexItems
 | |
|    * should place their baseline. The return value represents a distance from
 | |
|    * the line's cross-start edge.
 | |
|    *
 | |
|    * If there are no baseline-aligned FlexItems, returns nscoord_MIN.
 | |
|    */
 | |
|   nscoord FirstBaselineOffset() const { return mFirstBaselineOffset; }
 | |
| 
 | |
|   /**
 | |
|    * Returns the offset within this line where any last baseline-aligned
 | |
|    * FlexItems should place their baseline. Opposite the case of the first
 | |
|    * baseline offset, this represents a distance from the line's cross-end
 | |
|    * edge (since last baseline-aligned items are flush to the cross-end edge).
 | |
|    *
 | |
|    * If there are no last baseline-aligned FlexItems, returns nscoord_MIN.
 | |
|    */
 | |
|   nscoord LastBaselineOffset() const { return mLastBaselineOffset; }
 | |
| 
 | |
|   /**
 | |
|    * Returns the gap size in the main axis for this line. Used for gap
 | |
|    * calculations.
 | |
|    */
 | |
|   nscoord MainGapSize() const { return mMainGapSize; }
 | |
| 
 | |
|   // Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the
 | |
|   // CSS flexbox spec to distribute aFlexContainerMainSize among our flex items.
 | |
|   // https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths
 | |
|   void ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
 | |
|                               ComputedFlexLineInfo* aLineInfo);
 | |
| 
 | |
|   void PositionItemsInMainAxis(const StyleContentDistribution& aJustifyContent,
 | |
|                                nscoord aContentBoxMainSize,
 | |
|                                const FlexboxAxisTracker& aAxisTracker);
 | |
| 
 | |
|   void PositionItemsInCrossAxis(nscoord aLineStartPosition,
 | |
|                                 const FlexboxAxisTracker& aAxisTracker);
 | |
| 
 | |
|  private:
 | |
|   // Helpers for ResolveFlexibleLengths():
 | |
|   void FreezeItemsEarly(bool aIsUsingFlexGrow, ComputedFlexLineInfo* aLineInfo);
 | |
| 
 | |
|   void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
 | |
|                                        bool aIsFinalIteration);
 | |
| 
 | |
|   // Stores this line's flex items.
 | |
|   nsTArray<FlexItem> mItems;
 | |
| 
 | |
|   // Number of *frozen* FlexItems in this line, based on FlexItem::IsFrozen().
 | |
|   // Mostly used for optimization purposes, e.g. to bail out early from loops
 | |
|   // when we can tell they have nothing left to do.
 | |
|   uint32_t mNumFrozenItems = 0;
 | |
| 
 | |
|   // Sum of margin/border/padding for the FlexItems in this FlexLine.
 | |
|   nscoord mTotalItemMBP = 0;
 | |
| 
 | |
|   // Sum of FlexItems' outer hypothetical main sizes and all main-axis
 | |
|   // {row,columnm}-gaps between items.
 | |
|   // (i.e. their flex base sizes, clamped via their min/max-size properties,
 | |
|   // plus their main-axis margin/border/padding, plus the sum of the gaps.)
 | |
|   //
 | |
|   // This variable uses a 64-bit coord type to avoid integer overflow in case
 | |
|   // several of the individual items have huge hypothetical main sizes, which
 | |
|   // can happen with percent-width table-layout:fixed descendants. We have to
 | |
|   // avoid integer overflow in order to shrink items properly in that scenario.
 | |
|   AuCoord64 mTotalOuterHypotheticalMainSize = 0;
 | |
| 
 | |
|   nscoord mLineCrossSize = 0;
 | |
|   nscoord mFirstBaselineOffset = nscoord_MIN;
 | |
|   nscoord mLastBaselineOffset = nscoord_MIN;
 | |
| 
 | |
|   // Maintain size of each {row,column}-gap in the main axis
 | |
|   const nscoord mMainGapSize;
 | |
| };
 | |
| 
 | |
| // Information about a strut left behind by a FlexItem that's been collapsed
 | |
| // using "visibility:collapse".
 | |
| struct nsFlexContainerFrame::StrutInfo {
 | |
|   StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize)
 | |
|       : mItemIdx(aItemIdx), mStrutCrossSize(aStrutCrossSize) {}
 | |
| 
 | |
|   uint32_t mItemIdx;        // Index in the child list.
 | |
|   nscoord mStrutCrossSize;  // The cross-size of this strut.
 | |
| };
 | |
| 
 | |
| // Flex data shared by the flex container frames in a continuation chain, owned
 | |
| // by the first-in-flow. The data is initialized at the end of the
 | |
| // first-in-flow's Reflow().
 | |
| struct nsFlexContainerFrame::SharedFlexData final {
 | |
|   // The flex lines generated in DoFlexLayout() by our first-in-flow.
 | |
|   nsTArray<FlexLine> mLines;
 | |
| 
 | |
|   // The final content main/cross size computed by DoFlexLayout.
 | |
|   nscoord mContentBoxMainSize = NS_UNCONSTRAINEDSIZE;
 | |
|   nscoord mContentBoxCrossSize = NS_UNCONSTRAINEDSIZE;
 | |
| 
 | |
|   // Update this struct. Called by the first-in-flow.
 | |
|   void Update(FlexLayoutResult&& aFlr) {
 | |
|     mLines = std::move(aFlr.mLines);
 | |
|     mContentBoxMainSize = aFlr.mContentBoxMainSize;
 | |
|     mContentBoxCrossSize = aFlr.mContentBoxCrossSize;
 | |
|   }
 | |
| 
 | |
|   // The frame property under which this struct is stored. Set only on the
 | |
|   // first-in-flow.
 | |
|   NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedFlexData)
 | |
| };
 | |
| 
 | |
| // Flex data stored in every flex container's in-flow fragment (continuation).
 | |
| //
 | |
| // It's intended to prevent quadratic operations resulting from each fragment
 | |
| // having to walk its full prev-in-flow chain, and also serves as an argument to
 | |
| // the flex container next-in-flow's ReflowChildren(), to compute the position
 | |
| // offset for each flex item.
 | |
| struct nsFlexContainerFrame::PerFragmentFlexData final {
 | |
|   // Suppose D is the distance from a flex container fragment's content-box
 | |
|   // block-start edge to whichever is larger of either (a) the block-end edge of
 | |
|   // its children, or (b) the available space's block-end edge. (Note: in case
 | |
|   // (b), D is conceptually the sum of the block-size of the children, the
 | |
|   // packing space before & in between them, and part of the packing space after
 | |
|   // them.)
 | |
|   //
 | |
|   // This variable stores the sum of the D values for the current flex container
 | |
|   // fragments and for all its previous fragments
 | |
|   nscoord mCumulativeContentBoxBSize = 0;
 | |
| 
 | |
|   // This variable accumulates FirstLineOrFirstItemBAxisMetrics::mBEndEdgeShift,
 | |
|   // for the current flex container fragment and for all its previous fragments.
 | |
|   // See the comment of mBEndEdgeShift for its computation details. In short,
 | |
|   // this value is the net block-end edge shift, accumulated for the children in
 | |
|   // all the previous fragments. This number is non-negative.
 | |
|   //
 | |
|   // This value is also used to grow a flex container's block-size if the
 | |
|   // container's computed block-size is unconstrained. For example: a tall item
 | |
|   // may be pushed to the next page/column, which leaves some wasted area at the
 | |
|   // bottom of the current flex container fragment, and causes the flex
 | |
|   // container fragments to be (collectively) larger than the hypothetical
 | |
|   // unfragmented size. Another example: a tall flex item may be broken into
 | |
|   // multiple fragments, and those fragments may have a larger collective
 | |
|   // block-size as compared to the item's original unfragmented size; the
 | |
|   // container would need to increase its block-size to account for this.
 | |
|   nscoord mCumulativeBEndEdgeShift = 0;
 | |
| 
 | |
|   // The frame property under which this struct is stored. Cached on every
 | |
|   // in-flow fragment (continuation) at the end of the flex container's
 | |
|   // Reflow().
 | |
|   NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, PerFragmentFlexData)
 | |
| };
 | |
| 
 | |
| static void BuildStrutInfoFromCollapsedItems(const nsTArray<FlexLine>& aLines,
 | |
|                                              nsTArray<StrutInfo>& aStruts) {
 | |
|   MOZ_ASSERT(aStruts.IsEmpty(),
 | |
|              "We should only build up StrutInfo once per reflow, so "
 | |
|              "aStruts should be empty when this is called");
 | |
| 
 | |
|   uint32_t itemIdxInContainer = 0;
 | |
|   for (const FlexLine& line : aLines) {
 | |
|     for (const FlexItem& item : line.Items()) {
 | |
|       if (item.Frame()->StyleVisibility()->IsCollapse()) {
 | |
|         // Note the cross size of the line as the item's strut size.
 | |
|         aStruts.AppendElement(
 | |
|             StrutInfo(itemIdxInContainer, line.LineCrossSize()));
 | |
|       }
 | |
|       itemIdxInContainer++;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static mozilla::StyleAlignFlags SimplifyAlignOrJustifyContentForOneItem(
 | |
|     const StyleContentDistribution& aAlignmentVal, bool aIsAlign) {
 | |
|   // Mask away any explicit fallback, to get the main (non-fallback) part of
 | |
|   // the specified value:
 | |
|   StyleAlignFlags specified = aAlignmentVal.primary;
 | |
| 
 | |
|   // XXX strip off <overflow-position> bits until we implement it (bug 1311892)
 | |
|   specified &= ~StyleAlignFlags::FLAG_BITS;
 | |
| 
 | |
|   // FIRST: handle a special-case for "justify-content:stretch" (or equivalent),
 | |
|   // which requires that we ignore any author-provided explicit fallback value.
 | |
|   if (specified == StyleAlignFlags::NORMAL) {
 | |
|     // In a flex container, *-content: "'normal' behaves as 'stretch'".
 | |
|     // Do that conversion early, so it benefits from our 'stretch' special-case.
 | |
|     // https://drafts.csswg.org/css-align-3/#distribution-flex
 | |
|     specified = StyleAlignFlags::STRETCH;
 | |
|   }
 | |
|   if (!aIsAlign && specified == StyleAlignFlags::STRETCH) {
 | |
|     // In a flex container, in "justify-content Axis: [...] 'stretch' behaves
 | |
|     // as 'flex-start' (ignoring the specified fallback alignment, if any)."
 | |
|     // https://drafts.csswg.org/css-align-3/#distribution-flex
 | |
|     // So, we just directly return 'flex-start', & ignore explicit fallback..
 | |
|     return StyleAlignFlags::FLEX_START;
 | |
|   }
 | |
| 
 | |
|   // TODO: Check for an explicit fallback value (and if it's present, use it)
 | |
|   // here once we parse it, see https://github.com/w3c/csswg-drafts/issues/1002.
 | |
| 
 | |
|   // If there's no explicit fallback, use the implied fallback values for
 | |
|   // space-{between,around,evenly} (since those values only make sense with
 | |
|   // multiple alignment subjects), and otherwise just use the specified value:
 | |
|   if (specified == StyleAlignFlags::SPACE_BETWEEN) {
 | |
|     return StyleAlignFlags::FLEX_START;
 | |
|   }
 | |
|   if (specified == StyleAlignFlags::SPACE_AROUND ||
 | |
|       specified == StyleAlignFlags::SPACE_EVENLY) {
 | |
|     return StyleAlignFlags::CENTER;
 | |
|   }
 | |
|   return specified;
 | |
| }
 | |
| 
 | |
| bool nsFlexContainerFrame::DrainSelfOverflowList() {
 | |
|   return DrainAndMergeSelfOverflowList();
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::AppendFrames(ChildListID aListID,
 | |
|                                         nsFrameList&& aFrameList) {
 | |
|   NoteNewChildren(aListID, aFrameList);
 | |
|   nsContainerFrame::AppendFrames(aListID, std::move(aFrameList));
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::InsertFrames(
 | |
|     ChildListID aListID, nsIFrame* aPrevFrame,
 | |
|     const nsLineList::iterator* aPrevFrameLine, nsFrameList&& aFrameList) {
 | |
|   NoteNewChildren(aListID, aFrameList);
 | |
|   nsContainerFrame::InsertFrames(aListID, aPrevFrame, aPrevFrameLine,
 | |
|                                  std::move(aFrameList));
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::RemoveFrame(ChildListID aListID,
 | |
|                                        nsIFrame* aOldFrame) {
 | |
|   MOZ_ASSERT(aListID == FrameChildListID::Principal, "unexpected child list");
 | |
| 
 | |
| #ifdef DEBUG
 | |
|   SetDidPushItemsBitIfNeeded(aListID, aOldFrame);
 | |
| #endif
 | |
| 
 | |
|   nsContainerFrame::RemoveFrame(aListID, aOldFrame);
 | |
| }
 | |
| 
 | |
| StyleAlignFlags nsFlexContainerFrame::CSSAlignmentForAbsPosChild(
 | |
|     const ReflowInput& aChildRI, LogicalAxis aLogicalAxis) const {
 | |
|   const FlexboxAxisTracker axisTracker(this);
 | |
| 
 | |
|   // If we're row-oriented and the caller is asking about our inline axis (or
 | |
|   // alternately, if we're column-oriented and the caller is asking about our
 | |
|   // block axis), then the caller is really asking about our *main* axis.
 | |
|   // Otherwise, the caller is asking about our cross axis.
 | |
|   const bool isMainAxis =
 | |
|       (axisTracker.IsRowOriented() == (aLogicalAxis == eLogicalAxisInline));
 | |
|   const nsStylePosition* containerStylePos = StylePosition();
 | |
|   const bool isAxisReversed = isMainAxis ? axisTracker.IsMainAxisReversed()
 | |
|                                          : axisTracker.IsCrossAxisReversed();
 | |
| 
 | |
|   StyleAlignFlags alignment{0};
 | |
|   StyleAlignFlags alignmentFlags{0};
 | |
|   if (isMainAxis) {
 | |
|     // We're aligning in the main axis: align according to 'justify-content'.
 | |
|     // (We don't care about justify-self; it has no effect on children of flex
 | |
|     // containers, unless https://github.com/w3c/csswg-drafts/issues/7644
 | |
|     // changes that.)
 | |
|     alignment = SimplifyAlignOrJustifyContentForOneItem(
 | |
|         containerStylePos->mJustifyContent,
 | |
|         /*aIsAlign = */ false);
 | |
|   } else {
 | |
|     // We're aligning in the cross axis: align according to 'align-self'.
 | |
|     // (We don't care about align-content; it has no effect on abspos flex
 | |
|     // children, per https://github.com/w3c/csswg-drafts/issues/7596 )
 | |
|     alignment = aChildRI.mStylePosition->UsedAlignSelf(Style())._0;
 | |
|     // Extract and strip align flag bits
 | |
|     alignmentFlags = alignment & StyleAlignFlags::FLAG_BITS;
 | |
|     alignment &= ~StyleAlignFlags::FLAG_BITS;
 | |
| 
 | |
|     if (alignment == StyleAlignFlags::NORMAL) {
 | |
|       // "the 'normal' keyword behaves as 'start' on replaced
 | |
|       // absolutely-positioned boxes, and behaves as 'stretch' on all other
 | |
|       // absolutely-positioned boxes."
 | |
|       // https://drafts.csswg.org/css-align/#align-abspos
 | |
|       alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced)
 | |
|                       ? StyleAlignFlags::START
 | |
|                       : StyleAlignFlags::STRETCH;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (alignment == StyleAlignFlags::STRETCH) {
 | |
|     // The default fallback alignment for 'stretch' is 'flex-start'.
 | |
|     alignment = StyleAlignFlags::FLEX_START;
 | |
|   }
 | |
| 
 | |
|   // Resolve flex-start, flex-end, auto, left, right, baseline, last baseline;
 | |
|   if (alignment == StyleAlignFlags::FLEX_START) {
 | |
|     alignment = isAxisReversed ? StyleAlignFlags::END : StyleAlignFlags::START;
 | |
|   } else if (alignment == StyleAlignFlags::FLEX_END) {
 | |
|     alignment = isAxisReversed ? StyleAlignFlags::START : StyleAlignFlags::END;
 | |
|   } else if (alignment == StyleAlignFlags::LEFT ||
 | |
|              alignment == StyleAlignFlags::RIGHT) {
 | |
|     MOZ_ASSERT(isMainAxis, "Only justify-* can have 'left' and 'right'!");
 | |
|     alignment = axisTracker.ResolveJustifyLeftRight(alignment);
 | |
|   } else if (alignment == StyleAlignFlags::BASELINE) {
 | |
|     alignment = StyleAlignFlags::START;
 | |
|   } else if (alignment == StyleAlignFlags::LAST_BASELINE) {
 | |
|     alignment = StyleAlignFlags::END;
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(alignment != StyleAlignFlags::STRETCH,
 | |
|              "We should've converted 'stretch' to the fallback alignment!");
 | |
|   MOZ_ASSERT(alignment != StyleAlignFlags::FLEX_START &&
 | |
|                  alignment != StyleAlignFlags::FLEX_END,
 | |
|              "nsAbsoluteContainingBlock doesn't know how to handle "
 | |
|              "flex-relative axis for flex containers!");
 | |
| 
 | |
|   return (alignment | alignmentFlags);
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::GenerateFlexItemForChild(
 | |
|     FlexLine& aLine, nsIFrame* aChildFrame,
 | |
|     const ReflowInput& aParentReflowInput,
 | |
|     const FlexboxAxisTracker& aAxisTracker,
 | |
|     const nscoord aTentativeContentBoxCrossSize) {
 | |
|   const auto flexWM = aAxisTracker.GetWritingMode();
 | |
|   const auto childWM = aChildFrame->GetWritingMode();
 | |
| 
 | |
|   // Note: we use GetStyleFrame() to access the sizing & flex properties here.
 | |
|   // This lets us correctly handle table wrapper frames as flex items since
 | |
|   // their inline-size and block-size properties are always 'auto'. In order for
 | |
|   // 'flex-basis:auto' to actually resolve to the author's specified inline-size
 | |
|   // or block-size, we need to dig through to the inner table.
 | |
|   const auto* stylePos =
 | |
|       nsLayoutUtils::GetStyleFrame(aChildFrame)->StylePosition();
 | |
| 
 | |
|   // Construct a StyleSizeOverrides for this flex item so that its ReflowInput
 | |
|   // below will use and resolve its flex base size rather than its corresponding
 | |
|   // preferred main size property (only for modern CSS flexbox).
 | |
|   StyleSizeOverrides sizeOverrides;
 | |
|   if (!IsLegacyBox(this)) {
 | |
|     Maybe<StyleSize> styleFlexBaseSize;
 | |
| 
 | |
|     // When resolving flex base size, flex items use their 'flex-basis' property
 | |
|     // in place of their preferred main size (e.g. 'width') for sizing purposes,
 | |
|     // *unless* they have 'flex-basis:auto' in which case they use their
 | |
|     // preferred main size after all.
 | |
|     const auto& flexBasis = stylePos->mFlexBasis;
 | |
|     const auto& styleMainSize = stylePos->Size(aAxisTracker.MainAxis(), flexWM);
 | |
|     if (IsUsedFlexBasisContent(flexBasis, styleMainSize)) {
 | |
|       // If we get here, we're resolving the flex base size for a flex item, and
 | |
|       // we fall into the flexbox spec section 9.2 step 3, substep C (if we have
 | |
|       // a definite cross size) or E (if not).
 | |
|       styleFlexBaseSize.emplace(StyleSize::MaxContent());
 | |
|     } else if (flexBasis.IsSize() && !flexBasis.IsAuto()) {
 | |
|       // For all other non-'auto' flex-basis values, we just swap in the
 | |
|       // flex-basis itself for the preferred main-size property.
 | |
|       styleFlexBaseSize.emplace(flexBasis.AsSize());
 | |
|     } else {
 | |
|       // else: flex-basis is 'auto', which is deferring to some explicit value
 | |
|       // in the preferred main size.
 | |
|       MOZ_ASSERT(flexBasis.IsAuto());
 | |
|       styleFlexBaseSize.emplace(styleMainSize);
 | |
|     }
 | |
| 
 | |
|     MOZ_ASSERT(styleFlexBaseSize, "We should've emplace styleFlexBaseSize!");
 | |
| 
 | |
|     // Provide the size override for the preferred main size property.
 | |
|     if (aAxisTracker.IsInlineAxisMainAxis(childWM)) {
 | |
|       sizeOverrides.mStyleISize = std::move(styleFlexBaseSize);
 | |
|     } else {
 | |
|       sizeOverrides.mStyleBSize = std::move(styleFlexBaseSize);
 | |
|     }
 | |
| 
 | |
|     // 'flex-basis' should works on the inner table frame for a table flex item,
 | |
|     // just like how 'height' works on a table element.
 | |
|     sizeOverrides.mApplyOverridesVerbatim = true;
 | |
|   }
 | |
| 
 | |
|   // Create temporary reflow input just for sizing -- to get hypothetical
 | |
|   // main-size and the computed values of min / max main-size property.
 | |
|   // (This reflow input will _not_ be used for reflow.)
 | |
|   ReflowInput childRI(PresContext(), aParentReflowInput, aChildFrame,
 | |
|                       aParentReflowInput.ComputedSize(childWM), Nothing(), {},
 | |
|                       sizeOverrides);
 | |
| 
 | |
|   // FLEX GROW & SHRINK WEIGHTS
 | |
|   // --------------------------
 | |
|   float flexGrow, flexShrink;
 | |
|   if (IsLegacyBox(this)) {
 | |
|     flexGrow = flexShrink = aChildFrame->StyleXUL()->mBoxFlex;
 | |
|   } else {
 | |
|     flexGrow = stylePos->mFlexGrow;
 | |
|     flexShrink = stylePos->mFlexShrink;
 | |
|   }
 | |
| 
 | |
|   // MAIN SIZES (flex base size, min/max size)
 | |
|   // -----------------------------------------
 | |
|   const LogicalSize computedSizeInFlexWM = childRI.ComputedSize(flexWM);
 | |
|   const LogicalSize computedMinSizeInFlexWM = childRI.ComputedMinSize(flexWM);
 | |
|   const LogicalSize computedMaxSizeInFlexWM = childRI.ComputedMaxSize(flexWM);
 | |
| 
 | |
|   const nscoord flexBaseSize = aAxisTracker.MainComponent(computedSizeInFlexWM);
 | |
|   const nscoord mainMinSize =
 | |
|       aAxisTracker.MainComponent(computedMinSizeInFlexWM);
 | |
|   const nscoord mainMaxSize =
 | |
|       aAxisTracker.MainComponent(computedMaxSizeInFlexWM);
 | |
| 
 | |
|   // This is enforced by the ReflowInput where these values come from:
 | |
|   MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size");
 | |
| 
 | |
|   // CROSS SIZES (tentative cross size, min/max cross size)
 | |
|   // ------------------------------------------------------
 | |
|   // Grab the cross size from the reflow input. This might be the right value,
 | |
|   // or we might resolve it to something else in SizeItemInCrossAxis(); hence,
 | |
|   // it's tentative. See comment under "Cross Size Determination" for more.
 | |
|   const nscoord tentativeCrossSize =
 | |
|       aAxisTracker.CrossComponent(computedSizeInFlexWM);
 | |
|   const nscoord crossMinSize =
 | |
|       aAxisTracker.CrossComponent(computedMinSizeInFlexWM);
 | |
|   const nscoord crossMaxSize =
 | |
|       aAxisTracker.CrossComponent(computedMaxSizeInFlexWM);
 | |
| 
 | |
|   // Construct the flex item!
 | |
|   FlexItem& item = *aLine.Items().EmplaceBack(
 | |
|       childRI, flexGrow, flexShrink, flexBaseSize, mainMinSize, mainMaxSize,
 | |
|       tentativeCrossSize, crossMinSize, crossMaxSize, aAxisTracker);
 | |
| 
 | |
|   // We may be about to do computations based on our item's cross-size
 | |
|   // (e.g. using it as a constraint when measuring our content in the
 | |
|   // main axis, or using it with the preferred aspect ratio to obtain a main
 | |
|   // size). BEFORE WE DO THAT, we need let the item "pre-stretch" its cross size
 | |
|   // (if it's got 'align-self:stretch'), for a certain case where the spec says
 | |
|   // the stretched cross size is considered "definite". That case is if we
 | |
|   // have a single-line (nowrap) flex container which itself has a definite
 | |
|   // cross-size.  Otherwise, we'll wait to do stretching, since (in other
 | |
|   // cases) we don't know how much the item should stretch yet.
 | |
|   const bool isSingleLine =
 | |
|       StyleFlexWrap::Nowrap == aParentReflowInput.mStylePosition->mFlexWrap;
 | |
|   if (isSingleLine) {
 | |
|     // Is container's cross size "definite"?
 | |
|     // - If it's column-oriented, then "yes", because its cross size is its
 | |
|     // inline-size which is always definite from its descendants' perspective.
 | |
|     // - Otherwise (if it's row-oriented), then we check the actual size
 | |
|     // and call it definite if it's not NS_UNCONSTRAINEDSIZE.
 | |
|     if (aAxisTracker.IsColumnOriented() ||
 | |
|         aTentativeContentBoxCrossSize != NS_UNCONSTRAINEDSIZE) {
 | |
|       // Container's cross size is "definite", so we can resolve the item's
 | |
|       // stretched cross size using that.
 | |
|       item.ResolveStretchedCrossSize(aTentativeContentBoxCrossSize);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Before thinking about freezing the item at its base size, we need to give
 | |
|   // it a chance to recalculate the base size from its cross size and aspect
 | |
|   // ratio (since its cross size might've *just* now become definite due to
 | |
|   // 'stretch' above)
 | |
|   item.ResolveFlexBaseSizeFromAspectRatio(childRI);
 | |
| 
 | |
|   // If we're inflexible, we can just freeze to our hypothetical main-size
 | |
|   // up-front.
 | |
|   if (flexGrow == 0.0f && flexShrink == 0.0f) {
 | |
|     item.Freeze();
 | |
|     if (flexBaseSize < mainMinSize) {
 | |
|       item.SetWasMinClamped();
 | |
|     } else if (flexBaseSize > mainMaxSize) {
 | |
|       item.SetWasMaxClamped();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Resolve "flex-basis:auto" and/or "min-[width|height]:auto" (which might
 | |
|   // require us to reflow the item to measure content height)
 | |
|   ResolveAutoFlexBasisAndMinSize(item, childRI, aAxisTracker);
 | |
| }
 | |
| 
 | |
| // Static helper-functions for ResolveAutoFlexBasisAndMinSize():
 | |
| // -------------------------------------------------------------
 | |
| // Partially resolves "min-[width|height]:auto" and returns the resulting value.
 | |
| // By "partially", I mean we don't consider the min-content size (but we do
 | |
| // consider the main-size and main max-size properties, and the preferred aspect
 | |
| // ratio). The caller is responsible for computing & considering the min-content
 | |
| // size in combination with the partially-resolved value that this function
 | |
| // returns.
 | |
| //
 | |
| // Basically, this function gets the specified size suggestion; if not, the
 | |
| // transferred size suggestion; if both sizes do not exist, return nscoord_MAX.
 | |
| //
 | |
| // Spec reference: https://drafts.csswg.org/css-flexbox-1/#min-size-auto
 | |
| static nscoord PartiallyResolveAutoMinSize(
 | |
|     const FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
 | |
|     const FlexboxAxisTracker& aAxisTracker) {
 | |
|   MOZ_ASSERT(aFlexItem.NeedsMinSizeAutoResolution(),
 | |
|              "only call for FlexItems that need min-size auto resolution");
 | |
| 
 | |
|   const auto itemWM = aFlexItem.GetWritingMode();
 | |
|   const auto cbWM = aAxisTracker.GetWritingMode();
 | |
|   const auto& mainStyleSize =
 | |
|       aItemReflowInput.mStylePosition->Size(aAxisTracker.MainAxis(), cbWM);
 | |
|   const auto& maxMainStyleSize =
 | |
|       aItemReflowInput.mStylePosition->MaxSize(aAxisTracker.MainAxis(), cbWM);
 | |
|   const auto boxSizingAdjust =
 | |
|       aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
 | |
|           ? aFlexItem.BorderPadding().Size(cbWM)
 | |
|           : LogicalSize(cbWM);
 | |
| 
 | |
|   // If this flex item is a compressible replaced element list in CSS Sizing 3
 | |
|   // §5.2.2, CSS Sizing 3 §5.2.1c requires us to resolve the percentage part of
 | |
|   // the preferred main size property against zero, yielding a definite
 | |
|   // specified size suggestion. Here we can use a zero percentage basis to
 | |
|   // fulfill this requirement.
 | |
|   const auto percentBasis =
 | |
|       aFlexItem.Frame()->IsPercentageResolvedAgainstZero(mainStyleSize,
 | |
|                                                          maxMainStyleSize)
 | |
|           ? LogicalSize(cbWM, 0, 0)
 | |
|           : aItemReflowInput.mContainingBlockSize.ConvertTo(cbWM, itemWM);
 | |
| 
 | |
|   // Compute the specified size suggestion, which is the main-size property if
 | |
|   // it's definite.
 | |
|   nscoord specifiedSizeSuggestion = nscoord_MAX;
 | |
| 
 | |
|   if (aAxisTracker.IsRowOriented()) {
 | |
|     if (mainStyleSize.IsLengthPercentage()) {
 | |
|       // NOTE: We ignore extremum inline-size. This is OK because the caller is
 | |
|       // responsible for computing the min-content inline-size and min()'ing it
 | |
|       // with the value we return.
 | |
|       specifiedSizeSuggestion = aFlexItem.Frame()->ComputeISizeValue(
 | |
|           cbWM, percentBasis, boxSizingAdjust,
 | |
|           mainStyleSize.AsLengthPercentage());
 | |
|     }
 | |
|   } else {
 | |
|     if (!nsLayoutUtils::IsAutoBSize(mainStyleSize, percentBasis.BSize(cbWM))) {
 | |
|       // NOTE: We ignore auto and extremum block-size. This is OK because the
 | |
|       // caller is responsible for computing the min-content block-size and
 | |
|       // min()'ing it with the value we return.
 | |
|       specifiedSizeSuggestion = nsLayoutUtils::ComputeBSizeValue(
 | |
|           percentBasis.BSize(cbWM), boxSizingAdjust.BSize(cbWM),
 | |
|           mainStyleSize.AsLengthPercentage());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (specifiedSizeSuggestion != nscoord_MAX) {
 | |
|     // We have the specified size suggestion. Return it now since we don't need
 | |
|     // to consider transferred size suggestion.
 | |
|     FLEX_LOGV(" Specified size suggestion: %d", specifiedSizeSuggestion);
 | |
|     return specifiedSizeSuggestion;
 | |
|   }
 | |
| 
 | |
|   // Compute the transferred size suggestion, which is the cross size converted
 | |
|   // through the aspect ratio (if the item is replaced, and it has an aspect
 | |
|   // ratio and a definite cross size).
 | |
|   if (const auto& aspectRatio = aFlexItem.GetAspectRatio();
 | |
|       aFlexItem.Frame()->IsFrameOfType(nsIFrame::eReplaced) && aspectRatio &&
 | |
|       aFlexItem.IsCrossSizeDefinite(aItemReflowInput)) {
 | |
|     // We have a usable aspect ratio. (not going to divide by 0)
 | |
|     nscoord transferredSizeSuggestion = aspectRatio.ComputeRatioDependentSize(
 | |
|         aFlexItem.MainAxis(), cbWM, aFlexItem.CrossSize(), boxSizingAdjust);
 | |
| 
 | |
|     // Clamp the transferred size suggestion by any definite min and max
 | |
|     // cross size converted through the aspect ratio.
 | |
|     transferredSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints(
 | |
|         transferredSizeSuggestion, aItemReflowInput);
 | |
| 
 | |
|     FLEX_LOGV(" Transferred size suggestion: %d", transferredSizeSuggestion);
 | |
|     return transferredSizeSuggestion;
 | |
|   }
 | |
| 
 | |
|   return nscoord_MAX;
 | |
| }
 | |
| 
 | |
| // Note: If & when we handle "min-height: min-content" for flex items,
 | |
| // we may want to resolve that in this function, too.
 | |
| void nsFlexContainerFrame::ResolveAutoFlexBasisAndMinSize(
 | |
|     FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
 | |
|     const FlexboxAxisTracker& aAxisTracker) {
 | |
|   // (Note: We can guarantee that the flex-basis will have already been
 | |
|   // resolved if the main axis is the same as the item's inline
 | |
|   // axis. Inline-axis values should always be resolvable without reflow.)
 | |
|   const bool isMainSizeAuto =
 | |
|       (!aFlexItem.IsInlineAxisMainAxis() &&
 | |
|        NS_UNCONSTRAINEDSIZE == aFlexItem.FlexBaseSize());
 | |
| 
 | |
|   const bool isMainMinSizeAuto = aFlexItem.NeedsMinSizeAutoResolution();
 | |
| 
 | |
|   if (!isMainSizeAuto && !isMainMinSizeAuto) {
 | |
|     // Nothing to do; this function is only needed for flex items
 | |
|     // with a used flex-basis of "auto" or a min-main-size of "auto".
