forked from mirrors/linux
		
	[PKT_SCHED]: Generic RED layer
Extracts the RED algorithm from sch_red.c and puts it into include/net/red.h for use by other RED based modules. The statistics are extended to be more fine grained in order to differ between probability/forced marks/drops. We now reset the average queue length when setting new parameters, leaving it might result in an unreasonable qavg for a while depending on the value of W. Signed-off-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
This commit is contained in:
		
							parent
							
								
									1758ee0ea2
								
							
						
					
					
						commit
						a783474591
					
				
					 1 changed files with 325 additions and 0 deletions
				
			
		
							
								
								
									
										325
									
								
								include/net/red.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										325
									
								
								include/net/red.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,325 @@ | |||
| #ifndef __NET_SCHED_RED_H | ||||
| #define __NET_SCHED_RED_H | ||||
| 
 | ||||
| #include <linux/config.h> | ||||
| #include <linux/types.h> | ||||
| #include <net/pkt_sched.h> | ||||
| #include <net/inet_ecn.h> | ||||
| #include <net/dsfield.h> | ||||
| 
 | ||||
| /*	Random Early Detection (RED) algorithm.
 | ||||
| 	======================================= | ||||
| 
 | ||||
| 	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | ||||
| 	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | ||||
| 
 | ||||
| 	This file codes a "divisionless" version of RED algorithm | ||||
| 	as written down in Fig.17 of the paper. | ||||
| 
 | ||||
| 	Short description. | ||||
| 	------------------ | ||||
| 
 | ||||
| 	When a new packet arrives we calculate the average queue length: | ||||
| 
 | ||||
| 	avg = (1-W)*avg + W*current_queue_len, | ||||
| 
 | ||||
| 	W is the filter time constant (chosen as 2^(-Wlog)), it controls | ||||
| 	the inertia of the algorithm. To allow larger bursts, W should be | ||||
| 	decreased. | ||||
| 
 | ||||
| 	if (avg > th_max) -> packet marked (dropped). | ||||
| 	if (avg < th_min) -> packet passes. | ||||
| 	if (th_min < avg < th_max) we calculate probability: | ||||
| 
 | ||||
| 	Pb = max_P * (avg - th_min)/(th_max-th_min) | ||||
| 
 | ||||
| 	and mark (drop) packet with this probability. | ||||
| 	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | ||||
| 	max_P should be small (not 1), usually 0.01..0.02 is good value. | ||||
| 
 | ||||
| 	max_P is chosen as a number, so that max_P/(th_max-th_min) | ||||
| 	is a negative power of two in order arithmetics to contain | ||||
| 	only shifts. | ||||
| 
 | ||||
| 
 | ||||
| 	Parameters, settable by user: | ||||
| 	----------------------------- | ||||
| 
 | ||||
| 	qth_min		- bytes (should be < qth_max/2) | ||||
| 	qth_max		- bytes (should be at least 2*qth_min and less limit) | ||||
| 	Wlog	       	- bits (<32) log(1/W). | ||||
| 	Plog	       	- bits (<32) | ||||
| 
 | ||||
| 	Plog is related to max_P by formula: | ||||
| 
 | ||||
| 	max_P = (qth_max-qth_min)/2^Plog; | ||||
| 
 | ||||
| 	F.e. if qth_max=128K and qth_min=32K, then Plog=22 | ||||
| 	corresponds to max_P=0.02 | ||||
| 
 | ||||
| 	Scell_log | ||||
| 	Stab | ||||
| 
 | ||||
| 	Lookup table for log((1-W)^(t/t_ave). | ||||
| 
 | ||||
| 
 | ||||
| 	NOTES: | ||||
| 
 | ||||
| 	Upper bound on W. | ||||
| 	----------------- | ||||
| 
 | ||||
| 	If you want to allow bursts of L packets of size S, | ||||
| 	you should choose W: | ||||
| 
 | ||||
| 	L + 1 - th_min/S < (1-(1-W)^L)/W | ||||
| 
 | ||||
| 	th_min/S = 32         th_min/S = 4 | ||||
| 
 | ||||
| 	log(W)	L | ||||
| 	-1	33 | ||||
| 	-2	35 | ||||
| 	-3	39 | ||||
| 	-4	46 | ||||
| 	-5	57 | ||||
| 	-6	75 | ||||
| 	-7	101 | ||||
| 	-8	135 | ||||
| 	-9	190 | ||||
| 	etc. | ||||
|  */ | ||||
| 
 | ||||
| #define RED_STAB_SIZE	256 | ||||
