forked from mirrors/linux
		
	locking/percpu-rwsem: Optimize readers and reduce global impact
Currently the percpu-rwsem switches to (global) atomic ops while a writer is waiting; which could be quite a while and slows down releasing the readers. This patch cures this problem by ordering the reader-state vs reader-count (see the comments in __percpu_down_read() and percpu_down_write()). This changes a global atomic op into a full memory barrier, which doesn't have the global cacheline contention. This also enables using the percpu-rwsem with rcu_sync disabled in order to bias the implementation differently, reducing the writer latency by adding some cost to readers. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org [ Fixed modular build. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
		
							parent
							
								
									08be8f63c4
								
							
						
					
					
						commit
						80127a3968
					
				
					 3 changed files with 226 additions and 124 deletions
				
			
		|  | @ -10,30 +10,96 @@ | |||
| 
 | ||||
| struct percpu_rw_semaphore { | ||||
| 	struct rcu_sync		rss; | ||||
| 	unsigned int __percpu	*fast_read_ctr; | ||||
| 	unsigned int __percpu	*read_count; | ||||
| 	struct rw_semaphore	rw_sem; | ||||
| 	atomic_t		slow_read_ctr; | ||||
| 	wait_queue_head_t	write_waitq; | ||||
| 	wait_queue_head_t	writer; | ||||
| 	int			readers_block; | ||||
| }; | ||||
| 
 | ||||
| extern void percpu_down_read(struct percpu_rw_semaphore *); | ||||
| extern int  percpu_down_read_trylock(struct percpu_rw_semaphore *); | ||||
| extern void percpu_up_read(struct percpu_rw_semaphore *); | ||||
| extern int __percpu_down_read(struct percpu_rw_semaphore *, int); | ||||
| extern void __percpu_up_read(struct percpu_rw_semaphore *); | ||||
| 
 | ||||
| static inline void percpu_down_read(struct percpu_rw_semaphore *sem) | ||||
| { | ||||
| 	might_sleep(); | ||||
| 
 | ||||
| 	rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 0, _RET_IP_); | ||||
| 
 | ||||
| 	preempt_disable(); | ||||
| 	/*
 | ||||
| 	 * We are in an RCU-sched read-side critical section, so the writer | ||||
| 	 * cannot both change sem->state from readers_fast and start checking | ||||
| 	 * counters while we are here. So if we see !sem->state, we know that | ||||
| 	 * the writer won't be checking until we're past the preempt_enable() | ||||
| 	 * and that one the synchronize_sched() is done, the writer will see | ||||
| 	 * anything we did within this RCU-sched read-size critical section. | ||||
| 	 */ | ||||
| 	__this_cpu_inc(*sem->read_count); | ||||
| 	if (unlikely(!rcu_sync_is_idle(&sem->rss))) | ||||
| 		__percpu_down_read(sem, false); /* Unconditional memory barrier */ | ||||
| 	preempt_enable(); | ||||
| 	/*
 | ||||
| 	 * The barrier() from preempt_enable() prevents the compiler from | ||||
| 	 * bleeding the critical section out. | ||||
| 	 */ | ||||
| } | ||||
| 
 | ||||
| static inline int percpu_down_read_trylock(struct percpu_rw_semaphore *sem) | ||||
| { | ||||
| 	int ret = 1; | ||||
| 
 | ||||
| 	preempt_disable(); | ||||
| 	/*
 | ||||
| 	 * Same as in percpu_down_read(). | ||||
| 	 */ | ||||
| 	__this_cpu_inc(*sem->read_count); | ||||
| 	if (unlikely(!rcu_sync_is_idle(&sem->rss))) | ||||
| 		ret = __percpu_down_read(sem, true); /* Unconditional memory barrier */ | ||||
| 	preempt_enable(); | ||||
| 	/*
 | ||||
| 	 * The barrier() from preempt_enable() prevents the compiler from | ||||
| 	 * bleeding the critical section out. | ||||
