forked from mirrors/linux
		
	 e2193f9f9e
			
		
	
	
		e2193f9f9e
		
	
	
	
	
		
			
			According to the E825C specification, SBQ address for ports on a single complex is device 2 for PHY 0 and device 13 for PHY1. For accessing ports on a dual complex E825C (so called 2xNAC mode), the driver should use destination device 2 (referred as phy_0) for the current complex PHY and device 13 (referred as phy_0_peer) for peer complex PHY. Differentiate SBQ destination device by checking if current PF port number is on the same PHY as target port number. Adjust 'ice_get_lane_number' function to provide unique port number for ports from PHY1 in 'dual' mode config (by adding fixed offset for PHY1 ports). Cache this value in ice_hw struct. Introduce ice_get_primary_hw wrapper to get access to timesync register not available from second NAC. Reviewed-by: Simon Horman <horms@kernel.org> Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com> Signed-off-by: Karol Kolacinski <karol.kolacinski@intel.com> Co-developed-by: Grzegorz Nitka <grzegorz.nitka@intel.com> Signed-off-by: Grzegorz Nitka <grzegorz.nitka@intel.com> Tested-by: Rinitha S <sx.rinitha@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
		
			
				
	
	
		
			6530 lines
		
	
	
	
		
			176 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6530 lines
		
	
	
	
		
