forked from mirrors/linux
		
	pwm: add microchip soft ip corePWM driver
Add a driver that supports the Microchip FPGA "soft" PWM IP core. Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
This commit is contained in:
		
							parent
							
								
									38ba835986
								
							
						
					
					
						commit
						2bf7ecf7b4
					
				
					 3 changed files with 518 additions and 0 deletions
				
			
		|  | @ -405,6 +405,16 @@ config PWM_MEDIATEK | |||
| 	  To compile this driver as a module, choose M here: the module | ||||
| 	  will be called pwm-mediatek. | ||||
| 
 | ||||
| config PWM_MICROCHIP_CORE | ||||
| 	tristate "Microchip corePWM PWM support" | ||||
| 	depends on SOC_MICROCHIP_POLARFIRE || COMPILE_TEST | ||||
| 	depends on HAS_IOMEM && OF | ||||
| 	help | ||||
| 	  PWM driver for Microchip FPGA soft IP core. | ||||
| 
 | ||||
| 	  To compile this driver as a module, choose M here: the module | ||||
| 	  will be called pwm-microchip-core. | ||||
| 
 | ||||
| config PWM_MXS | ||||
| 	tristate "Freescale MXS PWM support" | ||||
| 	depends on ARCH_MXS || COMPILE_TEST | ||||
|  |  | |||
|  | @ -35,6 +35,7 @@ obj-$(CONFIG_PWM_LPSS_PCI)	+= pwm-lpss-pci.o | |||
| obj-$(CONFIG_PWM_LPSS_PLATFORM)	+= pwm-lpss-platform.o | ||||
| obj-$(CONFIG_PWM_MESON)		+= pwm-meson.o | ||||
| obj-$(CONFIG_PWM_MEDIATEK)	+= pwm-mediatek.o | ||||
| obj-$(CONFIG_PWM_MICROCHIP_CORE)	+= pwm-microchip-core.o | ||||
| obj-$(CONFIG_PWM_MTK_DISP)	+= pwm-mtk-disp.o | ||||
| obj-$(CONFIG_PWM_MXS)		+= pwm-mxs.o | ||||
| obj-$(CONFIG_PWM_NTXEC)		+= pwm-ntxec.o | ||||
|  |  | |||
							
								
								
									
										507
									
								
								drivers/pwm/pwm-microchip-core.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										507
									