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   FLEX_LOGV("Resolving auto main size or auto min main size for flex item %p",
 | |
|             aFlexItem.Frame());
 | |
| 
 | |
|   nscoord resolvedMinSize;  // (only set/used if isMainMinSizeAuto==true)
 | |
|   bool minSizeNeedsToMeasureContent = false;  // assume the best
 | |
|   if (isMainMinSizeAuto) {
 | |
|     // Resolve the min-size, except for considering the min-content size.
 | |
|     // (We'll consider that later, if we need to.)
 | |
|     resolvedMinSize =
 | |
|         PartiallyResolveAutoMinSize(aFlexItem, aItemReflowInput, aAxisTracker);
 | |
|     if (resolvedMinSize > 0) {
 | |
|       // If resolvedMinSize were already at 0, we could skip calculating content
 | |
|       // size suggestion because it can't go any lower.
 | |
|       minSizeNeedsToMeasureContent = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const bool flexBasisNeedsToMeasureContent = isMainSizeAuto;
 | |
| 
 | |
|   // Measure content, if needed (w/ intrinsic-width method or a reflow)
 | |
|   if (minSizeNeedsToMeasureContent || flexBasisNeedsToMeasureContent) {
 | |
|     // Compute the content size suggestion, which is the min-content size in the
 | |
|     // main axis.
 | |
|     nscoord contentSizeSuggestion = nscoord_MAX;
 | |
| 
 | |
|     if (aFlexItem.IsInlineAxisMainAxis()) {
 | |
|       if (minSizeNeedsToMeasureContent) {
 | |
|         // Compute the flex item's content size suggestion, which is the
 | |
|         // 'min-content' size on the main axis.
 | |
|         // https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion
 | |
|         const auto cbWM = aAxisTracker.GetWritingMode();
 | |
|         const auto itemWM = aFlexItem.GetWritingMode();
 | |
|         const nscoord availISize = 0;  // for min-content size
 | |
|         StyleSizeOverrides sizeOverrides;
 | |
|         sizeOverrides.mStyleISize.emplace(StyleSize::Auto());
 | |
|         const auto sizeInItemWM = aFlexItem.Frame()->ComputeSize(
 | |
|             aItemReflowInput.mRenderingContext, itemWM,
 | |
|             aItemReflowInput.mContainingBlockSize, availISize,
 | |
|             aItemReflowInput.ComputedLogicalMargin(itemWM).Size(itemWM),
 | |
|             aItemReflowInput.ComputedLogicalBorderPadding(itemWM).Size(itemWM),
 | |
|             sizeOverrides, {ComputeSizeFlag::ShrinkWrap});
 | |
| 
 | |
|         contentSizeSuggestion = aAxisTracker.MainComponent(
 | |
|             sizeInItemWM.mLogicalSize.ConvertTo(cbWM, itemWM));
 | |
|       }
 | |
|       NS_ASSERTION(!flexBasisNeedsToMeasureContent,
 | |
|                    "flex-basis:auto should have been resolved in the "
 | |
|                    "reflow input, for horizontal flexbox. It shouldn't need "
 | |
|                    "special handling here");
 | |
|     } else {
 | |
|       // If this item is flexible (in its block axis)...
 | |
|       // OR if we're measuring its 'auto' min-BSize, with its main-size (in its
 | |
|       // block axis) being something non-"auto"...
 | |
|       // THEN: we assume that the computed BSize that we're reflowing with now
 | |
|       // could be different from the one we'll use for this flex item's
 | |
|       // "actual" reflow later on.  In that case, we need to be sure the flex
 | |
|       // item treats this as a block-axis resize (regardless of whether there
 | |
|       // are actually any ancestors being resized in that axis).
 | |
|       // (Note: We don't have to do this for the inline axis, because
 | |
|       // InitResizeFlags will always turn on mIsIResize on when it sees that
 | |
|       // the computed ISize is different from current ISize, and that's all we
 | |
|       // need.)
 | |
|       bool forceBResizeForMeasuringReflow =
 | |
|           !aFlexItem.IsFrozen() ||          // Is the item flexible?
 | |
|           !flexBasisNeedsToMeasureContent;  // Are we *only* measuring it for
 | |
|                                             // 'min-block-size:auto'?
 | |
| 
 | |
|       const ReflowInput& flexContainerRI = *aItemReflowInput.mParentReflowInput;
 | |
|       nscoord contentBSize = MeasureFlexItemContentBSize(
 | |
|           aFlexItem, forceBResizeForMeasuringReflow, flexContainerRI);
 | |
|       if (minSizeNeedsToMeasureContent) {
 | |
|         contentSizeSuggestion = contentBSize;
 | |
|       }
 | |
|       if (flexBasisNeedsToMeasureContent) {
 | |
|         aFlexItem.SetFlexBaseSizeAndMainSize(contentBSize);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (minSizeNeedsToMeasureContent) {
 | |
|       // Clamp the content size suggestion by any definite min and max cross
 | |
|       // size converted through the aspect ratio.
 | |
|       if (aFlexItem.HasAspectRatio()) {
 | |
|         contentSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints(
 | |
|             contentSizeSuggestion, aItemReflowInput);
 | |
|       }
 | |
| 
 | |
|       FLEX_LOGV(" Content size suggestion: %d", contentSizeSuggestion);
 | |
|       resolvedMinSize = std::min(resolvedMinSize, contentSizeSuggestion);
 | |
| 
 | |
|       // Clamp the resolved min main size by the max main size if it's definite.
 | |
|       if (aFlexItem.MainMaxSize() != NS_UNCONSTRAINEDSIZE) {
 | |
|         resolvedMinSize = std::min(resolvedMinSize, aFlexItem.MainMaxSize());
 | |
|       } else if (MOZ_UNLIKELY(resolvedMinSize > nscoord_MAX)) {
 | |
|         NS_WARNING("Bogus resolved auto min main size!");
 | |
|         // Our resolved min-size is bogus, probably due to some huge sizes in
 | |
|         // the content. Clamp it to the valid nscoord range, so that we can at
 | |
|         // least depend on it being <= the max-size (which is also the
 | |
|         // nscoord_MAX sentinel value if we reach this point).
 | |
|         resolvedMinSize = nscoord_MAX;
 | |
|       }
 | |
|       FLEX_LOGV(" Resolved auto min main size: %d", resolvedMinSize);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isMainMinSizeAuto) {
 | |
|     aFlexItem.UpdateMainMinSize(resolvedMinSize);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * A cached result for a flex item's block-axis measuring reflow. This cache
 | |
|  * prevents us from doing exponential reflows in cases of deeply nested flex
 | |
|  * and scroll frames.
 | |
|  *
 | |
|  * We store the cached value in the flex item's frame property table, for
 | |
|  * simplicity.
 | |
|  *
 | |
|  * Right now, we cache the following as a "key", from the item's ReflowInput:
 | |
|  *   - its ComputedSize
 | |
|  *   - its min/max block size (in case its ComputedBSize is unconstrained)
 | |
|  *   - its AvailableBSize
 | |
|  * ...and we cache the following as the "value", from the item's ReflowOutput:
 | |
|  *   - its final content-box BSize
 | |
|  *
 | |
|  * The assumption here is that a given flex item measurement from our "value"
 | |
|  * won't change unless one of the pieces of the "key" change, or the flex
 | |
|  * item's intrinsic size is marked as dirty (due to a style or DOM change).
 | |
|  * (The latter will cause the cached value to be discarded, in
 | |
|  * nsIFrame::MarkIntrinsicISizesDirty.)
 | |
|  *
 | |
|  * Note that the components of "Key" (mComputed{MinB,MaxB,}Size and
 | |
|  * mAvailableBSize) are sufficient to catch any changes to the flex container's
 | |
|  * size that the item may care about for its measuring reflow. Specifically:
 | |
|  *  - If the item cares about the container's size (e.g. if it has a percent
 | |
|  *    height and the container's height changes, in a horizontal-WM container)
 | |
|  *    then that'll be detectable via the item's ReflowInput's "ComputedSize()"
 | |
|  *    differing from the value in our Key.  And the same applies for the
 | |
|  *    inline axis.
 | |
|  *  - If the item is fragmentable (pending bug 939897) and its measured BSize
 | |
|  *    depends on where it gets fragmented, then that sort of change can be
 | |
|  *    detected due to the item's ReflowInput's "AvailableBSize()" differing
 | |
|  *    from the value in our Key.
 | |
|  *
 | |
|  * One particular case to consider (& need to be sure not to break when
 | |
|  * changing this class): the flex item's computed BSize may change between
 | |
|  * measuring reflows due to how the mIsFlexContainerMeasuringBSize flag affects
 | |
|  * size computation (see bug 1336708). This is one reason we need to use the
 | |
|  * computed BSize as part of the key.
 | |
|  */
 | |
| class nsFlexContainerFrame::CachedBAxisMeasurement {
 | |
|   struct Key {
 | |
|     const LogicalSize mComputedSize;
 | |
|     const nscoord mComputedMinBSize;
 | |
|     const nscoord mComputedMaxBSize;
 | |
|     const nscoord mAvailableBSize;
 | |
| 
 | |
|     explicit Key(const ReflowInput& aRI)
 | |
|         : mComputedSize(aRI.ComputedSize()),
 | |
|           mComputedMinBSize(aRI.ComputedMinBSize()),
 | |
|           mComputedMaxBSize(aRI.ComputedMaxBSize()),
 | |
|           mAvailableBSize(aRI.AvailableBSize()) {}
 | |
| 
 | |
|     bool operator==(const Key& aOther) const {
 | |
|       return mComputedSize == aOther.mComputedSize &&
 | |
|              mComputedMinBSize == aOther.mComputedMinBSize &&
 | |
|              mComputedMaxBSize == aOther.mComputedMaxBSize &&
 | |
|              mAvailableBSize == aOther.mAvailableBSize;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   const Key mKey;
 | |
| 
 | |
|   // This could/should be const, but it's non-const for now just because it's
 | |
|   // assigned via a series of steps in the constructor body:
 | |
|   nscoord mBSize;
 | |
| 
 | |
|  public:
 | |
|   CachedBAxisMeasurement(const ReflowInput& aReflowInput,
 | |
|                          const ReflowOutput& aReflowOutput)
 | |
|       : mKey(aReflowInput) {
 | |
|     // To get content-box bsize, we have to subtract off border & padding
 | |
|     // (and floor at 0 in case the border/padding are too large):
 | |
|     WritingMode itemWM = aReflowInput.GetWritingMode();
 | |
|     nscoord borderBoxBSize = aReflowOutput.BSize(itemWM);
 | |
|     mBSize =
 | |
|         borderBoxBSize -
 | |
|         aReflowInput.ComputedLogicalBorderPadding(itemWM).BStartEnd(itemWM);
 | |
|     mBSize = std::max(0, mBSize);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns true if this cached flex item measurement is valid for (i.e. can
 | |
|    * be expected to match the output of) a measuring reflow whose input
 | |
|    * parameters are given via aReflowInput.
 | |
|    */
 | |
|   bool IsValidFor(const ReflowInput& aReflowInput) const {
 | |
|     return mKey == Key(aReflowInput);
 | |
|   }
 | |
| 
 | |
|   nscoord BSize() const { return mBSize; }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * A cached copy of various metrics from a flex item's most recent final reflow.
 | |
|  * It can be used to determine whether we can optimize away the flex item's
 | |
|  * final reflow, when we perform an incremental reflow of its flex container.
 | |
|  */
 | |
| class CachedFinalReflowMetrics final {
 | |
|  public:
 | |
|   CachedFinalReflowMetrics(const ReflowInput& aReflowInput,
 | |
|                            const ReflowOutput& aReflowOutput)
 | |
|       : CachedFinalReflowMetrics(aReflowInput.GetWritingMode(), aReflowInput,
 | |
|                                  aReflowOutput) {}
 | |
| 
 | |
|   CachedFinalReflowMetrics(const FlexItem& aItem, const LogicalSize& aSize)
 | |
|       : mBorderPadding(aItem.BorderPadding().ConvertTo(
 | |
|             aItem.GetWritingMode(), aItem.ContainingBlockWM())),
 | |
|         mSize(aSize),
 | |
|         mTreatBSizeAsIndefinite(aItem.TreatBSizeAsIndefinite()) {}
 | |
| 
 | |
|   const LogicalSize& Size() const { return mSize; }
 | |
|   const LogicalMargin& BorderPadding() const { return mBorderPadding; }
 | |
|   bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; }
 | |
| 
 | |
|  private:
 | |
|   // A convenience constructor with a WritingMode argument.
 | |
|   CachedFinalReflowMetrics(WritingMode aWM, const ReflowInput& aReflowInput,
 | |
|                            const ReflowOutput& aReflowOutput)
 | |
|       : mBorderPadding(aReflowInput.ComputedLogicalBorderPadding(aWM)),
 | |
|         mSize(aReflowOutput.Size(aWM) - mBorderPadding.Size(aWM)),
 | |
|         mTreatBSizeAsIndefinite(aReflowInput.mFlags.mTreatBSizeAsIndefinite) {}
 | |
| 
 | |
|   // The flex item's border and padding, in its own writing-mode, that it used
 | |
|   // used during its most recent "final reflow".
 | |
|   LogicalMargin mBorderPadding;
 | |
| 
 | |
|   // The flex item's content-box size, in its own writing-mode, that it used
 | |
|   // during its most recent "final reflow".
 | |
|   LogicalSize mSize;
 | |
| 
 | |
|   // True if the flex item's BSize was considered "indefinite" in its most
 | |
|   // recent "final reflow". (For a flex item "final reflow", this is fully
 | |
|   // determined by the mTreatBSizeAsIndefinite flag in ReflowInput. See the
 | |
|   // flag's documentation for more information.)
 | |
|   bool mTreatBSizeAsIndefinite;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * When we instantiate/update a CachedFlexItemData, this enum must be used to
 | |
|  * indicate the sort of reflow whose results we're capturing. This impacts
 | |
|  * what we cache & how we use the cached information.
 | |
|  */
 | |
| enum class FlexItemReflowType {
 | |
|   // A reflow to measure the block-axis size of a flex item (as an input to the
 | |
|   // flex layout algorithm).
 | |
|   Measuring,
 | |
| 
 | |
|   // A reflow with the flex item's "final" size at the end of the flex layout
 | |
|   // algorithm.
 | |
|   Final,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * This class stores information about the conditions and results for the most
 | |
|  * recent ReflowChild call that we made on a given flex item.  This information
 | |
|  * helps us reason about whether we can assume that a subsequent ReflowChild()
 | |
|  * invocation is unnecessary & skippable.
 | |
|  */
 | |
| class nsFlexContainerFrame::CachedFlexItemData {
 | |
|  public:
 | |
|   CachedFlexItemData(const ReflowInput& aReflowInput,
 | |
|                      const ReflowOutput& aReflowOutput,
 | |
|                      FlexItemReflowType aType) {
 | |
|     Update(aReflowInput, aReflowOutput, aType);
 | |
|   }
 | |
| 
 | |
|   // This method is intended to be called after we perform either a "measuring
 | |
|   // reflow" or a "final reflow" for a given flex item.
 | |
|   void Update(const ReflowInput& aReflowInput,
 | |
|               const ReflowOutput& aReflowOutput, FlexItemReflowType aType) {
 | |
|     if (aType == FlexItemReflowType::Measuring) {
 | |
|       mBAxisMeasurement.reset();
 | |
|       mBAxisMeasurement.emplace(aReflowInput, aReflowOutput);
 | |
|       // Clear any cached "last final reflow metrics", too, because now the most
 | |
|       // recent reflow was *not* a "final reflow".
 | |
|       mFinalReflowMetrics.reset();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     MOZ_ASSERT(aType == FlexItemReflowType::Final);
 | |
|     mFinalReflowMetrics.reset();
 | |
|     mFinalReflowMetrics.emplace(aReflowInput, aReflowOutput);
 | |
|   }
 | |
| 
 | |
|   // This method is intended to be called for situations where we decide to
 | |
|   // skip a final reflow because we've just done a measuring reflow which left
 | |
|   // us (and our descendants) with the correct sizes. In this scenario, we
 | |
|   // still want to cache the size as if we did a final reflow (because we've
 | |
|   // determined that the recent measuring reflow was sufficient).  That way,
 | |
|   // our flex container can still skip a final reflow for this item in the
 | |
|   // future as long as conditions are right.
 | |
|   void Update(const FlexItem& aItem, const LogicalSize& aSize) {
 | |
|     MOZ_ASSERT(!mFinalReflowMetrics,
 | |
|                "This version of the method is only intended to be called when "
 | |
|                "the most recent reflow was a 'measuring reflow'; and that "
 | |
|                "should have cleared out mFinalReflowMetrics");
 | |
| 
 | |
|     mFinalReflowMetrics.reset();  // Just in case this assert^ fails.
 | |
|     mFinalReflowMetrics.emplace(aItem, aSize);
 | |
|   }
 | |
| 
 | |
|   // If the flex container needs a measuring reflow for the flex item, then the
 | |
|   // resulting block-axis measurements can be cached here.  If no measurement
 | |
|   // has been needed so far, then this member will be Nothing().
 | |
|   Maybe<CachedBAxisMeasurement> mBAxisMeasurement;
 | |
| 
 | |
|   // The metrics that the corresponding flex item used in its most recent
 | |
|   // "final reflow". (Note: the assumption here is that this reflow was this
 | |
|   // item's most recent reflow of any type.  If the item ends up undergoing a
 | |
|   // subsequent measuring reflow, then this value needs to be cleared, because
 | |
|   // at that point it's no longer an accurate way of reasoning about the
 | |
|   // current state of the frame tree.)
 | |
|   Maybe<CachedFinalReflowMetrics> mFinalReflowMetrics;
 | |
| 
 | |
|   // Instances of this class are stored under this frame property, on
 | |
|   // frames that are flex items:
 | |
|   NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, CachedFlexItemData)
 | |
| };
 | |
| 
 | |
| void nsFlexContainerFrame::MarkCachedFlexMeasurementsDirty(
 | |
|     nsIFrame* aItemFrame) {
 | |
|   MOZ_ASSERT(aItemFrame->IsFlexItem());
 | |
|   if (auto* cache = aItemFrame->GetProperty(CachedFlexItemData::Prop())) {
 | |
|     cache->mBAxisMeasurement.reset();
 | |
|     cache->mFinalReflowMetrics.reset();
 | |
|   }
 | |
| }
 | |
| 
 | |
| const CachedBAxisMeasurement& nsFlexContainerFrame::MeasureBSizeForFlexItem(
 | |
|     FlexItem& aItem, ReflowInput& aChildReflowInput) {
 | |
|   auto* cachedData = aItem.Frame()->GetProperty(CachedFlexItemData::Prop());
 | |
| 
 | |
|   if (cachedData && cachedData->mBAxisMeasurement) {
 | |
|     if (!aItem.Frame()->IsSubtreeDirty() &&
 | |
|         cachedData->mBAxisMeasurement->IsValidFor(aChildReflowInput)) {
 | |
|       FLEX_LOG("[perf] MeasureBSizeForFlexItem accepted cached value");
 | |
|       return *(cachedData->mBAxisMeasurement);
 | |
|     }
 | |
|     FLEX_LOG("[perf] MeasureBSizeForFlexItem rejected cached value");
 | |
|   } else {
 | |
|     FLEX_LOG("[perf] MeasureBSizeForFlexItem didn't have a cached value");
 | |
|   }
 | |
| 
 | |
|   // CachedFlexItemData is stored in item's writing mode, so we pass
 | |
|   // aChildReflowInput into ReflowOutput's constructor.
 | |
|   ReflowOutput childReflowOutput(aChildReflowInput);
 | |
|   nsReflowStatus childReflowStatus;
 | |
| 
 | |
|   const ReflowChildFlags flags = ReflowChildFlags::NoMoveFrame;
 | |
|   const WritingMode outerWM = GetWritingMode();
 | |
|   const LogicalPoint dummyPosition(outerWM);
 | |
|   const nsSize dummyContainerSize;
 | |
| 
 | |
|   // We use NoMoveFrame, so the position and container size used here are
 | |
|   // unimportant.
 | |
|   ReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
 | |
|               aChildReflowInput, outerWM, dummyPosition, dummyContainerSize,
 | |
|               flags, childReflowStatus);
 | |
|   aItem.SetHadMeasuringReflow();
 | |
| 
 | |
|   // We always use unconstrained available block-size to measure flex items,
 | |
|   // which means they should always complete.
 | |
|   MOZ_ASSERT(childReflowStatus.IsComplete(),
 | |
|              "We gave flex item unconstrained available block-size, so it "
 | |
|              "should be complete");
 | |
| 
 | |
|   // Tell the child we're done with its initial reflow.
 | |
|   // (Necessary for e.g. GetBaseline() to work below w/out asserting)
 | |
|   FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
 | |
|                     &aChildReflowInput, outerWM, dummyPosition,
 | |
|                     dummyContainerSize, flags);
 | |
| 
 | |
|   aItem.SetAscent(childReflowOutput.BlockStartAscent());
 | |
| 
 | |
|   // Update (or add) our cached measurement, so that we can hopefully skip this
 | |
|   // measuring reflow the next time around:
 | |
|   if (cachedData) {
 | |
|     cachedData->Update(aChildReflowInput, childReflowOutput,
 | |
|                        FlexItemReflowType::Measuring);
 | |
|   } else {
 | |
|     cachedData = new CachedFlexItemData(aChildReflowInput, childReflowOutput,
 | |
|                                         FlexItemReflowType::Measuring);
 | |
|     aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cachedData);
 | |
|   }
 | |
|   return *(cachedData->mBAxisMeasurement);
 | |
| }
 | |
| 
 | |
| /* virtual */
 | |
| void nsFlexContainerFrame::MarkIntrinsicISizesDirty() {
 | |
|   mCachedMinISize = NS_INTRINSIC_ISIZE_UNKNOWN;
 | |
|   mCachedPrefISize = NS_INTRINSIC_ISIZE_UNKNOWN;
 | |
| 
 | |
|   nsContainerFrame::MarkIntrinsicISizesDirty();
 | |
| }
 | |
| 
 | |
| nscoord nsFlexContainerFrame::MeasureFlexItemContentBSize(
 | |
|     FlexItem& aFlexItem, bool aForceBResizeForMeasuringReflow,
 | |
|     const ReflowInput& aParentReflowInput) {
 | |
|   FLEX_LOG("Measuring flex item's content block-size");
 | |
| 
 | |
|   // Set up a reflow input for measuring the flex item's content block-size:
 | |
|   WritingMode wm = aFlexItem.Frame()->GetWritingMode();
 | |
|   LogicalSize availSize = aParentReflowInput.ComputedSize(wm);
 | |
|   availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
 | |
| 
 | |
|   StyleSizeOverrides sizeOverrides;
 | |
|   if (aFlexItem.IsStretched()) {
 | |
|     sizeOverrides.mStyleISize.emplace(aFlexItem.StyleCrossSize());
 | |
|     // Suppress any AspectRatio that we might have to prevent ComputeSize() from
 | |
|     // transferring our inline-size override through the aspect-ratio to set the
 | |
|     // block-size, because that would prevent us from measuring the content
 | |
|     // block-size.
 | |
|     sizeOverrides.mAspectRatio.emplace(AspectRatio());
 | |
|     FLEX_LOGV(" Cross size override: %d", aFlexItem.CrossSize());
 | |
|   }
 | |
|   sizeOverrides.mStyleBSize.emplace(StyleSize::Auto());
 | |
| 
 | |
|   ReflowInput childRIForMeasuringBSize(
 | |
|       PresContext(), aParentReflowInput, aFlexItem.Frame(), availSize,
 | |
|       Nothing(), ReflowInput::InitFlag::CallerWillInit, sizeOverrides);
 | |
|   childRIForMeasuringBSize.Init(PresContext());
 | |
| 
 | |
|   // When measuring flex item's content block-size, disregard the item's
 | |
|   // min-block-size and max-block-size by resetting both to to their
 | |
|   // unconstraining (extreme) values. The flexbox layout algorithm does still
 | |
|   // explicitly clamp both sizes when resolving the target main size.
 | |
|   childRIForMeasuringBSize.SetComputedMinBSize(0);
 | |
|   childRIForMeasuringBSize.SetComputedMaxBSize(NS_UNCONSTRAINEDSIZE);
 | |
| 
 | |
|   if (aForceBResizeForMeasuringReflow) {
 | |
|     childRIForMeasuringBSize.SetBResize(true);
 | |
|     // Not 100% sure this is needed, but be conservative for now:
 | |
|     childRIForMeasuringBSize.mFlags.mIsBResizeForPercentages = true;
 | |
|   }
 | |
| 
 | |
|   const CachedBAxisMeasurement& measurement =
 | |
|       MeasureBSizeForFlexItem(aFlexItem, childRIForMeasuringBSize);
 | |
| 
 | |
|   return measurement.BSize();
 | |
| }
 | |
| 
 | |
| FlexItem::FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
 | |
|                    float aFlexShrink, nscoord aFlexBaseSize,
 | |
|                    nscoord aMainMinSize, nscoord aMainMaxSize,
 | |
|                    nscoord aTentativeCrossSize, nscoord aCrossMinSize,
 | |
|                    nscoord aCrossMaxSize,
 | |
|                    const FlexboxAxisTracker& aAxisTracker)
 | |
|     : mFrame(aFlexItemReflowInput.mFrame),
 | |
|       mFlexGrow(aFlexGrow),
 | |
|       mFlexShrink(aFlexShrink),
 | |
|       mAspectRatio(mFrame->GetAspectRatio()),
 | |
|       mWM(aFlexItemReflowInput.GetWritingMode()),
 | |
|       mCBWM(aAxisTracker.GetWritingMode()),
 | |
|       mMainAxis(aAxisTracker.MainAxis()),
 | |
|       mBorderPadding(aFlexItemReflowInput.ComputedLogicalBorderPadding(mCBWM)),
 | |
|       mMargin(aFlexItemReflowInput.ComputedLogicalMargin(mCBWM)),
 | |
|       mMainMinSize(aMainMinSize),
 | |
|       mMainMaxSize(aMainMaxSize),
 | |
|       mCrossMinSize(aCrossMinSize),
 | |
|       mCrossMaxSize(aCrossMaxSize),
 | |
|       mCrossSize(aTentativeCrossSize),
 | |
|       mIsInlineAxisMainAxis(aAxisTracker.IsInlineAxisMainAxis(mWM)),
 | |
|       mNeedsMinSizeAutoResolution(IsMinSizeAutoResolutionNeeded())
 | |
| // mAlignSelf, mHasAnyAutoMargin see below
 | |
| {
 | |
|   MOZ_ASSERT(mFrame, "expecting a non-null child frame");
 | |
|   MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
 | |
|              "placeholder frames should not be treated as flex items");
 | |
|   MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
 | |
|              "out-of-flow frames should not be treated as flex items");
 | |
|   MOZ_ASSERT(mIsInlineAxisMainAxis ==
 | |
|                  nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame),
 | |
|              "public API should be consistent with internal state (about "
 | |
|              "whether flex item's inline axis is flex container's main axis)");
 | |
| 
 | |
|   const ReflowInput* containerRS = aFlexItemReflowInput.mParentReflowInput;
 | |
|   if (IsLegacyBox(containerRS->mFrame)) {
 | |
|     // For -webkit-{inline-}box and -moz-{inline-}box, we need to:
 | |
|     // (1) Use prefixed "box-align" instead of "align-items" to determine the
 | |
|     //     container's cross-axis alignment behavior.
 | |
|     // (2) Suppress the ability for flex items to override that with their own
 | |
|     //     cross-axis alignment. (The legacy box model doesn't support this.)
 | |
|     // So, each FlexItem simply copies the container's converted "align-items"
 | |
|     // value and disregards their own "align-self" property.
 | |
|     const nsStyleXUL* containerStyleXUL = containerRS->mFrame->StyleXUL();
 | |
|     mAlignSelf = {ConvertLegacyStyleToAlignItems(containerStyleXUL)};
 | |
|     mAlignSelfFlags = {0};
 | |
|   } else {
 | |
|     mAlignSelf = aFlexItemReflowInput.mStylePosition->UsedAlignSelf(
 | |
|         containerRS->mFrame->Style());
 | |
|     if (MOZ_LIKELY(mAlignSelf._0 == StyleAlignFlags::NORMAL)) {
 | |
|       mAlignSelf = {StyleAlignFlags::STRETCH};
 | |
|     }
 | |
| 
 | |
|     // Store and strip off the <overflow-position> bits
 | |
|     mAlignSelfFlags = mAlignSelf._0 & StyleAlignFlags::FLAG_BITS;
 | |
|     mAlignSelf._0 &= ~StyleAlignFlags::FLAG_BITS;
 | |
|   }
 | |
| 
 | |
|   // Our main-size is considered definite if any of these are true:
 | |
|   // (a) main axis is the item's inline axis.
 | |
|   // (b) flex container has definite main size.
 | |
|   // (c) flex item has a definite flex basis.
 | |
|   //
 | |
|   // Hence, we need to take care to treat the final main-size as *indefinite*
 | |
|   // if none of these conditions are satisfied.
 | |
|   if (mIsInlineAxisMainAxis) {
 | |
|     // The item's block-axis is the flex container's cross axis. We don't need
 | |
|     // any special handling to treat cross sizes as indefinite, because the
 | |
|     // cases where we stomp on the cross size with a definite value are all...
 | |
|     // - situations where the spec requires us to treat the cross size as
 | |
|     // definite; specifically, `align-self:stretch` whose cross size is
 | |
|     // definite.
 | |
|     // - situations where definiteness doesn't matter (e.g. for an element with
 | |
|     // an aspect ratio, which for now are all leaf nodes and hence
 | |
|     // can't have any percent-height descendants that would care about the
 | |
|     // definiteness of its size. (Once bug 1528375 is fixed, we might need to
 | |
|     // be more careful about definite vs. indefinite sizing on flex items with
 | |
|     // aspect ratios.)
 | |
|     mTreatBSizeAsIndefinite = false;
 | |
|   } else {
 | |
|     // The item's block-axis is the flex container's main axis. So, the flex
 | |
|     // item's main size is its BSize, and is considered definite under certain
 | |
|     // conditions laid out for definite flex-item main-sizes in the spec.
 | |
|     if (aAxisTracker.IsRowOriented() ||
 | |
|         (containerRS->ComputedBSize() != NS_UNCONSTRAINEDSIZE &&
 | |
|          !containerRS->mFlags.mTreatBSizeAsIndefinite)) {
 | |
|       // The flex *container* has a definite main-size (either by being
 | |
|       // row-oriented [and using its own inline size which is by definition
 | |
|       // definite, or by being column-oriented and having a definite
 | |
|       // block-size).  The spec says this means all of the flex items'
 | |
|       // post-flexing main sizes should *also* be treated as definite.
 | |
|       mTreatBSizeAsIndefinite = false;
 | |
|     } else if (aFlexBaseSize != NS_UNCONSTRAINEDSIZE) {
 | |
|       // The flex item has a definite flex basis, which we'll treat as making
 | |
|       // its main-size definite.
 | |
|       mTreatBSizeAsIndefinite = false;
 | |
|     } else {
 | |
|       // Otherwise, we have to treat the item's BSize as indefinite.
 | |
|       mTreatBSizeAsIndefinite = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SetFlexBaseSizeAndMainSize(aFlexBaseSize);
 | |
| 
 | |
|   const nsStyleMargin* styleMargin = aFlexItemReflowInput.mStyleMargin;
 | |
|   mHasAnyAutoMargin = styleMargin->HasInlineAxisAuto(mCBWM) ||
 | |
|                       styleMargin->HasBlockAxisAuto(mCBWM);
 | |
| 
 | |
|   // Assert that any "auto" margin components are set to 0.
 | |
|   // (We'll resolve them later; until then, we want to treat them as 0-sized.)
 | |
| #ifdef DEBUG
 | |
|   {
 | |
|     for (const auto side : AllLogicalSides()) {
 | |
|       if (styleMargin->mMargin.Get(mCBWM, side).IsAuto()) {
 | |
|         MOZ_ASSERT(GetMarginComponentForSide(side) == 0,
 | |
|                    "Someone else tried to resolve our auto margin");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif  // DEBUG
 | |
| 
 | |
|   // Map align-self 'baseline' value to 'start' when baseline alignment
 | |
|   // is not possible because the FlexItem's block axis is orthogonal to
 | |
|   // the cross axis of the container. If that's the case, we just directly
 | |
|   // convert our align-self value here, so that we don't have to handle this
 | |
|   // with special cases elsewhere.
 | |
|   // We are treating this case as one where it is appropriate to use the
 | |
|   // fallback values defined at https://www.w3.org/TR/css-align/#baseline-values
 | |
|   if (!IsBlockAxisCrossAxis()) {
 | |
|     if (mAlignSelf._0 == StyleAlignFlags::BASELINE) {
 | |
|       mAlignSelf = {StyleAlignFlags::FLEX_START};
 | |
|     } else if (mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE) {
 | |
|       mAlignSelf = {StyleAlignFlags::FLEX_END};
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Simplified constructor for creating a special "strut" FlexItem, for a child
 | |
| // with visibility:collapse. The strut has 0 main-size, and it only exists to
 | |
| // impose a minimum cross size on whichever FlexLine it ends up in.