			176 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* Copyright (C) 2021, Intel Corporation. */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/iopoll.h>
 | |
| #include "ice_common.h"
 | |
| #include "ice_ptp_hw.h"
 | |
| #include "ice_ptp_consts.h"
 | |
| #include "ice_cgu_regs.h"
 | |
| 
 | |
| static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
 | |
| 	DPLL_PIN_FREQUENCY_1PPS,
 | |
| 	DPLL_PIN_FREQUENCY_10MHZ,
 | |
| };
 | |
| 
 | |
| static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
 | |
| 	DPLL_PIN_FREQUENCY_1PPS,
 | |
| };
 | |
| 
 | |
| static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
 | |
| 	DPLL_PIN_FREQUENCY_10MHZ,
 | |
| };
 | |
| 
 | |
| static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
 | |
| 	{ "CVL-SDP22",	  ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "CVL-SDP20",	  ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
 | |
| 	{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
 | |
| 	{ "SMA1",	  ZL_REF3P, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "SMA2/U.FL2",	  ZL_REF3N, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "GNSS-1PPS",	  ZL_REF4P, DPLL_PIN_TYPE_GNSS,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 | |
| };
 | |
| 
 | |
| static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
 | |
| 	{ "CVL-SDP22",	  ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "CVL-SDP20",	  ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
 | |
| 	{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
 | |
| 	{ "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
 | |
| 	{ "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
 | |
| 	{ "SMA1",	  ZL_REF3P, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "SMA2/U.FL2",	  ZL_REF3N, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "GNSS-1PPS",	  ZL_REF4P, DPLL_PIN_TYPE_GNSS,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 | |
| };
 | |
| 
 | |
| static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
 | |
| 	{ "REF-SMA1",	    ZL_OUT0, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "PHY-CLK",	    ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
 | |
| 	{ "MAC-CLK",	    ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
 | |
| 	{ "CVL-SDP21",	    ZL_OUT4, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 | |
| 	{ "CVL-SDP23",	    ZL_OUT5, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 | |
| };
 | |
| 
 | |
| static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
 | |
| 	{ "REF-SMA1",	    ZL_OUT0, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "PHY-CLK",	    ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
 | |
| 	{ "PHY2-CLK",	    ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
 | |
| 	{ "MAC-CLK",	    ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
 | |
| 	{ "CVL-SDP21",	    ZL_OUT5, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 | |
| 	{ "CVL-SDP23",	    ZL_OUT6, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 | |
| };
 | |
| 
 | |
| static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
 | |
| 	{ "NONE",	  SI_REF0P, 0, 0 },
 | |
| 	{ "NONE",	  SI_REF0N, 0, 0 },
 | |
| 	{ "SYNCE0_DP",	  SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
 | |
| 	{ "SYNCE0_DN",	  SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
 | |
| 	{ "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "NONE",	  SI_REF2N, 0, 0 },
 | |
| 	{ "EXT_PPS_OUT",  SI_REF3,  DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "INT_PPS_OUT",  SI_REF4,  DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| };
 | |
| 
 | |
| static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
 | |
| 	{ "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "PHY-CLK",	    SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
 | |
| 	{ "10MHZ-SMA2",	    SI_OUT2, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
 | |
| 	{ "PPS-SMA1",	    SI_OUT3, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| };
 | |
| 
 | |
| static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
 | |
| 	{ "NONE",	  ZL_REF0P, 0, 0 },
 | |
| 	{ "INT_PPS_OUT",  ZL_REF0N, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 | |
| 	{ "SYNCE0_DP",	  ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
 | |
| 	{ "SYNCE0_DN",	  ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
 | |
| 	{ "NONE",	  ZL_REF2P, 0, 0 },
 | |
| 	{ "NONE",	  ZL_REF2N, 0, 0 },
 | |
| 	{ "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "NONE",	  ZL_REF3N, 0, 0 },
 | |
| 	{ "EXT_PPS_OUT",  ZL_REF4P, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 | |
| 	{ "OCXO",	  ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
 | |
| };
 | |
| 
 | |
| static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
 | |
| 	{ "PPS-SMA1",	   ZL_OUT0, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 | |
| 	{ "10MHZ-SMA2",	   ZL_OUT1, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
 | |
| 	{ "PHY-CLK",	   ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
 | |
| 	{ "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
 | |
| 	{ "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
 | |
| 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 | |
| 	{ "NONE",	   ZL_OUT5, 0, 0 },
 | |
| };
 | |
| 
 | |
| /* Low level functions for interacting with and managing the device clock used
 | |
|  * for the Precision Time Protocol.
 | |
|  *
 | |
|  * The ice hardware represents the current time using three registers:
 | |
|  *
 | |
|  *    GLTSYN_TIME_H     GLTSYN_TIME_L     GLTSYN_TIME_R
 | |
|  *  +---------------+ +---------------+ +---------------+
 | |
|  *  |    32 bits    | |    32 bits    | |    32 bits    |
 | |
|  *  +---------------+ +---------------+ +---------------+
 | |
|  *
 | |
|  * The registers are incremented every clock tick using a 40bit increment
 | |
|  * value defined over two registers:
 | |
|  *
 | |
|  *                     GLTSYN_INCVAL_H   GLTSYN_INCVAL_L
 | |
|  *                    +---------------+ +---------------+
 | |
|  *                    |    8 bit s    | |    32 bits    |
 | |
|  *                    +---------------+ +---------------+
 | |
|  *
 | |
|  * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
 | |
|  * registers every clock source tick. Depending on the specific device
 | |
|  * configuration, the clock source frequency could be one of a number of
 | |
|  * values.
 | |
|  *
 | |
|  * For E810 devices, the increment frequency is 812.5 MHz
 | |
|  *
 | |
|  * For E822 devices the clock can be derived from different sources, and the
 | |
|  * increment has an effective frequency of one of the following:
 | |
|  * - 823.4375 MHz
 | |
|  * - 783.36 MHz
 | |
|  * - 796.875 MHz
 | |
|  * - 816 MHz
 | |
|  * - 830.078125 MHz
 | |
|  * - 783.36 MHz
 | |
|  *
 | |
|  * The hardware captures timestamps in the PHY for incoming packets, and for