								
								drivers/pwm/pwm-microchip-core.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,507 @@ | |||
| // SPDX-License-Identifier: GPL-2.0
 | ||||
| /*
 | ||||
|  * corePWM driver for Microchip "soft" FPGA IP cores. | ||||
|  * | ||||
|  * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved. | ||||
|  * Author: Conor Dooley <conor.dooley@microchip.com> | ||||
|  * Documentation: | ||||
|  * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
 | ||||
|  * | ||||
|  * Limitations: | ||||
|  * - If the IP block is configured without "shadow registers", all register | ||||
|  *   writes will take effect immediately, causing glitches on the output. | ||||
|  *   If shadow registers *are* enabled, setting the "SYNC_UPDATE" register | ||||
|  *   notifies the core that it needs to update the registers defining the | ||||
|  *   waveform from the contents of the "shadow registers". Otherwise, changes | ||||
|  *   will take effective immediately, even for those channels. | ||||
|  *   As setting the period/duty cycle takes 4 register writes, there is a window | ||||
|  *   in which this races against the start of a new period. | ||||
|  * - The IP block has no concept of a duty cycle, only rising/falling edges of | ||||
|  *   the waveform. Unfortunately, if the rising & falling edges registers have | ||||
|  *   the same value written to them the IP block will do whichever of a rising | ||||
|  *   or a falling edge is possible. I.E. a 50% waveform at twice the requested | ||||
|  *   period. Therefore to get a 0% waveform, the output is set the max high/low | ||||
|  *   time depending on polarity. | ||||
|  *   If the duty cycle is 0%, and the requested period is less than the | ||||
|  *   available period resolution, this will manifest as a ~100% waveform (with | ||||
|  *   some output glitches) rather than 50%. | ||||
|  * - The PWM period is set for the whole IP block not per channel. The driver | ||||
|  *   will only change the period if no other PWM output is enabled. | ||||
|  */ | ||||
| 
 | ||||
| #include <linux/clk.h> | ||||
| #include <linux/delay.h> | ||||
| #include <linux/err.h> | ||||
| #include <linux/io.h> | ||||
| #include <linux/ktime.h> | ||||
| #include <linux/math.h> | ||||
| #include <linux/module.h> | ||||
| #include <linux/mutex.h> | ||||
| #include <linux/of_device.h> | ||||
| #include <linux/platform_device.h> | ||||
| #include <linux/pwm.h> | ||||
| 
 | ||||
| #define MCHPCOREPWM_PRESCALE_MAX	0xff | ||||
| #define MCHPCOREPWM_PERIOD_STEPS_MAX	0xfe | ||||
| #define MCHPCOREPWM_PERIOD_MAX		0xff00 | ||||
| 
 | ||||
| #define MCHPCOREPWM_PRESCALE	0x00 | ||||
| #define MCHPCOREPWM_PERIOD	0x04 | ||||
| #define MCHPCOREPWM_EN(i)	(0x08 + 0x04 * (i)) /* 0x08, 0x0c */ | ||||
| #define MCHPCOREPWM_POSEDGE(i)	(0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */ | ||||
| #define MCHPCOREPWM_NEGEDGE(i)	(0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */ | ||||
| #define MCHPCOREPWM_SYNC_UPD	0xe4 | ||||
| #define MCHPCOREPWM_TIMEOUT_MS	100u | ||||
| 
 | ||||
| struct mchp_core_pwm_chip { | ||||
| 	struct pwm_chip chip; | ||||
| 	struct clk *clk; | ||||
| 	void __iomem *base; | ||||
| 	struct mutex lock; /* protects the shared period */ | ||||
| 	ktime_t update_timestamp; | ||||
| 	u32 sync_update_mask; | ||||
| 	u16 channel_enabled; | ||||
| }; | ||||
| 
 | ||||
| static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip) | ||||
| { | ||||
| 	return container_of(chip, struct mchp_core_pwm_chip, chip); | ||||
| } | ||||
| 
 | ||||
| static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, | ||||
| 				 bool enable, u64 period) | ||||
| { | ||||
| 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); | ||||
| 	u8 channel_enable, reg_offset, shift; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * There are two adjacent 8 bit control regs, the lower reg controls | ||||
| 	 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg | ||||
| 	 * and if so, offset by the bus width. | ||||
| 	 */ | ||||
| 	reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3); | ||||
| 	shift = pwm->hwpwm & 7; | ||||
| 
 | ||||
| 	channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset); | ||||