 | |
| FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize,
 | |
|                    WritingMode aContainerWM,
 | |
|                    const FlexboxAxisTracker& aAxisTracker)
 | |
|     : mFrame(aChildFrame),
 | |
|       mWM(aChildFrame->GetWritingMode()),
 | |
|       mCBWM(aContainerWM),
 | |
|       mMainAxis(aAxisTracker.MainAxis()),
 | |
|       mBorderPadding(mCBWM),
 | |
|       mMargin(mCBWM),
 | |
|       mCrossSize(aCrossSize),
 | |
|       // Struts don't do layout, so its WM doesn't matter at this point. So, we
 | |
|       // just share container's WM for simplicity:
 | |
|       mIsFrozen(true),
 | |
|       mIsStrut(true),  // (this is the constructor for making struts, after all)
 | |
|       mAlignSelf({StyleAlignFlags::FLEX_START}) {
 | |
|   MOZ_ASSERT(mFrame, "expecting a non-null child frame");
 | |
|   MOZ_ASSERT(mFrame->StyleVisibility()->IsCollapse(),
 | |
|              "Should only make struts for children with 'visibility:collapse'");
 | |
|   MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
 | |
|              "placeholder frames should not be treated as flex items");
 | |
|   MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
 | |
|              "out-of-flow frames should not be treated as flex items");
 | |
| }
 | |
| 
 | |
| bool FlexItem::IsMinSizeAutoResolutionNeeded() const {
 | |
|   // We'll need special behavior for "min-[width|height]:auto" (whichever is in
 | |
|   // the flex container's main axis) iff:
 | |
|   // (a) its computed value is "auto", and
 | |
|   // (b) the item is *not* a scroll container. (A scroll container's automatic
 | |
|   //     minimum size is zero.)
 | |
|   // https://drafts.csswg.org/css-flexbox-1/#min-size-auto
 | |
|   const auto& mainMinSize =
 | |
|       Frame()->StylePosition()->MinSize(MainAxis(), ContainingBlockWM());
 | |
| 
 | |
|   return IsAutoOrEnumOnBSize(mainMinSize, IsInlineAxisMainAxis()) &&
 | |
|          !Frame()->StyleDisplay()->IsScrollableOverflow();
 | |
| }
 | |
| 
 | |
| nscoord FlexItem::BaselineOffsetFromOuterCrossEdge(
 | |
|     mozilla::Side aStartSide, bool aUseFirstLineBaseline) const {
 | |
|   // NOTE:
 | |
|   //  * We only use baselines for aligning in the flex container's cross axis.
 | |
|   //  * Baselines are a measurement in the item's block axis.
 | |
|   // ...so we only expect to get here if the item's block axis is parallel (or
 | |
|   // antiparallel) to the container's cross axis.  (Otherwise, the FlexItem
 | |
|   // constructor should've resolved mAlignSelf with a fallback value, which
 | |
|   // would prevent this function from being called.)
 | |
|   MOZ_ASSERT(IsBlockAxisCrossAxis(),
 | |
|              "Only expecting to be doing baseline computations when the "
 | |
|              "cross axis is the block axis");
 | |
| 
 | |
|   mozilla::Side itemBlockStartSide = mWM.PhysicalSide(eLogicalSideBStart);
 | |
| 
 | |
|   nscoord marginBStartToBaseline = ResolvedAscent(aUseFirstLineBaseline) +
 | |
|                                    PhysicalMargin().Side(itemBlockStartSide);
 | |
| 
 | |
|   return (aStartSide == itemBlockStartSide)
 | |
|              ? marginBStartToBaseline
 | |
|              : OuterCrossSize() - marginBStartToBaseline;
 | |
| }
 | |
| 
 | |
| bool FlexItem::IsCrossSizeAuto() const {
 | |
|   const nsStylePosition* stylePos =
 | |
|       nsLayoutUtils::GetStyleFrame(mFrame)->StylePosition();
 | |
|   // Check whichever component is in the flex container's cross axis.
 | |
|   // (IsInlineAxisCrossAxis() tells us whether that's our ISize or BSize, in
 | |
|   // terms of our own WritingMode, mWM.)
 | |
|   return IsInlineAxisCrossAxis() ? stylePos->ISize(mWM).IsAuto()
 | |
|                                  : stylePos->BSize(mWM).IsAuto();
 | |
| }
 | |
| 
 | |
| bool FlexItem::IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const {
 | |
|   if (IsStretched()) {
 | |
|     // Definite cross-size, imposed via 'align-self:stretch' & flex container.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const nsStylePosition* pos = aItemReflowInput.mStylePosition;
 | |
|   const auto itemWM = GetWritingMode();
 | |
| 
 | |
|   // The logic here should be similar to the logic for isAutoISize/isAutoBSize
 | |
|   // in nsContainerFrame::ComputeSizeWithIntrinsicDimensions().
 | |
|   if (IsInlineAxisCrossAxis()) {
 | |
|     return !pos->ISize(itemWM).IsAuto();
 | |
|   }
 | |
| 
 | |
|   nscoord cbBSize = aItemReflowInput.mContainingBlockSize.BSize(itemWM);
 | |
|   return !nsLayoutUtils::IsAutoBSize(pos->BSize(itemWM), cbBSize);
 | |
| }
 | |
| 
 | |
| void FlexItem::ResolveFlexBaseSizeFromAspectRatio(
 | |
|     const ReflowInput& aItemReflowInput) {
 | |
|   // This implements the Flex Layout Algorithm Step 3B:
 | |
|   // https://drafts.csswg.org/css-flexbox-1/#algo-main-item
 | |
|   // If the flex item has ...
 | |
|   //  - an aspect ratio,
 | |
|   //  - a [used] flex-basis of 'content', and
 | |
|   //  - a definite cross size
 | |
|   // then the flex base size is calculated from its inner cross size and the
 | |
|   // flex item's preferred aspect ratio.
 | |
|   if (HasAspectRatio() &&
 | |
|       nsFlexContainerFrame::IsUsedFlexBasisContent(
 | |
|           aItemReflowInput.mStylePosition->mFlexBasis,
 | |
|           aItemReflowInput.mStylePosition->Size(MainAxis(), mCBWM)) &&
 | |
|       IsCrossSizeDefinite(aItemReflowInput)) {
 | |
|     const LogicalSize contentBoxSizeToBoxSizingAdjust =
 | |
|         aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
 | |
|             ? BorderPadding().Size(mCBWM)
 | |
|             : LogicalSize(mCBWM);
 | |
|     const nscoord mainSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
 | |
|         MainAxis(), mCBWM, CrossSize(), contentBoxSizeToBoxSizingAdjust);
 | |
|     SetFlexBaseSizeAndMainSize(mainSizeFromRatio);
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint32_t FlexItem::NumAutoMarginsInAxis(LogicalAxis aAxis) const {
 | |
|   uint32_t numAutoMargins = 0;
 | |
|   const auto& styleMargin = mFrame->StyleMargin()->mMargin;
 | |
|   for (const auto edge : {eLogicalEdgeStart, eLogicalEdgeEnd}) {
 | |
|     const auto side = MakeLogicalSide(aAxis, edge);
 | |
|     if (styleMargin.Get(mCBWM, side).IsAuto()) {
 | |
|       numAutoMargins++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Mostly for clarity:
 | |
|   MOZ_ASSERT(numAutoMargins <= 2,
 | |
|              "We're just looking at one item along one dimension, so we "
 | |
|              "should only have examined 2 margins");
 | |
| 
 | |
|   return numAutoMargins;
 | |
| }
 | |
| 
 | |
| bool FlexItem::CanMainSizeInfluenceCrossSize() const {
 | |
|   if (mIsStretched) {
 | |
|     // We've already had our cross-size stretched for "align-self:stretch").
 | |
|     // The container is imposing its cross size on us.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (mIsStrut) {
 | |
|     // Struts (for visibility:collapse items) have a predetermined size;
 | |
|     // no need to measure anything.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (HasAspectRatio()) {
 | |
|     // For flex items that have an aspect ratio (and maintain it, i.e. are
 | |
|     // not stretched, which we already checked above): changes to main-size
 | |
|     // *do* influence the cross size.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (IsInlineAxisCrossAxis()) {
 | |
|     // If we get here, this function is really asking: "can changes to this
 | |
|     // item's block size have an influence on its inline size"?  For blocks and
 | |
|     // tables, the answer is "no".
 | |
|     if (mFrame->IsBlockFrame() || mFrame->IsTableWrapperFrame()) {
 | |
|       // XXXdholbert (Maybe use an IsFrameOfType query or something more
 | |
|       // general to test this across all frame types? For now, I'm just
 | |
|       // optimizing for block and table, since those are common containers that
 | |
|       // can contain arbitrarily-large subtrees (and that reliably have ISize
 | |
|       // being unaffected by BSize, per CSS2).  So optimizing away needless
 | |
|       // relayout is possible & especially valuable for these containers.)
 | |
|       return false;
 | |
|     }
 | |
|     // Other opt-outs can go here, as they're identified as being useful
 | |
|     // (particularly for containers where an extra reflow is expensive). But in
 | |
|     // general, we have to assume that a flexed BSize *could* influence the
 | |
|     // ISize. Some examples where this can definitely happen:
 | |
|     // * Intrinsically-sized multicol with fixed-ISize columns, which adds
 | |
|     // columns (i.e. grows in inline axis) depending on its block size.
 | |
|     // * Intrinsically-sized multi-line column-oriented flex container, which
 | |
|     // adds flex lines (i.e. grows in inline axis) depending on its block size.
 | |
|   }
 | |
| 
 | |
|   // Default assumption, if we haven't proven otherwise: the resolved main size
 | |
|   // *can* change the cross size.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| nscoord FlexItem::ClampMainSizeViaCrossAxisConstraints(
 | |
|     nscoord aMainSize, const ReflowInput& aItemReflowInput) const {
 | |
|   MOZ_ASSERT(HasAspectRatio(), "Caller should've checked the ratio is valid!");
 | |
| 
 | |
|   const LogicalSize contentBoxSizeToBoxSizingAdjust =
 | |
|       aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
 | |
|           ? BorderPadding().Size(mCBWM)
 | |
|           : LogicalSize(mCBWM);
 | |
| 
 | |
|   const nscoord mainMinSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
 | |
|       MainAxis(), mCBWM, CrossMinSize(), contentBoxSizeToBoxSizingAdjust);
 | |
|   nscoord clampedMainSize = std::max(aMainSize, mainMinSizeFromRatio);
 | |
| 
 | |
|   if (CrossMaxSize() != NS_UNCONSTRAINEDSIZE) {
 | |
|     const nscoord mainMaxSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
 | |
|         MainAxis(), mCBWM, CrossMaxSize(), contentBoxSizeToBoxSizingAdjust);
 | |
|     clampedMainSize = std::min(clampedMainSize, mainMaxSizeFromRatio);
 | |
|   }
 | |
| 
 | |
|   return clampedMainSize;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns true if aFrame or any of its children have the
 | |
|  * NS_FRAME_CONTAINS_RELATIVE_BSIZE flag set -- i.e. if any of these frames (or
 | |
|  * their descendants) might have a relative-BSize dependency on aFrame (or its
 | |
|  * ancestors).
 | |
|  */
 | |
| static bool FrameHasRelativeBSizeDependency(nsIFrame* aFrame) {
 | |
|   if (aFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
 | |
|     return true;
 | |
|   }
 | |
|   for (const auto& childList : aFrame->ChildLists()) {
 | |
|     for (nsIFrame* childFrame : childList.mList) {
 | |
|       if (childFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool FlexItem::NeedsFinalReflow(const ReflowInput& aParentReflowInput) const {
 | |
|   if (!StaticPrefs::layout_flexbox_item_final_reflow_optimization_enabled()) {
 | |
|     FLEX_LOG(
 | |
|         "[perf] Flex item %p needed a final reflow due to optimization being "
 | |
|         "disabled via the preference",
 | |
|         mFrame);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // NOTE: We can have continuations from an earlier constrained reflow.
 | |
|   if (mFrame->GetPrevInFlow() || mFrame->GetNextInFlow()) {
 | |
|     // This is an item has continuation(s). Reflow it.
 | |
|     FLEX_LOG("[frag] Flex item %p needed a final reflow due to continuation(s)",
 | |
|              mFrame);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // A flex item can grow its block-size in a fragmented context if there's any
 | |
|   // force break within it (bug 1663079), or if it has a repeated table header
 | |
|   // or footer (bug 1744363). We currently always reflow it.
 | |
|   //
 | |
|   // Bug 1815294: investigate if we can design a more specific condition to
 | |
|   // prevent triggering O(n^2) behavior when printing a deeply-nested flex
 | |
|   // container.
 | |
|   if (aParentReflowInput.IsInFragmentedContext()) {
 | |
|     FLEX_LOG(
 | |
|         "[frag] Flex item %p needed both a measuring reflow and a final "
 | |
|         "reflow due to being in a fragmented context.",
 | |
|         mFrame);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Flex item's final content-box size (in terms of its own writing-mode):
 | |
|   const LogicalSize finalSize = mIsInlineAxisMainAxis
 | |
|                                     ? LogicalSize(mWM, mMainSize, mCrossSize)
 | |
|                                     : LogicalSize(mWM, mCrossSize, mMainSize);
 | |
| 
 | |
|   if (HadMeasuringReflow()) {
 | |
|     // We've already reflowed this flex item once, to measure it. In that
 | |
|     // reflow, did its frame happen to end up with the correct final size
 | |
|     // that the flex container would like it to have?
 | |
|     if (finalSize != mFrame->ContentSize(mWM)) {
 | |
|       // The measuring reflow left the item with a different size than its
 | |
|       // final flexed size. So, we need to reflow to give it the correct size.
 | |
|       FLEX_LOG(
 | |
|           "[perf] Flex item %p needed both a measuring reflow and a final "
 | |
|           "reflow due to measured size disagreeing with final size",
 | |
|           mFrame);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (FrameHasRelativeBSizeDependency(mFrame)) {
 | |
|       // This item has descendants with relative BSizes who may care that its
 | |
|       // size may now be considered "definite" in the final reflow (whereas it
 | |
|       // was indefinite during the measuring reflow).
 | |
|       FLEX_LOG(
 | |
|           "[perf] Flex item %p needed both a measuring reflow and a final "
 | |
|           "reflow due to BSize potentially becoming definite",
 | |
|           mFrame);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If we get here, then this flex item had a measuring reflow, it left us
 | |
|     // with the correct size, none of its descendants care that its BSize may
 | |
|     // now be considered definite, and it can fit into the available block-size.
 | |
|     // So it doesn't need a final reflow.
 | |
|     //
 | |
|     // We now cache this size as if we had done a final reflow (because we've
 | |
|     // determined that the measuring reflow was effectively equivalent).  This
 | |
|     // way, in our next time through flex layout, we may be able to skip both
 | |
|     // the measuring reflow *and* the final reflow (if conditions are the same
 | |
|     // as they are now).
 | |
|     if (auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop())) {
 | |
|       cache->Update(*this, finalSize);
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // This item didn't receive a measuring reflow (at least, not during this
 | |
|   // reflow of our flex container).  We may still be able to skip reflowing it
 | |
|   // (i.e. return false from this function), if its subtree is clean & its most
 | |
|   // recent "final reflow" had it at the correct content-box size &
 | |
|   // definiteness.
 | |
|   // Let's check for each condition that would still require us to reflow:
 | |
|   if (mFrame->IsSubtreeDirty()) {
 | |
|     FLEX_LOG(
 | |
|         "[perf] Flex item %p needed a final reflow due to its subtree "
 | |
|         "being dirty",
 | |
|         mFrame);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Cool; this item & its subtree haven't experienced any style/content
 | |
|   // changes that would automatically require a reflow.
 | |
| 
 | |
|   // Did we cache the metrics from its most recent "final reflow"?
 | |
|   auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop());
 | |
|   if (!cache || !cache->mFinalReflowMetrics) {
 | |
|     FLEX_LOG(
 | |
|         "[perf] Flex item %p needed a final reflow due to lacking a "
 | |
|         "cached mFinalReflowMetrics (maybe cache was cleared)",
 | |
|         mFrame);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Does the cached size match our current size?
 | |
|   if (cache->mFinalReflowMetrics->Size() != finalSize) {
 | |
|     FLEX_LOG(
 | |
|         "[perf] Flex item %p needed a final reflow due to having a "
 | |
|         "different content box size vs. its most recent final reflow",
 | |
|         mFrame);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Does the cached border and padding match our current ones?
 | |
|   //
 | |
|   // Note: this is just to detect cases where we have a percent padding whose
 | |
|   // basis has changed. Any other sort of change to BorderPadding() (e.g. a new
 | |
|   // specified value) should result in the frame being marked dirty via proper
 | |
|   // change hint (see nsStylePadding::CalcDifference()), which will force it to
 | |
|   // reflow.
 | |
|   if (cache->mFinalReflowMetrics->BorderPadding() !=
 | |
|       BorderPadding().ConvertTo(mWM, mCBWM)) {
 | |
|     FLEX_LOG(
 | |
|         "[perf] Flex item %p needed a final reflow due to having a "
 | |
|         "different border and padding vs. its most recent final reflow",
 | |
|         mFrame);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The flex container is giving this flex item the same size that the item
 | |
|   // had on its most recent "final reflow". But if its definiteness changed and
 | |
|   // one of the descendants cares, then it would still need a reflow.
 | |
|   if (cache->mFinalReflowMetrics->TreatBSizeAsIndefinite() !=
 | |
|           mTreatBSizeAsIndefinite &&
 | |
|       FrameHasRelativeBSizeDependency(mFrame)) {
 | |
|     FLEX_LOG(
 | |
|         "[perf] Flex item %p needed a final reflow due to having "
 | |
|         "its BSize change definiteness & having a rel-BSize child",
 | |
|         mFrame);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If we get here, we can skip the final reflow! (The item's subtree isn't
 | |
|   // dirty, and our current conditions are sufficiently similar to the most
 | |
|   // recent "final reflow" that it should have left our subtree in the correct
 | |
|   // state.)
 | |
|   FLEX_LOG("[perf] Flex item %p didn't need a final reflow", mFrame);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Keeps track of our position along a particular axis (where a '0' position
 | |
| // corresponds to the 'start' edge of that axis).
 | |
| // This class shouldn't be instantiated directly -- rather, it should only be
 | |
| // instantiated via its subclasses defined below.
 | |
| class MOZ_STACK_CLASS PositionTracker {
 | |
|  public:
 | |
|   // Accessor for the current value of the position that we're tracking.
 | |
|   inline nscoord Position() const { return mPosition; }
 | |
|   inline LogicalAxis Axis() const { return mAxis; }
 | |
| 
 | |
|   inline LogicalSide StartSide() {
 | |
|     return MakeLogicalSide(
 | |
|         mAxis, mIsAxisReversed ? eLogicalEdgeEnd : eLogicalEdgeStart);
 | |
|   }
 | |
| 
 | |
|   inline LogicalSide EndSide() {
 | |
|     return MakeLogicalSide(
 | |
|         mAxis, mIsAxisReversed ? eLogicalEdgeStart : eLogicalEdgeEnd);
 | |
|   }
 | |
| 
 | |
|   // Advances our position across the start edge of the given margin, in the
 | |
|   // axis we're tracking.
 | |
|   void EnterMargin(const LogicalMargin& aMargin) {
 | |
|     mPosition += aMargin.Side(StartSide(), mWM);
 | |
|   }
 | |
| 
 | |
|   // Advances our position across the end edge of the given margin, in the axis
 | |
|   // we're tracking.
 | |
|   void ExitMargin(const LogicalMargin& aMargin) {
 | |
|     mPosition += aMargin.Side(EndSide(), mWM);
 | |
|   }
 | |
| 
 | |
|   // Advances our current position from the start side of a child frame's
 | |
|   // border-box to the frame's upper or left edge (depending on our axis).
 | |
|   // (Note that this is a no-op if our axis grows in the same direction as
 | |
|   // the corresponding logical axis.)
 | |
|   void EnterChildFrame(nscoord aChildFrameSize) {
 | |
|     if (mIsAxisReversed) {
 | |
|       mPosition += aChildFrameSize;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Advances our current position from a frame's upper or left border-box edge
 | |
|   // (whichever is in the axis we're tracking) to the 'end' side of the frame
 | |
|   // in the axis that we're tracking. (Note that this is a no-op if our axis
 | |
|   // is reversed with respect to the corresponding logical axis.)
 | |
|   void ExitChildFrame(nscoord aChildFrameSize) {
 | |
|     if (!mIsAxisReversed) {
 | |
|       mPosition += aChildFrameSize;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Delete copy-constructor & reassignment operator, to prevent accidental
 | |
|   // (unnecessary) copying.
 | |
|   PositionTracker(const PositionTracker&) = delete;
 | |
|   PositionTracker& operator=(const PositionTracker&) = delete;
 | |
| 
 | |
|  protected:
 | |
|   // Protected constructor, to be sure we're only instantiated via a subclass.
 | |
|   PositionTracker(WritingMode aWM, LogicalAxis aAxis, bool aIsAxisReversed)
 | |
|       : mWM(aWM), mAxis(aAxis), mIsAxisReversed(aIsAxisReversed) {}
 | |
| 
 | |
|   // Member data:
 | |
|   // The position we're tracking.
 | |
|   nscoord mPosition = 0;
 | |
| 
 | |
|   // The flex container's writing mode.
 | |
|   const WritingMode mWM;
 | |
| 
 | |
|   // The axis along which we're moving.
 | |
|   const LogicalAxis mAxis = eLogicalAxisInline;
 | |
| 
 | |
|   // Is the axis along which we're moving reversed (e.g. LTR vs RTL) with
 | |
|   // respect to the corresponding axis on the flex container's WM?
 | |
|   const bool mIsAxisReversed = false;
 | |
| };
 | |
| 
 | |
| // Tracks our position in the main axis, when we're laying out flex items.
 | |
| // The "0" position represents the main-start edge of the flex container's
 | |
| // content-box.
 | |
| class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker {
 | |
|  public:
 | |
|   MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker,
 | |
|                           const FlexLine* aLine,
 | |
|                           const StyleContentDistribution& aJustifyContent,
 | |
|                           nscoord aContentBoxMainSize);
 | |
| 
 | |
|   ~MainAxisPositionTracker() {
 | |
|     MOZ_ASSERT(mNumPackingSpacesRemaining == 0,
 | |
|                "miscounted the number of packing spaces");
 | |
|     MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0,
 | |
|                "miscounted the number of auto margins");
 | |
|   }
 | |
| 
 | |
|   // Advances past the gap space (if any) between two flex items
 | |
|   void TraverseGap(nscoord aGapSize) { mPosition += aGapSize; }
 | |
| 
 | |
|   // Advances past the packing space (if any) between two flex items
 | |
|   void TraversePackingSpace();
 | |
| 
 | |
|   // If aItem has any 'auto' margins in the main axis, this method updates the
 | |
|   // corresponding values in its margin.
 | |
|   void ResolveAutoMarginsInMainAxis(FlexItem& aItem);
 | |
| 
 | |
|  private:
 | |
|   nscoord mPackingSpaceRemaining = 0;
 | |
|   uint32_t mNumAutoMarginsInMainAxis = 0;
 | |
|   uint32_t mNumPackingSpacesRemaining = 0;
 | |
|   StyleContentDistribution mJustifyContent = {StyleAlignFlags::AUTO};
 | |
| };
 | |
| 
 | |
| // Utility class for managing our position along the cross axis along
 | |
| // the whole flex container (at a higher level than a single line).
 | |
| // The "0" position represents the cross-start edge of the flex container's
 | |
| // content-box.
 | |
| class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker {
 | |
|  public:
 | |
|   CrossAxisPositionTracker(nsTArray<FlexLine>& aLines,
 | |
|                            const ReflowInput& aReflowInput,
 | |
|                            nscoord aContentBoxCrossSize,
 | |
|                            bool aIsCrossSizeDefinite,
 | |
|                            const FlexboxAxisTracker& aAxisTracker,
 | |
|                            const nscoord aCrossGapSize);
 | |
| 
 | |
|   // Advances past the gap (if any) between two flex lines
 | |
|   void TraverseGap() { mPosition += mCrossGapSize; }
 | |
| 
 | |
|   // Advances past the packing space (if any) between two flex lines
 | |
|   void TraversePackingSpace();
 | |
| 
 | |
|   // Advances past the given FlexLine
 | |
|   void TraverseLine(FlexLine& aLine) { mPosition += aLine.LineCrossSize(); }
 | |
| 
 | |
|   // Redeclare the frame-related methods from PositionTracker with
 | |
|   // = delete, to be sure (at compile time) that no client code can invoke
 | |
|   // them. (Unlike the other PositionTracker derived classes, this class here
 | |
|   // deals with FlexLines, not with individual FlexItems or frames.)
 | |
|   void EnterMargin(const LogicalMargin& aMargin) = delete;
 | |
|   void ExitMargin(const LogicalMargin& aMargin) = delete;
 | |
|   void EnterChildFrame(nscoord aChildFrameSize) = delete;
 | |
|   void ExitChildFrame(nscoord aChildFrameSize) = delete;
 | |
| 
 | |
|  private:
 | |
|   nscoord mPackingSpaceRemaining = 0;
 | |
|   uint32_t mNumPackingSpacesRemaining = 0;
 | |
|   StyleContentDistribution mAlignContent = {StyleAlignFlags::AUTO};
 | |
| 
 | |
|   const nscoord mCrossGapSize;
 | |
| };
 | |
| 
 | |
| // Utility class for managing our position along the cross axis, *within* a
 | |
| // single flex line.
 | |
| class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker
 | |
|     : public PositionTracker {
 | |
|  public:
 | |
|   explicit SingleLineCrossAxisPositionTracker(
 | |
|       const FlexboxAxisTracker& aAxisTracker);
 | |
| 
 | |
|   void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, FlexItem& aItem);
 | |
| 
 | |
|   void EnterAlignPackingSpace(const FlexLine& aLine, const FlexItem& aItem,
 | |
|                               const FlexboxAxisTracker& aAxisTracker);
 | |
| 
 | |
|   // Resets our position to the cross-start edge of this line.
 | |
|   inline void ResetPosition() { mPosition = 0; }
 | |
| };
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| // Frame class boilerplate
 | |
| // =======================
 | |
| 
 | |
| NS_QUERYFRAME_HEAD(nsFlexContainerFrame)
 | |
|   NS_QUERYFRAME_ENTRY(nsFlexContainerFrame)
 | |
| NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
 | |
| 
 | |
| NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame)
 | |
| 
 | |
| nsContainerFrame* NS_NewFlexContainerFrame(PresShell* aPresShell,
 | |
|                                            ComputedStyle* aStyle) {
 | |
|   return new (aPresShell)
 | |
|       nsFlexContainerFrame(aStyle, aPresShell->GetPresContext());
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| // nsFlexContainerFrame Method Implementations
 | |
| // ===========================================
 | |
| 
 | |
| /* virtual */
 | |
| nsFlexContainerFrame::~nsFlexContainerFrame() = default;
 | |
| 
 | |
| /* virtual */
 | |
| void nsFlexContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
 | |
|                                 nsIFrame* aPrevInFlow) {
 | |
|   nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
 | |
| 
 | |
|   if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) {
 | |
|     AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT);
 | |
|   }
 | |
| 
 | |
|   auto displayInside = StyleDisplay()->DisplayInside();
 | |
|   // If this frame is for a scrollable element, then it will actually have
 | |
|   // "display:block", and its *parent frame* will have the real
 | |
|   // flex-flavored display value. So in that case, check the parent frame to
 | |
|   // find out if we're legacy.
 | |
|   //
 | |
|   // TODO(emilio): Maybe ::-moz-scrolled-content and co should inherit `display`
 | |
|   // (or a blockified version thereof, to not hit bug 456484).
 | |
|   if (displayInside == StyleDisplayInside::Flow) {
 | |
|     MOZ_ASSERT(StyleDisplay()->mDisplay == StyleDisplay::Block);
 | |
|     MOZ_ASSERT(Style()->GetPseudoType() == PseudoStyleType::buttonContent ||
 | |
|                    Style()->GetPseudoType() == PseudoStyleType::scrolledContent,
 | |
|                "The only way a nsFlexContainerFrame can have 'display:block' "
 | |
|                "should be if it's the inner part of a scrollable or button "
 | |
|                "element");
 | |
|     displayInside = GetParent()->StyleDisplay()->DisplayInside();
 | |
|   }
 | |
| 
 | |
|   // Figure out if we should set a frame state bit to indicate that this frame
 | |
|   // represents a legacy -moz-{inline-}box or -webkit-{inline-}box container.
 | |
|   if (displayInside == StyleDisplayInside::WebkitBox) {
 | |
|     AddStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG_FRAME_DUMP
 | |
| nsresult nsFlexContainerFrame::GetFrameName(nsAString& aResult) const {
 | |
|   return MakeFrameName(u"FlexContainer"_ns, aResult);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
 | |
|                                             const nsDisplayListSet& aLists) {
 | |
|   nsDisplayListCollection tempLists(aBuilder);
 | |
| 
 | |
|   DisplayBorderBackgroundOutline(aBuilder, tempLists);
 | |
|   if (GetPrevInFlow()) {
 | |
|     DisplayOverflowContainers(aBuilder, tempLists);
 | |
|   }
 | |
| 
 | |
|   // Our children are all block-level, so their borders/backgrounds all go on
 | |
|   // the BlockBorderBackgrounds list.
 | |
|   nsDisplayListSet childLists(tempLists, tempLists.BlockBorderBackgrounds());
 | |
| 
 | |
|   CSSOrderAwareFrameIterator iter(
 | |
|       this, FrameChildListID::Principal,
 | |
|       CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
 | |
|       OrderStateForIter(this), OrderingPropertyForIter(this));
 | |
| 
 | |
|   const auto flags = DisplayFlagsForFlexOrGridItem();
 | |
|   for (; !iter.AtEnd(); iter.Next()) {
 | |
|     nsIFrame* childFrame = *iter;
 | |
|     BuildDisplayListForChild(aBuilder, childFrame, childLists, flags);
 | |
|   }
 | |
| 
 | |
|   tempLists.MoveTo(aLists);
 | |
| }
 | |
| 
 | |
| void FlexLine::FreezeItemsEarly(bool aIsUsingFlexGrow,
 | |
|                                 ComputedFlexLineInfo* aLineInfo) {
 | |
|   // After we've established the type of flexing we're doing (growing vs.
 | |
|   // shrinking), and before we try to flex any items, we freeze items that
 | |
|   // obviously *can't* flex.
 | |
|   //
 | |
|   // Quoting the spec:
 | |
|   //  # Freeze, setting its target main size to its hypothetical main size...
 | |
|   //  #  - any item that has a flex factor of zero
 | |
|   //  #  - if using the flex grow factor: any item that has a flex base size
 | |
|   //  #    greater than its hypothetical main size
 | |
|   //  #  - if using the flex shrink factor: any item that has a flex base size
 | |
|   //  #    smaller than its hypothetical main size
 | |
|   //  https://drafts.csswg.org/css-flexbox/#resolve-flexible-lengths
 | |
|   //
 | |
|   // (NOTE: At this point, item->MainSize() *is* the item's hypothetical
 | |
|   // main size, since SetFlexBaseSizeAndMainSize() sets it up that way, and the
 | |
|   // item hasn't had a chance to flex away from that yet.)
 | |
| 
 | |
|   // Since this loop only operates on unfrozen flex items, we can break as
 | |
|   // soon as we have seen all of them.
 | |
|   uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
 | |
|   for (FlexItem& item : Items()) {
 | |
|     if (numUnfrozenItemsToBeSeen == 0) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!item.IsFrozen()) {
 | |
|       numUnfrozenItemsToBeSeen--;
 | |
|       bool shouldFreeze = (0.0f == item.GetFlexFactor(aIsUsingFlexGrow));
 | |
|       if (!shouldFreeze) {
 | |
|         if (aIsUsingFlexGrow) {
 | |
|           if (item.FlexBaseSize() > item.MainSize()) {
 | |
|             shouldFreeze = true;
 | |
|           }
 | |
|         } else {  // using flex-shrink
 | |
|           if (item.FlexBaseSize() < item.MainSize()) {
 | |
|             shouldFreeze = true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (shouldFreeze) {
 | |
|         // Freeze item! (at its hypothetical main size)
 | |
|         item.Freeze();
 | |
|         if (item.FlexBaseSize() < item.MainSize()) {
 | |
|           item.SetWasMinClamped();
 | |
|         } else if (item.FlexBaseSize() > item.MainSize()) {
 | |
|           item.SetWasMaxClamped();
 | |
|         }
 | |
|         mNumFrozenItems++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
 | |
| }
 | |
| 
 | |
| // Based on the sign of aTotalViolation, this function freezes a subset of our
 | |
| // flexible sizes, and restores the remaining ones to their initial pref sizes.
 | |
| void FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
 | |
|                                                bool aIsFinalIteration) {
 | |
|   enum FreezeType {
 | |
|     eFreezeEverything,
 | |
|     eFreezeMinViolations,
 | |
|     eFreezeMaxViolations
 | |
|   };
 | |
| 
 | |
|   FreezeType freezeType;
 | |
|   if (aTotalViolation == 0) {
 | |
|     freezeType = eFreezeEverything;
 | |
|   } else if (aTotalViolation > 0) {
 | |
|     freezeType = eFreezeMinViolations;
 | |
|   } else {  // aTotalViolation < 0
 | |
|     freezeType = eFreezeMaxViolations;
 | |
|   }
 | |
| 
 | |
|   // Since this loop only operates on unfrozen flex items, we can break as
 | |
|   // soon as we have seen all of them.