 | |
|  * outgoing packets on request. To support this, the PHY maintains a timer
 | |
|  * that matches the lower 64 bits of the global source timer.
 | |
|  *
 | |
|  * In order to ensure that the PHY timers and the source timer are equivalent,
 | |
|  * shadow registers are used to prepare the desired initial values. A special
 | |
|  * sync command is issued to trigger copying from the shadow registers into
 | |
|  * the appropriate source and PHY registers simultaneously.
 | |
|  *
 | |
|  * The driver supports devices which have different PHYs with subtly different
 | |
|  * mechanisms to program and control the timers. We divide the devices into
 | |
|  * families named after the first major device, E810 and similar devices, and
 | |
|  * E822 and similar devices.
 | |
|  *
 | |
|  * - E822 based devices have additional support for fine grained Vernier
 | |
|  *   calibration which requires significant setup
 | |
|  * - The layout of timestamp data in the PHY register blocks is different
 | |
|  * - The way timer synchronization commands are issued is different.
 | |
|  *
 | |
|  * To support this, very low level functions have an e810 or e822 suffix
 | |
|  * indicating what type of device they work on. Higher level abstractions for
 | |
|  * tasks that can be done on both devices do not have the suffix and will
 | |
|  * correctly look up the appropriate low level function when running.
 | |
|  *
 | |
|  * Functions which only make sense on a single device family may not have
 | |
|  * a suitable generic implementation
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ice_get_ptp_src_clock_index - determine source clock index
 | |
|  * @hw: pointer to HW struct
 | |
|  *
 | |
|  * Determine the source clock index currently in use, based on device
 | |
|  * capabilities reported during initialization.
 | |
|  */
 | |
| u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
 | |
| {
 | |
| 	return hw->func_caps.ts_func_info.tmr_index_assoc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_read_src_incval - Read source timer increment value
 | |
|  * @hw: pointer to HW struct
 | |
|  *
 | |
|  * Read the increment value of the source timer and return it.
 | |
|  */
 | |
| static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
 | |
| {
 | |
| 	u32 lo, hi;
 | |
| 	u8 tmr_idx;
 | |
| 
 | |
| 	tmr_idx = ice_get_ptp_src_clock_index(hw);
 | |
| 
 | |
| 	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
 | |
| 	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
 | |
| 
 | |
| 	return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_cgu_reg_e82x - Read a CGU register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @addr: Register address to read
 | |
|  * @val: storage for register value read
 | |
|  *
 | |
|  * Read the contents of a register of the Clock Generation Unit. Only
 | |
|  * applicable to E822 devices.
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to read from CGU
 | |
|  */
 | |
| static int ice_read_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 *val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input cgu_msg = {
 | |
| 		.opcode = ice_sbq_msg_rd,
 | |
| 		.dest_dev = ice_sbq_dev_cgu,
 | |
| 		.msg_addr_low = addr
 | |
| 	};
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
 | |
| 			  addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	*val = cgu_msg.data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_cgu_reg_e82x - Write a CGU register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @addr: Register address to write
 | |
|  * @val: value to write into the register
 | |
|  *
 | |
|  * Write the specified value to a register of the Clock Generation Unit. Only
 | |
|  * applicable to E822 devices.
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to write to CGU
 | |
|  */
 | |
| static int ice_write_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input cgu_msg = {
 | |
| 		.opcode = ice_sbq_msg_wr,
 | |
| 		.dest_dev = ice_sbq_dev_cgu,
 | |
| 		.msg_addr_low = addr,
 | |
| 		.data = val
 | |
| 	};
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
 | |
| 			  addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clk_freq_str - Convert time_ref_freq to string
 | |
|  * @clk_freq: Clock frequency
 | |
|  *
 | |
|  * Return: specified TIME_REF clock frequency converted to a string
 | |
|  */
 | |
| static const char *ice_clk_freq_str(enum ice_time_ref_freq clk_freq)
 | |
| {
 | |
| 	switch (clk_freq) {
 | |
| 	case ICE_TIME_REF_FREQ_25_000:
 | |
| 		return "25 MHz";
 | |
| 	case ICE_TIME_REF_FREQ_122_880:
 | |
| 		return "122.88 MHz";
 | |
| 	case ICE_TIME_REF_FREQ_125_000:
 | |
| 		return "125 MHz";
 | |
| 	case ICE_TIME_REF_FREQ_153_600:
 | |
| 		return "153.6 MHz";
 | |
| 	case ICE_TIME_REF_FREQ_156_250:
 | |
| 		return "156.25 MHz";
 | |
| 	case ICE_TIME_REF_FREQ_245_760:
 | |
| 		return "245.76 MHz";
 | |
| 	default:
 | |
| 		return "Unknown";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clk_src_str - Convert time_ref_src to string
 | |
|  * @clk_src: Clock source
 | |
|  *
 | |
|  * Return: specified clock source converted to its string name
 | |
|  */
 | |
| static const char *ice_clk_src_str(enum ice_clk_src clk_src)
 | |
| {
 | |
| 	switch (clk_src) {
 | |
| 	case ICE_CLK_SRC_TCXO:
 | |
| 		return "TCXO";
 | |
| 	case ICE_CLK_SRC_TIME_REF:
 | |
| 		return "TIME_REF";
 | |
| 	default:
 | |
| 		return "Unknown";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cfg_cgu_pll_e82x - Configure the Clock Generation Unit
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @clk_freq: Clock frequency to program
 | |
|  * @clk_src: Clock source to select (TIME_REF, or TCXO)
 | |
|  *
 | |
|  * Configure the Clock Generation Unit with the desired clock frequency and
 | |
|  * time reference, enabling the PLL which drives the PTP hardware clock.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0       - success
 | |
|  * * %-EINVAL - input parameters are incorrect
 | |
|  * * %-EBUSY  - failed to lock TS PLL
 | |
|  * * %other   - CGU read/write failure
 | |
|  */
 | |
| static int ice_cfg_cgu_pll_e82x(struct ice_hw *hw,
 | |
| 				enum ice_time_ref_freq clk_freq,
 | |
| 				enum ice_clk_src clk_src)
 | |
| {
 | |
| 	union tspll_ro_bwm_lf bwm_lf;
 | |
| 	union nac_cgu_dword19 dw19;
 | |
| 	union nac_cgu_dword22 dw22;
 | |
| 	union nac_cgu_dword24 dw24;
 | |
| 	union nac_cgu_dword9 dw9;
 | |
| 	int err;
 | |
| 
 | |
| 	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
 | |
| 		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
 | |
| 			 clk_freq);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (clk_src >= NUM_ICE_CLK_SRC) {
 | |
| 		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
 | |
| 			 clk_src);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (clk_src == ICE_CLK_SRC_TCXO &&