| 	channel_enable &= ~(1 << shift); | ||||
| 	channel_enable |= (enable << shift); | ||||
| 
 | ||||
| 	writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset); | ||||
| 	mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm); | ||||
| 	mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * The updated values will not appear on the bus until they have been | ||||
| 	 * applied to the waveform at the beginning of the next period. | ||||
| 	 * This is a NO-OP if the channel does not have shadow registers. | ||||
| 	 */ | ||||
| 	if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm)) | ||||
| 		mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period); | ||||
| } | ||||
| 
 | ||||
| static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm, | ||||
| 					       unsigned int channel) | ||||
| { | ||||
| 	/*
 | ||||
| 	 * If a shadow register is used for this PWM channel, and iff there is | ||||
| 	 * a pending update to the waveform, we must wait for it to be applied | ||||
| 	 * before attempting to read its state. Reading the registers yields | ||||
| 	 * the currently implemented settings & the new ones are only readable | ||||
| 	 * once the current period has ended. | ||||
| 	 */ | ||||
| 
 | ||||
| 	if (mchp_core_pwm->sync_update_mask & (1 << channel)) { | ||||
| 		ktime_t current_time = ktime_get(); | ||||
| 		s64 remaining_ns; | ||||
| 		u32 delay_us; | ||||
| 
 | ||||
| 		remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp, | ||||
| 						     current_time)); | ||||
| 
 | ||||
| 		/*
 | ||||
| 		 * If the update has gone through, don't bother waiting for | ||||
| 		 * obvious reasons. Otherwise wait around for an appropriate | ||||
| 		 * amount of time for the update to go through. | ||||
| 		 */ | ||||
| 		if (remaining_ns <= 0) | ||||
| 			return; | ||||
| 
 | ||||
| 		delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC); | ||||
| 		fsleep(delay_us); | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate, | ||||
| 				   u8 prescale, u8 period_steps) | ||||
| { | ||||
| 	u64 duty_steps, tmp; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Calculate the duty cycle in multiples of the prescaled period: | ||||
| 	 * duty_steps = duty_in_ns / step_in_ns | ||||
| 	 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate | ||||
| 	 * The code below is rearranged slightly to only divide once. | ||||
| 	 */ | ||||
| 	tmp = (((u64)prescale) + 1) * NSEC_PER_SEC; | ||||
| 	duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp); | ||||
| 
 | ||||
| 	return duty_steps; | ||||
| } | ||||
| 
 | ||||
| static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm, | ||||
| 				     const struct pwm_state *state, u64 duty_steps, | ||||
| 				     u16 period_steps) | ||||
| { | ||||
| 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); | ||||
| 	u8 posedge, negedge; | ||||
| 	u8 first_edge = 0, second_edge = duty_steps; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Setting posedge == negedge doesn't yield a constant output, | ||||
| 	 * so that's an unsuitable setting to model duty_steps = 0. | ||||
| 	 * In that case set the unwanted edge to a value that never | ||||
| 	 * triggers. | ||||
| 	 */ | ||||
| 	if (duty_steps == 0) | ||||
| 		first_edge = period_steps + 1; | ||||
| 
 | ||||
| 	if (state->polarity == PWM_POLARITY_INVERSED) { | ||||
| 		negedge = first_edge; | ||||
| 		posedge = second_edge; | ||||
| 	} else { | ||||
| 		posedge = first_edge; | ||||
| 		negedge = second_edge; | ||||
| 	} | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Set the sync bit which ensures that periods that already started are | ||||
| 	 * completed unaltered. At each counter reset event the values are | ||||
| 	 * updated from the shadow registers. | ||||
| 	 */ | ||||
| 	writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); | ||||
| 	writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); | ||||
| } | ||||
| 
 | ||||
| static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate, | ||||
| 				     u16 *prescale, u16 *period_steps) | ||||
| { | ||||
| 	u64 tmp; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Calculate the period cycles and prescale values. | ||||