 | |
|   uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
 | |
|   for (FlexItem& item : Items()) {
 | |
|     if (numUnfrozenItemsToBeSeen == 0) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!item.IsFrozen()) {
 | |
|       numUnfrozenItemsToBeSeen--;
 | |
| 
 | |
|       MOZ_ASSERT(!item.HadMinViolation() || !item.HadMaxViolation(),
 | |
|                  "Can have either min or max violation, but not both");
 | |
| 
 | |
|       bool hadMinViolation = item.HadMinViolation();
 | |
|       bool hadMaxViolation = item.HadMaxViolation();
 | |
|       if (eFreezeEverything == freezeType ||
 | |
|           (eFreezeMinViolations == freezeType && hadMinViolation) ||
 | |
|           (eFreezeMaxViolations == freezeType && hadMaxViolation)) {
 | |
|         MOZ_ASSERT(item.MainSize() >= item.MainMinSize(),
 | |
|                    "Freezing item at a size below its minimum");
 | |
|         MOZ_ASSERT(item.MainSize() <= item.MainMaxSize(),
 | |
|                    "Freezing item at a size above its maximum");
 | |
| 
 | |
|         item.Freeze();
 | |
|         if (hadMinViolation) {
 | |
|           item.SetWasMinClamped();
 | |
|         } else if (hadMaxViolation) {
 | |
|           item.SetWasMaxClamped();
 | |
|         }
 | |
|         mNumFrozenItems++;
 | |
|       } else if (MOZ_UNLIKELY(aIsFinalIteration)) {
 | |
|         // XXXdholbert If & when bug 765861 is fixed, we should upgrade this
 | |
|         // assertion to be fatal except in documents with enormous lengths.
 | |
|         NS_ERROR(
 | |
|             "Final iteration still has unfrozen items, this shouldn't"
 | |
|             " happen unless there was nscoord under/overflow.");
 | |
|         item.Freeze();
 | |
|         mNumFrozenItems++;
 | |
|       }  // else, we'll reset this item's main size to its flex base size on the
 | |
|          // next iteration of this algorithm.
 | |
| 
 | |
|       if (!item.IsFrozen()) {
 | |
|         // Clear this item's violation(s), now that we've dealt with them
 | |
|         item.ClearViolationFlags();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
 | |
| }
 | |
| 
 | |
| void FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
 | |
|                                       ComputedFlexLineInfo* aLineInfo) {
 | |
|   // In this function, we use 64-bit coord type to avoid integer overflow in
 | |
|   // case several of the individual items have huge hypothetical main sizes,
 | |
|   // which can happen with percent-width table-layout:fixed descendants. Here we
 | |
|   // promote the container's main size to 64-bit to make the arithmetic
 | |
|   // convenient.
 | |
|   AuCoord64 flexContainerMainSize(aFlexContainerMainSize);
 | |
| 
 | |
|   // Before we start resolving sizes: if we have an aLineInfo structure to fill
 | |
|   // out, we inform it of each item's base size, and we initialize the "delta"
 | |
|   // for each item to 0. (And if the flex algorithm wants to grow or shrink the
 | |
|   // item, we'll update this delta further down.)
 | |
|   if (aLineInfo) {
 | |
|     uint32_t itemIndex = 0;
 | |
|     for (FlexItem& item : Items()) {
 | |
|       aLineInfo->mItems[itemIndex].mMainBaseSize = item.FlexBaseSize();
 | |
|       aLineInfo->mItems[itemIndex].mMainDeltaSize = 0;
 | |
|       ++itemIndex;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Determine whether we're going to be growing or shrinking items.
 | |
|   const bool isUsingFlexGrow =
 | |
|       (mTotalOuterHypotheticalMainSize < flexContainerMainSize);
 | |
| 
 | |
|   if (aLineInfo) {
 | |
|     aLineInfo->mGrowthState =
 | |
|         isUsingFlexGrow ? mozilla::dom::FlexLineGrowthState::Growing
 | |
|                         : mozilla::dom::FlexLineGrowthState::Shrinking;
 | |
|   }
 | |
| 
 | |
|   // Do an "early freeze" for flex items that obviously can't flex in the
 | |
|   // direction we've chosen:
 | |
|   FreezeItemsEarly(isUsingFlexGrow, aLineInfo);
 | |
| 
 | |
|   if ((mNumFrozenItems == NumItems()) && !aLineInfo) {
 | |
|     // All our items are frozen, so we have no flexible lengths to resolve,
 | |
|     // and we aren't being asked to generate computed line info.
 | |
|     FLEX_LOG("No flexible length to resolve");
 | |
|     return;
 | |
|   }
 | |
|   MOZ_ASSERT(!IsEmpty() || aLineInfo,
 | |
|              "empty lines should take the early-return above");
 | |
| 
 | |
|   FLEX_LOG("Resolving flexible lengths for items");
 | |
| 
 | |
|   // Subtract space occupied by our items' margins/borders/padding/gaps, so
 | |
|   // we can just be dealing with the space available for our flex items' content
 | |
|   // boxes.
 | |
|   const AuCoord64 totalItemMBPAndGaps = mTotalItemMBP + SumOfGaps();
 | |
|   const AuCoord64 spaceAvailableForFlexItemsContentBoxes =
 | |
|       flexContainerMainSize - totalItemMBPAndGaps;
 | |
| 
 | |
|   Maybe<AuCoord64> origAvailableFreeSpace;
 | |
| 
 | |
|   // NOTE: I claim that this chunk of the algorithm (the looping part) needs to
 | |
|   // run the loop at MOST NumItems() times.  This claim should hold up
 | |
|   // because we'll freeze at least one item on each loop iteration, and once
 | |
|   // we've run out of items to freeze, there's nothing left to do.  However,
 | |
|   // in most cases, we'll break out of this loop long before we hit that many
 | |
|   // iterations.
 | |
|   for (uint32_t iterationCounter = 0; iterationCounter < NumItems();
 | |
|        iterationCounter++) {
 | |
|     // Set every not-yet-frozen item's used main size to its
 | |
|     // flex base size, and subtract all the used main sizes from our
 | |
|     // total amount of space to determine the 'available free space'
 | |
|     // (positive or negative) to be distributed among our flexible items.
 | |
|     AuCoord64 availableFreeSpace = spaceAvailableForFlexItemsContentBoxes;
 | |
|     for (FlexItem& item : Items()) {
 | |
|       if (!item.IsFrozen()) {
 | |
|         item.SetMainSize(item.FlexBaseSize());
 | |
|       }
 | |
|       availableFreeSpace -= item.MainSize();
 | |
|     }
 | |
| 
 | |
|     FLEX_LOG(" available free space: %" PRId64 "; flex items should \"%s\"",
 | |
|              availableFreeSpace.value, isUsingFlexGrow ? "grow" : "shrink");
 | |
| 
 | |
|     // The sign of our free space should agree with the type of flexing
 | |
|     // (grow/shrink) that we're doing. Any disagreement should've made us use
 | |
|     // the other type of flexing, or should've been resolved in
 | |
|     // FreezeItemsEarly.
 | |
|     //
 | |
|     // Note: it's possible that an individual flex item has huge
 | |
|     // margin/border/padding that makes either its
 | |
|     // MarginBorderPaddingSizeInMainAxis() or OuterMainSize() negative due to
 | |
|     // integer overflow. If that happens, the accumulated
 | |
|     // mTotalOuterHypotheticalMainSize or mTotalItemMBP could be negative due to
 | |
|     // that one item's negative (overflowed) size. Likewise, a huge main gap
 | |
|     // size between flex items can also make our accumulated SumOfGaps()
 | |
|     // negative. In these case, we throw up our hands and don't require
 | |
|     // isUsingFlexGrow to agree with availableFreeSpace. Luckily, we won't get
 | |
|     // stuck in the algorithm below, and just distribute the wrong
 | |
|     // availableFreeSpace with the wrong grow/shrink factors.
 | |
|     MOZ_ASSERT(!(mTotalOuterHypotheticalMainSize >= 0 && mTotalItemMBP >= 0 &&
 | |
|                  totalItemMBPAndGaps >= 0) ||
 | |
|                    (isUsingFlexGrow && availableFreeSpace >= 0) ||
 | |
|                    (!isUsingFlexGrow && availableFreeSpace <= 0),
 | |
|                "availableFreeSpace's sign should match isUsingFlexGrow");
 | |
| 
 | |
|     // If we have any free space available, give each flexible item a portion
 | |
|     // of availableFreeSpace.
 | |
|     if (availableFreeSpace != AuCoord64(0)) {
 | |
|       // The first time we do this, we initialize origAvailableFreeSpace.
 | |
|       if (!origAvailableFreeSpace) {
 | |
|         origAvailableFreeSpace.emplace(availableFreeSpace);
 | |
|       }
 | |
| 
 | |
|       // STRATEGY: On each item, we compute & store its "share" of the total
 | |
|       // weight that we've seen so far:
 | |
|       //   curWeight / weightSum
 | |
|       //
 | |
|       // Then, when we go to actually distribute the space (in the next loop),
 | |
|       // we can simply walk backwards through the elements and give each item
 | |
|       // its "share" multiplied by the remaining available space.
 | |
|       //
 | |
|       // SPECIAL CASE: If the sum of the weights is larger than the
 | |
|       // maximum representable double (overflowing to infinity), then we can't
 | |
|       // sensibly divide out proportional shares anymore. In that case, we
 | |
|       // simply treat the flex item(s) with the largest weights as if
 | |
|       // their weights were infinite (dwarfing all the others), and we
 | |
|       // distribute all of the available space among them.
 | |
|       double weightSum = 0.0;
 | |
|       double flexFactorSum = 0.0;
 | |
|       double largestWeight = 0.0;
 | |
|       uint32_t numItemsWithLargestWeight = 0;
 | |
| 
 | |
|       // Since this loop only operates on unfrozen flex items, we can break as
 | |
|       // soon as we have seen all of them.
 | |
|       uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
 | |
|       for (FlexItem& item : Items()) {
 | |
|         if (numUnfrozenItemsToBeSeen == 0) {
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         if (!item.IsFrozen()) {
 | |
|           numUnfrozenItemsToBeSeen--;
 | |
| 
 | |
|           const double curWeight = item.GetWeight(isUsingFlexGrow);
 | |
|           const double curFlexFactor = item.GetFlexFactor(isUsingFlexGrow);
 | |
|           MOZ_ASSERT(curWeight >= 0.0, "weights are non-negative");
 | |
|           MOZ_ASSERT(curFlexFactor >= 0.0, "flex factors are non-negative");
 | |
| 
 | |
|           weightSum += curWeight;
 | |
|           flexFactorSum += curFlexFactor;
 | |
| 
 | |
|           if (std::isfinite(weightSum)) {
 | |
|             if (curWeight == 0.0) {
 | |
|               item.SetShareOfWeightSoFar(0.0);
 | |
|             } else {
 | |
|               item.SetShareOfWeightSoFar(curWeight / weightSum);
 | |
|             }
 | |
|           }  // else, the sum of weights overflows to infinity, in which
 | |
|              // case we don't bother with "SetShareOfWeightSoFar" since
 | |
|              // we know we won't use it. (instead, we'll just give every
 | |
|              // item with the largest weight an equal share of space.)
 | |
| 
 | |
|           // Update our largest-weight tracking vars
 | |
|           if (curWeight > largestWeight) {
 | |
|             largestWeight = curWeight;
 | |
|             numItemsWithLargestWeight = 1;
 | |
|           } else if (curWeight == largestWeight) {
 | |
|             numItemsWithLargestWeight++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
 | |
| 
 | |
|       if (weightSum != 0.0) {
 | |
|         MOZ_ASSERT(flexFactorSum != 0.0,
 | |
|                    "flex factor sum can't be 0, if a weighted sum "
 | |
|                    "of its components (weightSum) is nonzero");
 | |
|         if (flexFactorSum < 1.0) {
 | |
|           // Our unfrozen flex items don't want all of the original free space!
 | |
|           // (Their flex factors add up to something less than 1.)
 | |
|           // Hence, make sure we don't distribute any more than the portion of
 | |
|           // our original free space that these items actually want.
 | |
|           auto totalDesiredPortionOfOrigFreeSpace =
 | |
|               AuCoord64::FromRound(*origAvailableFreeSpace * flexFactorSum);
 | |
| 
 | |
|           // Clamp availableFreeSpace to be no larger than that ^^.
 | |
|           // (using min or max, depending on sign).
 | |
|           // This should not change the sign of availableFreeSpace (except
 | |
|           // possibly by setting it to 0), as enforced by this assertion:
 | |
|           NS_ASSERTION(totalDesiredPortionOfOrigFreeSpace == AuCoord64(0) ||
 | |
|                            ((totalDesiredPortionOfOrigFreeSpace > 0) ==
 | |
|                             (availableFreeSpace > 0)),
 | |
|                        "When we reduce available free space for flex "
 | |
|                        "factors < 1, we shouldn't change the sign of the "
 | |
|                        "free space...");
 | |
| 
 | |
|           if (availableFreeSpace > 0) {
 | |
|             availableFreeSpace = std::min(availableFreeSpace,
 | |
|                                           totalDesiredPortionOfOrigFreeSpace);
 | |
|           } else {
 | |
|             availableFreeSpace = std::max(availableFreeSpace,
 | |
|                                           totalDesiredPortionOfOrigFreeSpace);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         FLEX_LOG(" Distributing available space:");
 | |
|         // Since this loop only operates on unfrozen flex items, we can break as
 | |
|         // soon as we have seen all of them.
 | |
|         numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
 | |
| 
 | |
|         // NOTE: It's important that we traverse our items in *reverse* order
 | |
|         // here, for correct width distribution according to the items'
 | |
|         // "ShareOfWeightSoFar" progressively-calculated values.
 | |
|         for (FlexItem& item : Reversed(Items())) {
 | |
|           if (numUnfrozenItemsToBeSeen == 0) {
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           if (!item.IsFrozen()) {
 | |
|             numUnfrozenItemsToBeSeen--;
 | |
| 
 | |
|             // To avoid rounding issues, we compute the change in size for this
 | |
|             // item, and then subtract it from the remaining available space.
 | |
|             AuCoord64 sizeDelta = 0;
 | |
|             if (std::isfinite(weightSum)) {
 | |
|               double myShareOfRemainingSpace = item.ShareOfWeightSoFar();
 | |
| 
 | |
|               MOZ_ASSERT(myShareOfRemainingSpace >= 0.0 &&
 | |
|                              myShareOfRemainingSpace <= 1.0,
 | |
|                          "my share should be nonnegative fractional amount");
 | |
| 
 | |
|               if (myShareOfRemainingSpace == 1.0) {
 | |
|                 // (We special-case 1.0 to avoid float error from converting
 | |
|                 // availableFreeSpace from integer*1.0 --> double --> integer)
 | |
|                 sizeDelta = availableFreeSpace;
 | |
|               } else if (myShareOfRemainingSpace > 0.0) {
 | |
|                 sizeDelta = AuCoord64::FromRound(availableFreeSpace *
 | |
|                                                  myShareOfRemainingSpace);
 | |
|               }
 | |
|             } else if (item.GetWeight(isUsingFlexGrow) == largestWeight) {
 | |
|               // Total flexibility is infinite, so we're just distributing
 | |
|               // the available space equally among the items that are tied for
 | |
|               // having the largest weight (and this is one of those items).
 | |
|               sizeDelta = AuCoord64::FromRound(
 | |
|                   availableFreeSpace / double(numItemsWithLargestWeight));
 | |
|               numItemsWithLargestWeight--;
 | |
|             }
 | |
| 
 | |
|             availableFreeSpace -= sizeDelta;
 | |
| 
 | |
|             item.SetMainSize(item.MainSize() +
 | |
|                              nscoord(sizeDelta.ToMinMaxClamped()));
 | |
|             FLEX_LOG("  flex item %p receives %" PRId64 ", for a total of %d",
 | |
|                      item.Frame(), sizeDelta.value, item.MainSize());
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
 | |
| 
 | |
|         // If we have an aLineInfo structure to fill out, capture any
 | |
|         // size changes that may have occurred in the previous loop.
 | |
|         // We don't do this inside the previous loop, because we don't
 | |
|         // want to burden layout when aLineInfo is null.
 | |
|         if (aLineInfo) {
 | |
|           uint32_t itemIndex = 0;
 | |
|           for (FlexItem& item : Items()) {
 | |
|             if (!item.IsFrozen()) {
 | |
|               // Calculate a deltaSize that represents how much the flex sizing
 | |
|               // algorithm "wants" to stretch or shrink this item during this
 | |
|               // pass through the algorithm. Later passes through the algorithm
 | |
|               // may overwrite this, until this item is frozen. Note that this
 | |
|               // value may not reflect how much the size of the item is
 | |
|               // actually changed, since the size of the item will be clamped
 | |
|               // to min and max values later in this pass. That's intentional,
 | |
|               // since we want to report the value that the sizing algorithm
 | |
|               // tried to stretch or shrink the item.
 | |
|               nscoord deltaSize =
 | |
|                   item.MainSize() - aLineInfo->mItems[itemIndex].mMainBaseSize;
 | |
| 
 | |
|               aLineInfo->mItems[itemIndex].mMainDeltaSize = deltaSize;
 | |
|             }
 | |
|             ++itemIndex;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Fix min/max violations:
 | |
|     nscoord totalViolation = 0;  // keeps track of adjustments for min/max
 | |
|     FLEX_LOG(" Checking for violations:");
 | |
| 
 | |
|     // Since this loop only operates on unfrozen flex items, we can break as
 | |
|     // soon as we have seen all of them.
 | |
|     uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
 | |
|     for (FlexItem& item : Items()) {
 | |
|       if (numUnfrozenItemsToBeSeen == 0) {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (!item.IsFrozen()) {
 | |
|         numUnfrozenItemsToBeSeen--;
 | |
| 
 | |
|         if (item.MainSize() < item.MainMinSize()) {
 | |
|           // min violation
 | |
|           totalViolation += item.MainMinSize() - item.MainSize();
 | |
|           item.SetMainSize(item.MainMinSize());
 | |
|           item.SetHadMinViolation();
 | |
|         } else if (item.MainSize() > item.MainMaxSize()) {
 | |
|           // max violation
 | |
|           totalViolation += item.MainMaxSize() - item.MainSize();
 | |
|           item.SetMainSize(item.MainMaxSize());
 | |
|           item.SetHadMaxViolation();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
 | |
| 
 | |
|     FreezeOrRestoreEachFlexibleSize(totalViolation,
 | |
|                                     iterationCounter + 1 == NumItems());
 | |
| 
 | |
|     FLEX_LOG(" Total violation: %d", totalViolation);
 | |
| 
 | |
|     if (mNumFrozenItems == NumItems()) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     MOZ_ASSERT(totalViolation != 0,
 | |
|                "Zero violation should've made us freeze all items & break");
 | |
|   }
 | |
| 
 | |
| #ifdef DEBUG
 | |
|   // Post-condition: all items should've been frozen.
 | |
|   // Make sure the counts match:
 | |
|   MOZ_ASSERT(mNumFrozenItems == NumItems(), "All items should be frozen");
 | |
| 
 | |
|   // For good measure, check each item directly, in case our counts are busted:
 | |
|   for (const FlexItem& item : Items()) {
 | |
|     MOZ_ASSERT(item.IsFrozen(), "All items should be frozen");
 | |
|   }
 | |
| #endif  // DEBUG
 | |
| }
 | |
| 
 | |
| MainAxisPositionTracker::MainAxisPositionTracker(
 | |
|     const FlexboxAxisTracker& aAxisTracker, const FlexLine* aLine,
 | |
|     const StyleContentDistribution& aJustifyContent,
 | |
|     nscoord aContentBoxMainSize)
 | |
|     : PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.MainAxis(),
 | |
|                       aAxisTracker.IsMainAxisReversed()),
 | |
|       // we chip away at this below
 | |
|       mPackingSpaceRemaining(aContentBoxMainSize),
 | |
|       mJustifyContent(aJustifyContent) {
 | |
|   // Extract the flag portion of mJustifyContent and strip off the flag bits
 | |
|   // NOTE: This must happen before any assignment to mJustifyContent to
 | |
|   // avoid overwriting the flag bits.
 | |
|   StyleAlignFlags justifyContentFlags =
 | |
|       mJustifyContent.primary & StyleAlignFlags::FLAG_BITS;
 | |
|   mJustifyContent.primary &= ~StyleAlignFlags::FLAG_BITS;
 | |
| 
 | |
|   // 'normal' behaves as 'stretch', and 'stretch' behaves as 'flex-start',
 | |
|   // in the main axis
 | |
|   // https://drafts.csswg.org/css-align-3/#propdef-justify-content
 | |
|   if (mJustifyContent.primary == StyleAlignFlags::NORMAL ||
 | |
|       mJustifyContent.primary == StyleAlignFlags::STRETCH) {
 | |
|     mJustifyContent.primary = StyleAlignFlags::FLEX_START;
 | |
|   }
 | |
| 
 | |
|   // mPackingSpaceRemaining is initialized to the container's main size.  Now
 | |
|   // we'll subtract out the main sizes of our flex items, so that it ends up
 | |
|   // with the *actual* amount of packing space.
 | |
|   for (const FlexItem& item : aLine->Items()) {
 | |
|     mPackingSpaceRemaining -= item.OuterMainSize();
 | |
|     mNumAutoMarginsInMainAxis += item.NumAutoMarginsInMainAxis();
 | |
|   }
 | |
| 
 | |
|   // Subtract space required for row/col gap from the remaining packing space
 | |
|   mPackingSpaceRemaining -= aLine->SumOfGaps();
 | |
| 
 | |
|   if (mPackingSpaceRemaining <= 0) {
 | |
|     // No available packing space to use for resolving auto margins.
 | |
|     mNumAutoMarginsInMainAxis = 0;
 | |
|     // If packing space is negative and <overflow-position> is set to 'safe'
 | |
|     // all justify options fall back to 'start'
 | |
|     if (justifyContentFlags & StyleAlignFlags::SAFE) {
 | |
|       mJustifyContent.primary = StyleAlignFlags::START;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If packing space is negative or we only have one item, 'space-between'
 | |
|   // falls back to 'flex-start', and 'space-around' & 'space-evenly' fall back
 | |
|   // to 'center'. In those cases, it's simplest to just pretend we have a
 | |
|   // different 'justify-content' value and share code.
 | |
|   if (mPackingSpaceRemaining < 0 || aLine->NumItems() == 1) {
 | |
|     if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN) {
 | |
|       mJustifyContent.primary = StyleAlignFlags::FLEX_START;
 | |
|     } else if (mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
 | |
|                mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) {
 | |
|       mJustifyContent.primary = StyleAlignFlags::CENTER;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Map 'left'/'right' to 'start'/'end'
 | |
|   if (mJustifyContent.primary == StyleAlignFlags::LEFT ||
 | |
|       mJustifyContent.primary == StyleAlignFlags::RIGHT) {
 | |
|     mJustifyContent.primary =
 | |
|         aAxisTracker.ResolveJustifyLeftRight(mJustifyContent.primary);
 | |
|   }
 | |
| 
 | |
|   // Map 'start'/'end' to 'flex-start'/'flex-end'.
 | |
|   if (mJustifyContent.primary == StyleAlignFlags::START) {
 | |
|     mJustifyContent.primary = aAxisTracker.IsMainAxisReversed()
 | |
|                                   ? StyleAlignFlags::FLEX_END
 | |
|                                   : StyleAlignFlags::FLEX_START;
 | |
|   } else if (mJustifyContent.primary == StyleAlignFlags::END) {
 | |
|     mJustifyContent.primary = aAxisTracker.IsMainAxisReversed()
 | |
|                                   ? StyleAlignFlags::FLEX_START
 | |
|                                   : StyleAlignFlags::FLEX_END;
 | |
|   }
 | |
| 
 | |
|   // Figure out how much space we'll set aside for auto margins or
 | |
|   // packing spaces, and advance past any leading packing-space.
 | |
|   if (mNumAutoMarginsInMainAxis == 0 && mPackingSpaceRemaining != 0 &&
 | |
|       !aLine->IsEmpty()) {
 | |
|     if (mJustifyContent.primary == StyleAlignFlags::FLEX_START) {
 | |
|       // All packing space should go at the end --> nothing to do here.
 | |
|     } else if (mJustifyContent.primary == StyleAlignFlags::FLEX_END) {
 | |
|       // All packing space goes at the beginning
 | |
|       mPosition += mPackingSpaceRemaining;
 | |
|     } else if (mJustifyContent.primary == StyleAlignFlags::CENTER) {
 | |
|       // Half the packing space goes at the beginning
 | |
|       mPosition += mPackingSpaceRemaining / 2;
 | |
|     } else if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
 | |
|                mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
 | |
|                mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) {
 | |
|       nsFlexContainerFrame::CalculatePackingSpace(
 | |
|           aLine->NumItems(), mJustifyContent, &mPosition,
 | |
|           &mNumPackingSpacesRemaining, &mPackingSpaceRemaining);
 | |
|     } else {
 | |
|       MOZ_ASSERT_UNREACHABLE("Unexpected justify-content value");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || mNumAutoMarginsInMainAxis == 0,
 | |
|              "extra space should either go to packing space or to "
 | |
|              "auto margins, but not to both");
 | |
| }
 | |
| 
 | |
| void MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) {
 | |
|   if (mNumAutoMarginsInMainAxis) {
 | |
|     const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
 | |
|     for (const auto side : {StartSide(), EndSide()}) {
 | |
|       if (styleMargin.Get(mWM, side).IsAuto()) {
 | |
|         // NOTE: This integer math will skew the distribution of remainder
 | |
|         // app-units towards the end, which is fine.
 | |
|         nscoord curAutoMarginSize =
 | |
|             mPackingSpaceRemaining / mNumAutoMarginsInMainAxis;
 | |
| 
 | |
|         MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
 | |
|                    "Expecting auto margins to have value '0' before we "
 | |
|                    "resolve them");
 | |
|         aItem.SetMarginComponentForSide(side, curAutoMarginSize);
 | |
| 
 | |
|         mNumAutoMarginsInMainAxis--;
 | |
|         mPackingSpaceRemaining -= curAutoMarginSize;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MainAxisPositionTracker::TraversePackingSpace() {
 | |
|   if (mNumPackingSpacesRemaining) {
 | |
|     MOZ_ASSERT(mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
 | |
|                    mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
 | |
|                    mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY,
 | |
|                "mNumPackingSpacesRemaining only applies for "
 | |
|                "space-between/space-around/space-evenly");
 | |
| 
 | |
|     MOZ_ASSERT(mPackingSpaceRemaining >= 0,
 | |
|                "ran out of packing space earlier than we expected");
 | |
| 
 | |
|     // NOTE: This integer math will skew the distribution of remainder
 | |
|     // app-units towards the end, which is fine.
 | |
|     nscoord curPackingSpace =
 | |
|         mPackingSpaceRemaining / mNumPackingSpacesRemaining;
 | |
| 
 | |
|     mPosition += curPackingSpace;
 | |
|     mNumPackingSpacesRemaining--;
 | |
|     mPackingSpaceRemaining -= curPackingSpace;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CrossAxisPositionTracker::CrossAxisPositionTracker(
 | |
|     nsTArray<FlexLine>& aLines, const ReflowInput& aReflowInput,
 | |
|     nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite,
 | |
|     const FlexboxAxisTracker& aAxisTracker, const nscoord aCrossGapSize)
 | |
|     : PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(),
 | |
|                       aAxisTracker.IsCrossAxisReversed()),
 | |
|       mAlignContent(aReflowInput.mStylePosition->mAlignContent),
 | |
|       mCrossGapSize(aCrossGapSize) {
 | |
|   // Extract and strip the flag bits from alignContent
 | |
|   StyleAlignFlags alignContentFlags =
 | |
|       mAlignContent.primary & StyleAlignFlags::FLAG_BITS;
 | |
|   mAlignContent.primary &= ~StyleAlignFlags::FLAG_BITS;
 | |
| 
 | |
|   // 'normal' behaves as 'stretch'
 | |
|   if (mAlignContent.primary == StyleAlignFlags::NORMAL) {
 | |
|     mAlignContent.primary = StyleAlignFlags::STRETCH;
 | |
|   }
 | |
| 
 | |
|   const bool isSingleLine =
 | |
|       StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
 | |
|   if (isSingleLine) {
 | |
|     MOZ_ASSERT(aLines.Length() == 1,
 | |
|                "If we're styled as single-line, we should only have 1 line");
 | |
|     // "If the flex container is single-line and has a definite cross size, the
 | |
|     // cross size of the flex line is the flex container's inner cross size."
 | |
|     //
 | |
|     // SOURCE: https://drafts.csswg.org/css-flexbox/#algo-cross-line
 | |
|     // NOTE: This means (by definition) that there's no packing space, which
 | |
|     // means we don't need to be concerned with "align-content" at all and we
 | |
|     // can return early. This is handy, because this is the usual case (for
 | |
|     // single-line flexbox).
 | |
|     if (aIsCrossSizeDefinite) {
 | |
|       aLines[0].SetLineCrossSize(aContentBoxCrossSize);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // "If the flex container is single-line, then clamp the line's
 | |
|     // cross-size to be within the container's computed min and max cross-size
 | |
|     // properties."
 | |
|     aLines[0].SetLineCrossSize(NS_CSS_MINMAX(aLines[0].LineCrossSize(),
 | |
|                                              aReflowInput.ComputedMinBSize(),
 | |
|                                              aReflowInput.ComputedMaxBSize()));
 | |
|   }
 | |
| 
 | |
|   // NOTE: The rest of this function should essentially match
 | |
|   // MainAxisPositionTracker's constructor, though with FlexLines instead of
 | |
|   // FlexItems, and with the additional value "stretch" (and of course with
 | |
|   // cross sizes instead of main sizes.)
 | |
| 
 | |
|   // Figure out how much packing space we have (container's cross size minus
 | |
|   // all the lines' cross sizes).  Also, share this loop to count how many
 | |
|   // lines we have. (We need that count in some cases below.)
 | |
|   mPackingSpaceRemaining = aContentBoxCrossSize;
 | |
|   uint32_t numLines = 0;
 | |
|   for (FlexLine& line : aLines) {
 | |
|     mPackingSpaceRemaining -= line.LineCrossSize();
 | |
|     numLines++;
 | |
|   }
 | |
| 
 | |
|   // Subtract space required for row/col gap from the remaining packing space
 | |
|   MOZ_ASSERT(numLines >= 1,
 | |
|              "GenerateFlexLines should've produced at least 1 line");
 | |
|   mPackingSpaceRemaining -= aCrossGapSize * (numLines - 1);
 | |
| 
 | |
|   // If <overflow-position> is 'safe' and packing space is negative
 | |
|   // all align options fall back to 'start'
 | |
|   if ((alignContentFlags & StyleAlignFlags::SAFE) &&
 | |
|       mPackingSpaceRemaining < 0) {
 | |
|     mAlignContent.primary = StyleAlignFlags::START;
 | |
|   }
 | |
| 
 | |
|   // If packing space is negative, 'space-between' and 'stretch' behave like
 | |
|   // 'flex-start', and 'space-around' and 'space-evenly' behave like 'center'.
 | |
|   // In those cases, it's simplest to just pretend we have a different
 | |
|   // 'align-content' value and share code. (If we only have one line, all of
 | |
|   // the 'space-*' keywords fall back as well, but 'stretch' doesn't because
 | |
|   // even a single line can still stretch.)
 | |
|   if (mPackingSpaceRemaining < 0 &&
 | |
|       mAlignContent.primary == StyleAlignFlags::STRETCH) {
 | |
|     mAlignContent.primary = StyleAlignFlags::FLEX_START;
 | |
|   } else if (mPackingSpaceRemaining < 0 || numLines == 1) {
 | |
|     if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN) {
 | |
|       mAlignContent.primary = StyleAlignFlags::FLEX_START;
 | |
|     } else if (mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
 | |
|                mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) {
 | |
|       mAlignContent.primary = StyleAlignFlags::CENTER;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Map 'start'/'end' to 'flex-start'/'flex-end'.
 | |
|   if (mAlignContent.primary == StyleAlignFlags::START) {
 | |
|     mAlignContent.primary = aAxisTracker.IsCrossAxisReversed()
 | |
|                                 ? StyleAlignFlags::FLEX_END
 | |
|                                 : StyleAlignFlags::FLEX_START;
 | |
|   } else if (mAlignContent.primary == StyleAlignFlags::END) {
 | |
|     mAlignContent.primary = aAxisTracker.IsCrossAxisReversed()
 | |
|                                 ? StyleAlignFlags::FLEX_START
 | |
|                                 : StyleAlignFlags::FLEX_END;
 | |
|   }
 | |
| 
 | |
|   // Figure out how much space we'll set aside for packing spaces, and advance
 | |
|   // past any leading packing-space.
 | |
|   if (mPackingSpaceRemaining != 0) {
 | |
|     if (mAlignContent.primary == StyleAlignFlags::BASELINE ||
 | |
|         mAlignContent.primary == StyleAlignFlags::LAST_BASELINE) {
 | |
|       // TODO: Bug 1480850 will implement 'align-content: [first/last] baseline'
 | |
|       // for flexbox. Until then, behaves as if align-content is 'flex-start' by
 | |
|       // doing nothing.
