forked from mirrors/linux
		
	bpf: Implement verifier support for validation of async callbacks.
bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on PTR_TO_FUNC infra in the verifier to validate addresses to subprograms and pass them into the helpers as function callbacks. In case of bpf_for_each_map_elem() the callback is invoked synchronously and the verifier treats it as a normal subprogram call by adding another bpf_func_state and new frame in __check_func_call(). bpf_timer_set_callback() doesn't invoke the callback directly. The subprogram will be called asynchronously from bpf_timer_cb(). Teach the verifier to validate such async callbacks as special kind of jump by pushing verifier state into stack and let pop_stack() process it. Special care needs to be taken during state pruning. The call insn doing bpf_timer_set_callback has to be a prune_point. Otherwise short timer callbacks might not have prune points in front of bpf_timer_set_callback() which means is_state_visited() will be called after this call insn is processed in __check_func_call(). Which means that another async_cb state will be pushed to be walked later and the verifier will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit. Since push_async_cb() looks like another push_stack() branch the infinite loop detection will trigger false positive. To recognize this case mark such states as in_async_callback_fn. To distinguish infinite loop in async callback vs the same callback called with different arguments for different map and timer add async_entry_cnt to bpf_func_state. Enforce return zero from async callbacks. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-9-alexei.starovoitov@gmail.com
This commit is contained in:
		
							parent
							
								
									86fc6ee6e2
								
							
						
					
					