| 	 * The registers are each 8 bits wide & multiplied to compute the period | ||||
| 	 * using the formula: | ||||
| 	 *           (prescale + 1) * (period_steps + 1) | ||||
| 	 * period = ------------------------------------- | ||||
| 	 *                      clk_rate | ||||
| 	 * so the maximum period that can be generated is 0x10000 times the | ||||
| 	 * period of the input clock. | ||||
| 	 * However, due to the design of the "hardware", it is not possible to | ||||
| 	 * attain a 100% duty cycle if the full range of period_steps is used. | ||||
| 	 * Therefore period_steps is restricted to 0xfe and the maximum multiple | ||||
| 	 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00 | ||||
| 	 * | ||||
| 	 * The prescale and period_steps registers operate similarly to | ||||
| 	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that | ||||
| 	 * in the register plus one. | ||||
| 	 * It's therefore not possible to set a period lower than 1/clk_rate, so | ||||
| 	 * if tmp is 0, abort. Without aborting, we will set a period that is | ||||
| 	 * greater than that requested and, more importantly, will trigger the | ||||
| 	 * neg-/pos-edge issue described in the limitations. | ||||
| 	 */ | ||||
| 	tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC); | ||||
| 	if (tmp >= MCHPCOREPWM_PERIOD_MAX) { | ||||
| 		*prescale = MCHPCOREPWM_PRESCALE_MAX; | ||||
| 		*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; | ||||
| 
 | ||||
| 		return 0; | ||||
| 	} | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * There are multiple strategies that could be used to choose the | ||||
| 	 * prescale & period_steps values. | ||||
| 	 * Here the idea is to pick values so that the selection of duty cycles | ||||
| 	 * is as finegrain as possible, while also keeping the period less than | ||||
| 	 * that requested. | ||||
| 	 * | ||||
| 	 * A simple way to satisfy the first condition is to always set | ||||
| 	 * period_steps to its maximum value. This neatly also satisfies the | ||||
| 	 * second condition too, since using the maximum value of period_steps | ||||
| 	 * to calculate prescale actually calculates its upper bound. | ||||
| 	 * Integer division will ensure a round down, so the period will thereby | ||||
| 	 * always be less than that requested. | ||||
| 	 * | ||||
| 	 * The downside of this approach is a significant degree of inaccuracy, | ||||
| 	 * especially as tmp approaches integer multiples of | ||||
| 	 * MCHPCOREPWM_PERIOD_STEPS_MAX. | ||||
| 	 * | ||||
| 	 * As we must produce a period less than that requested, and for the | ||||
| 	 * sake of creating a simple algorithm, disallow small values of tmp | ||||
| 	 * that would need special handling. | ||||
| 	 */ | ||||
| 	if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1) | ||||
| 		return -EINVAL; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * This "optimal" value for prescale is be calculated using the maximum | ||||
| 	 * permitted value of period_steps, 0xfe. | ||||
| 	 * | ||||
| 	 *                period * clk_rate | ||||
| 	 * prescale = ------------------------- - 1 | ||||
| 	 *            NSEC_PER_SEC * (0xfe + 1) | ||||
| 	 * | ||||
| 	 * | ||||
| 	 *  period * clk_rate | ||||
| 	 * ------------------- was precomputed as `tmp` | ||||
| 	 *    NSEC_PER_SEC | ||||
| 	 */ | ||||
| 	*prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * period_steps can be computed from prescale: | ||||
| 	 *                      period * clk_rate | ||||
| 	 * period_steps = ----------------------------- - 1 | ||||
| 	 *                NSEC_PER_SEC * (prescale + 1) | ||||
| 	 * | ||||
| 	 * However, in this approximation, we simply use the maximum value that | ||||
| 	 * was used to compute prescale. | ||||
| 	 */ | ||||
| 	*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm, | ||||
| 				      const struct pwm_state *state) | ||||
| { | ||||
| 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); | ||||
| 	bool period_locked; | ||||
| 	unsigned long clk_rate; | ||||
| 	u64 duty_steps; | ||||
| 	u16 prescale, period_steps; | ||||
| 	int ret; | ||||
| 
 | ||||
| 	if (!state->enabled) { | ||||
| 		mchp_core_pwm_enable(chip, pwm, false, pwm->state.period); | ||||