| 	 */ | ||||
| 
 | ||||
| 	if (ret) | ||||
| 		rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 1, _RET_IP_); | ||||
| 
 | ||||
| 	return ret; | ||||
| } | ||||
| 
 | ||||
| static inline void percpu_up_read(struct percpu_rw_semaphore *sem) | ||||
| { | ||||
| 	/*
 | ||||
| 	 * The barrier() in preempt_disable() prevents the compiler from | ||||
| 	 * bleeding the critical section out. | ||||
| 	 */ | ||||
| 	preempt_disable(); | ||||
| 	/*
 | ||||
| 	 * Same as in percpu_down_read(). | ||||
| 	 */ | ||||
| 	if (likely(rcu_sync_is_idle(&sem->rss))) | ||||
| 		__this_cpu_dec(*sem->read_count); | ||||
| 	else | ||||
| 		__percpu_up_read(sem); /* Unconditional memory barrier */ | ||||
| 	preempt_enable(); | ||||
| 
 | ||||
| 	rwsem_release(&sem->rw_sem.dep_map, 1, _RET_IP_); | ||||
| } | ||||
| 
 | ||||
| extern void percpu_down_write(struct percpu_rw_semaphore *); | ||||
| extern void percpu_up_write(struct percpu_rw_semaphore *); | ||||
| 
 | ||||
| extern int __percpu_init_rwsem(struct percpu_rw_semaphore *, | ||||
| 				const char *, struct lock_class_key *); | ||||
| 
 | ||||
| extern void percpu_free_rwsem(struct percpu_rw_semaphore *); | ||||
| 
 | ||||
| #define percpu_init_rwsem(brw)	\ | ||||
| #define percpu_init_rwsem(sem)					\ | ||||
| ({								\ | ||||
| 	static struct lock_class_key rwsem_key;			\ | ||||
| 	__percpu_init_rwsem(brw, #brw, &rwsem_key);		\ | ||||
| 	__percpu_init_rwsem(sem, #sem, &rwsem_key);		\ | ||||
| }) | ||||
| 
 | ||||
| 
 | ||||
| #define percpu_rwsem_is_held(sem) lockdep_is_held(&(sem)->rw_sem) | ||||
| 
 | ||||
| static inline void percpu_rwsem_release(struct percpu_rw_semaphore *sem, | ||||
|  |  | |||
|  | @ -8,152 +8,186 @@ | |||
| #include <linux/sched.h> | ||||
| #include <linux/errno.h> | ||||
| 
 | ||||
| int __percpu_init_rwsem(struct percpu_rw_semaphore *brw, | ||||
| int __percpu_init_rwsem(struct percpu_rw_semaphore *sem, | ||||
| 			const char *name, struct lock_class_key *rwsem_key) | ||||
| { | ||||
| 	brw->fast_read_ctr = alloc_percpu(int); | ||||
| 	if (unlikely(!brw->fast_read_ctr)) | ||||
| 	sem->read_count = alloc_percpu(int); | ||||
| 	if (unlikely(!sem->read_count)) | ||||
| 		return -ENOMEM; | ||||
| 
 | ||||
| 	/* ->rw_sem represents the whole percpu_rw_semaphore for lockdep */ | ||||
| 	__init_rwsem(&brw->rw_sem, name, rwsem_key); | ||||
| 	rcu_sync_init(&brw->rss, RCU_SCHED_SYNC); | ||||
| 	atomic_set(&brw->slow_read_ctr, 0); | ||||
| 	init_waitqueue_head(&brw->write_waitq); | ||||
| 	rcu_sync_init(&sem->rss, RCU_SCHED_SYNC); | ||||
| 	__init_rwsem(&sem->rw_sem, name, rwsem_key); | ||||
| 	init_waitqueue_head(&sem->writer); | ||||
| 	sem->readers_block = 0; | ||||
| 	return 0; | ||||
| } | ||||
| EXPORT_SYMBOL_GPL(__percpu_init_rwsem); | ||||
| 
 | ||||
| void percpu_free_rwsem(struct percpu_rw_semaphore *brw) | ||||
| void percpu_free_rwsem(struct percpu_rw_semaphore *sem) | ||||
| { | ||||
| 	/*
 | ||||
| 	 * XXX: temporary kludge. The error path in alloc_super() | ||||
| 	 * assumes that percpu_free_rwsem() is safe after kzalloc(). | ||||
| 	 */ | ||||
| 	if (!brw->fast_read_ctr) | ||||
| 	if (!sem->read_count) | ||||
| 		return; | ||||
| 
 | ||||
| 	rcu_sync_dtor(&brw->rss); | ||||
| 	free_percpu(brw->fast_read_ctr); | ||||
| 	brw->fast_read_ctr = NULL; /* catch use after free bugs */ | ||||
| 	rcu_sync_dtor(&sem->rss); | ||||
| 	free_percpu(sem->read_count); | ||||
| 	sem->read_count = NULL; /* catch use after free bugs */ | ||||