 | |
| 	    clk_freq != ICE_TIME_REF_FREQ_25_000) {
 | |
| 		dev_warn(ice_hw_to_dev(hw),
 | |
| 			 "TCXO only supports 25 MHz frequency\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Log the current clock configuration */
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 | |
| 		  str_enabled_disabled(dw24.ts_pll_enable),
 | |
| 		  ice_clk_src_str(dw24.time_ref_sel),
 | |
| 		  ice_clk_freq_str(dw9.time_ref_freq_sel),
 | |
| 		  bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
 | |
| 
 | |
| 	/* Disable the PLL before changing the clock source or frequency */
 | |
| 	if (dw24.ts_pll_enable) {
 | |
| 		dw24.ts_pll_enable = 0;
 | |
| 
 | |
| 		err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the frequency */
 | |
| 	dw9.time_ref_freq_sel = clk_freq;
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Configure the TS PLL feedback divisor */
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dw19.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
 | |
| 	dw19.tspll_ndivratio = 1;
 | |
| 
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Configure the TS PLL post divisor */
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dw22.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
 | |
| 	dw22.time1588clk_sel_div2 = 0;
 | |
| 
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Configure the TS PLL pre divisor and clock source */
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dw24.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
 | |
| 	dw24.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
 | |
| 	dw24.time_ref_sel = clk_src;
 | |
| 
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Finally, enable the PLL */
 | |
| 	dw24.ts_pll_enable = 1;
 | |
| 
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Wait to verify if the PLL locks */
 | |
| 	usleep_range(1000, 5000);
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!bwm_lf.plllock_true_lock_cri) {
 | |
| 		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* Log the current clock configuration */
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 | |
| 		  str_enabled_disabled(dw24.ts_pll_enable),
 | |
| 		  ice_clk_src_str(dw24.time_ref_sel),
 | |
| 		  ice_clk_freq_str(dw9.time_ref_freq_sel),
 | |
| 		  bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cfg_cgu_pll_e825c - Configure the Clock Generation Unit for E825-C
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @clk_freq: Clock frequency to program
 | |
|  * @clk_src: Clock source to select (TIME_REF, or TCXO)
 | |
|  *
 | |
|  * Configure the Clock Generation Unit with the desired clock frequency and
 | |
|  * time reference, enabling the PLL which drives the PTP hardware clock.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0       - success
 | |
|  * * %-EINVAL - input parameters are incorrect
 | |
|  * * %-EBUSY  - failed to lock TS PLL
 | |
|  * * %other   - CGU read/write failure
 | |
|  */
 | |
| static int ice_cfg_cgu_pll_e825c(struct ice_hw *hw,
 | |
| 				 enum ice_time_ref_freq clk_freq,
 | |
| 				 enum ice_clk_src clk_src)
 | |
| {
 | |
| 	union tspll_ro_lock_e825c ro_lock;
 | |
| 	union nac_cgu_dword16_e825c dw16;
 | |
| 	union nac_cgu_dword23_e825c dw23;
 | |
| 	union nac_cgu_dword19 dw19;
 | |
| 	union nac_cgu_dword22 dw22;
 | |
| 	union nac_cgu_dword24 dw24;
 | |
| 	union nac_cgu_dword9 dw9;
 | |
| 	int err;
 | |
| 
 | |
| 	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
 | |
| 		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
 | |
| 			 clk_freq);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (clk_src >= NUM_ICE_CLK_SRC) {
 | |
| 		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
 | |
| 			 clk_src);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (clk_src == ICE_CLK_SRC_TCXO &&
 | |
| 	    clk_freq != ICE_TIME_REF_FREQ_156_250) {
 | |
| 		dev_warn(ice_hw_to_dev(hw),
 | |
| 			 "TCXO only supports 156.25 MHz frequency\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, &dw16.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Log the current clock configuration */
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 | |
| 		  str_enabled_disabled(dw24.ts_pll_enable),
 | |
| 		  ice_clk_src_str(dw23.time_ref_sel),
 | |
| 		  ice_clk_freq_str(dw9.time_ref_freq_sel),
 | |
| 		  ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
 | |
| 
 | |
| 	/* Disable the PLL before changing the clock source or frequency */
 | |
| 	if (dw23.ts_pll_enable) {
 | |
| 		dw23.ts_pll_enable = 0;
 | |
| 
 | |
| 		err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C,
 | |
| 					     dw23.val);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the frequency */
 | |
| 	dw9.time_ref_freq_sel = clk_freq;
 | |
| 
 | |
| 	/* Enable the correct receiver */
 | |
| 	if (clk_src == ICE_CLK_SRC_TCXO) {
 | |
| 		dw9.time_ref_en = 0;
 | |
| 		dw9.clk_eref0_en = 1;
 | |
| 	} else {
 | |
| 		dw9.time_ref_en = 1;
 | |
| 		dw9.clk_eref0_en = 0;
 | |
| 	}
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Choose the referenced frequency */
 | |
| 	dw16.tspll_ck_refclkfreq =
 | |
| 	e825c_cgu_params[clk_freq].tspll_ck_refclkfreq;
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, dw16.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Configure the TS PLL feedback divisor */
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dw19.tspll_fbdiv_intgr =
 | |
| 		e825c_cgu_params[clk_freq].tspll_fbdiv_intgr;
 | |
| 	dw19.tspll_ndivratio =
 | |
| 		e825c_cgu_params[clk_freq].tspll_ndivratio;
 | |
| 
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Configure the TS PLL post divisor */
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* These two are constant for E825C */
 | |
| 	dw22.time1588clk_div = 5;
 | |
| 	dw22.time1588clk_sel_div2 = 0;
 | |
| 
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Configure the TS PLL pre divisor and clock source */
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dw23.ref1588_ck_div =
 | |
| 		e825c_cgu_params[clk_freq].ref1588_ck_div;
 | |
| 	dw23.time_ref_sel = clk_src;
 | |
| 
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dw24.tspll_fbdiv_frac =
 | |
| 		e825c_cgu_params[clk_freq].tspll_fbdiv_frac;
 | |
| 
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Finally, enable the PLL */
 | |
| 	dw23.ts_pll_enable = 1;
 | |
| 
 | |
| 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Wait to verify if the PLL locks */
 | |
| 	usleep_range(1000, 5000);
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!ro_lock.plllock_true_lock_cri) {
 | |
| 		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* Log the current clock configuration */
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 | |
| 		  str_enabled_disabled(dw24.ts_pll_enable),
 | |
| 		  ice_clk_src_str(dw23.time_ref_sel),