 | |
|     } else if (mAlignContent.primary == StyleAlignFlags::FLEX_START) {
 | |
|       // All packing space should go at the end --> nothing to do here.
 | |
|     } else if (mAlignContent.primary == StyleAlignFlags::FLEX_END) {
 | |
|       // All packing space goes at the beginning
 | |
|       mPosition += mPackingSpaceRemaining;
 | |
|     } else if (mAlignContent.primary == StyleAlignFlags::CENTER) {
 | |
|       // Half the packing space goes at the beginning
 | |
|       mPosition += mPackingSpaceRemaining / 2;
 | |
|     } else if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
 | |
|                mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
 | |
|                mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) {
 | |
|       nsFlexContainerFrame::CalculatePackingSpace(
 | |
|           numLines, mAlignContent, &mPosition, &mNumPackingSpacesRemaining,
 | |
|           &mPackingSpaceRemaining);
 | |
|     } else if (mAlignContent.primary == StyleAlignFlags::STRETCH) {
 | |
|       // Split space equally between the lines:
 | |
|       MOZ_ASSERT(mPackingSpaceRemaining > 0,
 | |
|                  "negative packing space should make us use 'flex-start' "
 | |
|                  "instead of 'stretch' (and we shouldn't bother with this "
 | |
|                  "code if we have 0 packing space)");
 | |
| 
 | |
|       uint32_t numLinesLeft = numLines;
 | |
|       for (FlexLine& line : aLines) {
 | |
|         // Our share is the amount of space remaining, divided by the number
 | |
|         // of lines remainig.
 | |
|         MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines");
 | |
|         nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft;
 | |
|         nscoord newSize = line.LineCrossSize() + shareOfExtraSpace;
 | |
|         line.SetLineCrossSize(newSize);
 | |
| 
 | |
|         mPackingSpaceRemaining -= shareOfExtraSpace;
 | |
|         numLinesLeft--;
 | |
|       }
 | |
|       MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines");
 | |
|     } else {
 | |
|       MOZ_ASSERT_UNREACHABLE("Unexpected align-content value");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CrossAxisPositionTracker::TraversePackingSpace() {
 | |
|   if (mNumPackingSpacesRemaining) {
 | |
|     MOZ_ASSERT(mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
 | |
|                    mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
 | |
|                    mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY,
 | |
|                "mNumPackingSpacesRemaining only applies for "
 | |
|                "space-between/space-around/space-evenly");
 | |
| 
 | |
|     MOZ_ASSERT(mPackingSpaceRemaining >= 0,
 | |
|                "ran out of packing space earlier than we expected");
 | |
| 
 | |
|     // NOTE: This integer math will skew the distribution of remainder
 | |
|     // app-units towards the end, which is fine.
 | |
|     nscoord curPackingSpace =
 | |
|         mPackingSpaceRemaining / mNumPackingSpacesRemaining;
 | |
| 
 | |
|     mPosition += curPackingSpace;
 | |
|     mNumPackingSpacesRemaining--;
 | |
|     mPackingSpaceRemaining -= curPackingSpace;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SingleLineCrossAxisPositionTracker::SingleLineCrossAxisPositionTracker(
 | |
|     const FlexboxAxisTracker& aAxisTracker)
 | |
|     : PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(),
 | |
|                       aAxisTracker.IsCrossAxisReversed()) {}
 | |
| 
 | |
| void FlexLine::ComputeCrossSizeAndBaseline(
 | |
|     const FlexboxAxisTracker& aAxisTracker) {
 | |
|   nscoord crossStartToFurthestFirstBaseline = nscoord_MIN;
 | |
|   nscoord crossEndToFurthestFirstBaseline = nscoord_MIN;
 | |
|   nscoord crossStartToFurthestLastBaseline = nscoord_MIN;
 | |
|   nscoord crossEndToFurthestLastBaseline = nscoord_MIN;
 | |
|   nscoord largestOuterCrossSize = 0;
 | |
|   for (const FlexItem& item : Items()) {
 | |
|     nscoord curOuterCrossSize = item.OuterCrossSize();
 | |
| 
 | |
|     if ((item.AlignSelf()._0 == StyleAlignFlags::BASELINE ||
 | |
|          item.AlignSelf()._0 == StyleAlignFlags::LAST_BASELINE) &&
 | |
|         item.NumAutoMarginsInCrossAxis() == 0) {
 | |
|       const bool useFirst = (item.AlignSelf()._0 == StyleAlignFlags::BASELINE);
 | |
|       // FIXME: Once we support "writing-mode", we'll have to do baseline
 | |
|       // alignment in vertical flex containers here (w/ horizontal cross-axes).
 | |
| 
 | |
|       // Find distance from our item's cross-start and cross-end margin-box
 | |
|       // edges to its baseline.
 | |
|       //
 | |
|       // Here's a diagram of a flex-item that we might be doing this on.
 | |
|       // "mmm" is the margin-box, "bbb" is the border-box. The bottom of
 | |
|       // the text "BASE" is the baseline.
 | |
|       //
 | |
|       // ---(cross-start)---
 | |
|       //                ___              ___            ___
 | |
|       //   mmmmmmmmmmmm  |                |margin-start  |
 | |
|       //   m          m  |               _|_   ___       |
 | |
|       //   m bbbbbbbb m  |curOuterCrossSize     |        |crossStartToBaseline
 | |
|       //   m b      b m  |                      |ascent  |
 | |
|       //   m b BASE b m  |                     _|_      _|_
 | |
|       //   m b      b m  |                               |
 | |
|       //   m bbbbbbbb m  |                               |crossEndToBaseline
 | |
|       //   m          m  |                               |
 | |
|       //   mmmmmmmmmmmm _|_                             _|_
 | |
|       //
 | |
|       // ---(cross-end)---
 | |
|       //
 | |
|       // We already have the curOuterCrossSize, margin-start, and the ascent.
 | |
|       // * We can get crossStartToBaseline by adding margin-start + ascent.
 | |
|       // * If we subtract that from the curOuterCrossSize, we get
 | |
|       //   crossEndToBaseline.
 | |
| 
 | |
|       nscoord crossStartToBaseline = item.BaselineOffsetFromOuterCrossEdge(
 | |
|           aAxisTracker.CrossAxisPhysicalStartSide(), useFirst);
 | |
|       nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline;
 | |
| 
 | |
|       // Now, update our "largest" values for these (across all the flex items
 | |
|       // in this flex line), so we can use them in computing the line's cross
 | |
|       // size below:
 | |
|       if (useFirst) {
 | |
|         crossStartToFurthestFirstBaseline =
 | |
|             std::max(crossStartToFurthestFirstBaseline, crossStartToBaseline);
 | |
|         crossEndToFurthestFirstBaseline =
 | |
|             std::max(crossEndToFurthestFirstBaseline, crossEndToBaseline);
 | |
|       } else {
 | |
|         crossStartToFurthestLastBaseline =
 | |
|             std::max(crossStartToFurthestLastBaseline, crossStartToBaseline);
 | |
|         crossEndToFurthestLastBaseline =
 | |
|             std::max(crossEndToFurthestLastBaseline, crossEndToBaseline);
 | |
|       }
 | |
|     } else {
 | |
|       largestOuterCrossSize =
 | |
|           std::max(largestOuterCrossSize, curOuterCrossSize);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The line's baseline offset is the distance from the line's edge to the
 | |
|   // furthest item-baseline. The item(s) with that baseline will be exactly
 | |
|   // aligned with the line's edge.
 | |
|   mFirstBaselineOffset = crossStartToFurthestFirstBaseline;
 | |
|   mLastBaselineOffset = crossEndToFurthestLastBaseline;
 | |
| 
 | |
|   // The line's cross-size is the larger of:
 | |
|   //  (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
 | |
|   //      all baseline-aligned items with no cross-axis auto margins...
 | |
|   // and
 | |
|   //  (b) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
 | |
|   //      all last baseline-aligned items with no cross-axis auto margins...
 | |
|   // and
 | |
|   //  (c) largest cross-size of all other children.
 | |
|   mLineCrossSize = std::max(
 | |
|       std::max(
 | |
|           crossStartToFurthestFirstBaseline + crossEndToFurthestFirstBaseline,
 | |
|           crossStartToFurthestLastBaseline + crossEndToFurthestLastBaseline),
 | |
|       largestOuterCrossSize);
 | |
| }
 | |
| 
 | |
| void FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize) {
 | |
|   // We stretch IFF we are align-self:stretch, have no auto margins in
 | |
|   // cross axis, and have cross-axis size property == "auto". If any of those
 | |
|   // conditions don't hold up, we won't stretch.
 | |
|   if (mAlignSelf._0 != StyleAlignFlags::STRETCH ||
 | |
|       NumAutoMarginsInCrossAxis() != 0 || !IsCrossSizeAuto()) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we've already been stretched, we can bail out early, too.
 | |
|   // No need to redo the calculation.
 | |
|   if (mIsStretched) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Reserve space for margins & border & padding, and then use whatever
 | |
|   // remains as our item's cross-size (clamped to its min/max range).
 | |
|   nscoord stretchedSize = aLineCrossSize - MarginBorderPaddingSizeInCrossAxis();
 | |
| 
 | |
|   stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize);
 | |
| 
 | |
|   // Update the cross-size & make a note that it's stretched, so we know to
 | |
|   // override the reflow input's computed cross-size in our final reflow.
 | |
|   SetCrossSize(stretchedSize);
 | |
|   mIsStretched = true;
 | |
| }
 | |
| 
 | |
| static nsBlockFrame* FindFlexItemBlockFrame(nsIFrame* aFrame) {
 | |
|   if (nsBlockFrame* block = do_QueryFrame(aFrame)) {
 | |
|     return block;
 | |
|   }
 | |
|   for (nsIFrame* f : aFrame->PrincipalChildList()) {
 | |
|     if (nsBlockFrame* block = FindFlexItemBlockFrame(f)) {
 | |
|       return block;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| nsBlockFrame* FlexItem::BlockFrame() const {
 | |
|   return FindFlexItemBlockFrame(Frame());
 | |
| }
 | |
| 
 | |
| void SingleLineCrossAxisPositionTracker::ResolveAutoMarginsInCrossAxis(
 | |
|     const FlexLine& aLine, FlexItem& aItem) {
 | |
|   // Subtract the space that our item is already occupying, to see how much
 | |
|   // space (if any) is available for its auto margins.
 | |
|   nscoord spaceForAutoMargins = aLine.LineCrossSize() - aItem.OuterCrossSize();
 | |
| 
 | |
|   if (spaceForAutoMargins <= 0) {
 | |
|     return;  // No available space  --> nothing to do
 | |
|   }
 | |
| 
 | |
|   uint32_t numAutoMargins = aItem.NumAutoMarginsInCrossAxis();
 | |
|   if (numAutoMargins == 0) {
 | |
|     return;  // No auto margins --> nothing to do.
 | |
|   }
 | |
| 
 | |
|   // OK, we have at least one auto margin and we have some available space.
 | |
|   // Give each auto margin a share of the space.
 | |
|   const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
 | |
|   for (const auto side : {StartSide(), EndSide()}) {
 | |
|     if (styleMargin.Get(mWM, side).IsAuto()) {
 | |
|       MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
 | |
|                  "Expecting auto margins to have value '0' before we "
 | |
|                  "update them");
 | |
| 
 | |
|       // NOTE: integer divison is fine here; numAutoMargins is either 1 or 2.
 | |
|       // If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half.
 | |
|       nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins;
 | |
|       aItem.SetMarginComponentForSide(side, curAutoMarginSize);
 | |
|       numAutoMargins--;
 | |
|       spaceForAutoMargins -= curAutoMarginSize;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SingleLineCrossAxisPositionTracker::EnterAlignPackingSpace(
 | |
|     const FlexLine& aLine, const FlexItem& aItem,
 | |
|     const FlexboxAxisTracker& aAxisTracker) {
 | |
|   // We don't do align-self alignment on items that have auto margins
 | |
|   // in the cross axis.
 | |
|   if (aItem.NumAutoMarginsInCrossAxis()) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   StyleAlignFlags alignSelf = aItem.AlignSelf()._0;
 | |
|   // NOTE: 'stretch' behaves like 'flex-start' once we've stretched any
 | |
|   // auto-sized items (which we've already done).
 | |
|   if (alignSelf == StyleAlignFlags::STRETCH) {
 | |
|     alignSelf = StyleAlignFlags::FLEX_START;
 | |
|   }
 | |
| 
 | |
|   // Map 'self-start'/'self-end' to 'start'/'end'
 | |
|   if (alignSelf == StyleAlignFlags::SELF_START ||
 | |
|       alignSelf == StyleAlignFlags::SELF_END) {
 | |
|     const LogicalAxis logCrossAxis =
 | |
|         aAxisTracker.IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline;
 | |
|     const WritingMode cWM = aAxisTracker.GetWritingMode();
 | |
|     const bool sameStart =
 | |
|         cWM.ParallelAxisStartsOnSameSide(logCrossAxis, aItem.GetWritingMode());
 | |
|     alignSelf = sameStart == (alignSelf == StyleAlignFlags::SELF_START)
 | |
|                     ? StyleAlignFlags::START
 | |
|                     : StyleAlignFlags::END;
 | |
|   }
 | |
| 
 | |
|   // Map 'start'/'end' to 'flex-start'/'flex-end'.
 | |
|   if (alignSelf == StyleAlignFlags::START) {
 | |
|     alignSelf = aAxisTracker.IsCrossAxisReversed()
 | |
|                     ? StyleAlignFlags::FLEX_END
 | |
|                     : StyleAlignFlags::FLEX_START;
 | |
|   } else if (alignSelf == StyleAlignFlags::END) {
 | |
|     alignSelf = aAxisTracker.IsCrossAxisReversed() ? StyleAlignFlags::FLEX_START
 | |
|                                                    : StyleAlignFlags::FLEX_END;
 | |
|   }
 | |
| 
 | |
|   // 'align-self' falls back to 'flex-start' if it is 'center'/'flex-end' and we
 | |
|   // have cross axis overflow
 | |
|   // XXX we should really be falling back to 'start' as of bug 1472843
 | |
|   if (aLine.LineCrossSize() < aItem.OuterCrossSize() &&
 | |
|       (aItem.AlignSelfFlags() & StyleAlignFlags::SAFE)) {
 | |
|     alignSelf = StyleAlignFlags::FLEX_START;
 | |
|   }
 | |
| 
 | |
|   if (alignSelf == StyleAlignFlags::FLEX_START) {
 | |
|     // No space to skip over -- we're done.
 | |
|   } else if (alignSelf == StyleAlignFlags::FLEX_END) {
 | |
|     mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize();
 | |
|   } else if (alignSelf == StyleAlignFlags::CENTER) {
 | |
|     // Note: If cross-size is odd, the "after" space will get the extra unit.
 | |
|     mPosition += (aLine.LineCrossSize() - aItem.OuterCrossSize()) / 2;
 | |
|   } else if (alignSelf == StyleAlignFlags::BASELINE ||
 | |
|              alignSelf == StyleAlignFlags::LAST_BASELINE) {
 | |
|     const bool useFirst = (alignSelf == StyleAlignFlags::BASELINE);
 | |
| 
 | |
|     // Baseline-aligned items are collectively aligned with the line's physical
 | |
|     // cross-start or cross-end side, depending on whether we're doing
 | |
|     // first-baseline or last-baseline alignment.
 | |
|     const mozilla::Side baselineAlignStartSide =
 | |
|         useFirst ? aAxisTracker.CrossAxisPhysicalStartSide()
 | |
|                  : aAxisTracker.CrossAxisPhysicalEndSide();
 | |
| 
 | |
|     nscoord itemBaselineOffset = aItem.BaselineOffsetFromOuterCrossEdge(
 | |
|         baselineAlignStartSide, useFirst);
 | |
| 
 | |
|     nscoord lineBaselineOffset =
 | |
|         useFirst ? aLine.FirstBaselineOffset() : aLine.LastBaselineOffset();
 | |
| 
 | |
|     NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset,
 | |
|                  "failed at finding largest baseline offset");
 | |
| 
 | |
|     // How much do we need to adjust our position (from the line edge),
 | |
|     // to get the item's baseline to hit the line's baseline offset:
 | |
|     nscoord baselineDiff = lineBaselineOffset - itemBaselineOffset;
 | |
| 
 | |
|     if (useFirst) {
 | |
|       // mPosition is already at line's flex-start edge.
 | |
|       // From there, we step *forward* by the baseline adjustment:
 | |
|       mPosition += baselineDiff;
 | |
|     } else {
 | |
|       // Advance to align item w/ line's flex-end edge (as in FLEX_END case):
 | |
|       mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize();
 | |
|       // ...and step *back* by the baseline adjustment:
 | |
|       mPosition -= baselineDiff;
 | |
|     }
 | |
|   } else {
 | |
|     MOZ_ASSERT_UNREACHABLE("Unexpected align-self value");
 | |
|   }
 | |
| }
 | |
| 
 | |
| FlexboxAxisInfo::FlexboxAxisInfo(const nsIFrame* aFlexContainer) {
 | |
|   MOZ_ASSERT(aFlexContainer && aFlexContainer->IsFlexContainerFrame(),
 | |
|              "Only flex containers may be passed to this constructor!");
 | |
|   if (IsLegacyBox(aFlexContainer)) {
 | |
|     InitAxesFromLegacyProps(aFlexContainer);
 | |
|   } else {
 | |
|     InitAxesFromModernProps(aFlexContainer);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FlexboxAxisInfo::InitAxesFromLegacyProps(const nsIFrame* aFlexContainer) {
 | |
|   const nsStyleXUL* styleXUL = aFlexContainer->StyleXUL();
 | |
| 
 | |
|   const bool boxOrientIsVertical =
 | |
|       styleXUL->mBoxOrient == StyleBoxOrient::Vertical;
 | |
|   const bool wmIsVertical = aFlexContainer->GetWritingMode().IsVertical();
 | |
| 
 | |
|   // If box-orient agrees with our writing-mode, then we're "row-oriented"
 | |
|   // (i.e. the flexbox main axis is the same as our writing mode's inline
 | |
|   // direction).  Otherwise, we're column-oriented (i.e. the flexbox's main
 | |
|   // axis is perpendicular to the writing-mode's inline direction).
 | |
|   mIsRowOriented = (boxOrientIsVertical == wmIsVertical);
 | |
| 
 | |
|   // Legacy flexbox can use "-webkit-box-direction: reverse" to reverse the
 | |
|   // main axis (so it runs in the reverse direction of the inline axis):
 | |
|   mIsMainAxisReversed = styleXUL->mBoxDirection == StyleBoxDirection::Reverse;
 | |
| 
 | |
|   // Legacy flexbox does not support reversing the cross axis -- it has no
 | |
|   // equivalent of modern flexbox's "flex-wrap: wrap-reverse".
 | |
|   mIsCrossAxisReversed = false;
 | |
| }
 | |
| 
 | |
| void FlexboxAxisInfo::InitAxesFromModernProps(const nsIFrame* aFlexContainer) {
 | |
|   const nsStylePosition* stylePos = aFlexContainer->StylePosition();
 | |
|   StyleFlexDirection flexDirection = stylePos->mFlexDirection;
 | |
| 
 | |
|   // Determine main axis:
 | |
|   switch (flexDirection) {
 | |
|     case StyleFlexDirection::Row:
 | |
|       mIsRowOriented = true;
 | |
|       mIsMainAxisReversed = false;
 | |
|       break;
 | |
|     case StyleFlexDirection::RowReverse:
 | |
|       mIsRowOriented = true;
 | |
|       mIsMainAxisReversed = true;
 | |
|       break;
 | |
|     case StyleFlexDirection::Column:
 | |
|       mIsRowOriented = false;
 | |
|       mIsMainAxisReversed = false;
 | |
|       break;
 | |
|     case StyleFlexDirection::ColumnReverse:
 | |
|       mIsRowOriented = false;
 | |
|       mIsMainAxisReversed = true;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // "flex-wrap: wrap-reverse" reverses our cross axis.
 | |
|   mIsCrossAxisReversed = stylePos->mFlexWrap == StyleFlexWrap::WrapReverse;
 | |
| }
 | |
| 
 | |
| FlexboxAxisTracker::FlexboxAxisTracker(
 | |
|     const nsFlexContainerFrame* aFlexContainer)
 | |
|     : mWM(aFlexContainer->GetWritingMode()), mAxisInfo(aFlexContainer) {}
 | |
| 
 | |
| LogicalSide FlexboxAxisTracker::MainAxisStartSide() const {
 | |
|   return MakeLogicalSide(
 | |
|       MainAxis(), IsMainAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart);
 | |
| }
 | |
| 
 | |
| LogicalSide FlexboxAxisTracker::CrossAxisStartSide() const {
 | |
|   return MakeLogicalSide(
 | |
|       CrossAxis(), IsCrossAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart);
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::GenerateFlexLines(
 | |
|     const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize,
 | |
|     const nscoord aTentativeContentBoxCrossSize,
 | |
|     const nsTArray<StrutInfo>& aStruts, const FlexboxAxisTracker& aAxisTracker,
 | |
|     nscoord aMainGapSize, nsTArray<nsIFrame*>& aPlaceholders,
 | |
|     nsTArray<FlexLine>& aLines, bool& aHasCollapsedItems) {
 | |
|   MOZ_ASSERT(aLines.IsEmpty(), "Expecting outparam to start out empty");
 | |
| 
 | |
|   auto ConstructNewFlexLine = [&aLines, aMainGapSize]() {
 | |
|     return aLines.EmplaceBack(aMainGapSize);
 | |
|   };
 | |
| 
 | |
|   const bool isSingleLine =
 | |
|       StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
 | |
| 
 | |
|   // We have at least one FlexLine. Even an empty flex container has a single
 | |
|   // (empty) flex line.
 | |
|   FlexLine* curLine = ConstructNewFlexLine();
 | |
| 
 | |
|   nscoord wrapThreshold;
 | |
|   if (isSingleLine) {
 | |
|     // Not wrapping. Set threshold to sentinel value that tells us not to wrap.
 | |
|     wrapThreshold = NS_UNCONSTRAINEDSIZE;
 | |
|   } else {
 | |
|     // Wrapping! Set wrap threshold to flex container's content-box main-size.
 | |
|     wrapThreshold = aTentativeContentBoxMainSize;
 | |
| 
 | |
|     // If the flex container doesn't have a definite content-box main-size
 | |
|     // (e.g. if main axis is vertical & 'height' is 'auto'), make sure we at
 | |
|     // least wrap when we hit its max main-size.
 | |
|     if (wrapThreshold == NS_UNCONSTRAINEDSIZE) {
 | |
|       const nscoord flexContainerMaxMainSize =
 | |
|           aAxisTracker.MainComponent(aReflowInput.ComputedMaxSize());
 | |
|       wrapThreshold = flexContainerMaxMainSize;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Tracks the index of the next strut, in aStruts (and when this hits
 | |
|   // aStruts.Length(), that means there are no more struts):
 | |
|   uint32_t nextStrutIdx = 0;
 | |
| 
 | |
|   // Overall index of the current flex item in the flex container. (This gets
 | |
|   // checked against entries in aStruts.)
 | |
|   uint32_t itemIdxInContainer = 0;
 | |
| 
 | |
|   CSSOrderAwareFrameIterator iter(
 | |
|       this, FrameChildListID::Principal,
 | |
|       CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
 | |
|       CSSOrderAwareFrameIterator::OrderState::Unknown,
 | |
|       OrderingPropertyForIter(this));
 | |
| 
 | |
|   AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER,
 | |
|                        iter.ItemsAreAlreadyInOrder());
 | |
| 
 | |
|   const bool useMozBoxCollapseBehavior =
 | |
|       StyleVisibility()->UseLegacyCollapseBehavior();
 | |
| 
 | |
|   for (; !iter.AtEnd(); iter.Next()) {
 | |
|     nsIFrame* childFrame = *iter;
 | |
|     // Don't create flex items / lines for placeholder frames:
 | |
|     if (childFrame->IsPlaceholderFrame()) {
 | |
|       aPlaceholders.AppendElement(childFrame);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const bool collapsed = childFrame->StyleVisibility()->IsCollapse();
 | |
|     aHasCollapsedItems = aHasCollapsedItems || collapsed;
 | |
| 
 | |
|     if (useMozBoxCollapseBehavior && collapsed) {
 | |
|       // Legacy visibility:collapse behavior: make a 0-sized strut. (No need to
 | |
|       // bother with aStruts and remembering cross size.)
 | |
|       curLine->Items().EmplaceBack(childFrame, 0, aReflowInput.GetWritingMode(),
 | |
|                                    aAxisTracker);
 | |
|     } else if (nextStrutIdx < aStruts.Length() &&
 | |
|                aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) {
 | |
|       // Use the simplified "strut" FlexItem constructor:
 | |
|       curLine->Items().EmplaceBack(childFrame,
 | |
|                                    aStruts[nextStrutIdx].mStrutCrossSize,
 | |
|                                    aReflowInput.GetWritingMode(), aAxisTracker);
 | |
|       nextStrutIdx++;
 | |
|     } else {
 | |
|       GenerateFlexItemForChild(*curLine, childFrame, aReflowInput, aAxisTracker,
 | |
|                                aTentativeContentBoxCrossSize);
 | |
|     }
 | |
| 
 | |
|     // Check if we need to wrap the newly appended item to a new line, i.e. if
 | |
|     // its outer hypothetical main size pushes our line over the threshold.
 | |
|     // But we don't wrap if the line-length is unconstrained, nor do we wrap if
 | |
|     // this was the first item on the line.
 | |
|     if (wrapThreshold != NS_UNCONSTRAINEDSIZE &&
 | |
|         curLine->Items().Length() > 1) {
 | |
|       // If the line will be longer than wrapThreshold or at least as long as
 | |
|       // nscoord_MAX because of the newly appended item, then wrap and move the
 | |
|       // item to a new line.
 | |
|       auto newOuterSize = curLine->TotalOuterHypotheticalMainSize();
 | |
|       newOuterSize += curLine->Items().LastElement().OuterMainSize();
 | |
| 
 | |
|       // Account for gap between this line's previous item and this item.
 | |
|       newOuterSize += aMainGapSize;
 | |
| 
 | |
|       if (newOuterSize >= nscoord_MAX || newOuterSize > wrapThreshold) {
 | |
|         curLine = ConstructNewFlexLine();
 | |
| 
 | |
|         // Get the previous line after adding a new line because the address can
 | |
|         // change if nsTArray needs to reallocate a new space for the new line.
 | |
|         FlexLine& prevLine = aLines[aLines.Length() - 2];
 | |
| 
 | |
|         // Move the item from the end of prevLine to the end of curLine.
 | |
|         curLine->Items().AppendElement(prevLine.Items().PopLastElement());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Update the line's bookkeeping about how large its items collectively are.
 | |
|     curLine->AddLastItemToMainSizeTotals();
 | |
|     itemIdxInContainer++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| nsFlexContainerFrame::FlexLayoutResult
 | |
| nsFlexContainerFrame::GenerateFlexLayoutResult() {
 | |
|   MOZ_ASSERT(GetPrevInFlow(), "This should be called by non-first-in-flows!");
 | |
| 
 | |
|   auto* data = FirstInFlow()->GetProperty(SharedFlexData::Prop());
 | |
|   MOZ_ASSERT(data, "SharedFlexData should be set by our first-in-flow!");
 | |
| 
 | |
|   FlexLayoutResult flr;
 | |
| 
 | |
|   // The order state of the children is consistent across entire continuation
 | |
|   // chain due to calling nsContainerFrame::NormalizeChildLists() at the
 | |
|   // beginning of Reflow(), so we can align our state bit with our
 | |
|   // prev-in-flow's state. Setup here before calling OrderStateForIter() below.
 | |
|   AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER,
 | |
|                        GetPrevInFlow()->HasAnyStateBits(
 | |
|                            NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER));
 | |
| 
 | |
|   // Construct flex items for this flex container fragment from existing flex
 | |
|   // items in SharedFlexData.
 | |
|   CSSOrderAwareFrameIterator iter(
 | |
|       this, FrameChildListID::Principal,
 | |
|       CSSOrderAwareFrameIterator::ChildFilter::SkipPlaceholders,
 | |
|       OrderStateForIter(this), OrderingPropertyForIter(this));
 | |
| 
 | |
|   auto ConstructNewFlexLine = [&flr]() {
 | |
|     // Use zero main gap size since it doesn't matter in flex container's
 | |
|     // next-in-flows. We've computed flex items' positions in first-in-flow.
 | |
|     return flr.mLines.EmplaceBack(0);
 | |
|   };
 | |
| 
 | |
|   // We have at least one FlexLine. Even an empty flex container has a single
 | |
|   // (empty) flex line.
 | |
|   FlexLine* currentLine = ConstructNewFlexLine();
 | |
| 
 | |
|   if (!iter.AtEnd()) {
 | |
|     nsIFrame* child = *iter;
 | |
|     nsIFrame* childFirstInFlow = child->FirstInFlow();
 | |
| 
 | |
|     // We are iterating nested for-loops over the FlexLines and FlexItems
 | |
|     // generated by GenerateFlexLines() and cached in flex container's
 | |
|     // first-in-flow. For each flex item, check if its frame (must be a
 | |
|     // first-in-flow) is the first-in-flow of the first child frame in this flex
 | |
|     // container continuation. If so, clone the data from that FlexItem into a
 | |
|     // FlexLine. When we find a match for the item, we know that the next child
 | |
|     // frame might have its first-in-flow as the next item in the same original
 | |
|     // line. In this case, we'll put the cloned data in the same line here as
 | |
|     // well.
 | |
|     for (const FlexLine& line : data->mLines) {
 | |
|       // If currentLine is empty, either it is the first line, or all the items
 | |
|       // in the previous line have been placed in our prev-in-flows. No need to
 | |
|       // construct a new line.
 | |
|       if (!currentLine->IsEmpty()) {
 | |
|         currentLine = ConstructNewFlexLine();
 | |
|       }
 | |
|       for (const FlexItem& item : line.Items()) {
 | |
|         if (item.Frame() == childFirstInFlow) {
 | |
|           currentLine->Items().AppendElement(item.CloneFor(child));
 | |
|           iter.Next();
 | |
|           if (iter.AtEnd()) {
 | |
|             // We've constructed flex items for all children. No need to check
 | |
|             // rest of the items.
 | |
|             child = childFirstInFlow = nullptr;
 | |
|             break;
 | |
|           }
 | |
|           child = *iter;
 | |
|           childFirstInFlow = child->FirstInFlow();
 | |
|         }
 | |
|       }
 | |
|       if (iter.AtEnd()) {
 | |
|         // We've constructed flex items for all children. No need to check
 | |
|         // rest of the lines.