| #define RED_STAB_MASK	(RED_STAB_SIZE - 1) | ||||
| 
 | ||||
| struct red_stats | ||||
| { | ||||
| 	u32		prob_drop;	/* Early probability drops */ | ||||
| 	u32		prob_mark;	/* Early probability marks */ | ||||
| 	u32		forced_drop;	/* Forced drops, qavg > max_thresh */ | ||||
| 	u32		forced_mark;	/* Forced marks, qavg > max_thresh */ | ||||
| 	u32		pdrop;          /* Drops due to queue limits */ | ||||
| 	u32		other;          /* Drops due to drop() calls */ | ||||
| 	u32		backlog; | ||||
| }; | ||||
| 
 | ||||
| struct red_parms | ||||
| { | ||||
| 	/* Parameters */ | ||||
| 	u32		qth_min;	/* Min avg length threshold: A scaled */ | ||||
| 	u32		qth_max;	/* Max avg length threshold: A scaled */ | ||||
| 	u32		Scell_max; | ||||
| 	u32		Rmask;		/* Cached random mask, see red_rmask */ | ||||
| 	u8		Scell_log; | ||||
| 	u8		Wlog;		/* log(W)		*/ | ||||
| 	u8		Plog;		/* random number bits	*/ | ||||
| 	u8		Stab[RED_STAB_SIZE]; | ||||
| 
 | ||||
| 	/* Variables */ | ||||
| 	int		qcount;		/* Number of packets since last random
 | ||||
| 					   number generation */ | ||||
| 	u32		qR;		/* Cached random number */ | ||||
| 
 | ||||
| 	unsigned long	qavg;		/* Average queue length: A scaled */ | ||||
| 	psched_time_t	qidlestart;	/* Start of current idle period */ | ||||
| }; | ||||
| 
 | ||||
| static inline u32 red_rmask(u8 Plog) | ||||
| { | ||||
| 	return Plog < 32 ? ((1 << Plog) - 1) : ~0UL; | ||||
| } | ||||
| 
 | ||||
| static inline void red_set_parms(struct red_parms *p, | ||||
| 				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, | ||||
| 				 u8 Scell_log, u8 *stab) | ||||
| { | ||||
| 	/* Reset average queue length, the value is strictly bound
 | ||||
| 	 * to the parameters below, reseting hurts a bit but leaving | ||||
| 	 * it might result in an unreasonable qavg for a while. --TGR | ||||
| 	 */ | ||||
| 	p->qavg		= 0; | ||||
| 
 | ||||
| 	p->qcount	= -1; | ||||
| 	p->qth_min	= qth_min << Wlog; | ||||
| 	p->qth_max	= qth_max << Wlog; | ||||
| 	p->Wlog		= Wlog; | ||||
| 	p->Plog		= Plog; | ||||
| 	p->Rmask	= red_rmask(Plog); | ||||
| 	p->Scell_log	= Scell_log; | ||||
| 	p->Scell_max	= (255 << Scell_log); | ||||
| 
 | ||||
| 	memcpy(p->Stab, stab, sizeof(p->Stab)); | ||||
| } | ||||
| 
 | ||||
| static inline int red_is_idling(struct red_parms *p) | ||||
| { | ||||
| 	return !PSCHED_IS_PASTPERFECT(p->qidlestart); | ||||
| } | ||||
| 
 | ||||
| static inline void red_start_of_idle_period(struct red_parms *p) | ||||
| { | ||||
| 	PSCHED_GET_TIME(p->qidlestart); | ||||
| } | ||||
| 
 | ||||
| static inline void red_end_of_idle_period(struct red_parms *p) | ||||
| { | ||||
| 	PSCHED_SET_PASTPERFECT(p->qidlestart); | ||||
| } | ||||
| 
 | ||||
| static inline void red_restart(struct red_parms *p) | ||||
| { | ||||
| 	red_end_of_idle_period(p); | ||||
| 	p->qavg = 0; | ||||
| 	p->qcount = -1; | ||||
| } | ||||
| 
 | ||||
| static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p) | ||||
| { | ||||
| 	psched_time_t now; | ||||
| 	long us_idle; | ||||
| 	int  shift; | ||||
| 
 | ||||
| 	PSCHED_GET_TIME(now); | ||||
| 	us_idle = PSCHED_TDIFF_SAFE(now, p->qidlestart, p->Scell_max); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * The problem: ideally, average length queue recalcultion should | ||||
| 	 * be done over constant clock intervals. This is too expensive, so | ||||
| 	 * that the calculation is driven by outgoing packets. | ||||
| 	 * When the queue is idle we have to model this clock by hand. | ||||
| 	 * | ||||
| 	 * SF+VJ proposed to "generate": | ||||
| 	 * | ||||
| 	 *	m = idletime / (average_pkt_size / bandwidth) | ||||
| 	 * | ||||
| 	 * dummy packets as a burst after idle time, i.e. | ||||
| 	 * | ||||
| 	 * 	p->qavg *= (1-W)^m | ||||
| 	 * | ||||
| 	 * This is an apparently overcomplicated solution (f.e. we have to | ||||
| 	 * precompute a table to make this calculation in reasonable time) | ||||