						commit
						bfc6bb74e4
					
				
					 3 changed files with 131 additions and 9 deletions
				
			
		|  | @ -208,12 +208,19 @@ struct bpf_func_state { | |||
| 	 * zero == main subprog | ||||
| 	 */ | ||||
| 	u32 subprogno; | ||||
| 	/* Every bpf_timer_start will increment async_entry_cnt.
 | ||||
| 	 * It's used to distinguish: | ||||
| 	 * void foo(void) { for(;;); } | ||||
| 	 * void foo(void) { bpf_timer_set_callback(,foo); } | ||||
| 	 */ | ||||
| 	u32 async_entry_cnt; | ||||
| 	bool in_callback_fn; | ||||
| 	bool in_async_callback_fn; | ||||
| 
 | ||||
| 	/* The following fields should be last. See copy_func_state() */ | ||||
| 	int acquired_refs; | ||||
| 	struct bpf_reference_state *refs; | ||||
| 	int allocated_stack; | ||||
| 	bool in_callback_fn; | ||||
| 	struct bpf_stack_state *stack; | ||||
| }; | ||||
| 
 | ||||
|  |  | |||
|  | @ -1043,7 +1043,6 @@ static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) | |||
| 	void *callback_fn; | ||||
| 	void *key; | ||||
| 	u32 idx; | ||||
| 	int ret; | ||||
| 
 | ||||
| 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); | ||||
| 	if (!callback_fn) | ||||
|  | @ -1066,10 +1065,9 @@ static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) | |||
| 		key = value - round_up(map->key_size, 8); | ||||
| 	} | ||||
| 
 | ||||
| 	ret = BPF_CAST_CALL(callback_fn)((u64)(long)map, | ||||
| 					 (u64)(long)key, | ||||
| 					 (u64)(long)value, 0, 0); | ||||
| 	WARN_ON(ret != 0); /* Next patch moves this check into the verifier */ | ||||
| 	BPF_CAST_CALL(callback_fn)((u64)(long)map, (u64)(long)key, | ||||
| 				   (u64)(long)value, 0, 0); | ||||
| 	/* The verifier checked that return value is zero. */ | ||||
| 
 | ||||
| 	this_cpu_write(hrtimer_running, NULL); | ||||
| out: | ||||
|  |  | |||
|  | @ -735,6 +735,10 @@ static void print_verifier_state(struct bpf_verifier_env *env, | |||
| 			if (state->refs[i].id) | ||||
| 				verbose(env, ",%d", state->refs[i].id); | ||||
| 	} | ||||
| 	if (state->in_callback_fn) | ||||
| 		verbose(env, " cb"); | ||||
| 	if (state->in_async_callback_fn) | ||||
| 		verbose(env, " async_cb"); | ||||
| 	verbose(env, "\n"); | ||||
| } | ||||
| 
 | ||||
|  | @ -1527,6 +1531,54 @@ static void init_func_state(struct bpf_verifier_env *env, | |||
| 	init_reg_state(env, state); | ||||
| } | ||||
| 
 | ||||
| /* Similar to push_stack(), but for async callbacks */ | ||||
| static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, | ||||
| 						int insn_idx, int prev_insn_idx, | ||||
| 						int subprog) | ||||
| { | ||||
| 	struct bpf_verifier_stack_elem *elem; | ||||
| 	struct bpf_func_state *frame; | ||||
| 
 | ||||
| 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); | ||||
| 	if (!elem) | ||||
| 		goto err; | ||||
| 
 | ||||
| 	elem->insn_idx = insn_idx; | ||||
| 	elem->prev_insn_idx = prev_insn_idx; | ||||
| 	elem->next = env->head; | ||||
| 	elem->log_pos = env->log.len_used; | ||||
| 	env->head = elem; | ||||
| 	env->stack_size++; | ||||
| 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { | ||||
| 		verbose(env, | ||||
| 			"The sequence of %d jumps is too complex for async cb.\n", | ||||
| 			env->stack_size); | ||||
| 		goto err; | ||||
| 	} | ||||
| 	/* Unlike push_stack() do not copy_verifier_state().
 | ||||
| 	 * The caller state doesn't matter. | ||||
| 	 * This is async callback. It starts in a fresh stack. | ||||
| 	 * Initialize it similar to do_check_common(). | ||||
| 	 */ | ||||
| 	elem->st.branches = 1; | ||||
| 	frame = kzalloc(sizeof(*frame), GFP_KERNEL); | ||||
| 	if (!frame) | ||||
| 		goto err; | ||||
| 	init_func_state(env, frame, | ||||
| 			BPF_MAIN_FUNC /* callsite */, | ||||
| 			0 /* frameno within this callchain */, | ||||
| 			subprog /* subprog number within this prog */); | ||||
| 	elem->st.frame[0] = frame; | ||||
| 	return &elem->st; | ||||
| err: | ||||
| 	free_verifier_state(env->cur_state, true); | ||||
| 	env->cur_state = NULL; | ||||
| 	/* pop all elements and return */ | ||||
| 	while (!pop_stack(env, NULL, NULL, false)); | ||||
| 	return NULL; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| enum reg_arg_type { | ||||
| 	SRC_OP,		/* register is used as source operand */ | ||||
| 	DST_OP,		/* register is used as destination operand */ | ||||
|  | @ -5704,6 +5756,30 @@ static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn | |||
| 		} | ||||
| 	} | ||||
| 
 | ||||
| 	if (insn->code == (BPF_JMP | BPF_CALL) && | ||||
| 	    insn->imm == BPF_FUNC_timer_set_callback) { | ||||
| 		struct bpf_verifier_state *async_cb; | ||||
| 
 | ||||
| 		/* there is no real recursion here. timer callbacks are async */ | ||||
| 		async_cb = push_async_cb(env, env->subprog_info[subprog].start, | ||||