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   flr.mContentBoxMainSize = data->mContentBoxMainSize;
 | |
|   flr.mContentBoxCrossSize = data->mContentBoxCrossSize;
 | |
| 
 | |
|   return flr;
 | |
| }
 | |
| 
 | |
| // Returns the largest outer hypothetical main-size of any line in |aLines|.
 | |
| // (i.e. the hypothetical main-size of the largest line)
 | |
| static AuCoord64 GetLargestLineMainSize(nsTArray<FlexLine>& aLines) {
 | |
|   AuCoord64 largestLineOuterSize = 0;
 | |
|   for (const FlexLine& line : aLines) {
 | |
|     largestLineOuterSize =
 | |
|         std::max(largestLineOuterSize, line.TotalOuterHypotheticalMainSize());
 | |
|   }
 | |
|   return largestLineOuterSize;
 | |
| }
 | |
| 
 | |
| nscoord nsFlexContainerFrame::ComputeMainSize(
 | |
|     const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
 | |
|     const nscoord aTentativeContentBoxMainSize,
 | |
|     nsTArray<FlexLine>& aLines) const {
 | |
|   if (aAxisTracker.IsRowOriented()) {
 | |
|     // Row-oriented --> our main axis is the inline axis, so our main size
 | |
|     // is our inline size (which should already be resolved).
 | |
|     return aTentativeContentBoxMainSize;
 | |
|   }
 | |
| 
 | |
|   const bool shouldApplyAutomaticMinimumOnBlockAxis =
 | |
|       aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis();
 | |
|   if (aTentativeContentBoxMainSize != NS_UNCONSTRAINEDSIZE &&
 | |
|       !shouldApplyAutomaticMinimumOnBlockAxis) {
 | |
|     // Column-oriented case, with fixed BSize:
 | |
|     // Just use our fixed block-size because we always assume the available
 | |
|     // block-size is unconstrained, and the reflow input has already done the
 | |
|     // appropriate min/max-BSize clamping.
 | |
|     return aTentativeContentBoxMainSize;
 | |
|   }
 | |
| 
 | |
|   // Column-oriented case, with size-containment in block axis:
 | |
|   // Behave as if we had no content and just use our MinBSize.
 | |
|   if (Maybe<nscoord> containBSize =
 | |
|           aReflowInput.mFrame->ContainIntrinsicBSize()) {
 | |
|     return NS_CSS_MINMAX(*containBSize, aReflowInput.ComputedMinBSize(),
 | |
|                          aReflowInput.ComputedMaxBSize());
 | |
|   }
 | |
| 
 | |
|   const AuCoord64 largestLineMainSize = GetLargestLineMainSize(aLines);
 | |
|   const nscoord contentBSize = NS_CSS_MINMAX(
 | |
|       nscoord(largestLineMainSize.ToMinMaxClamped()),
 | |
|       aReflowInput.ComputedMinBSize(), aReflowInput.ComputedMaxBSize());
 | |
|   // If the clamped largest FlexLine length is larger than the tentative main
 | |
|   // size (which is resolved by aspect-ratio), we extend it to contain the
 | |
|   // entire FlexLine.
 | |
|   // https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum
 | |
|   if (shouldApplyAutomaticMinimumOnBlockAxis) {
 | |
|     // Column-oriented case, with auto BSize which is resolved by
 | |
|     // aspect-ratio.
 | |
|     return std::max(contentBSize, aTentativeContentBoxMainSize);
 | |
|   }
 | |
| 
 | |
|   // Column-oriented case, with auto BSize:
 | |
|   // Resolve auto BSize to the largest FlexLine length, clamped to our
 | |
|   // computed min/max main-size properties.
 | |
|   return contentBSize;
 | |
| }
 | |
| 
 | |
| nscoord nsFlexContainerFrame::ComputeCrossSize(
 | |
|     const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
 | |
|     const nscoord aTentativeContentBoxCrossSize, nscoord aSumLineCrossSizes,
 | |
|     bool* aIsDefinite) const {
 | |
|   MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null");
 | |
| 
 | |
|   if (aAxisTracker.IsColumnOriented()) {
 | |
|     // Column-oriented --> our cross axis is the inline axis, so our cross size
 | |
|     // is our inline size (which should already be resolved).
 | |
|     *aIsDefinite = true;
 | |
|     // FIXME: Bug 1661847 - there are cases where aTentativeContentBoxCrossSize
 | |
|     // (i.e. aReflowInput.ComputedISize()) might not be the right thing to
 | |
|     // return here. Specifically: if our cross size is an intrinsic size, and we
 | |
|     // have flex items that are flexible and have aspect ratios, then we may
 | |
|     // need to take their post-flexing main sizes into account (multiplied
 | |
|     // through their aspect ratios to get their cross sizes), in order to
 | |
|     // determine their flex line's size & the flex container's cross size (e.g.
 | |
|     // as `aSumLineCrossSizes`).
 | |
|     return aTentativeContentBoxCrossSize;
 | |
|   }
 | |
| 
 | |
|   const bool shouldApplyAutomaticMinimumOnBlockAxis =
 | |
|       aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis();
 | |
|   const nscoord computedBSize = aReflowInput.ComputedBSize();
 | |
|   if (computedBSize != NS_UNCONSTRAINEDSIZE &&
 | |
|       !shouldApplyAutomaticMinimumOnBlockAxis) {
 | |
|     // Row-oriented case (cross axis is block-axis), with fixed BSize:
 | |
|     *aIsDefinite = true;
 | |
| 
 | |
|     // Just use our fixed block-size because we always assume the available
 | |
|     // block-size is unconstrained, and the reflow input has already done the
 | |
|     // appropriate min/max-BSize clamping.
 | |
|     return computedBSize;
 | |
|   }
 | |
| 
 | |
|   // Row-oriented case, with size-containment in block axis:
 | |
|   // Behave as if we had no content and just use our MinBSize.
 | |
|   if (Maybe<nscoord> containBSize =
 | |
|           aReflowInput.mFrame->ContainIntrinsicBSize()) {
 | |
|     *aIsDefinite = true;
 | |
|     return NS_CSS_MINMAX(*containBSize, aReflowInput.ComputedMinBSize(),
 | |
|                          aReflowInput.ComputedMaxBSize());
 | |
|   }
 | |
| 
 | |
|   // The cross size must not be definite in the following cases.
 | |
|   *aIsDefinite = false;
 | |
| 
 | |
|   const nscoord contentBSize =
 | |
|       NS_CSS_MINMAX(aSumLineCrossSizes, aReflowInput.ComputedMinBSize(),
 | |
|                     aReflowInput.ComputedMaxBSize());
 | |
|   // If the content block-size is larger than the effective computed
 | |
|   // block-size, we extend the block-size to contain all the content.
 | |
|   // https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum
 | |
|   if (shouldApplyAutomaticMinimumOnBlockAxis) {
 | |
|     // Row-oriented case (cross axis is block-axis), with auto BSize which is
 | |
|     // resolved by aspect-ratio or content size.
 | |
|     return std::max(contentBSize, computedBSize);
 | |
|   }
 | |
| 
 | |
|   // Row-oriented case (cross axis is block axis), with auto BSize:
 | |
|   // Shrink-wrap our line(s), subject to our min-size / max-size
 | |
|   // constraints in that (block) axis.
 | |
|   return contentBSize;
 | |
| }
 | |
| 
 | |
| LogicalSize nsFlexContainerFrame::ComputeAvailableSizeForItems(
 | |
|     const ReflowInput& aReflowInput,
 | |
|     const mozilla::LogicalMargin& aBorderPadding) const {
 | |
|   const WritingMode wm = GetWritingMode();
 | |
|   nscoord availableBSize = aReflowInput.AvailableBSize();
 | |
| 
 | |
|   if (availableBSize != NS_UNCONSTRAINEDSIZE) {
 | |
|     // Available block-size is constrained. Subtract block-start border and
 | |
|     // padding from it.
 | |
|     availableBSize -= aBorderPadding.BStart(wm);
 | |
| 
 | |
|     if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
 | |
|         StyleBoxDecorationBreak::Clone) {
 | |
|       // We have box-decoration-break:clone. Subtract block-end border and
 | |
|       // padding from the available block-size as well.
 | |
|       availableBSize -= aBorderPadding.BEnd(wm);
 | |
|     }
 | |
| 
 | |
|     // Available block-size can became negative after subtracting block-axis
 | |
|     // border and padding. Per spec, to guarantee progress, fragmentainers are
 | |
|     // assumed to have a minimum block size of 1px regardless of their used
 | |
|     // size. https://drafts.csswg.org/css-break/#breaking-rules
 | |
|     availableBSize =
 | |
|         std::max(nsPresContext::CSSPixelsToAppUnits(1), availableBSize);
 | |
|   }
 | |
| 
 | |
|   return LogicalSize(wm, aReflowInput.ComputedISize(), availableBSize);
 | |
| }
 | |
| 
 | |
| void FlexLine::PositionItemsInMainAxis(
 | |
|     const StyleContentDistribution& aJustifyContent,
 | |
|     nscoord aContentBoxMainSize, const FlexboxAxisTracker& aAxisTracker) {
 | |
|   MainAxisPositionTracker mainAxisPosnTracker(
 | |
|       aAxisTracker, this, aJustifyContent, aContentBoxMainSize);
 | |
|   for (FlexItem& item : Items()) {
 | |
|     nscoord itemMainBorderBoxSize =
 | |
|         item.MainSize() + item.BorderPaddingSizeInMainAxis();
 | |
| 
 | |
|     // Resolve any main-axis 'auto' margins on aChild to an actual value.
 | |
|     mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(item);
 | |
| 
 | |
|     // Advance our position tracker to child's upper-left content-box corner,
 | |
|     // and use that as its position in the main axis.
 | |
|     mainAxisPosnTracker.EnterMargin(item.Margin());
 | |
|     mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize);
 | |
| 
 | |
|     item.SetMainPosition(mainAxisPosnTracker.Position());
 | |
| 
 | |
|     mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize);
 | |
|     mainAxisPosnTracker.ExitMargin(item.Margin());
 | |
|     mainAxisPosnTracker.TraversePackingSpace();
 | |
|     if (&item != &Items().LastElement()) {
 | |
|       mainAxisPosnTracker.TraverseGap(mMainGapSize);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Given the flex container's "flex-relative ascent" (i.e. distance from the
 | |
|  * flex container's content-box cross-start edge to its baseline), returns
 | |
|  * its actual physical ascent value (the distance from the *border-box* top
 | |
|  * edge to its baseline).
 | |
|  */
 | |
| static nscoord ComputePhysicalAscentFromFlexRelativeAscent(
 | |
|     nscoord aFlexRelativeAscent, nscoord aContentBoxCrossSize,
 | |
|     const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker) {
 | |
|   return aReflowInput.ComputedPhysicalBorderPadding().top +
 | |
|          PhysicalCoordFromFlexRelativeCoord(
 | |
|              aFlexRelativeAscent, aContentBoxCrossSize,
 | |
|              aAxisTracker.CrossAxisPhysicalStartSide());
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::SizeItemInCrossAxis(ReflowInput& aChildReflowInput,
 | |
|                                                FlexItem& aItem) {
 | |
|   // If cross axis is the item's inline axis, just use ISize from reflow input,
 | |
|   // and don't bother with a full reflow.
 | |
|   if (aItem.IsInlineAxisCrossAxis()) {
 | |
|     aItem.SetCrossSize(aChildReflowInput.ComputedISize());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   MOZ_ASSERT(!aItem.HadMeasuringReflow(),
 | |
|              "We shouldn't need more than one measuring reflow");
 | |
| 
 | |
|   if (aItem.AlignSelf()._0 == StyleAlignFlags::STRETCH) {
 | |
|     // This item's got "align-self: stretch", so we probably imposed a
 | |
|     // stretched computed cross-size on it during its previous
 | |
|     // reflow. We're not imposing that BSize for *this* "measuring" reflow, so
 | |
|     // we need to tell it to treat this reflow as a resize in its block axis
 | |
|     // (regardless of whether any of its ancestors are actually being resized).
 | |
|     // (Note: we know that the cross axis is the item's *block* axis -- if it
 | |
|     // weren't, then we would've taken the early-return above.)
 | |
|     aChildReflowInput.SetBResize(true);
 | |
|     // Not 100% sure this is needed, but be conservative for now:
 | |
|     aChildReflowInput.mFlags.mIsBResizeForPercentages = true;
 | |
|   }
 | |
| 
 | |
|   // Potentially reflow the item, and get the sizing info.
 | |
|   const CachedBAxisMeasurement& measurement =
 | |
|       MeasureBSizeForFlexItem(aItem, aChildReflowInput);
 | |
| 
 | |
|   // Save the sizing info that we learned from this reflow
 | |
|   // -----------------------------------------------------
 | |
| 
 | |
|   // Tentatively store the child's desired content-box cross-size.
 | |
|   aItem.SetCrossSize(measurement.BSize());
 | |
| }
 | |
| 
 | |
| void FlexLine::PositionItemsInCrossAxis(
 | |
|     nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker) {
 | |
|   SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker);
 | |
| 
 | |
|   for (FlexItem& item : Items()) {
 | |
|     // First, stretch the item's cross size (if appropriate), and resolve any
 | |
|     // auto margins in this axis.
 | |
|     item.ResolveStretchedCrossSize(mLineCrossSize);
 | |
|     lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, item);
 | |
| 
 | |
|     // Compute the cross-axis position of this item
 | |
|     nscoord itemCrossBorderBoxSize =
 | |
|         item.CrossSize() + item.BorderPaddingSizeInCrossAxis();
 | |
|     lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, item, aAxisTracker);
 | |
|     lineCrossAxisPosnTracker.EnterMargin(item.Margin());
 | |
|     lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize);
 | |
| 
 | |
|     item.SetCrossPosition(aLineStartPosition +
 | |
|                           lineCrossAxisPosnTracker.Position());
 | |
| 
 | |
|     // Back out to cross-axis edge of the line.
 | |
|     lineCrossAxisPosnTracker.ResetPosition();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::Reflow(nsPresContext* aPresContext,
 | |
|                                   ReflowOutput& aReflowOutput,
 | |
|                                   const ReflowInput& aReflowInput,
 | |
|                                   nsReflowStatus& aStatus) {
 | |
|   if (IsHiddenByContentVisibilityOfInFlowParentForLayout()) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   MarkInReflow();
 | |
|   DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame");
 | |
|   DISPLAY_REFLOW(aPresContext, this, aReflowInput, aReflowOutput, aStatus);
 | |
|   MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
 | |
|   MOZ_ASSERT(aPresContext == PresContext());
 | |
|   NS_WARNING_ASSERTION(
 | |
|       aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
 | |
|       "Unconstrained inline size; this should only result from huge sizes "
 | |
|       "(not intrinsic sizing w/ orthogonal flows)");
 | |
| 
 | |
|   FLEX_LOG("Reflow() for nsFlexContainerFrame %p", this);
 | |
| 
 | |
|   if (IsFrameTreeTooDeep(aReflowInput, aReflowOutput, aStatus)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   NormalizeChildLists();
 | |
| 
 | |
| #ifdef DEBUG
 | |
|   mDidPushItemsBitMayLie = false;
 | |
|   SanityCheckChildListsBeforeReflow();
 | |
| #endif  // DEBUG
 | |
| 
 | |
|   // We (and our children) can only depend on our ancestor's bsize if we have
 | |
|   // a percent-bsize, or if we're positioned and we have "block-start" and
 | |
|   // "block-end" set and have block-size:auto.  (There are actually other cases,
 | |
|   // too -- e.g. if our parent is itself a block-dir flex container and we're
 | |
|   // flexible -- but we'll let our ancestors handle those sorts of cases.)
 | |
|   //
 | |
|   // TODO(emilio): the !bsize.IsLengthPercentage() preserves behavior, but it's
 | |
|   // too conservative. min/max-content don't really depend on the container.
 | |
|   WritingMode wm = aReflowInput.GetWritingMode();
 | |
|   const nsStylePosition* stylePos = StylePosition();
 | |
|   const auto& bsize = stylePos->BSize(wm);
 | |
|   if (bsize.HasPercent() || (StyleDisplay()->IsAbsolutelyPositionedStyle() &&
 | |
|                              (bsize.IsAuto() || !bsize.IsLengthPercentage()) &&
 | |
|                              !stylePos->mOffset.GetBStart(wm).IsAuto() &&
 | |
|                              !stylePos->mOffset.GetBEnd(wm).IsAuto())) {
 | |
|     AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
 | |
|   }
 | |
| 
 | |
|   const FlexboxAxisTracker axisTracker(this);
 | |
| 
 | |
|   // Check to see if we need to create a computed info structure, to
 | |
|   // be filled out for use by devtools.
 | |
|   ComputedFlexContainerInfo* containerInfo = CreateOrClearFlexContainerInfo();
 | |
| 
 | |
|   FlexLayoutResult flr;
 | |
|   PerFragmentFlexData fragmentData;
 | |
|   const nsIFrame* prevInFlow = GetPrevInFlow();
 | |
|   if (!prevInFlow) {
 | |
|     const LogicalSize tentativeContentBoxSize = aReflowInput.ComputedSize();
 | |
|     const nscoord tentativeContentBoxMainSize =
 | |
|         axisTracker.MainComponent(tentativeContentBoxSize);
 | |
|     const nscoord tentativeContentBoxCrossSize =
 | |
|         axisTracker.CrossComponent(tentativeContentBoxSize);
 | |
| 
 | |
|     // Calculate gap sizes for main and cross axis. We only need them in
 | |
|     // DoFlexLayout in the first-in-flow, so no need to worry about consumed
 | |
|     // block-size.
 | |
|     const auto& mainGapStyle =
 | |
|         axisTracker.IsRowOriented() ? stylePos->mColumnGap : stylePos->mRowGap;
 | |
|     const auto& crossGapStyle =
 | |
|         axisTracker.IsRowOriented() ? stylePos->mRowGap : stylePos->mColumnGap;
 | |
|     const nscoord mainGapSize = nsLayoutUtils::ResolveGapToLength(
 | |
|         mainGapStyle, tentativeContentBoxMainSize);
 | |
|     const nscoord crossGapSize = nsLayoutUtils::ResolveGapToLength(
 | |
|         crossGapStyle, tentativeContentBoxCrossSize);
 | |
| 
 | |
|     // When fragmenting a flex container, we run the flex algorithm without
 | |
|     // regards to pagination in order to compute the flex container's desired
 | |
|     // content-box size. https://drafts.csswg.org/css-flexbox-1/#pagination-algo
 | |
|     //
 | |
|     // Note: For a multi-line column-oriented flex container, the sample
 | |
|     // algorithm suggests we wrap the flex line at the block-end edge of a
 | |
|     // column/page, but we do not implement it intentionally. This brings the
 | |
|     // layout result closer to the one as if there's no fragmentation.
 | |
|     AutoTArray<StrutInfo, 1> struts;
 | |
|     flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize,
 | |
|                        tentativeContentBoxCrossSize, axisTracker, mainGapSize,
 | |
|                        crossGapSize, struts, containerInfo);
 | |
| 
 | |
|     if (!struts.IsEmpty()) {
 | |
|       // We're restarting flex layout, with new knowledge of collapsed items.
 | |
|       flr.mLines.Clear();
 | |
|       flr.mPlaceholders.Clear();
 | |
|       flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize,
 | |
|                          tentativeContentBoxCrossSize, axisTracker, mainGapSize,
 | |
|                          crossGapSize, struts, containerInfo);
 | |
|     }
 | |
|   } else {
 | |
|     flr = GenerateFlexLayoutResult();
 | |
|     auto* fragmentDataProp =
 | |
|         prevInFlow->GetProperty(PerFragmentFlexData::Prop());
 | |
|     MOZ_ASSERT(fragmentDataProp,
 | |
|                "PerFragmentFlexData should be set in our prev-in-flow!");
 | |
|     fragmentData = *fragmentDataProp;
 | |
|   }
 | |
| 
 | |
|   LogicalSize contentBoxSize = axisTracker.LogicalSizeFromFlexRelativeSizes(
 | |
|       flr.mContentBoxMainSize, flr.mContentBoxCrossSize);
 | |
| 
 | |
|   const nscoord consumedBSize = CalcAndCacheConsumedBSize();
 | |
|   const nscoord effectiveContentBSize =
 | |
|       contentBoxSize.BSize(wm) - consumedBSize;
 | |
|   LogicalMargin borderPadding = aReflowInput.ComputedLogicalBorderPadding(wm);
 | |
|   if (MOZ_UNLIKELY(aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE)) {
 | |
|     // We assume we are the last fragment by using
 | |
|     // PreReflowBlockLevelLogicalSkipSides(), and skip block-end border and
 | |
|     // padding if needed.
 | |
|     borderPadding.ApplySkipSides(PreReflowBlockLevelLogicalSkipSides());
 | |
|   }
 | |
| 
 | |
|   // Determine this frame's tentative border-box size. This is used for logical
 | |
|   // to physical coordinate conversion when positioning children.
 | |
|   //
 | |
|   // Note that vertical-rl writing-mode is the only case where the block flow
 | |
|   // direction progresses in a negative physical direction, and therefore block
 | |
|   // direction coordinate conversion depends on knowing the width of the
 | |
|   // coordinate space in order to translate between the logical and physical
 | |
|   // origins. As a result, if our final border-box block-size is different from
 | |
|   // this tentative one, and we are in vertical-rl writing mode, we need to
 | |
|   // adjust our children's position after reflowing them.
 | |
|   const LogicalSize tentativeBorderBoxSize(
 | |
|       wm, contentBoxSize.ISize(wm) + borderPadding.IStartEnd(wm),
 | |
|       std::min(effectiveContentBSize + borderPadding.BStartEnd(wm),
 | |
|                aReflowInput.AvailableBSize()));
 | |
|   const nsSize containerSize = tentativeBorderBoxSize.GetPhysicalSize(wm);
 | |
| 
 | |
|   OverflowAreas ocBounds;
 | |
|   nsReflowStatus ocStatus;
 | |
|   if (prevInFlow) {
 | |
|     ReflowOverflowContainerChildren(
 | |
|         aPresContext, aReflowInput, ocBounds, ReflowChildFlags::Default,
 | |
|         ocStatus, MergeSortedFrameListsFor, Some(containerSize));
 | |
|   }
 | |
| 
 | |
|   const LogicalSize availableSizeForItems =
 | |
|       ComputeAvailableSizeForItems(aReflowInput, borderPadding);
 | |
|   const auto [maxBlockEndEdgeOfChildren, anyChildIncomplete] =
 | |
|       ReflowChildren(aReflowInput, containerSize, availableSizeForItems,
 | |
|                      borderPadding, axisTracker, flr, fragmentData);
 | |
| 
 | |
|   bool mayNeedNextInFlow = false;
 | |
|   if (aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE) {
 | |
|     // maxBlockEndEdgeOfChildren is relative to border-box, so we need to
 | |
|     // subtract block-start border and padding to make it relative to our
 | |
|     // content-box. Note that if there is a packing space in between the last
 | |
|     // flex item's block-end edge and the available space's block-end edge, we
 | |
|     // want to record the available size of item to consume part of the packing
 | |
|     // space.
 | |
|     fragmentData.mCumulativeContentBoxBSize +=
 | |
|         std::max(maxBlockEndEdgeOfChildren - borderPadding.BStart(wm),
 | |
|                  availableSizeForItems.BSize(wm));
 | |
| 
 | |
|     // mCumulativeBEndEdgeShift was updated in ReflowChildren(). If our
 | |
|     // block-size in unconstrained, use that to grow our block-size, subject to
 | |
|     // min/max constraints.
 | |
|     if (aReflowInput.ComputedBSize() == NS_UNCONSTRAINEDSIZE) {
 | |
|       contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(
 | |
|           contentBoxSize.BSize(wm) + fragmentData.mCumulativeBEndEdgeShift);
 | |
|     }
 | |
| 
 | |
|     // Check if we may need a next-in-flow. If so, we'll need to skip block-end
 | |
|     // border and padding.
 | |
|     mayNeedNextInFlow = contentBoxSize.BSize(wm) - consumedBSize >
 | |
|                         availableSizeForItems.BSize(wm);
 | |
|     if (mayNeedNextInFlow && aReflowInput.mStyleBorder->mBoxDecorationBreak ==
 | |
|                                  StyleBoxDecorationBreak::Slice) {
 | |
|       borderPadding.BEnd(wm) = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   PopulateReflowOutput(aReflowOutput, aReflowInput, aStatus, contentBoxSize,
 | |
|                        borderPadding, consumedBSize, mayNeedNextInFlow,
 | |
|                        maxBlockEndEdgeOfChildren, anyChildIncomplete,
 | |
|                        flr.mAscent, flr.mLines, axisTracker);
 | |
| 
 | |
|   if (wm.IsVerticalRL()) {
 | |
|     // If the final border-box block-size is different from the tentative one,
 | |
|     // adjust our children's position.
 | |
|     const nscoord deltaBCoord =
 | |
|         tentativeBorderBoxSize.BSize(wm) - aReflowOutput.Size(wm).BSize(wm);
 | |
|     if (deltaBCoord != 0) {
 | |
|       const LogicalPoint delta(wm, 0, deltaBCoord);
 | |
|       for (const FlexLine& line : flr.mLines) {
 | |
|         for (const FlexItem& item : line.Items()) {
 | |
|           item.Frame()->MovePositionBy(wm, delta);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Overflow area = union(my overflow area, children's overflow areas)
 | |
|   aReflowOutput.SetOverflowAreasToDesiredBounds();
 | |
|   UnionInFlowChildOverflow(aReflowOutput.mOverflowAreas);
 | |
| 
 | |
|   // Merge overflow container bounds and status.
 | |
|   aReflowOutput.mOverflowAreas.UnionWith(ocBounds);
 | |
|   aStatus.MergeCompletionStatusFrom(ocStatus);
 | |
| 
 | |
|   FinishReflowWithAbsoluteFrames(PresContext(), aReflowOutput, aReflowInput,
 | |
|                                  aStatus);
 | |
| 
 | |
|   // Finally update our line and item measurements in our containerInfo.
 | |
|   if (MOZ_UNLIKELY(containerInfo)) {
 | |
|     UpdateFlexLineAndItemInfo(*containerInfo, flr.mLines);
 | |
|   }
 | |
| 
 | |
|   // If we are the first-in-flow, we want to store data for our next-in-flows,
 | |
|   // or clear the existing data if it is not needed.
 | |
|   if (!prevInFlow) {
 | |
|     SharedFlexData* sharedData = GetProperty(SharedFlexData::Prop());
 | |
|     if (!aStatus.IsFullyComplete()) {
 | |
|       if (!sharedData) {
 | |
|         sharedData = new SharedFlexData;
 | |
|         SetProperty(SharedFlexData::Prop(), sharedData);
 | |
|       }
 | |
|       sharedData->Update(std::move(flr));
 | |
|     } else if (sharedData && !GetNextInFlow()) {
 | |
|       // We are fully-complete, so no next-in-flow is needed. However, if we
 | |
|       // report SetInlineLineBreakBeforeAndReset() in an incremental reflow, our
 | |
|       // next-in-flow might still exist. It can be reflowed again before us if
 | |
|       // it is an overflow container. Delete the existing data only if we don't
 | |
|       // have a next-in-flow.
 | |
|       RemoveProperty(SharedFlexData::Prop());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   PerFragmentFlexData* fragmentDataProp =
 | |
|       GetProperty(PerFragmentFlexData::Prop());
 | |
|   if (!aStatus.IsFullyComplete()) {
 | |
|     if (!fragmentDataProp) {
 | |
|       fragmentDataProp = new PerFragmentFlexData;
 | |
|       SetProperty(PerFragmentFlexData::Prop(), fragmentDataProp);
 | |
|     }
 | |
|     *fragmentDataProp = fragmentData;
 | |
|   } else if (fragmentDataProp && !GetNextInFlow()) {
 | |
|     // Similar to the condition to remove SharedFlexData, delete the
 | |
|     // existing data only if we don't have a next-in-flow.
 | |
|     RemoveProperty(PerFragmentFlexData::Prop());
 | |
|   }
 | |
| }
 | |
| 
 | |
| Maybe<nscoord> nsFlexContainerFrame::GetNaturalBaselineBOffset(
 | |
|     WritingMode aWM, BaselineSharingGroup aBaselineGroup,
 | |
|     BaselineExportContext) const {
 | |
|   if (StyleDisplay()->IsContainLayout() ||
 | |
|       HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
 | |
|     return Nothing{};
 | |
|   }
 | |
|   return Some(aBaselineGroup == BaselineSharingGroup::First
 | |
|                   ? mBaselineFromLastReflow
 | |
|                   : mLastBaselineFromLastReflow);
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::UnionInFlowChildOverflow(
 | |
|     OverflowAreas& aOverflowAreas) {
 | |
|   // The CSS Overflow spec [1] requires that a scrollable container's
 | |
|   // scrollable overflow should include the following areas.
 | |
|   //
 | |
|   // a) "the box's own content and padding areas": we treat the *content* as
 | |
|   // the scrolled inner frame's theoretical content-box that's intrinsically
 | |
|   // sized to the union of all the flex items' margin boxes, _without_
 | |
|   // relative positioning applied. The *padding areas* is just inflation on
 | |
|   // top of the theoretical content-box by the flex container's padding.
 | |
|   //
 | |
|   // b) "the margin areas of grid item and flex item boxes for which the box
 | |
|   // establishes a containing block": a) already includes the flex items'
 | |
|   // normal-positioned margin boxes into the scrollable overflow, but their
 | |
|   // relative-positioned margin boxes should also be included because relpos
 | |
|   // children are still flex items.
 | |
|   //
 | |
|   // [1] https://drafts.csswg.org/css-overflow-3/#scrollable.
 | |
|   const bool isScrolledContent =
 | |
|       Style()->GetPseudoType() == PseudoStyleType::scrolledContent;
 | |
|   bool anyScrolledContentItem = false;
 | |
|   // Union of normal-positioned margin boxes for all the items.
 | |
|   nsRect itemMarginBoxes;
 | |
|   // Union of relative-positioned margin boxes for the relpos items only.
 | |
|   nsRect relPosItemMarginBoxes;
 | |
|   const bool useMozBoxCollapseBehavior =
 | |
|       StyleVisibility()->UseLegacyCollapseBehavior();
 | |
|   for (nsIFrame* f : mFrames) {
 | |
|     if (useMozBoxCollapseBehavior && f->StyleVisibility()->IsCollapse()) {
 | |
|       continue;
 | |
|     }
 | |
|     ConsiderChildOverflow(aOverflowAreas, f);
 | |
|     if (!isScrolledContent) {
 | |
|       continue;
 | |
|     }
 | |
|     if (f->IsPlaceholderFrame()) {
 | |
|       continue;
 | |
|     }
 | |
|     anyScrolledContentItem = true;
 | |
|     if (MOZ_UNLIKELY(f->IsRelativelyOrStickyPositioned())) {
 | |
|       const nsRect marginRect = f->GetMarginRectRelativeToSelf();
 | |
|       itemMarginBoxes =
 | |
|           itemMarginBoxes.Union(marginRect + f->GetNormalPosition());
 | |
|       relPosItemMarginBoxes =
 | |
|           relPosItemMarginBoxes.Union(marginRect + f->GetPosition());
 | |
|     } else {
 | |
|       itemMarginBoxes = itemMarginBoxes.Union(f->GetMarginRect());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (anyScrolledContentItem) {
 | |
|     itemMarginBoxes.Inflate(GetUsedPadding());
 | |
|     aOverflowAreas.UnionAllWith(itemMarginBoxes);
 | |
|     aOverflowAreas.UnionAllWith(relPosItemMarginBoxes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::UnionChildOverflow(OverflowAreas& aOverflowAreas) {
 | |
|   UnionInFlowChildOverflow(aOverflowAreas);
 | |
|   // Union with child frames, skipping the principal list since we already
 | |
|   // handled those above.
 | |
|   nsLayoutUtils::UnionChildOverflow(this, aOverflowAreas,
 | |
|                                     {FrameChildListID::Principal});
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::CalculatePackingSpace(
 | |
|     uint32_t aNumThingsToPack, const StyleContentDistribution& aAlignVal,
 | |
|     nscoord* aFirstSubjectOffset, uint32_t* aNumPackingSpacesRemaining,
 | |
|     nscoord* aPackingSpaceRemaining) {
 | |
|   StyleAlignFlags val = aAlignVal.primary;
 | |
|   MOZ_ASSERT(val == StyleAlignFlags::SPACE_BETWEEN ||
 | |
|                  val == StyleAlignFlags::SPACE_AROUND ||
 | |
|                  val == StyleAlignFlags::SPACE_EVENLY,
 | |
|              "Unexpected alignment value");
 | |
| 
 | |
|   MOZ_ASSERT(*aPackingSpaceRemaining >= 0,
 | |
|              "Should not be called with negative packing space");
 | |
| 
 | |
|   // Note: In the aNumThingsToPack==1 case, the fallback behavior for
 | |
|   // 'space-between' depends on precise information about the axes that we
 | |
|   // don't have here. So, for that case, we just depend on the caller to
 | |
|   // explicitly convert 'space-{between,around,evenly}' keywords to the
 | |
|   // appropriate fallback alignment and skip this function.
 | |
|   MOZ_ASSERT(aNumThingsToPack > 1,
 | |
|              "Should not be called unless there's more than 1 thing to pack");
 | |
| 
 | |
|   // Packing spaces between items:
 | |
|   *aNumPackingSpacesRemaining = aNumThingsToPack - 1;
 | |
| 
 | |
|   if (val == StyleAlignFlags::SPACE_BETWEEN) {
 | |
|     // No need to reserve space at beginning/end, so we're done.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We need to add 1 or 2 packing spaces, split between beginning/end, for
 | |
|   // space-around / space-evenly:
 | |
|   size_t numPackingSpacesForEdges =
 | |
|       val == StyleAlignFlags::SPACE_AROUND ? 1 : 2;
 | |
| 
 | |
|   // How big will each "full" packing space be:
 | |
|   nscoord packingSpaceSize =
 | |
|       *aPackingSpaceRemaining /
 | |
|       (*aNumPackingSpacesRemaining + numPackingSpacesForEdges);
 | |
|   // How much packing-space are we allocating to the edges:
 | |
|   nscoord totalEdgePackingSpace = numPackingSpacesForEdges * packingSpaceSize;
 | |
| 
 | |
|   // Use half of that edge packing space right now:
 | |
|   *aFirstSubjectOffset += totalEdgePackingSpace / 2;
 | |
|   // ...but we need to subtract all of it right away, so that we won't
 | |
|   // hand out any of it to intermediate packing spaces.
 | |
|   *aPackingSpaceRemaining -= totalEdgePackingSpace;
 | |
| }
 | |
| 
 | |
| ComputedFlexContainerInfo*
 | |
| nsFlexContainerFrame::CreateOrClearFlexContainerInfo() {
 | |
|   if (!ShouldGenerateComputedInfo()) {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // The flag that sets ShouldGenerateComputedInfo() will never be cleared.
 | |
|   // That's acceptable because it's only set in a Chrome API invoked by
 | |
|   // devtools, and won't impact normal browsing.
 | |
| 
 | |
|   // Re-use the ComputedFlexContainerInfo, if it exists.
 | |
|   ComputedFlexContainerInfo* info = GetProperty(FlexContainerInfo());
 | |
|   if (info) {
 | |
|     // We can reuse, as long as we clear out old data.
 | |
|     info->mLines.Clear();
 | |
|   } else {
 | |
|     info = new ComputedFlexContainerInfo();
 | |
|     SetProperty(FlexContainerInfo(), info);
 | |
|   }
 | |
| 
 | |
|   return info;
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::CreateFlexLineAndFlexItemInfo(
 | |
|     ComputedFlexContainerInfo& aContainerInfo,
 | |
|     const nsTArray<FlexLine>& aLines) {
 | |
|   for (const FlexLine& line : aLines) {
 | |
|     ComputedFlexLineInfo* lineInfo = aContainerInfo.mLines.AppendElement();
 | |
|     // Most of the remaining lineInfo properties will be filled out in
 | |
|     // UpdateFlexLineAndItemInfo (some will be provided by other functions),
 | |
|     // when we have real values. But we still add all the items here, so
 | |
|     // we can capture computed data for each item as we proceed.
 | |
|     for (const FlexItem& item : line.Items()) {
 | |
|       nsIFrame* frame = item.Frame();
 | |
| 
 | |
|       // The frame may be for an element, or it may be for an
 | |
|       // anonymous flex item, e.g. wrapping one or more text nodes.
 | |
|       // DevTools wants the content node for the actual child in
 | |
|       // the DOM tree, so we descend through anonymous boxes.
 | |
|       nsIFrame* targetFrame = GetFirstNonAnonBoxInSubtree(frame);
 | |
|       nsIContent* content = targetFrame->GetContent();
 | |
| 
 | |
|       // Skip over content that is only whitespace, which might
 | |
|       // have been broken off from a text node which is our real
 | |
|       // target.
 | |
|       while (content && content->TextIsOnlyWhitespace()) {
 | |
|         // If content is only whitespace, try the frame sibling.
 | |
|         targetFrame = targetFrame->GetNextSibling();
 | |
|         if (targetFrame) {
 | |
|           content = targetFrame->GetContent();
 | |
|         } else {
 | |
|           content = nullptr;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       ComputedFlexItemInfo* itemInfo = lineInfo->mItems.AppendElement();
 | |
| 
 | |
|       itemInfo->mNode = content;
 | |
| 
 | |
|       // itemInfo->mMainBaseSize and mMainDeltaSize will be filled out
 | |
|       // in ResolveFlexibleLengths(). Other measurements will be captured in
 | |
|       // UpdateFlexLineAndItemInfo.