 | |
| 		  ice_clk_freq_str(dw9.time_ref_freq_sel),
 | |
| 		  ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define ICE_ONE_PPS_OUT_AMP_MAX 3
 | |
| 
 | |
| /**
 | |
|  * ice_cgu_cfg_pps_out - Configure 1PPS output from CGU
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @enable: true to enable 1PPS output, false to disable it
 | |
|  *
 | |
|  * Return: 0 on success, other negative error code when CGU read/write failed
 | |
|  */
 | |
| int ice_cgu_cfg_pps_out(struct ice_hw *hw, bool enable)
 | |
| {
 | |
| 	union nac_cgu_dword9 dw9;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dw9.one_pps_out_en = enable;
 | |
| 	dw9.one_pps_out_amp = enable * ICE_ONE_PPS_OUT_AMP_MAX;
 | |
| 	return ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cfg_cgu_pll_dis_sticky_bits_e82x - disable TS PLL sticky bits
 | |
|  * @hw: pointer to the HW struct
 | |
|  *
 | |
|  * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
 | |
|  * losing TS PLL lock, but always show current state.
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to read/write CGU
 | |
|  */
 | |
| static int ice_cfg_cgu_pll_dis_sticky_bits_e82x(struct ice_hw *hw)
 | |
| {
 | |
| 	union tspll_cntr_bist_settings cntr_bist;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
 | |
| 				    &cntr_bist.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Disable sticky lock detection so lock err reported is accurate */
 | |
| 	cntr_bist.i_plllock_sel_0 = 0;
 | |
| 	cntr_bist.i_plllock_sel_1 = 0;
 | |
| 
 | |
| 	return ice_write_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
 | |
| 				      cntr_bist.val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cfg_cgu_pll_dis_sticky_bits_e825c - disable TS PLL sticky bits for E825-C
 | |
|  * @hw: pointer to the HW struct
 | |
|  *
 | |
|  * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
 | |
|  * losing TS PLL lock, but always show current state.
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to read/write CGU
 | |
|  */
 | |
| static int ice_cfg_cgu_pll_dis_sticky_bits_e825c(struct ice_hw *hw)
 | |
| {
 | |
| 	union tspll_bw_tdc_e825c bw_tdc;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, &bw_tdc.val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	bw_tdc.i_plllock_sel_1_0 = 0;
 | |
| 
 | |
| 	return ice_write_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, bw_tdc.val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_init_cgu_e82x - Initialize CGU with settings from firmware
 | |
|  * @hw: pointer to the HW structure
 | |
|  *
 | |
|  * Initialize the Clock Generation Unit of the E822 device.
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to read/write/cfg CGU
 | |
|  */
 | |
| static int ice_init_cgu_e82x(struct ice_hw *hw)
 | |
| {
 | |
| 	struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Disable sticky lock detection so lock err reported is accurate */
 | |
| 	if (hw->mac_type == ICE_MAC_GENERIC_3K_E825)
 | |
| 		err = ice_cfg_cgu_pll_dis_sticky_bits_e825c(hw);
 | |
| 	else
 | |
| 		err = ice_cfg_cgu_pll_dis_sticky_bits_e82x(hw);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Configure the CGU PLL using the parameters from the function
 | |
| 	 * capabilities.
 | |
| 	 */
 | |
| 	if (hw->mac_type == ICE_MAC_GENERIC_3K_E825)
 | |
| 		err = ice_cfg_cgu_pll_e825c(hw, ts_info->time_ref,
 | |
| 					    (enum ice_clk_src)ts_info->clk_src);
 | |
| 	else
 | |
| 		err = ice_cfg_cgu_pll_e82x(hw, ts_info->time_ref,
 | |
| 					   (enum ice_clk_src)ts_info->clk_src);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value
 | |
|  * @hw: pointer to HW struct
 | |
|  * @cmd: Timer command
 | |
|  *
 | |
|  * Return: the source timer command register value for the given PTP timer
 | |
|  * command.
 | |
|  */
 | |
| static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw,
 | |
| 				      enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	u32 cmd_val, tmr_idx;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case ICE_PTP_INIT_TIME:
 | |
| 		cmd_val = GLTSYN_CMD_INIT_TIME;
 | |
| 		break;
 | |
| 	case ICE_PTP_INIT_INCVAL:
 | |
| 		cmd_val = GLTSYN_CMD_INIT_INCVAL;
 | |
| 		break;
 | |
| 	case ICE_PTP_ADJ_TIME:
 | |
| 		cmd_val = GLTSYN_CMD_ADJ_TIME;
 | |
| 		break;
 | |
| 	case ICE_PTP_ADJ_TIME_AT_TIME:
 | |
| 		cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
 | |
| 		break;
 | |
| 	case ICE_PTP_NOP:
 | |
| 	case ICE_PTP_READ_TIME:
 | |
| 		cmd_val = GLTSYN_CMD_READ_TIME;
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_warn(ice_hw_to_dev(hw),
 | |
| 			 "Ignoring unrecognized timer command %u\n", cmd);
 | |
| 		cmd_val = 0;
 | |
| 	}
 | |
| 
 | |
| 	tmr_idx = ice_get_ptp_src_clock_index(hw);
 | |
| 
 | |
| 	return tmr_idx << SEL_CPK_SRC | cmd_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value
 | |
|  * @hw: pointer to HW struct
 | |
|  * @cmd: Timer command
 | |
|  *
 | |
|  * Note that some hardware families use a different command register value for
 | |
|  * the PHY ports, while other hardware families use the same register values
 | |
|  * as the source timer.
 | |
|  *
 | |
|  * Return: the PHY port timer command register value for the given PTP timer
 | |
|  * command.
 | |
|  */
 | |
| static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw,
 | |
| 				       enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	u32 cmd_val, tmr_idx;
 | |
| 
 | |
| 	/* Certain hardware families share the same register values for the
 | |
| 	 * port register and source timer register.
 | |
| 	 */
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 	case ICE_MAC_E830:
 | |
| 		return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case ICE_PTP_INIT_TIME:
 | |
| 		cmd_val = PHY_CMD_INIT_TIME;
 | |
| 		break;
 | |
| 	case ICE_PTP_INIT_INCVAL:
 | |
| 		cmd_val = PHY_CMD_INIT_INCVAL;
 | |
| 		break;
 | |
| 	case ICE_PTP_ADJ_TIME:
 | |
| 		cmd_val = PHY_CMD_ADJ_TIME;
 | |
| 		break;
 | |
| 	case ICE_PTP_ADJ_TIME_AT_TIME:
 | |
| 		cmd_val = PHY_CMD_ADJ_TIME_AT_TIME;
 | |
| 		break;
 | |
| 	case ICE_PTP_READ_TIME:
 | |
| 		cmd_val = PHY_CMD_READ_TIME;
 | |
| 		break;
 | |
| 	case ICE_PTP_NOP:
 | |
| 		cmd_val = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_warn(ice_hw_to_dev(hw),
 | |
| 			 "Ignoring unrecognized timer command %u\n", cmd);
 | |
| 		cmd_val = 0;
 | |
| 	}
 | |
| 
 | |
| 	tmr_idx = ice_get_ptp_src_clock_index(hw);
 | |
| 
 | |
| 	return tmr_idx << SEL_PHY_SRC | cmd_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_src_cmd - Prepare source timer for a timer command
 | |
|  * @hw: pointer to HW structure
 | |
|  * @cmd: Timer command
 | |
|  *
 | |
|  * Prepare the source timer for an upcoming timer sync command.
 | |
|  */
 | |
| void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
 | |
| 	u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd);
 | |
| 
 | |