| } | ||||
| EXPORT_SYMBOL_GPL(percpu_free_rwsem); | ||||
| 
 | ||||
| /*
 | ||||
|  * This is the fast-path for down_read/up_read. If it succeeds we rely | ||||
|  * on the barriers provided by rcu_sync_enter/exit; see the comments in | ||||
|  * percpu_down_write() and percpu_up_write(). | ||||
|  * | ||||
|  * If this helper fails the callers rely on the normal rw_semaphore and | ||||
|  * atomic_dec_and_test(), so in this case we have the necessary barriers. | ||||
|  */ | ||||
| static bool update_fast_ctr(struct percpu_rw_semaphore *brw, unsigned int val) | ||||
| { | ||||
| 	bool success; | ||||
| 
 | ||||
| 	preempt_disable(); | ||||
| 	success = rcu_sync_is_idle(&brw->rss); | ||||
| 	if (likely(success)) | ||||
| 		__this_cpu_add(*brw->fast_read_ctr, val); | ||||
| 	preempt_enable(); | ||||
| 
 | ||||
| 	return success; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Like the normal down_read() this is not recursive, the writer can | ||||
|  * come after the first percpu_down_read() and create the deadlock. | ||||
|  * | ||||
|  * Note: returns with lock_is_held(brw->rw_sem) == T for lockdep, | ||||
|  * percpu_up_read() does rwsem_release(). This pairs with the usage | ||||
|  * of ->rw_sem in percpu_down/up_write(). | ||||
|  */ | ||||
| void percpu_down_read(struct percpu_rw_semaphore *brw) | ||||
| { | ||||
| 	might_sleep(); | ||||
| 	rwsem_acquire_read(&brw->rw_sem.dep_map, 0, 0, _RET_IP_); | ||||
| 
 | ||||
| 	if (likely(update_fast_ctr(brw, +1))) | ||||
| 		return; | ||||
| 
 | ||||
| 	/* Avoid rwsem_acquire_read() and rwsem_release() */ | ||||
| 	__down_read(&brw->rw_sem); | ||||
| 	atomic_inc(&brw->slow_read_ctr); | ||||
| 	__up_read(&brw->rw_sem); | ||||
| } | ||||
| EXPORT_SYMBOL_GPL(percpu_down_read); | ||||
| 
 | ||||
| int percpu_down_read_trylock(struct percpu_rw_semaphore *brw) | ||||
| { | ||||
| 	if (unlikely(!update_fast_ctr(brw, +1))) { | ||||
| 		if (!__down_read_trylock(&brw->rw_sem)) | ||||
| 			return 0; | ||||
| 		atomic_inc(&brw->slow_read_ctr); | ||||
| 		__up_read(&brw->rw_sem); | ||||
| 	} | ||||
| 
 | ||||
| 	rwsem_acquire_read(&brw->rw_sem.dep_map, 0, 1, _RET_IP_); | ||||
| 	return 1; | ||||
| } | ||||
| 
 | ||||
| void percpu_up_read(struct percpu_rw_semaphore *brw) | ||||
| { | ||||
| 	rwsem_release(&brw->rw_sem.dep_map, 1, _RET_IP_); | ||||
| 
 | ||||
| 	if (likely(update_fast_ctr(brw, -1))) | ||||
| 		return; | ||||
| 
 | ||||
| 	/* false-positive is possible but harmless */ | ||||
| 	if (atomic_dec_and_test(&brw->slow_read_ctr)) | ||||
| 		wake_up_all(&brw->write_waitq); | ||||
| } | ||||
| EXPORT_SYMBOL_GPL(percpu_up_read); | ||||
| 
 | ||||
| static int clear_fast_ctr(struct percpu_rw_semaphore *brw) | ||||
| { | ||||
| 	unsigned int sum = 0; | ||||
| 	int cpu; | ||||
| 
 | ||||
| 	for_each_possible_cpu(cpu) { | ||||
| 		sum += per_cpu(*brw->fast_read_ctr, cpu); | ||||
| 		per_cpu(*brw->fast_read_ctr, cpu) = 0; | ||||
| 	} | ||||
| 
 | ||||
| 	return sum; | ||||
| } | ||||
| 
 | ||||
| void percpu_down_write(struct percpu_rw_semaphore *brw) | ||||
| int __percpu_down_read(struct percpu_rw_semaphore *sem, int try) | ||||
| { | ||||
| 	/*
 | ||||
| 	 * Make rcu_sync_is_idle() == F and thus disable the fast-path in | ||||
| 	 * percpu_down_read() and percpu_up_read(), and wait for gp pass. | ||||
| 	 * Due to having preemption disabled the decrement happens on | ||||
| 	 * the same CPU as the increment, avoiding the | ||||