| 					 *insn_idx, subprog); | ||||
| 		if (!async_cb) | ||||
| 			return -EFAULT; | ||||
| 		callee = async_cb->frame[0]; | ||||
| 		callee->async_entry_cnt = caller->async_entry_cnt + 1; | ||||
| 
 | ||||
| 		/* Convert bpf_timer_set_callback() args into timer callback args */ | ||||
| 		err = set_callee_state_cb(env, caller, callee, *insn_idx); | ||||
| 		if (err) | ||||
| 			return err; | ||||
| 
 | ||||
| 		clear_caller_saved_regs(env, caller->regs); | ||||
| 		mark_reg_unknown(env, caller->regs, BPF_REG_0); | ||||
| 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; | ||||
| 		/* continue with next insn after call */ | ||||
| 		return 0; | ||||
| 	} | ||||
| 
 | ||||
| 	callee = kzalloc(sizeof(*callee), GFP_KERNEL); | ||||
| 	if (!callee) | ||||
| 		return -ENOMEM; | ||||
|  | @ -5856,6 +5932,7 @@ static int set_timer_callback_state(struct bpf_verifier_env *env, | |||
| 	/* unused */ | ||||
| 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]); | ||||
| 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]); | ||||
| 	callee->in_async_callback_fn = true; | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
|  | @ -9224,7 +9301,8 @@ static int check_return_code(struct bpf_verifier_env *env) | |||
| 	struct tnum range = tnum_range(0, 1); | ||||
| 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog); | ||||
| 	int err; | ||||
| 	const bool is_subprog = env->cur_state->frame[0]->subprogno; | ||||
| 	struct bpf_func_state *frame = env->cur_state->frame[0]; | ||||
| 	const bool is_subprog = frame->subprogno; | ||||
| 
 | ||||
| 	/* LSM and struct_ops func-ptr's return type could be "void" */ | ||||
| 	if (!is_subprog && | ||||
|  | @ -9249,6 +9327,22 @@ static int check_return_code(struct bpf_verifier_env *env) | |||
| 	} | ||||
| 
 | ||||
| 	reg = cur_regs(env) + BPF_REG_0; | ||||
| 
 | ||||
| 	if (frame->in_async_callback_fn) { | ||||
| 		/* enforce return zero from async callbacks like timer */ | ||||
| 		if (reg->type != SCALAR_VALUE) { | ||||
| 			verbose(env, "In async callback the register R0 is not a known value (%s)\n", | ||||
| 				reg_type_str[reg->type]); | ||||
| 			return -EINVAL; | ||||
| 		} | ||||
| 
 | ||||
| 		if (!tnum_in(tnum_const(0), reg->var_off)) { | ||||
| 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); | ||||
| 			return -EINVAL; | ||||
| 		} | ||||
| 		return 0; | ||||
| 	} | ||||
| 
 | ||||
| 	if (is_subprog) { | ||||
| 		if (reg->type != SCALAR_VALUE) { | ||||
| 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", | ||||
|  | @ -9496,6 +9590,13 @@ static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) | |||
| 		return DONE_EXPLORING; | ||||
| 
 | ||||
| 	case BPF_CALL: | ||||
| 		if (insns[t].imm == BPF_FUNC_timer_set_callback) | ||||
| 			/* Mark this call insn to trigger is_state_visited() check
 | ||||
| 			 * before call itself is processed by __check_func_call(). | ||||
| 			 * Otherwise new async state will be pushed for further | ||||
| 			 * exploration. | ||||
| 			 */ | ||||
| 			init_explored_state(env, t); | ||||
| 		return visit_func_call_insn(t, insn_cnt, insns, env, | ||||
| 					    insns[t].src_reg == BPF_PSEUDO_CALL); | ||||
| 
 | ||||
|  | @ -10503,9 +10604,25 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) | |||
| 		states_cnt++; | ||||
| 		if (sl->state.insn_idx != insn_idx) | ||||
| 			goto next; | ||||
| 
 | ||||
| 		if (sl->state.branches) { | ||||
| 			if (states_maybe_looping(&sl->state, cur) && | ||||
| 			    states_equal(env, &sl->state, cur)) { | ||||
| 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; | ||||
| 
 | ||||
| 			if (frame->in_async_callback_fn && | ||||
| 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { | ||||
| 				/* Different async_entry_cnt means that the verifier is
 | ||||
| 				 * processing another entry into async callback. | ||||
| 				 * Seeing the same state is not an indication of infinite | ||||
| 				 * loop or infinite recursion. | ||||
| 				 * But finding the same state doesn't mean that it's safe | ||||
| 				 * to stop processing the current state. The previous state | ||||
| 				 * hasn't yet reached bpf_exit, since state.branches > 0. | ||||
| 				 * Checking in_async_callback_fn alone is not enough either. | ||||
| 				 * Since the verifier still needs to catch infinite loops | ||||
| 				 * inside async callbacks. | ||||
| 				 */ | ||||
| 			} else if (states_maybe_looping(&sl->state, cur) && | ||||
| 				   states_equal(env, &sl->state, cur)) { | ||||
| 				verbose_linfo(env, insn_idx, "; "); | ||||
| 				verbose(env, "infinite loop detected at insn %d\n", insn_idx); | ||||
| 				return -EINVAL; | ||||
|  |  | |||
		Loading…
	
		Reference in a new issue
	
	 Alexei Starovoitov
						Alexei Starovoitov