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::ComputeFlexDirections(
 | |
|     ComputedFlexContainerInfo& aContainerInfo,
 | |
|     const FlexboxAxisTracker& aAxisTracker) {
 | |
|   auto ConvertPhysicalStartSideToFlexPhysicalDirection =
 | |
|       [](mozilla::Side aStartSide) {
 | |
|         switch (aStartSide) {
 | |
|           case eSideLeft:
 | |
|             return dom::FlexPhysicalDirection::Horizontal_lr;
 | |
|           case eSideRight:
 | |
|             return dom::FlexPhysicalDirection::Horizontal_rl;
 | |
|           case eSideTop:
 | |
|             return dom::FlexPhysicalDirection::Vertical_tb;
 | |
|           case eSideBottom:
 | |
|             return dom::FlexPhysicalDirection::Vertical_bt;
 | |
|         }
 | |
| 
 | |
|         MOZ_ASSERT_UNREACHABLE("We should handle all sides!");
 | |
|         return dom::FlexPhysicalDirection::Horizontal_lr;
 | |
|       };
 | |
| 
 | |
|   aContainerInfo.mMainAxisDirection =
 | |
|       ConvertPhysicalStartSideToFlexPhysicalDirection(
 | |
|           aAxisTracker.MainAxisPhysicalStartSide());
 | |
|   aContainerInfo.mCrossAxisDirection =
 | |
|       ConvertPhysicalStartSideToFlexPhysicalDirection(
 | |
|           aAxisTracker.CrossAxisPhysicalStartSide());
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::UpdateFlexLineAndItemInfo(
 | |
|     ComputedFlexContainerInfo& aContainerInfo,
 | |
|     const nsTArray<FlexLine>& aLines) {
 | |
|   uint32_t lineIndex = 0;
 | |
|   for (const FlexLine& line : aLines) {
 | |
|     ComputedFlexLineInfo& lineInfo = aContainerInfo.mLines[lineIndex];
 | |
| 
 | |
|     lineInfo.mCrossSize = line.LineCrossSize();
 | |
|     lineInfo.mFirstBaselineOffset = line.FirstBaselineOffset();
 | |
|     lineInfo.mLastBaselineOffset = line.LastBaselineOffset();
 | |
| 
 | |
|     uint32_t itemIndex = 0;
 | |
|     for (const FlexItem& item : line.Items()) {
 | |
|       ComputedFlexItemInfo& itemInfo = lineInfo.mItems[itemIndex];
 | |
|       itemInfo.mFrameRect = item.Frame()->GetRect();
 | |
|       itemInfo.mMainMinSize = item.MainMinSize();
 | |
|       itemInfo.mMainMaxSize = item.MainMaxSize();
 | |
|       itemInfo.mCrossMinSize = item.CrossMinSize();
 | |
|       itemInfo.mCrossMaxSize = item.CrossMaxSize();
 | |
|       itemInfo.mClampState =
 | |
|           item.WasMinClamped()
 | |
|               ? mozilla::dom::FlexItemClampState::Clamped_to_min
 | |
|               : (item.WasMaxClamped()
 | |
|                      ? mozilla::dom::FlexItemClampState::Clamped_to_max
 | |
|                      : mozilla::dom::FlexItemClampState::Unclamped);
 | |
|       ++itemIndex;
 | |
|     }
 | |
|     ++lineIndex;
 | |
|   }
 | |
| }
 | |
| 
 | |
| nsFlexContainerFrame* nsFlexContainerFrame::GetFlexFrameWithComputedInfo(
 | |
|     nsIFrame* aFrame) {
 | |
|   // Prepare a lambda function that we may need to call multiple times.
 | |
|   auto GetFlexContainerFrame = [](nsIFrame* aFrame) {
 | |
|     // Return the aFrame's content insertion frame, iff it is
 | |
|     // a flex container frame.
 | |
|     nsFlexContainerFrame* flexFrame = nullptr;
 | |
| 
 | |
|     if (aFrame) {
 | |
|       nsIFrame* inner = aFrame;
 | |
|       if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) {
 | |
|         inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner();
 | |
|       }
 | |
|       // Since "Get" methods like GetInner and GetContentInsertionFrame can
 | |
|       // return null, we check the return values before dereferencing. Our
 | |
|       // calling pattern makes this unlikely, but we're being careful.
 | |
|       nsIFrame* insertionFrame =
 | |
|           inner ? inner->GetContentInsertionFrame() : nullptr;
 | |
|       nsIFrame* possibleFlexFrame = insertionFrame ? insertionFrame : aFrame;
 | |
|       flexFrame = possibleFlexFrame->IsFlexContainerFrame()
 | |
|                       ? static_cast<nsFlexContainerFrame*>(possibleFlexFrame)
 | |
|                       : nullptr;
 | |
|     }
 | |
|     return flexFrame;
 | |
|   };
 | |
| 
 | |
|   nsFlexContainerFrame* flexFrame = GetFlexContainerFrame(aFrame);
 | |
|   if (flexFrame) {
 | |
|     // Generate the FlexContainerInfo data, if it's not already there.
 | |
|     bool reflowNeeded = !flexFrame->HasProperty(FlexContainerInfo());
 | |
| 
 | |
|     if (reflowNeeded) {
 | |
|       // Trigger a reflow that generates additional flex property data.
 | |
|       // Hold onto aFrame while we do this, in case reflow destroys it.
 | |
|       AutoWeakFrame weakFrameRef(aFrame);
 | |
| 
 | |
|       RefPtr<mozilla::PresShell> presShell = flexFrame->PresShell();
 | |
|       flexFrame->SetShouldGenerateComputedInfo(true);
 | |
|       presShell->FrameNeedsReflow(flexFrame, IntrinsicDirty::None,
 | |
|                                   NS_FRAME_IS_DIRTY);
 | |
|       presShell->FlushPendingNotifications(FlushType::Layout);
 | |
| 
 | |
|       // Since the reflow may have side effects, get the flex frame
 | |
|       // again. But if the weakFrameRef is no longer valid, then we
 | |
|       // must bail out.
 | |
|       if (!weakFrameRef.IsAlive()) {
 | |
|         return nullptr;
 | |
|       }
 | |
| 
 | |
|       flexFrame = GetFlexContainerFrame(weakFrameRef.GetFrame());
 | |
| 
 | |
|       NS_WARNING_ASSERTION(
 | |
|           !flexFrame || flexFrame->HasProperty(FlexContainerInfo()),
 | |
|           "The state bit should've made our forced-reflow "
 | |
|           "generate a FlexContainerInfo object");
 | |
|     }
 | |
|   }
 | |
|   return flexFrame;
 | |
| }
 | |
| 
 | |
| /* static */
 | |
| bool nsFlexContainerFrame::IsItemInlineAxisMainAxis(nsIFrame* aFrame) {
 | |
|   MOZ_ASSERT(aFrame && aFrame->IsFlexItem(), "expecting arg to be a flex item");
 | |
|   const WritingMode flexItemWM = aFrame->GetWritingMode();
 | |
|   const nsIFrame* flexContainer = aFrame->GetParent();
 | |
| 
 | |
|   if (IsLegacyBox(flexContainer)) {
 | |
|     // For legacy boxes, the main axis is determined by "box-orient", and we can
 | |
|     // just directly check if that's vertical, and compare that to whether the
 | |
|     // item's WM is also vertical:
 | |
|     bool boxOrientIsVertical =
 | |
|         flexContainer->StyleXUL()->mBoxOrient == StyleBoxOrient::Vertical;
 | |
|     return flexItemWM.IsVertical() == boxOrientIsVertical;
 | |
|   }
 | |
| 
 | |
|   // For modern CSS flexbox, we get our return value by asking two questions
 | |
|   // and comparing their answers.
 | |
|   // Question 1: does aFrame have the same inline axis as its flex container?
 | |
|   bool itemInlineAxisIsParallelToParent =
 | |
|       !flexItemWM.IsOrthogonalTo(flexContainer->GetWritingMode());
 | |
| 
 | |
|   // Question 2: is aFrame's flex container row-oriented? (This tells us
 | |
|   // whether the flex container's main axis is its inline axis.)
 | |
|   auto flexDirection = flexContainer->StylePosition()->mFlexDirection;
 | |
|   bool flexContainerIsRowOriented =
 | |
|       flexDirection == StyleFlexDirection::Row ||
 | |
|       flexDirection == StyleFlexDirection::RowReverse;
 | |
| 
 | |
|   // aFrame's inline axis is its flex container's main axis IFF the above
 | |
|   // questions have the same answer.
 | |
|   return flexContainerIsRowOriented == itemInlineAxisIsParallelToParent;
 | |
| }
 | |
| 
 | |
| /* static */
 | |
| bool nsFlexContainerFrame::IsUsedFlexBasisContent(
 | |
|     const StyleFlexBasis& aFlexBasis, const StyleSize& aMainSize) {
 | |
|   // We have a used flex-basis of 'content' if flex-basis explicitly has that
 | |
|   // value, OR if flex-basis is 'auto' (deferring to the main-size property)
 | |
|   // and the main-size property is also 'auto'.
 | |
|   // See https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto
 | |
|   if (aFlexBasis.IsContent()) {
 | |
|     return true;
 | |
|   }
 | |
|   return aFlexBasis.IsAuto() && aMainSize.IsAuto();
 | |
| }
 | |
| 
 | |
| nsFlexContainerFrame::FlexLayoutResult nsFlexContainerFrame::DoFlexLayout(
 | |
|     const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize,
 | |
|     const nscoord aTentativeContentBoxCrossSize,
 | |
|     const FlexboxAxisTracker& aAxisTracker, nscoord aMainGapSize,
 | |
|     nscoord aCrossGapSize, nsTArray<StrutInfo>& aStruts,
 | |
|     ComputedFlexContainerInfo* const aContainerInfo) {
 | |
|   FlexLayoutResult flr;
 | |
| 
 | |
|   GenerateFlexLines(aReflowInput, aTentativeContentBoxMainSize,
 | |
|                     aTentativeContentBoxCrossSize, aStruts, aAxisTracker,
 | |
|                     aMainGapSize, flr.mPlaceholders, flr.mLines,
 | |
|                     flr.mHasCollapsedItems);
 | |
| 
 | |
|   if ((flr.mLines.Length() == 1 && flr.mLines[0].IsEmpty()) ||
 | |
|       aReflowInput.mStyleDisplay->IsContainLayout()) {
 | |
|     // We have no flex items, or we're layout-contained. So, we have no
 | |
|     // baseline, and our parent should synthesize a baseline if needed.
 | |
|     AddStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
 | |
|   } else {
 | |
|     RemoveStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
 | |
|   }
 | |
| 
 | |
|   // Construct our computed info if we've been asked to do so. This is
 | |
|   // necessary to do now so we can capture some computed values for
 | |
|   // FlexItems during layout that would not otherwise be saved (like
 | |
|   // size adjustments). We'll later fix up the line properties,
 | |
|   // because the correct values aren't available yet.
 | |
|   if (aContainerInfo) {
 | |
|     MOZ_ASSERT(ShouldGenerateComputedInfo(),
 | |
|                "We should only have the info struct if "
 | |
|                "ShouldGenerateComputedInfo() is true!");
 | |
| 
 | |
|     if (!aStruts.IsEmpty()) {
 | |
|       // We restarted DoFlexLayout, and may have stale mLines to clear:
 | |
|       aContainerInfo->mLines.Clear();
 | |
|     } else {
 | |
|       MOZ_ASSERT(aContainerInfo->mLines.IsEmpty(), "Shouldn't have lines yet.");
 | |
|     }
 | |
| 
 | |
|     CreateFlexLineAndFlexItemInfo(*aContainerInfo, flr.mLines);
 | |
|     ComputeFlexDirections(*aContainerInfo, aAxisTracker);
 | |
|   }
 | |
| 
 | |
|   flr.mContentBoxMainSize = ComputeMainSize(
 | |
|       aReflowInput, aAxisTracker, aTentativeContentBoxMainSize, flr.mLines);
 | |
| 
 | |
|   uint32_t lineIndex = 0;
 | |
|   for (FlexLine& line : flr.mLines) {
 | |
|     ComputedFlexLineInfo* lineInfo =
 | |
|         aContainerInfo ? &aContainerInfo->mLines[lineIndex] : nullptr;
 | |
|     line.ResolveFlexibleLengths(flr.mContentBoxMainSize, lineInfo);
 | |
|     ++lineIndex;
 | |
|   }
 | |
| 
 | |
|   // Cross Size Determination - Flexbox spec section 9.4
 | |
|   // https://drafts.csswg.org/css-flexbox-1/#cross-sizing
 | |
|   // ===================================================
 | |
|   // Calculate the hypothetical cross size of each item:
 | |
| 
 | |
|   // 'sumLineCrossSizes' includes the size of all gaps between lines. We
 | |
|   // initialize it with the sum of all the gaps, and add each line's cross size
 | |
|   // at the end of the following for-loop.
 | |
|   nscoord sumLineCrossSizes = aCrossGapSize * (flr.mLines.Length() - 1);
 | |
|   for (FlexLine& line : flr.mLines) {
 | |
|     for (FlexItem& item : line.Items()) {
 | |
|       // The item may already have the correct cross-size; only recalculate
 | |
|       // if the item's main size resolution (flexing) could have influenced it:
 | |
|       if (item.CanMainSizeInfluenceCrossSize()) {
 | |
|         StyleSizeOverrides sizeOverrides;
 | |
|         if (item.IsInlineAxisMainAxis()) {
 | |
|           sizeOverrides.mStyleISize.emplace(item.StyleMainSize());
 | |
|         } else {
 | |
|           sizeOverrides.mStyleBSize.emplace(item.StyleMainSize());
 | |
|         }
 | |
|         FLEX_LOG("Sizing flex item %p in cross axis", item.Frame());
 | |
|         FLEX_LOGV(" Main size override: %d", item.MainSize());
 | |
| 
 | |
|         const WritingMode wm = item.GetWritingMode();
 | |
|         LogicalSize availSize = aReflowInput.ComputedSize(wm);
 | |
|         availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
 | |
|         ReflowInput childReflowInput(PresContext(), aReflowInput, item.Frame(),
 | |
|                                      availSize, Nothing(), {}, sizeOverrides);
 | |
|         if (item.IsBlockAxisMainAxis() && item.TreatBSizeAsIndefinite()) {
 | |
|           childReflowInput.mFlags.mTreatBSizeAsIndefinite = true;
 | |
|         }
 | |
| 
 | |
|         SizeItemInCrossAxis(childReflowInput, item);
 | |
|       }
 | |
|     }
 | |
|     // Now that we've finished with this line's items, size the line itself:
 | |
|     line.ComputeCrossSizeAndBaseline(aAxisTracker);
 | |
|     sumLineCrossSizes += line.LineCrossSize();
 | |
|   }
 | |
| 
 | |
|   bool isCrossSizeDefinite;
 | |
|   flr.mContentBoxCrossSize = ComputeCrossSize(
 | |
|       aReflowInput, aAxisTracker, aTentativeContentBoxCrossSize,
 | |
|       sumLineCrossSizes, &isCrossSizeDefinite);
 | |
| 
 | |
|   // Set up state for cross-axis alignment, at a high level (outside the
 | |
|   // scope of a particular flex line)
 | |
|   CrossAxisPositionTracker crossAxisPosnTracker(
 | |
|       flr.mLines, aReflowInput, flr.mContentBoxCrossSize, isCrossSizeDefinite,
 | |
|       aAxisTracker, aCrossGapSize);
 | |
| 
 | |
|   // Now that we know the cross size of each line (including
 | |
|   // "align-content:stretch" adjustments, from the CrossAxisPositionTracker
 | |
|   // constructor), we can create struts for any flex items with
 | |
|   // "visibility: collapse" (and restart flex layout).
 | |
|   // Make sure to only do this if we had no struts.
 | |
|   if (aStruts.IsEmpty() && flr.mHasCollapsedItems &&
 | |
|       !StyleVisibility()->UseLegacyCollapseBehavior()) {
 | |
|     BuildStrutInfoFromCollapsedItems(flr.mLines, aStruts);
 | |
|     if (!aStruts.IsEmpty()) {
 | |
|       // Restart flex layout, using our struts.
 | |
|       return flr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the container should derive its baseline from the first FlexLine,
 | |
|   // do that here (while crossAxisPosnTracker is conveniently pointing
 | |
|   // at the cross-start edge of that line, which the line's baseline offset is
 | |
|   // measured from):
 | |
|   if (nscoord firstLineBaselineOffset = flr.mLines[0].FirstBaselineOffset();
 | |
|       firstLineBaselineOffset == nscoord_MIN) {
 | |
|     // No baseline-aligned items in line. Use sentinel value to prompt us to
 | |
|     // get baseline from the first FlexItem after we've reflowed it.
 | |
|     flr.mAscent = nscoord_MIN;
 | |
|   } else {
 | |
|     flr.mAscent = ComputePhysicalAscentFromFlexRelativeAscent(
 | |
|         crossAxisPosnTracker.Position() + firstLineBaselineOffset,
 | |
|         flr.mContentBoxCrossSize, aReflowInput, aAxisTracker);
 | |
|   }
 | |
| 
 | |
|   const auto justifyContent =
 | |
|       IsLegacyBox(aReflowInput.mFrame)
 | |
|           ? ConvertLegacyStyleToJustifyContent(StyleXUL())
 | |
|           : aReflowInput.mStylePosition->mJustifyContent;
 | |
| 
 | |
|   lineIndex = 0;
 | |
|   for (FlexLine& line : flr.mLines) {
 | |
|     // Main-Axis Alignment - Flexbox spec section 9.5
 | |
|     // https://drafts.csswg.org/css-flexbox-1/#main-alignment
 | |
|     // ==============================================
 | |
|     line.PositionItemsInMainAxis(justifyContent, flr.mContentBoxMainSize,
 | |
|                                  aAxisTracker);
 | |
| 
 | |
|     // See if we need to extract some computed info for this line.
 | |
|     if (MOZ_UNLIKELY(aContainerInfo)) {
 | |
|       ComputedFlexLineInfo& lineInfo = aContainerInfo->mLines[lineIndex];
 | |
|       lineInfo.mCrossStart = crossAxisPosnTracker.Position();
 | |
|     }
 | |
| 
 | |
|     // Cross-Axis Alignment - Flexbox spec section 9.6
 | |
|     // https://drafts.csswg.org/css-flexbox-1/#cross-alignment
 | |
|     // ===============================================
 | |
|     line.PositionItemsInCrossAxis(crossAxisPosnTracker.Position(),
 | |
|                                   aAxisTracker);
 | |
|     crossAxisPosnTracker.TraverseLine(line);
 | |
|     crossAxisPosnTracker.TraversePackingSpace();
 | |
| 
 | |
|     if (&line != &flr.mLines.LastElement()) {
 | |
|       crossAxisPosnTracker.TraverseGap();
 | |
|     }
 | |
|     ++lineIndex;
 | |
|   }
 | |
| 
 | |
|   return flr;
 | |
| }
 | |
| 
 | |
| // This data structure is used in fragmentation, storing the block coordinate
 | |
| // metrics when reflowing 1) the BStart-most line in each fragment of a
 | |
| // row-oriented flex container or, 2) the BStart-most item in each fragment of a
 | |
| // single-line column-oriented flex container.
 | |
| //
 | |
| // When we lay out a row-oriented flex container fragment, its first line might
 | |
| // contain one or more monolithic items that were pushed from the previous
 | |
| // fragment specifically to avoid having those monolithic items overlap the
 | |
| // page/column break. The situation is similar for single-row column-oriented
 | |
| // flex container fragments, but a bit simpler; only their first item might have
 | |
| // been pushed to avoid overlapping a page/column break.
 | |
| //
 | |
| // We'll have to place any such pushed items at the block-start edge of the
 | |
| // current fragment's content-box, which is as close as we can get them to their
 | |
| // theoretical/unfragmented position (without slicing them); but it does
 | |
| // represent a shift away from their theoretical/unfragmented position (which
 | |
| // was somewhere in the previous fragment).
 | |
| //
 | |
| // When that happens, we need to record the maximum such shift that we had to
 | |
| // perform so that we can apply the same block-endwards shift to "downstream"
 | |
| // items (items towards the block-end edge) that we could otherwise collide
 | |
| // with. We also potentially apply the same shift when computing the block-end
 | |
| // edge of this flex container fragment's content-box so that we don't
 | |
| // inadvertently shift the last item (or line-of-items) to overlap the flex
 | |
| // container's border, or content beyond the flex container.
 | |
| //
 | |
| // We use this structure to keep track of several metrics, in service of this
 | |
| // goal. This structure is also necessary to adjust PerFragmentFlexData at the
 | |
| // end of ReflowChildren().
 | |
| //
 | |
| // Note: "First" in the struct name means "BStart-most", not the order in the
 | |
| // flex line array or flex item array.
 | |
| //
 | |
| // TODO: Currently, we assume (for proper fragmentation) that the main-axis (or
 | |
| // cross-axis) is in the same direction as the corresponding writing-mode
 | |
| // inline-axis (or block-axis). Bug 1812485 will support pushing tall flex items
 | |
| // for flex containers with a "reversed" main-axis (or cross-axis).
 | |
| struct FirstLineOrFirstItemBAxisMetrics final {
 | |
|   // This value stores the block-end edge shift for 1) the BStart-most line in
 | |
|   // the current fragment of a row-oriented flex container, or 2) the
 | |
|   // BStart-most item in the current fragment of a single-line column-oriented
 | |
|   // flex container. This number is non-negative.
 | |
|   //
 | |
|   // This value may become positive when any item is a first-in-flow and also
 | |
|   // satisfies either the above condition 1) or 2), since that's a hint that it
 | |
|   // could be monolithic or have a monolithic first descendant, and therefore an
 | |
|   // item that might incur a page/column-break-dodging position-shift that this
 | |
|   // variable needs to track.
 | |
|   nscoord mBEndEdgeShift = 0;
 | |
| 
 | |
|   // The first and second value in the pair store the max block-end edges for
 | |
|   // items before and after applying the per-item position-shift in the block
 | |
|   // axis. We only record the block-end edges for items with first-in-flow
 | |
|   // frames placed in the current flex container fragment. This is used only by
 | |
|   // row-oriented flex containers.
 | |
|   Maybe<std::pair<nscoord, nscoord>> mMaxBEndEdge;
 | |
| };
 | |
| 
 | |
| std::tuple<nscoord, bool> nsFlexContainerFrame::ReflowChildren(
 | |
|     const ReflowInput& aReflowInput, const nsSize& aContainerSize,
 | |
|     const LogicalSize& aAvailableSizeForItems,
 | |
|     const LogicalMargin& aBorderPadding, const FlexboxAxisTracker& aAxisTracker,
 | |
|     FlexLayoutResult& aFlr, PerFragmentFlexData& aFragmentData) {
 | |
|   if (HidesContentForLayout()) {
 | |
|     return {0, false};
 | |
|   }
 | |
| 
 | |
|   // Before giving each child a final reflow, calculate the origin of the
 | |
|   // flex container's content box (with respect to its border-box), so that
 | |
|   // we can compute our flex item's final positions.
 | |
|   WritingMode flexWM = aReflowInput.GetWritingMode();
 | |
|   const LogicalPoint containerContentBoxOrigin(
 | |
|       flexWM, aBorderPadding.IStart(flexWM), aBorderPadding.BStart(flexWM));
 | |
| 
 | |
|   // If the flex container has no baseline-aligned items, it will use the first
 | |
|   // item to determine its baseline:
 | |
|   const FlexItem* firstItem =
 | |
|       aFlr.mLines[0].IsEmpty() ? nullptr : &aFlr.mLines[0].FirstItem();
 | |
| 
 | |
|   // The block-end of children is relative to the flex container's border-box.
 | |
|   nscoord maxBlockEndEdgeOfChildren = containerContentBoxOrigin.B(flexWM);
 | |
| 
 | |
|   FirstLineOrFirstItemBAxisMetrics bAxisMetrics;
 | |
|   FrameHashtable pushedItems;
 | |
|   FrameHashtable incompleteItems;
 | |
|   FrameHashtable overflowIncompleteItems;
 | |
| 
 | |
|   const bool isSingleLine =
 | |
|       StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
 | |
| 
 | |
|   // FINAL REFLOW: Give each child frame another chance to reflow, now that
 | |
|   // we know its final size and position.
 | |
|   for (const FlexLine& line : aFlr.mLines) {
 | |
|     const bool isInFirstLine = &line == &aFlr.mLines[0];
 | |
| 
 | |
|     for (const FlexItem& item : line.Items()) {
 | |
|       LogicalPoint framePos = aAxisTracker.LogicalPointFromFlexRelativePoint(
 | |
|           item.MainPosition(), item.CrossPosition(), aFlr.mContentBoxMainSize,
 | |
|           aFlr.mContentBoxCrossSize);
 | |
|       // This variable records the item's block-end edge before we give it a
 | |
|       // per-item-position-shift, if the item is a first-in-flow in the first
 | |
|       // line of a row-oriented flex container fragment. It is used to determine
 | |
|       // the block-end edge shift for the first line at the end of the outer
 | |
|       // loop.
 | |
|       Maybe<nscoord> frameBPosBeforePerItemShift;
 | |
| 
 | |
|       if (item.Frame()->GetPrevInFlow()) {
 | |
|         // The item is a continuation. Lay it out at the beginning of the
 | |
|         // available space.
 | |
|         framePos.B(flexWM) = 0;
 | |
|       } else if (GetPrevInFlow()) {
 | |
|         // The item we're placing is not a continuation; though we're placing it
 | |
|         // into a flex container fragment which *is* a continuation. To compute
 | |
|         // the item's correct position in this fragment, we adjust the item's
 | |
|         // theoretical/unfragmented block-direction position by subtracting the
 | |
|         // cumulative content-box block-size for all the previous fragments and
 | |
|         // adding the cumulative block-end edge shift.
 | |
|         //
 | |
|         // Note that the item's position in this fragment has not been finalized
 | |
|         // yet. At this point, we've adjusted the item's
 | |
|         // theoretical/unfragmented position to be relative to the block-end
 | |
|         // edge of the previous container fragment's content-box. Later, we'll
 | |
|         // compute per-item position-shift to finalize its position.
 | |
|         framePos.B(flexWM) -= aFragmentData.mCumulativeContentBoxBSize;
 | |
|         framePos.B(flexWM) += aFragmentData.mCumulativeBEndEdgeShift;
 | |
| 
 | |
|         // This helper gets the per-item position-shift in the block-axis.
 | |
|         auto GetPerItemPositionShiftToBEnd = [&]() {
 | |
|           if (framePos.B(flexWM) >= 0) {
 | |
|             // The item final position might be in current flex container
 | |
|             // fragment or in any of the later fragments. No adjustment needed.
 | |
|             return 0;
 | |
|           }
 | |
| 
 | |
|           // The item's block position is negative, but we want to place it at
 | |
|           // the content-box block-start edge of this container fragment. To
 | |
|           // achieve this, return a negated (positive) value to make the final
 | |
|           // block position zero.
 | |
|           //
 | |
|           // This scenario occurs when fragmenting a row-oriented flex container
 | |
|           // where this item is pushed to this container fragment.
 | |
|           return -framePos.B(flexWM);
 | |
|         };
 | |
| 
 | |
|         if (aAxisTracker.IsRowOriented()) {
 | |
|           if (isInFirstLine) {
 | |
|             frameBPosBeforePerItemShift.emplace(framePos.B(flexWM));
 | |
|             framePos.B(flexWM) += GetPerItemPositionShiftToBEnd();
 | |
|           } else {
 | |
|             // We've computed how far the block-end edge of the first line had
 | |
|             // to shift at the end of outer loop. Here, we just shift all items
 | |
|             // in rest of the lines by the same amount.
 | |
|             framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift;
 | |
|           }
 | |
|         } else {
 | |
|           MOZ_ASSERT(aAxisTracker.IsColumnOriented());
 | |
|           if (isSingleLine) {
 | |
|             if (&item == firstItem) {
 | |
|               bAxisMetrics.mBEndEdgeShift = GetPerItemPositionShiftToBEnd();
 | |
|             }
 | |
|             framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift;
 | |
|           } else {
 | |
|             // Bug 1806717: We need a more sophisticated solution for multi-line
 | |
|             // column-oriented flex container when each line has a different
 | |
|             // position-shift value. For now, we don't shift them.