| 	if (!ice_is_primary(hw))
 | |
| 		hw = ice_get_primary_hw(pf);
 | |
| 
 | |
| 	wr32(hw, GLTSYN_CMD, cmd_val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
 | |
|  * @hw: pointer to HW struct
 | |
|  *
 | |
|  * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
 | |
|  * write immediately. This triggers the hardware to begin executing all of the
 | |
|  * source and PHY timer commands synchronously.
 | |
|  */
 | |
| static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
 | |
| {
 | |
| 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
 | |
| 
 | |
| 	if (!ice_is_primary(hw))
 | |
| 		hw = ice_get_primary_hw(pf);
 | |
| 
 | |
| 	guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
 | |
| 	wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
 | |
| 	ice_flush(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_cfg_sync_delay - Configure PHC to PHY synchronization delay
 | |
|  * @hw: pointer to HW struct
 | |
|  * @delay: delay between PHC and PHY SYNC command execution in nanoseconds
 | |
|  */
 | |
| static void ice_ptp_cfg_sync_delay(const struct ice_hw *hw, u32 delay)
 | |
| {
 | |
| 	wr32(hw, GLTSYN_SYNC_DLAY, delay);
 | |
| 	ice_flush(hw);
 | |
| }
 | |
| 
 | |
| /* 56G PHY device functions
 | |
|  *
 | |
|  * The following functions operate on devices with the ETH 56G PHY.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_get_dest_dev_e825 - get destination PHY for given port number
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: destination port
 | |
|  *
 | |
|  * Return: destination sideband queue PHY device.
 | |
|  */
 | |
| static enum ice_sbq_dev_id ice_ptp_get_dest_dev_e825(struct ice_hw *hw,
 | |
| 						     u8 port)
 | |
| {
 | |
| 	u8 curr_phy, tgt_phy;
 | |
| 
 | |
| 	tgt_phy = port >= hw->ptp.ports_per_phy;
 | |
| 	curr_phy = hw->lane_num >= hw->ptp.ports_per_phy;
 | |
| 	/* In the driver, lanes 4..7 are in fact 0..3 on a second PHY.
 | |
| 	 * On a single complex E825C, PHY 0 is always destination device phy_0
 | |
| 	 * and PHY 1 is phy_0_peer.
 | |
| 	 * On dual complex E825C, device phy_0 points to PHY on a current
 | |
| 	 * complex and phy_0_peer to PHY on a different complex.
 | |
| 	 */
 | |
| 	if ((!ice_is_dual(hw) && tgt_phy == 1) ||
 | |
| 	    (ice_is_dual(hw) && tgt_phy != curr_phy))
 | |
| 		return ice_sbq_dev_phy_0_peer;
 | |
| 	else
 | |
| 		return ice_sbq_dev_phy_0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_phy_eth56g - Write a PHY port register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: destination port
 | |
|  * @addr: PHY register address
 | |
|  * @val: Value to write
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to write to PHY
 | |
|  */
 | |
| static int ice_write_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input msg = {
 | |
| 		.dest_dev = ice_ptp_get_dest_dev_e825(hw, port),
 | |
| 		.opcode = ice_sbq_msg_wr,
 | |
| 		.msg_addr_low = lower_16_bits(addr),
 | |
| 		.msg_addr_high = upper_16_bits(addr),
 | |
| 		.data = val
 | |
| 	};
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err)
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
 | |
| 			  err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_eth56g - Read a PHY port register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: destination port
 | |
|  * @addr: PHY register address
 | |
|  * @val: Value to write
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to read from PHY
 | |
|  */
 | |
| static int ice_read_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 *val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input msg = {
 | |
| 		.dest_dev = ice_ptp_get_dest_dev_e825(hw, port),
 | |
| 		.opcode = ice_sbq_msg_rd,
 | |
| 		.msg_addr_low = lower_16_bits(addr),
 | |
| 		.msg_addr_high = upper_16_bits(addr)
 | |
| 	};
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err)
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
 | |
| 			  err);
 | |
| 	else
 | |
| 		*val = msg.data;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_res_address_eth56g - Calculate a PHY port register address
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @lane: Lane number to be written
 | |
|  * @res_type: resource type (register/memory)
 | |
|  * @offset: Offset from PHY port register base
 | |
|  * @addr: The result address
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  */
 | |
| static int ice_phy_res_address_eth56g(struct ice_hw *hw, u8 lane,
 | |
| 				      enum eth56g_res_type res_type,
 | |
| 				      u32 offset,
 | |
| 				      u32 *addr)
 | |
| {
 | |
| 	if (res_type >= NUM_ETH56G_PHY_RES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Lanes 4..7 are in fact 0..3 on a second PHY */
 | |
| 	lane %= hw->ptp.ports_per_phy;
 | |
| 	*addr = eth56g_phy_res[res_type].base_addr +
 | |
| 		lane * eth56g_phy_res[res_type].step + offset;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_port_eth56g - Write a PHY port register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @offset: PHY register offset
 | |
|  * @port: Port number
 | |
|  * @val: Value to write
 | |
|  * @res_type: resource type (register/memory)
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
 | |
| 				 u32 val, enum eth56g_res_type res_type)
 | |
| {
 | |
| 	u32 addr;
 | |
| 	int err;
 | |
| 
 | |
| 	if (port >= hw->ptp.num_lports)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return ice_write_phy_eth56g(hw, port, addr, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_port_eth56g - Read a PHY port register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @offset: PHY register offset
 | |
|  * @port: Port number
 | |
|  * @val: Value to write
 | |
|  * @res_type: resource type (register/memory)
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to read from PHY
 | |
|  */
 | |
| static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
 | |
| 				u32 *val, enum eth56g_res_type res_type)
 | |
| {
 | |
| 	u32 addr;
 | |
| 	int err;
 | |
| 
 | |
| 	if (port >= hw->ptp.num_lports)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return ice_read_phy_eth56g(hw, port, addr, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_ptp_reg_eth56g - Write a PHY port register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: Port number to be written
 | |
|  * @offset: Offset from PHY port register base
 | |
|  * @val: Value to write
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
 | |
| 				    u32 val)
 | |
| {
 | |
| 	return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_mac_reg_eth56g - Write a MAC PHY port register
 | |
|  * parameter
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: Port number to be written
 | |
|  * @offset: Offset from PHY port register base
 | |
|  * @val: Value to write
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
 | |
| 				    u32 val)