| 	 * increment-on-one-CPU-and-decrement-on-another problem. | ||||
| 	 * | ||||
| 	 * The latter synchronises us with the preceding readers which used | ||||
| 	 * the fast-past, so we can not miss the result of __this_cpu_add() | ||||
| 	 * or anything else inside their criticial sections. | ||||
| 	 * If the reader misses the writer's assignment of readers_block, then | ||||
| 	 * the writer is guaranteed to see the reader's increment. | ||||
| 	 * | ||||
| 	 * Conversely, any readers that increment their sem->read_count after | ||||
| 	 * the writer looks are guaranteed to see the readers_block value, | ||||
| 	 * which in turn means that they are guaranteed to immediately | ||||
| 	 * decrement their sem->read_count, so that it doesn't matter that the | ||||
| 	 * writer missed them. | ||||
| 	 */ | ||||
| 	rcu_sync_enter(&brw->rss); | ||||
| 
 | ||||
| 	/* exclude other writers, and block the new readers completely */ | ||||
| 	down_write(&brw->rw_sem); | ||||
| 	smp_mb(); /* A matches D */ | ||||
| 
 | ||||
| 	/* nobody can use fast_read_ctr, move its sum into slow_read_ctr */ | ||||
| 	atomic_add(clear_fast_ctr(brw), &brw->slow_read_ctr); | ||||
| 	/*
 | ||||
| 	 * If !readers_block the critical section starts here, matched by the | ||||
| 	 * release in percpu_up_write(). | ||||
| 	 */ | ||||
| 	if (likely(!smp_load_acquire(&sem->readers_block))) | ||||
| 		return 1; | ||||
| 
 | ||||
| 	/* wait for all readers to complete their percpu_up_read() */ | ||||
| 	wait_event(brw->write_waitq, !atomic_read(&brw->slow_read_ctr)); | ||||
| 	/*
 | ||||
| 	 * Per the above comment; we still have preemption disabled and | ||||
| 	 * will thus decrement on the same CPU as we incremented. | ||||
| 	 */ | ||||
| 	__percpu_up_read(sem); | ||||
| 
 | ||||
| 	if (try) | ||||
| 		return 0; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * We either call schedule() in the wait, or we'll fall through | ||||
| 	 * and reschedule on the preempt_enable() in percpu_down_read(). | ||||
| 	 */ | ||||
| 	preempt_enable_no_resched(); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Avoid lockdep for the down/up_read() we already have them. | ||||
| 	 */ | ||||
| 	__down_read(&sem->rw_sem); | ||||
| 	this_cpu_inc(*sem->read_count); | ||||
| 	__up_read(&sem->rw_sem); | ||||
| 
 | ||||
| 	preempt_disable(); | ||||
| 	return 1; | ||||
| } | ||||
| EXPORT_SYMBOL_GPL(__percpu_down_read); | ||||
| 
 | ||||
| void __percpu_up_read(struct percpu_rw_semaphore *sem) | ||||
| { | ||||
| 	smp_mb(); /* B matches C */ | ||||
| 	/*
 | ||||
| 	 * In other words, if they see our decrement (presumably to aggregate | ||||
| 	 * zero, as that is the only time it matters) they will also see our | ||||
| 	 * critical section. | ||||
| 	 */ | ||||
| 	__this_cpu_dec(*sem->read_count); | ||||
| 
 | ||||
| 	/* Prod writer to recheck readers_active */ | ||||
| 	wake_up(&sem->writer); | ||||
| } | ||||
| EXPORT_SYMBOL_GPL(__percpu_up_read); | ||||
| 
 | ||||
| #define per_cpu_sum(var)						\ | ||||
| ({									\ | ||||
| 	typeof(var) __sum = 0;						\ | ||||
| 	int cpu;							\ | ||||
| 	compiletime_assert_atomic_type(__sum);				\ | ||||
| 	for_each_possible_cpu(cpu)					\ | ||||
| 		__sum += per_cpu(var, cpu);				\ | ||||
| 	__sum;								\ | ||||
| }) | ||||
| 
 | ||||
| /*
 | ||||
|  * Return true if the modular sum of the sem->read_count per-CPU variable is | ||||
|  * zero.  If this sum is zero, then it is stable due to the fact that if any | ||||