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Adjust available block-size for the item. (We compute it here because
 | |
|       // framePos is still relative to the container's content-box.)
 | |
|       //
 | |
|       // Note: The available block-size can become negative if item's
 | |
|       // block-direction position is below available space's block-end.
 | |
|       const nscoord availableBSizeForItem =
 | |
|           aAvailableSizeForItems.BSize(flexWM) == NS_UNCONSTRAINEDSIZE
 | |
|               ? NS_UNCONSTRAINEDSIZE
 | |
|               : aAvailableSizeForItems.BSize(flexWM) - framePos.B(flexWM);
 | |
| 
 | |
|       // Adjust framePos to be relative to the container's border-box
 | |
|       // (i.e. its frame rect), instead of the container's content-box:
 | |
|       framePos += containerContentBoxOrigin;
 | |
| 
 | |
|       // Check if we actually need to reflow the item -- if the item's position
 | |
|       // is below the available space's block-end, push it to our next-in-flow;
 | |
|       // if it does need a reflow, and we already reflowed it with the right
 | |
|       // content-box size.
 | |
|       const bool childBPosExceedAvailableSpaceBEnd =
 | |
|           availableBSizeForItem != NS_UNCONSTRAINEDSIZE &&
 | |
|           availableBSizeForItem <= 0;
 | |
|       bool itemInPushedItems = false;
 | |
|       if (childBPosExceedAvailableSpaceBEnd) {
 | |
|         // Note: Even if all of our items are beyond the available space & get
 | |
|         // pushed here, we'll be guaranteed to place at least one of them (and
 | |
|         // make progress) in one of the flex container's *next* fragment. It's
 | |
|         // because ComputeAvailableSizeForItems() always reserves at least 1px
 | |
|         // available block-size for its children, and we consume all available
 | |
|         // block-size and add it to
 | |
|         // PerFragmentFlexData::mCumulativeContentBoxBSize even if we are not
 | |
|         // laying out any child.
 | |
|         FLEX_LOG(
 | |
|             "[frag] Flex item %p needed to be pushed to container's "
 | |
|             "next-in-flow due to position below available space's block-end",
 | |
|             item.Frame());
 | |
|         pushedItems.Insert(item.Frame());
 | |
|         itemInPushedItems = true;
 | |
|       } else if (item.NeedsFinalReflow(aReflowInput)) {
 | |
|         // The available size must be in item's writing-mode.
 | |
|         const WritingMode itemWM = item.GetWritingMode();
 | |
|         const auto availableSize =
 | |
|             LogicalSize(flexWM, aAvailableSizeForItems.ISize(flexWM),
 | |
|                         availableBSizeForItem)
 | |
|                 .ConvertTo(itemWM, flexWM);
 | |
| 
 | |
|         const nsReflowStatus childReflowStatus =
 | |
|             ReflowFlexItem(aAxisTracker, aReflowInput, item, framePos,
 | |
|                            availableSize, aContainerSize);
 | |
| 
 | |
|         const bool shouldPushItem = [&]() {
 | |
|           if (availableBSizeForItem == NS_UNCONSTRAINEDSIZE) {
 | |
|             // If the available block-size is unconstrained, then we're not
 | |
|             // fragmenting and we don't want to push the item.
 | |
|             return false;
 | |
|           }
 | |
|           if (framePos.B(flexWM) == containerContentBoxOrigin.B(flexWM)) {
 | |
|             // The flex item is adjacent with block-start of the container's
 | |
|             // content-box. Don't push it, or we'll trap in an infinite loop.
 | |
|             return false;
 | |
|           }
 | |
|           if (item.Frame()->BSize() <= availableBSizeForItem) {
 | |
|             return false;
 | |
|           }
 | |
|           if (aAxisTracker.IsColumnOriented() &&
 | |
|               item.Frame()->StyleDisplay()->mBreakBefore ==
 | |
|                   StyleBreakBetween::Avoid) {
 | |
|             return false;
 | |
|           }
 | |
|           return true;
 | |
|         }();
 | |
|         if (shouldPushItem) {
 | |
|           FLEX_LOG(
 | |
|               "[frag] Flex item %p needed to be pushed to container's "
 | |
|               "next-in-flow because its block-size is larger than the "
 | |
|               "available space",
 | |
|               item.Frame());
 | |
|           pushedItems.Insert(item.Frame());
 | |
|           itemInPushedItems = true;
 | |
|         } else if (childReflowStatus.IsIncomplete()) {
 | |
|           incompleteItems.Insert(item.Frame());
 | |
|         } else if (childReflowStatus.IsOverflowIncomplete()) {
 | |
|           overflowIncompleteItems.Insert(item.Frame());
 | |
|         }
 | |
|       } else {
 | |
|         MoveFlexItemToFinalPosition(item, framePos, aContainerSize);
 | |
|       }
 | |
| 
 | |
|       if (!itemInPushedItems) {
 | |
|         const nscoord itemBSize = item.Frame()->BSize(flexWM);
 | |
|         const nscoord bEndEdgeAfterPerItemShift =
 | |
|             framePos.B(flexWM) + itemBSize;
 | |
| 
 | |
|         // The item (or a fragment thereof) was placed in this flex container
 | |
|         // fragment. Update the max block-end edge with the item's block-end
 | |
|         // edge.
 | |
|         maxBlockEndEdgeOfChildren =
 | |
|             std::max(maxBlockEndEdgeOfChildren, bEndEdgeAfterPerItemShift);
 | |
| 
 | |
|         if (frameBPosBeforePerItemShift) {
 | |
|           // Make the block-end edge relative to flex container's border-box
 | |
|           // because bEndEdgeAfterPerItemShift is relative to the border-box.
 | |
|           const nscoord bEndEdgeBeforePerItemShift =
 | |
|               containerContentBoxOrigin.B(flexWM) +
 | |
|               *frameBPosBeforePerItemShift + itemBSize;
 | |
| 
 | |
|           if (bAxisMetrics.mMaxBEndEdge) {
 | |
|             auto& [before, after] = *bAxisMetrics.mMaxBEndEdge;
 | |
|             before = std::max(before, bEndEdgeBeforePerItemShift);
 | |
|             after = std::max(after, bEndEdgeAfterPerItemShift);
 | |
|           } else {
 | |
|             bAxisMetrics.mMaxBEndEdge.emplace(bEndEdgeBeforePerItemShift,
 | |
|                                               bEndEdgeAfterPerItemShift);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the item has auto margins, and we were tracking the UsedMargin
 | |
|       // property, set the property to the computed margin values.
 | |
|       if (item.HasAnyAutoMargin()) {
 | |
|         nsMargin* propValue =
 | |
|             item.Frame()->GetProperty(nsIFrame::UsedMarginProperty());
 | |
|         if (propValue) {
 | |
|           *propValue = item.PhysicalMargin();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this is our first item and we haven't established a baseline for
 | |
|       // the container yet (i.e. if we don't have 'align-self: baseline' on any
 | |
|       // children), then use this child's first baseline as the container's
 | |
|       // baseline.
 | |
|       if (&item == firstItem && aFlr.mAscent == nscoord_MIN) {
 | |
|         aFlr.mAscent = framePos.B(flexWM) + item.ResolvedAscent(true);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now we've finished processing all the items in the first line. Determine
 | |
|     // the amount by which the first line's block-end edge has shifted, so we
 | |
|     // can apply the same shift for the remaining lines.
 | |
|     if (GetPrevInFlow() && aAxisTracker.IsRowOriented() && isInFirstLine &&
 | |
|         bAxisMetrics.mMaxBEndEdge) {
 | |
|       auto& [before, after] = *bAxisMetrics.mMaxBEndEdge;
 | |
|       bAxisMetrics.mBEndEdgeShift = after - before;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!aFlr.mPlaceholders.IsEmpty()) {
 | |
|     ReflowPlaceholders(aReflowInput, aFlr.mPlaceholders,
 | |
|                        containerContentBoxOrigin, aContainerSize);
 | |
|   }
 | |
| 
 | |
|   const bool anyChildIncomplete = PushIncompleteChildren(
 | |
|       pushedItems, incompleteItems, overflowIncompleteItems);
 | |
| 
 | |
|   // TODO: Try making this a fatal assertion after we fix bug 1751260.
 | |
|   NS_ASSERTION(!anyChildIncomplete ||
 | |
|                    aAvailableSizeForItems.BSize(flexWM) != NS_UNCONSTRAINEDSIZE,
 | |
|                "We shouldn't have any incomplete children if the available "
 | |
|                "block-size is unconstrained!");
 | |
| 
 | |
|   if (!pushedItems.IsEmpty()) {
 | |
|     AddStateBits(NS_STATE_FLEX_DID_PUSH_ITEMS);
 | |
|   }
 | |
| 
 | |
|   if (GetPrevInFlow()) {
 | |
|     aFragmentData.mCumulativeBEndEdgeShift += bAxisMetrics.mBEndEdgeShift;
 | |
|   }
 | |
| 
 | |
|   return {maxBlockEndEdgeOfChildren, anyChildIncomplete};
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::PopulateReflowOutput(
 | |
|     ReflowOutput& aReflowOutput, const ReflowInput& aReflowInput,
 | |
|     nsReflowStatus& aStatus, const LogicalSize& aContentBoxSize,
 | |
|     const LogicalMargin& aBorderPadding, const nscoord aConsumedBSize,
 | |
|     const bool aMayNeedNextInFlow, const nscoord aMaxBlockEndEdgeOfChildren,
 | |
|     const bool aAnyChildIncomplete, nscoord aFlexContainerAscent,
 | |
|     nsTArray<FlexLine>& aLines, const FlexboxAxisTracker& aAxisTracker) {
 | |
|   const WritingMode flexWM = aReflowInput.GetWritingMode();
 | |
| 
 | |
|   // Compute flex container's desired size (in its own writing-mode).
 | |
|   LogicalSize desiredSizeInFlexWM(flexWM);
 | |
|   desiredSizeInFlexWM.ISize(flexWM) =
 | |
|       aContentBoxSize.ISize(flexWM) + aBorderPadding.IStartEnd(flexWM);
 | |
| 
 | |
|   // Unconditionally skip adding block-end border and padding for now. We add it
 | |
|   // lower down, after we've established baseline and decided whether bottom
 | |
|   // border-padding fits (if we're fragmented).
 | |
|   const nscoord effectiveContentBSizeWithBStartBP =
 | |
|       aContentBoxSize.BSize(flexWM) - aConsumedBSize +
 | |
|       aBorderPadding.BStart(flexWM);
 | |
|   nscoord blockEndContainerBP = aBorderPadding.BEnd(flexWM);
 | |
| 
 | |
|   if (aMayNeedNextInFlow) {
 | |
|     // We assume our status should be reported as incomplete because we may need
 | |
|     // a next-in-flow.
 | |
|     bool isStatusIncomplete = true;
 | |
| 
 | |
|     const nscoord availableBSizeMinusBEndBP =
 | |
|         aReflowInput.AvailableBSize() - aBorderPadding.BEnd(flexWM);
 | |
| 
 | |
|     if (aMaxBlockEndEdgeOfChildren <= availableBSizeMinusBEndBP) {
 | |
|       // Consume all the available block-size.
 | |
|       desiredSizeInFlexWM.BSize(flexWM) = availableBSizeMinusBEndBP;
 | |
|     } else {
 | |
|       // This case happens if we have some tall unbreakable children exceeding
 | |
|       // the available block-size.
 | |
|       desiredSizeInFlexWM.BSize(flexWM) = std::min(
 | |
|           effectiveContentBSizeWithBStartBP, aMaxBlockEndEdgeOfChildren);
 | |
| 
 | |
|       if ((aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE ||
 | |
|            !aAnyChildIncomplete) &&
 | |
|           aMaxBlockEndEdgeOfChildren >= effectiveContentBSizeWithBStartBP) {
 | |
|         // We have some tall unbreakable child that's sticking off the end of
 | |
|         // our fragment, *and* forcing us to consume all of our remaining
 | |
|         // content block-size and call ourselves complete.
 | |
|         //
 | |
|         // - If we have a definite block-size: we get here if the tall child
 | |
|         //   makes us reach that block-size.
 | |
|         // - If we have a content-based block-size: we get here if the tall
 | |
|         //   child makes us reach the content-based block-size from a
 | |
|         //   theoretical unfragmented layout, *and* all our children are
 | |
|         //   complete. (Note that if we have some incomplete child, then we
 | |
|         //   instead prefer to return an incomplete status, so we can get a
 | |
|         //   next-in-flow to include that child's requested next-in-flow, in the
 | |
|         //   spirit of having a block-size that fits the content.)
 | |
|         //
 | |
|         // TODO: the auto-height case might need more subtlety; see bug 1828977.
 | |
|         isStatusIncomplete = false;
 | |
| 
 | |
|         // We also potentially need to get the unskipped block-end border and
 | |
|         // padding (if we assumed it'd be skipped as part of our tentative
 | |
|         // assumption that we'd be incomplete).
 | |
|         if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
 | |
|             StyleBoxDecorationBreak::Slice) {
 | |
|           blockEndContainerBP =
 | |
|               aReflowInput.ComputedLogicalBorderPadding(flexWM).BEnd(flexWM);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isStatusIncomplete) {
 | |
|       aStatus.SetIncomplete();
 | |
|     }
 | |
|   } else {
 | |
|     // Our own effective content-box block-size can fit within the available
 | |
|     // block-size.
 | |
|     desiredSizeInFlexWM.BSize(flexWM) = effectiveContentBSizeWithBStartBP;
 | |
|   }
 | |
| 
 | |
|   if (aFlexContainerAscent == nscoord_MIN) {
 | |
|     // Still don't have our baseline set -- this happens if we have no
 | |
|     // children, if our children are huge enough that they have nscoord_MIN
 | |
|     // as their baseline, or our content is hidden in which case, we'll use the
 | |
|     // wrong baseline (but no big deal).
 | |
|     NS_WARNING_ASSERTION(
 | |
|         HidesContentForLayout() || aLines[0].IsEmpty(),
 | |
|         "Have flex items but didn't get an ascent - that's odd (or there are "
 | |
|         "just gigantic sizes involved)");
 | |
|     // Per spec, synthesize baseline from the flex container's content box
 | |
|     // (i.e. use block-end side of content-box)
 | |
|     // XXXdholbert This only makes sense if parent's writing mode is
 | |
|     // horizontal (& even then, really we should be using the BSize in terms
 | |
|     // of the parent's writing mode, not ours). Clean up in bug 1155322.
 | |
|     aFlexContainerAscent = desiredSizeInFlexWM.BSize(flexWM);
 | |
|   }
 | |
| 
 | |
|   if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
 | |
|     // This will force our parent to call GetLogicalBaseline, which will
 | |
|     // synthesize a margin-box baseline.
 | |
|     aReflowOutput.SetBlockStartAscent(ReflowOutput::ASK_FOR_BASELINE);
 | |
|   } else {
 | |
|     // XXXdholbert aFlexContainerAscent needs to be in terms of
 | |
|     // our parent's writing-mode here. See bug 1155322.
 | |
|     aReflowOutput.SetBlockStartAscent(aFlexContainerAscent);
 | |
|   }
 | |
| 
 | |
|   // Now, we account for how the block-end border and padding (if any) impacts
 | |
|   // our desired size. If adding it pushes us over the available block-size,
 | |
|   // then we become incomplete (unless we already weren't asking for any
 | |
|   // block-size, in which case we stay complete to avoid looping forever).
 | |
|   //
 | |
|   // NOTE: If we have auto block-size, we allow our block-end border and padding
 | |
|   // to push us over the available block-size without requesting a continuation,
 | |
|   // for consistency with the behavior of "display:block" elements.
 | |
|   const nscoord effectiveContentBSizeWithBStartEndBP =
 | |
|       desiredSizeInFlexWM.BSize(flexWM) + blockEndContainerBP;
 | |
| 
 | |
|   if (aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE &&
 | |
|       effectiveContentBSizeWithBStartEndBP > aReflowInput.AvailableBSize() &&
 | |
|       desiredSizeInFlexWM.BSize(flexWM) != 0 &&
 | |
|       aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
 | |
|     // We couldn't fit with the block-end border and padding included, so we'll
 | |
|     // need a continuation.
 | |
|     aStatus.SetIncomplete();
 | |
| 
 | |
|     if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
 | |
|         StyleBoxDecorationBreak::Slice) {
 | |
|       blockEndContainerBP = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The variable "blockEndContainerBP" now accurately reflects how much (if
 | |
|   // any) block-end border and padding we want for this frame, so we can proceed
 | |
|   // to add it in.
 | |
|   desiredSizeInFlexWM.BSize(flexWM) += blockEndContainerBP;
 | |
| 
 | |
|   if (aStatus.IsComplete() && aAnyChildIncomplete) {
 | |
|     aStatus.SetOverflowIncomplete();
 | |
|     aStatus.SetNextInFlowNeedsReflow();
 | |
|   }
 | |
| 
 | |
|   // If we are the first-in-flow and not fully complete (either our block-size
 | |
|   // or any of our flex items cannot fit in the available block-size), and the
 | |
|   // style requires us to avoid breaking inside, set the status to prompt our
 | |
|   // parent to push us to the next page/column.
 | |
|   if (!GetPrevInFlow() && !aStatus.IsFullyComplete() &&
 | |
|       ShouldAvoidBreakInside(aReflowInput)) {
 | |
|     aStatus.SetInlineLineBreakBeforeAndReset();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Calculate the container baselines so that our parent can baseline-align us.
 | |
|   mBaselineFromLastReflow = aFlexContainerAscent;
 | |
|   mLastBaselineFromLastReflow = aLines.LastElement().LastBaselineOffset();
 | |
|   if (mLastBaselineFromLastReflow == nscoord_MIN) {
 | |
|     // XXX we fall back to a mirrored first baseline here for now, but this
 | |
|     // should probably use the last baseline of the last item or something.
 | |
|     mLastBaselineFromLastReflow =
 | |
|         desiredSizeInFlexWM.BSize(flexWM) - aFlexContainerAscent;
 | |
|   }
 | |
| 
 | |
|   // Convert flex container's final desired size to parent's WM, for outparam.
 | |
|   aReflowOutput.SetSize(flexWM, desiredSizeInFlexWM);
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::MoveFlexItemToFinalPosition(
 | |
|     const FlexItem& aItem, const LogicalPoint& aFramePos,
 | |
|     const nsSize& aContainerSize) {
 | |
|   const WritingMode outerWM = aItem.ContainingBlockWM();
 | |
|   const nsStyleDisplay* display = aItem.Frame()->StyleDisplay();
 | |
|   LogicalPoint pos(aFramePos);
 | |
|   if (display->IsRelativelyOrStickyPositionedStyle()) {
 | |
|     // If the item is relatively positioned, look up its offsets (cached from
 | |
|     // previous reflow). A sticky positioned item can pass a dummy
 | |
|     // logicalOffsets into ApplyRelativePositioning().
 | |
|     LogicalMargin logicalOffsets(outerWM);
 | |
|     if (display->IsRelativelyPositionedStyle()) {
 | |
|       nsMargin* cachedOffsets =
 | |
|           aItem.Frame()->GetProperty(nsIFrame::ComputedOffsetProperty());
 | |
|       MOZ_ASSERT(
 | |
|           cachedOffsets,
 | |
|           "relpos previously-reflowed frame should've cached its offsets");
 | |
|       logicalOffsets = LogicalMargin(outerWM, *cachedOffsets);
 | |
|     }
 | |
|     ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM,
 | |
|                                           logicalOffsets, &pos, aContainerSize);
 | |
|   }
 | |
| 
 | |
|   FLEX_LOG("Moving flex item %p to its desired position %s", aItem.Frame(),
 | |
|            ToString(pos).c_str());
 | |
|   aItem.Frame()->SetPosition(outerWM, pos, aContainerSize);
 | |
|   PositionFrameView(aItem.Frame());
 | |
|   PositionChildViews(aItem.Frame());
 | |
| }
 | |
| 
 | |
| nsReflowStatus nsFlexContainerFrame::ReflowFlexItem(
 | |
|     const FlexboxAxisTracker& aAxisTracker, const ReflowInput& aReflowInput,
 | |
|     const FlexItem& aItem, const LogicalPoint& aFramePos,
 | |
|     const LogicalSize& aAvailableSize, const nsSize& aContainerSize) {
 | |
|   FLEX_LOG("Doing final reflow for flex item %p", aItem.Frame());
 | |
| 
 | |
|   WritingMode outerWM = aReflowInput.GetWritingMode();
 | |
| 
 | |
|   StyleSizeOverrides sizeOverrides;
 | |
|   // Override flex item's main size.
 | |
|   if (aItem.IsInlineAxisMainAxis()) {
 | |
|     sizeOverrides.mStyleISize.emplace(aItem.StyleMainSize());
 | |
|     FLEX_LOGV(" Main size (inline-size) override: %d", aItem.MainSize());
 | |
|   } else {
 | |
|     sizeOverrides.mStyleBSize.emplace(aItem.StyleMainSize());
 | |
|     FLEX_LOGV(" Main size (block-size) override: %d", aItem.MainSize());
 | |
|   }
 | |
| 
 | |
|   // Override flex item's cross size if it was stretched in the cross axis (in
 | |
|   // which case we're imposing a cross size).
 | |
|   if (aItem.IsStretched()) {
 | |
|     if (aItem.IsInlineAxisCrossAxis()) {
 | |
|       sizeOverrides.mStyleISize.emplace(aItem.StyleCrossSize());
 | |
|       FLEX_LOGV(" Cross size (inline-size) override: %d", aItem.CrossSize());
 | |
|     } else {
 | |
|       sizeOverrides.mStyleBSize.emplace(aItem.StyleCrossSize());
 | |
|       FLEX_LOGV(" Cross size (block-size) override: %d", aItem.CrossSize());
 | |
|     }
 | |
|   }
 | |
|   if (sizeOverrides.mStyleBSize) {
 | |
|     // We are overriding the block-size. For robustness, we always assume that
 | |
|     // this represents a block-axis resize for the frame. This may be
 | |
|     // conservative, but we do capture all the conditions in the block-axis
 | |
|     // (checked in NeedsFinalReflow()) that make this item require a final
 | |
|     // reflow. This sets relevant flags in ReflowInput::InitResizeFlags().
 | |
|     aItem.Frame()->SetHasBSizeChange(true);
 | |
|   }
 | |
| 
 | |
|   ReflowInput childReflowInput(PresContext(), aReflowInput, aItem.Frame(),
 | |
|                                aAvailableSize, Nothing(), {}, sizeOverrides);
 | |
| 
 | |
|   if (aItem.TreatBSizeAsIndefinite() && aItem.IsBlockAxisMainAxis()) {
 | |
|     childReflowInput.mFlags.mTreatBSizeAsIndefinite = true;
 | |
|   }
 | |
| 
 | |
|   if (aItem.IsStretched() && aItem.IsBlockAxisCrossAxis()) {
 | |
|     // This item is stretched (in the cross axis), and that axis is its block
 | |
|     // axis.  That stretching effectively gives it a relative BSize.
 | |
|     // XXXdholbert This flag only makes a difference if we use the flex items'
 | |
|     // frame-state when deciding whether to reflow them -- and we don't, as of
 | |
|     // the changes in bug 851607. So this has no effect right now, but it might
 | |
|     // make a difference if we optimize to use dirty bits in the
 | |
|     // future. (Reftests flexbox-resizeviewport-1.xhtml and -2.xhtml are
 | |
|     // intended to catch any regressions here, if we end up relying on this bit
 | |
|     // & neglecting to set it.)
 | |
|     aItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
 | |
|   }
 | |
| 
 | |
|   // NOTE: Be very careful about doing anything else with childReflowInput
 | |
|   // after this point, because some of its methods (e.g. SetComputedWidth)
 | |
|   // internally call InitResizeFlags and stomp on mVResize & mHResize.
 | |
| 
 | |
|   FLEX_LOG("Reflowing flex item %p at its desired position %s", aItem.Frame(),
 | |
|            ToString(aFramePos).c_str());
 | |
| 
 | |
|   // CachedFlexItemData is stored in item's writing mode, so we pass
 | |
|   // aChildReflowInput into ReflowOutput's constructor.
 | |
|   ReflowOutput childReflowOutput(childReflowInput);
 | |
|   nsReflowStatus childReflowStatus;
 | |
|   ReflowChild(aItem.Frame(), PresContext(), childReflowOutput, childReflowInput,
 | |
|               outerWM, aFramePos, aContainerSize, ReflowChildFlags::Default,
 | |
|               childReflowStatus);
 | |
| 
 | |
|   // XXXdholbert Perhaps we should call CheckForInterrupt here; see bug 1495532.
 | |
| 
 | |
|   FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
 | |
|                     &childReflowInput, outerWM, aFramePos, aContainerSize,
 | |
|                     ReflowChildFlags::ApplyRelativePositioning);
 | |
| 
 | |
|   aItem.SetAscent(childReflowOutput.BlockStartAscent());
 | |
| 
 | |
|   // Update our cached flex item info:
 | |
|   if (auto* cached = aItem.Frame()->GetProperty(CachedFlexItemData::Prop())) {
 | |
|     cached->Update(childReflowInput, childReflowOutput,
 | |
|                    FlexItemReflowType::Final);
 | |
|   } else {
 | |
|     cached = new CachedFlexItemData(childReflowInput, childReflowOutput,
 | |
|                                     FlexItemReflowType::Final);
 | |
|     aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cached);
 | |
|   }
 | |
| 
 | |
|   return childReflowStatus;
 | |
| }
 | |
| 
 | |
| void nsFlexContainerFrame::ReflowPlaceholders(
 | |
|     const ReflowInput& aReflowInput, nsTArray<nsIFrame*>& aPlaceholders,
 | |
|     const LogicalPoint& aContentBoxOrigin, const nsSize& aContainerSize) {
 | |
|   WritingMode outerWM = aReflowInput.GetWritingMode();
 | |
| 
 | |
|   // As noted in this method's documentation, we'll reflow every entry in
 | |
|   // |aPlaceholders| at the container's content-box origin.
 | |
|   for (nsIFrame* placeholder : aPlaceholders) {
 | |
|     MOZ_ASSERT(placeholder->IsPlaceholderFrame(),
 | |
|                "placeholders array should only contain placeholder frames");
 | |
|     WritingMode wm = placeholder->GetWritingMode();
 | |
|     LogicalSize availSize = aReflowInput.ComputedSize(wm);
 | |
|     ReflowInput childReflowInput(PresContext(), aReflowInput, placeholder,
 | |
|                                  availSize);
 | |
|     // No need to set the -webkit-line-clamp related flags when reflowing
 | |
|     // a placeholder.
 | |
|     ReflowOutput childReflowOutput(outerWM);
 | |
|     nsReflowStatus childReflowStatus;
 | |
|     ReflowChild(placeholder, PresContext(), childReflowOutput, childReflowInput,
 | |
|                 outerWM, aContentBoxOrigin, aContainerSize,
 | |
|                 ReflowChildFlags::Default, childReflowStatus);
 | |
| 
 | |
|     FinishReflowChild(placeholder, PresContext(), childReflowOutput,
 | |
|                       &childReflowInput, outerWM, aContentBoxOrigin,
 | |
|                       aContainerSize, ReflowChildFlags::Default);
 | |
| 
 | |
|     // Mark the placeholder frame to indicate that it's not actually at the
 | |
|     // element's static position, because we need to apply CSS Alignment after
 | |
|     // we determine the OOF's size:
 | |
|     placeholder->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
 | |
|   }
 | |
| }
 | |
| 
 | |
| nscoord nsFlexContainerFrame::IntrinsicISize(gfxContext* aRenderingContext,
 | |
|                                              IntrinsicISizeType aType) {
 | |
|   nscoord containerISize = 0;
 | |
|   const nsStylePosition* stylePos = StylePosition();
 | |
|   const FlexboxAxisTracker axisTracker(this);
 | |
| 
 | |
|   nscoord mainGapSize;
 | |
|   if (axisTracker.IsRowOriented()) {
 | |
|     mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
 | |
|                                                     NS_UNCONSTRAINEDSIZE);
 | |
|   } else {
 | |
|     mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
 | |
|                                                     NS_UNCONSTRAINEDSIZE);
 | |
|   }
 | |
| 
 | |
|   const bool useMozBoxCollapseBehavior =
 | |
|       StyleVisibility()->UseLegacyCollapseBehavior();
 | |
| 
 | |
|   // The loop below sets aside space for a gap before each item besides the
 | |
|   // first. This bool helps us handle that special-case.
 | |
|   bool onFirstChild = true;
 | |
| 
 | |
|   for (nsIFrame* childFrame : mFrames) {
 | |
|     // Skip out-of-flow children because they don't participate in flex layout.
 | |
|     if (childFrame->IsPlaceholderFrame()) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (useMozBoxCollapseBehavior &&
 | |
|         childFrame->StyleVisibility()->IsCollapse()) {
 | |
|       // If we're using legacy "visibility:collapse" behavior, then we don't
 | |
|       // care about the sizes of any collapsed children.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     nscoord childISize = nsLayoutUtils::IntrinsicForContainer(
 | |
|         aRenderingContext, childFrame, aType);
 | |
| 
 | |
|     // * For a row-oriented single-line flex container, the intrinsic
 | |
|     // {min/pref}-isize is the sum of its items' {min/pref}-isizes and
 | |
|     // (n-1) column gaps.
 | |
|     // * For a column-oriented flex container, the intrinsic min isize
 | |
|     // is the max of its items' min isizes.
 | |
|     // * For a row-oriented multi-line flex container, the intrinsic
 | |
|     // pref isize is former (sum), and its min isize is the latter (max).
 | |
|     bool isSingleLine = (StyleFlexWrap::Nowrap == stylePos->mFlexWrap);
 | |
|     if (axisTracker.IsRowOriented() &&
 | |
|         (isSingleLine || aType == IntrinsicISizeType::PrefISize)) {
 | |
|       containerISize += childISize;
 | |
|       if (!onFirstChild) {
 | |
|         containerISize += mainGapSize;
 | |
|       }
 | |
|       onFirstChild = false;
 | |
|     } else {  // (col-oriented, or MinISize for multi-line row flex container)
 | |
|       containerISize = std::max(containerISize, childISize);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return containerISize;
 | |
| }
 | |
| 
 | |
| /* virtual */
 | |
| nscoord nsFlexContainerFrame::GetMinISize(gfxContext* aRenderingContext) {
 | |
|   DISPLAY_MIN_INLINE_SIZE(this, mCachedMinISize);
 | |
|   if (mCachedMinISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
 | |
|     if (Maybe<nscoord> containISize = ContainIntrinsicISize()) {
 | |
|       mCachedMinISize = *containISize;
 | |
|     } else {
 | |
|       mCachedMinISize =
 | |
|           IntrinsicISize(aRenderingContext, IntrinsicISizeType::MinISize);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return mCachedMinISize;
 | |
| }
 | |
| 
 | |
| /* virtual */
 | |
| nscoord nsFlexContainerFrame::GetPrefISize(gfxContext* aRenderingContext) {
 | |
|   DISPLAY_PREF_INLINE_SIZE(this, mCachedPrefISize);
 | |
|   if (mCachedPrefISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
 | |
|     if (Maybe<nscoord> containISize = ContainIntrinsicISize()) {
 | |
|       mCachedPrefISize = *containISize;
 | |
|     } else {
 | |
|       mCachedPrefISize =
 | |
|           IntrinsicISize(aRenderingContext, IntrinsicISizeType::PrefISize);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return mCachedPrefISize;
 | |
| }
 | |
| 
 | |
| int32_t nsFlexContainerFrame::GetNumLines() const {
 | |
|   // TODO(emilio, bug 1793251): Treating all row oriented frames as single-lines
 | |
|   // might not be great for flex-wrap'd containers, consider trying to do
 | |
|   // better? We probably would need to persist more stuff than we do after
 | |
|   // layout.
 | |
|   return FlexboxAxisInfo(this).mIsRowOriented ? 1 : mFrames.GetLength();
 | |
| }
 | |
| 
 | |
| bool nsFlexContainerFrame::IsLineIteratorFlowRTL() {
 | |
|   FlexboxAxisInfo info(this);
 | |
|   if (info.mIsRowOriented) {
 | |
|     const bool isRtl = StyleVisibility()->mDirection == StyleDirection::Rtl;
 | |
|     return info.mIsMainAxisReversed != isRtl;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Result<nsILineIterator::LineInfo, nsresult> nsFlexContainerFrame::GetLine(
 | |
|     int32_t aLineNumber) {
 | |
|   if (aLineNumber < 0 || aLineNumber >= GetNumLines()) {
 | |
|     return Err(NS_ERROR_FAILURE);
 | |
|   }
 | |
|   FlexboxAxisInfo info(this);
 | |
|   LineInfo lineInfo;
 | |
|   if (info.mIsRowOriented) {
 | |
|     lineInfo.mLineBounds = GetRect();
 | |
|     lineInfo.mFirstFrameOnLine = mFrames.FirstChild();
 | |
|     // This isn't quite ideal for multi-line row flexbox, see bug 1793251.
 | |
|     lineInfo.mNumFramesOnLine = mFrames.GetLength();
 | |
|   } else {
 | |
|     // TODO(emilio, bug 1793322): Deal with column-reverse (mIsMainAxisReversed)
 | |
|     nsIFrame* f = mFrames.FrameAt(aLineNumber);
 | |
|     lineInfo.mLineBounds = f->GetRect();
 | |
|     lineInfo.mFirstFrameOnLine = f;
 | |
|     lineInfo.mNumFramesOnLine = 1;
 | |
|   }
 | |
|   return lineInfo;
 | |
| }
 | |
| 
 | |
| int32_t nsFlexContainerFrame::FindLineContaining(nsIFrame* aFrame,
 | |
|                                                  int32_t aStartLine) {
 | |
|   const int32_t index = mFrames.IndexOf(aFrame);
 | |
|   if (index < 0) {
 | |
|     return -1;
 | |
|   }
 | |
|   const FlexboxAxisInfo info(this);
 | |
|   if (info.mIsRowOriented) {
 | |
|     return 0;
 | |
|   }
 | |
|   if (index < aStartLine) {
 | |
|     return -1;
 | |
|   }
 | |
|   return index;
 | |
| }
 | |
| 
 | |
| NS_IMETHODIMP
 | |
| nsFlexContainerFrame::CheckLineOrder(int32_t aLine, bool* aIsReordered,
 | |
|                                      nsIFrame** aFirstVisual,
 | |
|                                      nsIFrame** aLastVisual) {
 | |
|   *aIsReordered = false;
 | |
|   *aFirstVisual = nullptr;
 | |
|   *aLastVisual = nullptr;
 | |
|   return NS_OK;
 | |
| }
 | |
| 
 | |
| NS_IMETHODIMP
 | |
| nsFlexContainerFrame::FindFrameAt(int32_t aLineNumber, nsPoint aPos,
 | |
|                                   nsIFrame** aFrameFound,
 | |
|                                   bool* aPosIsBeforeFirstFrame,
 | |
|                                   bool* aPosIsAfterLastFrame) {
 | |
|   const auto wm = GetWritingMode();
 | |
|   const LogicalPoint pos(wm, aPos, GetSize());
 | |
|   const FlexboxAxisInfo info(this);
 | |
| 
 | |
|   *aFrameFound = nullptr;
 | |
|   *aPosIsBeforeFirstFrame = true;
 | |
|   *aPosIsAfterLastFrame = false;
 | |
| 
 | |
|   if (!info.mIsRowOriented) {
 | |
|     nsIFrame* f = mFrames.FrameAt(aLineNumber);
 | |
|     if (!f) {
 | |
|       return NS_OK;
 | |
|     }
 | |
| 
 | |
|     auto rect = f->GetLogicalRect(wm, GetSize());
 | |
|     *aFrameFound = f;
 | |
|     *aPosIsBeforeFirstFrame = pos.I(wm) < rect.IStart(wm);
 | |
|     *aPosIsAfterLastFrame = pos.I(wm) > rect.IEnd(wm);
 | |
|     return NS_OK;
 | |
|   }
 | |
| 
 | |
|   LineFrameFinder finder(aPos, GetSize(), GetWritingMode(),
 | |
|                          IsLineIteratorFlowRTL());
 | |
|   for (nsIFrame* f : mFrames) {
 | |
|     finder.Scan(f);
 | |
|     if (finder.IsDone()) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   finder.Finish(aFrameFound, aPosIsBeforeFirstFrame, aPosIsAfterLastFrame);
 | |
|   return NS_OK;
 | |
| }
 |