 | |
| {
 | |
| 	return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_xpcs_reg_eth56g - Write a PHY port register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: Port number to be written
 | |
|  * @offset: Offset from PHY port register base
 | |
|  * @val: Value to write
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
 | |
| 				     u32 val)
 | |
| {
 | |
| 	return ice_write_port_eth56g(hw, port, offset, val,
 | |
| 				     ETH56G_PHY_REG_XPCS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_ptp_reg_eth56g - Read a PHY port register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: Port number to be read
 | |
|  * @offset: Offset from PHY port register base
 | |
|  * @val: Pointer to the value to read (out param)
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to read from PHY
 | |
|  */
 | |
| static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
 | |
| 				   u32 *val)
 | |
| {
 | |
| 	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_mac_reg_eth56g - Read a PHY port register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: Port number to be read
 | |
|  * @offset: Offset from PHY port register base
 | |
|  * @val: Pointer to the value to read (out param)
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to read from PHY
 | |
|  */
 | |
| static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
 | |
| 				   u32 *val)
 | |
| {
 | |
| 	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_gpcs_reg_eth56g - Read a PHY port register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: Port number to be read
 | |
|  * @offset: Offset from PHY port register base
 | |
|  * @val: Pointer to the value to read (out param)
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to read from PHY
 | |
|  */
 | |
| static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
 | |
| 				    u32 *val)
 | |
| {
 | |
| 	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_port_mem_eth56g - Read a PHY port memory location
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: Port number to be read
 | |
|  * @offset: Offset from PHY port register base
 | |
|  * @val: Pointer to the value to read (out param)
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to read from PHY
 | |
|  */
 | |
| static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
 | |
| 				    u32 *val)
 | |
| {
 | |
| 	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_port_mem_eth56g - Write a PHY port memory location
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: Port number to be read
 | |
|  * @offset: Offset from PHY port register base
 | |
|  * @val: Pointer to the value to read (out param)
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - invalid port number or resource type
 | |
|  * * %other  - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
 | |
| 				     u32 val)
 | |
| {
 | |
| 	return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_quad_ptp_reg_eth56g - Write a PHY quad register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @offset: PHY register offset
 | |
|  * @port: Port number
 | |
|  * @val: Value to write
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %EIO  - invalid port number or resource type
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					 u32 offset, u32 val)
 | |
| {
 | |
| 	u32 addr;
 | |
| 
 | |
| 	if (port >= hw->ptp.num_lports)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base_addr + offset;
 | |
| 
 | |
| 	return ice_write_phy_eth56g(hw, port, addr, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_quad_ptp_reg_eth56g - Read a PHY quad register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @offset: PHY register offset
 | |
|  * @port: Port number
 | |
|  * @val: Value to read
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %EIO  - invalid port number or resource type
 | |
|  * * %other - failed to read from PHY
 | |
|  */
 | |
| static int ice_read_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					u32 offset, u32 *val)
 | |
| {
 | |
| 	u32 addr;
 | |
| 
 | |
| 	if (port >= hw->ptp.num_lports)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base_addr + offset;
 | |
| 
 | |
| 	return ice_read_phy_eth56g(hw, port, addr, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register
 | |
|  * @low_addr: the low address to check
 | |
|  * @high_addr: on return, contains the high address of the 64bit register
 | |
|  *
 | |
|  * Write the appropriate high register offset to use.
 | |
|  *
 | |
|  * Return: true if the provided low address is one of the known 64bit PHY values
 | |
|  * represented as two 32bit registers, false otherwise.
 | |
|  */
 | |
| static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
 | |
| {
 | |
| 	switch (low_addr) {
 | |
| 	case PHY_REG_TX_TIMER_INC_PRE_L:
 | |
| 		*high_addr = PHY_REG_TX_TIMER_INC_PRE_U;
 | |
| 		return true;
 | |
| 	case PHY_REG_RX_TIMER_INC_PRE_L:
 | |
| 		*high_addr = PHY_REG_RX_TIMER_INC_PRE_U;
 | |
| 		return true;
 | |
| 	case PHY_REG_TX_CAPTURE_L:
 | |
| 		*high_addr = PHY_REG_TX_CAPTURE_U;
 | |
| 		return true;
 | |
| 	case PHY_REG_RX_CAPTURE_L:
 | |
| 		*high_addr = PHY_REG_RX_CAPTURE_U;
 | |
| 		return true;
 | |
| 	case PHY_REG_TOTAL_TX_OFFSET_L:
 | |
| 		*high_addr = PHY_REG_TOTAL_TX_OFFSET_U;
 | |
| 		return true;
 | |
| 	case PHY_REG_TOTAL_RX_OFFSET_L:
 | |
| 		*high_addr = PHY_REG_TOTAL_RX_OFFSET_U;
 | |
| 		return true;
 | |
| 	case PHY_REG_TX_MEMORY_STATUS_L:
 | |
| 		*high_addr = PHY_REG_TX_MEMORY_STATUS_U;
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register
 | |
|  * @low_addr: the low address to check
 | |
|  * @high_addr: on return, contains the high address of the 40bit value
 | |
|  *
 | |
|  * Write the appropriate high register offset to use.
 | |
|  *
 | |
|  * Return: true if the provided low address is one of the known 40bit PHY
 | |
|  * values split into two registers with the lower 8 bits in the low register and
 | |
|  * the upper 32 bits in the high register, false otherwise.
 | |
|  */
 | |
| static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
 | |
| {
 | |
| 	switch (low_addr) {
 | |
| 	case PHY_REG_TIMETUS_L:
 | |
| 		*high_addr = PHY_REG_TIMETUS_U;
 | |
| 		return true;
 | |
| 	case PHY_PCS_REF_TUS_L:
 | |
| 		*high_addr = PHY_PCS_REF_TUS_U;
 | |
| 		return true;
 | |
| 	case PHY_PCS_REF_INC_L:
 | |
| 		*high_addr = PHY_PCS_REF_INC_U;
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: PHY port to read from
 | |
|  * @low_addr: offset of the lower register to read from
 | |
|  * @val: on return, the contents of the 64bit value from the PHY registers
 | |
|  * @res_type: resource type
 | |
|  *
 | |
|  * Check if the caller has specified a known 40 bit register offset and read
 | |
|  * the two registers associated with a 40bit value and return it in the val
 | |