| 	 * I believe that a simpler model may be used here, | ||||
| 	 * but it is field for experiments. | ||||
| 	 */ | ||||
| 
 | ||||
| 	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; | ||||
| 
 | ||||
| 	if (shift) | ||||
| 		return p->qavg >> shift; | ||||
| 	else { | ||||
| 		/* Approximate initial part of exponent with linear function:
 | ||||
| 		 * | ||||
| 		 * 	(1-W)^m ~= 1-mW + ... | ||||
| 		 * | ||||
| 		 * Seems, it is the best solution to | ||||
| 		 * problem of too coarse exponent tabulation. | ||||
| 		 */ | ||||
| 		us_idle = (p->qavg * us_idle) >> p->Scell_log; | ||||
| 
 | ||||
| 		if (us_idle < (p->qavg >> 1)) | ||||
| 			return p->qavg - us_idle; | ||||
| 		else | ||||
| 			return p->qavg >> 1; | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p, | ||||
| 						       unsigned int backlog) | ||||
| { | ||||
| 	/*
 | ||||
| 	 * NOTE: p->qavg is fixed point number with point at Wlog. | ||||
| 	 * The formula below is equvalent to floating point | ||||
| 	 * version: | ||||
| 	 * | ||||
| 	 * 	qavg = qavg*(1-W) + backlog*W; | ||||
| 	 * | ||||
| 	 * --ANK (980924) | ||||
| 	 */ | ||||
| 	return p->qavg + (backlog - (p->qavg >> p->Wlog)); | ||||
| } | ||||
| 
 | ||||
| static inline unsigned long red_calc_qavg(struct red_parms *p, | ||||
| 					  unsigned int backlog) | ||||
| { | ||||
| 	if (!red_is_idling(p)) | ||||
| 		return red_calc_qavg_no_idle_time(p, backlog); | ||||
| 	else | ||||
| 		return red_calc_qavg_from_idle_time(p); | ||||
| } | ||||
| 
 | ||||
| static inline u32 red_random(struct red_parms *p) | ||||
| { | ||||
| 	return net_random() & p->Rmask; | ||||
| } | ||||
| 
 | ||||
| static inline int red_mark_probability(struct red_parms *p, unsigned long qavg) | ||||
| { | ||||
| 	/* The formula used below causes questions.
 | ||||
| 
 | ||||
| 	   OK. qR is random number in the interval 0..Rmask | ||||
| 	   i.e. 0..(2^Plog). If we used floating point | ||||
| 	   arithmetics, it would be: (2^Plog)*rnd_num, | ||||
| 	   where rnd_num is less 1. | ||||
| 
 | ||||
| 	   Taking into account, that qavg have fixed | ||||
| 	   point at Wlog, and Plog is related to max_P by | ||||
| 	   max_P = (qth_max-qth_min)/2^Plog; two lines | ||||
| 	   below have the following floating point equivalent: | ||||
| 
 | ||||
| 	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount | ||||
| 
 | ||||
| 	   Any questions? --ANK (980924) | ||||
| 	 */ | ||||
| 	return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR); | ||||
| } | ||||
| 
 | ||||
| enum { | ||||
| 	RED_BELOW_MIN_THRESH, | ||||
| 	RED_BETWEEN_TRESH, | ||||
| 	RED_ABOVE_MAX_TRESH, | ||||
| }; | ||||
| 
 | ||||
| static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg) | ||||
| { | ||||
| 	if (qavg < p->qth_min) | ||||
| 		return RED_BELOW_MIN_THRESH; | ||||
| 	else if (qavg >= p->qth_max) | ||||
| 		return RED_ABOVE_MAX_TRESH; | ||||
| 	else | ||||
| 		return RED_BETWEEN_TRESH; | ||||
| } | ||||
| 
 | ||||
| enum { | ||||
| 	RED_DONT_MARK, | ||||
| 	RED_PROB_MARK, | ||||
| 	RED_HARD_MARK, | ||||
| }; | ||||
| 
 | ||||
| static inline int red_action(struct red_parms *p, unsigned long qavg) | ||||
| { | ||||
| 	switch (red_cmp_thresh(p, qavg)) { | ||||
| 		case RED_BELOW_MIN_THRESH: | ||||
| 			p->qcount = -1; | ||||
| 			return RED_DONT_MARK; | ||||
| 
 | ||||
| 		case RED_BETWEEN_TRESH: | ||||
| 			if (++p->qcount) { | ||||
| 				if (red_mark_probability(p, qavg)) { | ||||
| 					p->qcount = 0; | ||||
| 					p->qR = red_random(p); | ||||
| 					return RED_PROB_MARK; | ||||
| 				} | ||||
| 			} else | ||||
| 				p->qR = red_random(p); | ||||
| 
 | ||||
| 			return RED_DONT_MARK; | ||||
| 
 | ||||
| 		case RED_ABOVE_MAX_TRESH: | ||||
| 			p->qcount = -1; | ||||
| 			return RED_HARD_MARK; | ||||
| 	} | ||||
| 
 | ||||
| 	BUG(); | ||||
| 	return RED_DONT_MARK; | ||||
| } | ||||
| 
 | ||||
| #endif | ||||
		Loading…
	
		Reference in a new issue