| 		return 0; | ||||
| 	} | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * If clk_rate is too big, the following multiplication might overflow. | ||||
| 	 * However this is implausible, as the fabric of current FPGAs cannot | ||||
| 	 * provide clocks at a rate high enough. | ||||
| 	 */ | ||||
| 	clk_rate = clk_get_rate(mchp_core_pwm->clk); | ||||
| 	if (clk_rate >= NSEC_PER_SEC) | ||||
| 		return -EINVAL; | ||||
| 
 | ||||
| 	ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps); | ||||
| 	if (ret) | ||||
| 		return ret; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * If the only thing that has changed is the duty cycle or the polarity, | ||||
| 	 * we can shortcut the calculations and just compute/apply the new duty | ||||
| 	 * cycle pos & neg edges | ||||
| 	 * As all the channels share the same period, do not allow it to be | ||||
| 	 * changed if any other channels are enabled. | ||||
| 	 * If the period is locked, it may not be possible to use a period | ||||
| 	 * less than that requested. In that case, we just abort. | ||||
| 	 */ | ||||
| 	period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm); | ||||
| 
 | ||||
| 	if (period_locked) { | ||||
| 		u16 hw_prescale; | ||||
| 		u16 hw_period_steps; | ||||
| 
 | ||||
| 		hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); | ||||
| 		hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); | ||||
| 
 | ||||
| 		if ((period_steps + 1) * (prescale + 1) < | ||||
| 		    (hw_period_steps + 1) * (hw_prescale + 1)) | ||||
| 			return -EINVAL; | ||||
| 
 | ||||
| 		/*
 | ||||
| 		 * It is possible that something could have set the period_steps | ||||
| 		 * register to 0xff, which would prevent us from setting a 100% | ||||
| 		 * or 0% relative duty cycle, as explained above in | ||||
| 		 * mchp_core_pwm_calc_period(). | ||||
| 		 * The period is locked and we cannot change this, so we abort. | ||||
| 		 */ | ||||
| 		if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX) | ||||
| 			return -EINVAL; | ||||
| 
 | ||||
| 		prescale = hw_prescale; | ||||
| 		period_steps = hw_period_steps; | ||||
| 	} | ||||
| 
 | ||||
| 	duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Because the period is not per channel, it is possible that the | ||||
| 	 * requested duty cycle is longer than the period, in which case cap it | ||||
| 	 * to the period, IOW a 100% duty cycle. | ||||
| 	 */ | ||||
| 	if (duty_steps > period_steps) | ||||
| 		duty_steps = period_steps + 1; | ||||
| 
 | ||||
| 	if (!period_locked) { | ||||
| 		writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); | ||||
| 		writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD); | ||||
| 	} | ||||
| 
 | ||||
| 	mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps); | ||||
| 
 | ||||
| 	mchp_core_pwm_enable(chip, pwm, true, pwm->state.period); | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, | ||||
| 			       const struct pwm_state *state) | ||||
| { | ||||
| 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); | ||||
| 	int ret; | ||||
| 
 | ||||
| 	mutex_lock(&mchp_core_pwm->lock); | ||||
| 
 | ||||
| 	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); | ||||
| 
 | ||||
| 	ret = mchp_core_pwm_apply_locked(chip, pwm, state); | ||||
| 
 | ||||
| 	mutex_unlock(&mchp_core_pwm->lock); | ||||
| 
 | ||||
| 	return ret; | ||||
| } | ||||
| 
 | ||||
| static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, | ||||
| 				   struct pwm_state *state) | ||||
| { | ||||
| 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); | ||||
| 	u64 rate; | ||||
| 	u16 prescale, period_steps; | ||||
| 	u8 duty_steps, posedge, negedge; | ||||
| 
 | ||||
| 	mutex_lock(&mchp_core_pwm->lock); | ||||
| 
 | ||||
| 	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); | ||||
| 
 | ||||
| 	if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm)) | ||||
| 		state->enabled = true; | ||||
| 	else | ||||
| 		state->enabled = false; | ||||
| 
 | ||||
| 	rate = clk_get_rate(mchp_core_pwm->clk); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Calculating the period: | ||||
| 	 * The registers are each 8 bits wide & multiplied to compute the period | ||||
| 	 * using the formula: | ||||