|  * newly arriving readers increment a given counter, they will immediately | ||||
|  * decrement that same counter. | ||||
|  */ | ||||
| static bool readers_active_check(struct percpu_rw_semaphore *sem) | ||||
| { | ||||
| 	if (per_cpu_sum(*sem->read_count) != 0) | ||||
| 		return false; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * If we observed the decrement; ensure we see the entire critical | ||||
| 	 * section. | ||||
| 	 */ | ||||
| 
 | ||||
| 	smp_mb(); /* C matches B */ | ||||
| 
 | ||||
| 	return true; | ||||
| } | ||||
| 
 | ||||
| void percpu_down_write(struct percpu_rw_semaphore *sem) | ||||
| { | ||||
| 	/* Notify readers to take the slow path. */ | ||||
| 	rcu_sync_enter(&sem->rss); | ||||
| 
 | ||||
| 	down_write(&sem->rw_sem); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Notify new readers to block; up until now, and thus throughout the | ||||
| 	 * longish rcu_sync_enter() above, new readers could still come in. | ||||
| 	 */ | ||||
| 	WRITE_ONCE(sem->readers_block, 1); | ||||
| 
 | ||||
| 	smp_mb(); /* D matches A */ | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * If they don't see our writer of readers_block, then we are | ||||
| 	 * guaranteed to see their sem->read_count increment, and therefore | ||||
| 	 * will wait for them. | ||||
| 	 */ | ||||
| 
 | ||||
| 	/* Wait for all now active readers to complete. */ | ||||
| 	wait_event(sem->writer, readers_active_check(sem)); | ||||
| } | ||||
| EXPORT_SYMBOL_GPL(percpu_down_write); | ||||
| 
 | ||||
| void percpu_up_write(struct percpu_rw_semaphore *brw) | ||||
| void percpu_up_write(struct percpu_rw_semaphore *sem) | ||||
| { | ||||
| 	/* release the lock, but the readers can't use the fast-path */ | ||||
| 	up_write(&brw->rw_sem); | ||||
| 	/*
 | ||||
| 	 * Enable the fast-path in percpu_down_read() and percpu_up_read() | ||||
| 	 * but only after another gp pass; this adds the necessary barrier | ||||
| 	 * to ensure the reader can't miss the changes done by us. | ||||
| 	 * Signal the writer is done, no fast path yet. | ||||
| 	 * | ||||
| 	 * One reason that we cannot just immediately flip to readers_fast is | ||||
| 	 * that new readers might fail to see the results of this writer's | ||||
| 	 * critical section. | ||||
| 	 * | ||||
| 	 * Therefore we force it through the slow path which guarantees an | ||||
| 	 * acquire and thereby guarantees the critical section's consistency. | ||||
| 	 */ | ||||
| 	rcu_sync_exit(&brw->rss); | ||||
| 	smp_store_release(&sem->readers_block, 0); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Release the write lock, this will allow readers back in the game. | ||||
| 	 */ | ||||
| 	up_write(&sem->rw_sem); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Once this completes (at least one RCU-sched grace period hence) the | ||||
| 	 * reader fast path will be available again. Safe to use outside the | ||||
| 	 * exclusive write lock because its counting. | ||||
| 	 */ | ||||
| 	rcu_sync_exit(&sem->rss); | ||||
| } | ||||
| EXPORT_SYMBOL_GPL(percpu_up_write); | ||||
|  |  | |||
|  | @ -68,6 +68,8 @@ void rcu_sync_lockdep_assert(struct rcu_sync *rsp) | |||
| 	RCU_LOCKDEP_WARN(!gp_ops[rsp->gp_type].held(), | ||||
| 			 "suspicious rcu_sync_is_idle() usage"); | ||||
| } | ||||
| 
 | ||||
| EXPORT_SYMBOL_GPL(rcu_sync_lockdep_assert); | ||||
| #endif | ||||
| 
 | ||||
| /**
 | ||||
|  |  | |||
		Loading…
	
		Reference in a new issue
	
	 Peter Zijlstra
						Peter Zijlstra