| 	 *           (prescale + 1) * (period_steps + 1) | ||||
| 	 * period = ------------------------------------- | ||||
| 	 *                      clk_rate | ||||
| 	 * | ||||
| 	 * Note: | ||||
| 	 * The prescale and period_steps registers operate similarly to | ||||
| 	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that | ||||
| 	 * in the register plus one. | ||||
| 	 */ | ||||
| 	prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); | ||||
| 	period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); | ||||
| 
 | ||||
| 	state->period = (period_steps + 1) * (prescale + 1); | ||||
| 	state->period *= NSEC_PER_SEC; | ||||
| 	state->period = DIV64_U64_ROUND_UP(state->period, rate); | ||||
| 
 | ||||
| 	posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); | ||||
| 	negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); | ||||
| 
 | ||||
| 	mutex_unlock(&mchp_core_pwm->lock); | ||||
| 
 | ||||
| 	if (negedge == posedge) { | ||||
| 		state->duty_cycle = state->period; | ||||
| 		state->period *= 2; | ||||
| 	} else { | ||||
| 		duty_steps = abs((s16)posedge - (s16)negedge); | ||||
| 		state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC; | ||||
| 		state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate); | ||||
| 	} | ||||
| 
 | ||||
| 	state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL; | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| static const struct pwm_ops mchp_core_pwm_ops = { | ||||
| 	.apply = mchp_core_pwm_apply, | ||||
| 	.get_state = mchp_core_pwm_get_state, | ||||
| 	.owner = THIS_MODULE, | ||||
| }; | ||||
| 
 | ||||
| static const struct of_device_id mchp_core_of_match[] = { | ||||
| 	{ | ||||
| 		.compatible = "microchip,corepwm-rtl-v4", | ||||
| 	}, | ||||
| 	{ /* sentinel */ } | ||||
| }; | ||||
| MODULE_DEVICE_TABLE(of, mchp_core_of_match); | ||||
| 
 | ||||
| static int mchp_core_pwm_probe(struct platform_device *pdev) | ||||
| { | ||||
| 	struct mchp_core_pwm_chip *mchp_core_pwm; | ||||
| 	struct resource *regs; | ||||
| 	int ret; | ||||
| 
 | ||||
| 	mchp_core_pwm = devm_kzalloc(&pdev->dev, sizeof(*mchp_core_pwm), GFP_KERNEL); | ||||
| 	if (!mchp_core_pwm) | ||||
| 		return -ENOMEM; | ||||
| 
 | ||||
| 	mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); | ||||
| 	if (IS_ERR(mchp_core_pwm->base)) | ||||
| 		return PTR_ERR(mchp_core_pwm->base); | ||||
| 
 | ||||
| 	mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL); | ||||
| 	if (IS_ERR(mchp_core_pwm->clk)) | ||||
| 		return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk), | ||||
| 				     "failed to get PWM clock\n"); | ||||
| 
 | ||||
| 	if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask", | ||||
| 				 &mchp_core_pwm->sync_update_mask)) | ||||
| 		mchp_core_pwm->sync_update_mask = 0; | ||||
| 
 | ||||
| 	mutex_init(&mchp_core_pwm->lock); | ||||
| 
 | ||||
| 	mchp_core_pwm->chip.dev = &pdev->dev; | ||||
| 	mchp_core_pwm->chip.ops = &mchp_core_pwm_ops; | ||||
| 	mchp_core_pwm->chip.npwm = 16; | ||||
| 
 | ||||
| 	mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0)); | ||||
| 	mchp_core_pwm->channel_enabled |= | ||||
| 		readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Enable synchronous update mode for all channels for which shadow | ||||
| 	 * registers have been synthesised. | ||||
| 	 */ | ||||
| 	writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD); | ||||
| 	mchp_core_pwm->update_timestamp = ktime_get(); | ||||
| 
 | ||||
| 	ret = devm_pwmchip_add(&pdev->dev, &mchp_core_pwm->chip); | ||||
| 	if (ret) | ||||
| 		return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n"); | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| static struct platform_driver mchp_core_pwm_driver = { | ||||
| 	.driver = { | ||||
| 		.name = "mchp-core-pwm", | ||||
| 		.of_match_table = mchp_core_of_match, | ||||
| 	}, | ||||
| 	.probe = mchp_core_pwm_probe, | ||||
| }; | ||||
| module_platform_driver(mchp_core_pwm_driver); | ||||
| 
 | ||||
| MODULE_LICENSE("GPL"); | ||||
| MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>"); | ||||
| MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs"); | ||||
		Loading…
	
		Reference in a new issue
	
	 Conor Dooley
						Conor Dooley