|  * pointer.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - not a 64 bit register
 | |
|  * * %other  - failed to read from PHY
 | |
|  */
 | |
| static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
 | |
| 				       u64 *val, enum eth56g_res_type res_type)
 | |
| {
 | |
| 	u16 high_addr;
 | |
| 	u32 lo, hi;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d",
 | |
| 			  low_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d",
 | |
| 			  high_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	*val = ((u64)hi << 32) | lo;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: PHY port to read from
 | |
|  * @low_addr: offset of the lower register to read from
 | |
|  * @val: on return, the contents of the 64bit value from the PHY registers
 | |
|  *
 | |
|  * Check if the caller has specified a known 40 bit register offset and read
 | |
|  * the two registers associated with a 40bit value and return it in the val
 | |
|  * pointer.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - not a 64 bit register
 | |
|  * * %other  - failed to read from PHY
 | |
|  */
 | |
| static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
 | |
| 				       u64 *val)
 | |
| {
 | |
| 	return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val,
 | |
| 					   ETH56G_PHY_REG_PTP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: port to write to
 | |
|  * @low_addr: offset of the low register
 | |
|  * @val: 40b value to write
 | |
|  * @res_type: resource type
 | |
|  *
 | |
|  * Check if the caller has specified a known 40 bit register offset and write
 | |
|  * provided 40b value to the two associated registers by splitting it up into
 | |
|  * two chunks, the lower 8 bits and the upper 32 bits.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - not a 40 bit register
 | |
|  * * %other  - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					u16 low_addr, u64 val,
 | |
| 					enum eth56g_res_type res_type)
 | |
| {
 | |
| 	u16 high_addr;
 | |
| 	u32 lo, hi;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	lo = FIELD_GET(P_REG_40B_LOW_M, val);
 | |
| 	hi = (u32)(val >> P_REG_40B_HIGH_S);
 | |
| 
 | |
| 	err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
 | |
| 			  low_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
 | |
| 			  high_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: port to write to
 | |
|  * @low_addr: offset of the low register
 | |
|  * @val: 40b value to write
 | |
|  *
 | |
|  * Check if the caller has specified a known 40 bit register offset and write
 | |
|  * provided 40b value to the two associated registers by splitting it up into
 | |
|  * two chunks, the lower 8 bits and the upper 32 bits.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - not a 40 bit register
 | |
|  * * %other  - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					u16 low_addr, u64 val)
 | |
| {
 | |
| 	return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val,
 | |
| 					    ETH56G_PHY_REG_PTP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: PHY port to read from
 | |
|  * @low_addr: offset of the lower register to read from
 | |
|  * @val: the contents of the 64bit value to write to PHY
 | |
|  * @res_type: resource type
 | |
|  *
 | |
|  * Check if the caller has specified a known 64 bit register offset and write
 | |
|  * the 64bit value to the two associated 32bit PHY registers.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - not a 64 bit register
 | |
|  * * %other  - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					u16 low_addr, u64 val,
 | |
| 					enum eth56g_res_type res_type)
 | |
| {
 | |
| 	u16 high_addr;
 | |
| 	u32 lo, hi;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	lo = lower_32_bits(val);
 | |
| 	hi = upper_32_bits(val);
 | |
| 
 | |
| 	err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
 | |
| 			  low_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
 | |
| 			  high_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: PHY port to read from
 | |
|  * @low_addr: offset of the lower register to read from
 | |
|  * @val: the contents of the 64bit value to write to PHY
 | |
|  *
 | |
|  * Check if the caller has specified a known 64 bit register offset and write
 | |
|  * the 64bit value to the two associated 32bit PHY registers.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0      - success
 | |
|  * * %EINVAL - not a 64 bit register
 | |
|  * * %other  - failed to write to PHY
 | |
|  */
 | |
| static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					u16 low_addr, u64 val)
 | |
| {
 | |
| 	return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val,
 | |
| 					    ETH56G_PHY_REG_PTP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the port to read from
 | |
|  * @idx: the timestamp index to read
 | |
|  * @tstamp: on return, the 40bit timestamp value
 | |
|  *
 | |
|  * Read a 40bit timestamp value out of the two associated entries in the
 | |
|  * port memory block of the internal PHYs of the 56G devices.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to read from PHY
 | |
|  */
 | |
| static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx,
 | |
| 				      u64 *tstamp)
 | |
| {
 | |
| 	u16 lo_addr, hi_addr;
 | |
| 	u32 lo, hi;
 | |
| 	int err;
 | |
| 
 | |
| 	lo_addr = (u16)PHY_TSTAMP_L(idx);
 | |
| 	hi_addr = (u16)PHY_TSTAMP_U(idx);
 | |
| 
 | |
| 	err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* For 56G based internal PHYs, the timestamp is reported with the
 | |
| 	 * lower 8 bits in the low register, and the upper 32 bits in the high
 | |
| 	 * register.
 | |
| 	 */
 | |
| 	*tstamp = FIELD_PREP(PHY_40B_HIGH_M, hi) |
 | |
| 		  FIELD_PREP(PHY_40B_LOW_M, lo);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the quad to read from
 | |
|  * @idx: the timestamp index to reset
 | |
|  *
 | |
|  * Read and then forcibly clear the timestamp index to ensure the valid bit is
 | |
|  * cleared and the timestamp status bit is reset in the PHY port memory of
 | |
|  * internal PHYs of the 56G devices.
 | |
|  *
 | |
|  * To directly clear the contents of the timestamp block entirely, discarding
 | |
|  * all timestamp data at once, software should instead use
 | |
|  * ice_ptp_reset_ts_memory_quad_eth56g().
 | |
|  *
 | |
|  * This function should only be called on an idx whose bit is set according to
 | |
|  * ice_get_phy_tx_tstamp_ready().
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx)
 | |
| {
 | |
| 	u64 unused_tstamp;
 | |
| 	u16 lo_addr;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Read the timestamp register to ensure the timestamp status bit is
 | |
| 	 * cleared.
 | |
| 	 */
 | |
| 	err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n",
 | |
| 			  port, idx, err);
 | |
| 	}
 | |
| 
 | |
| 	lo_addr = (u16)PHY_TSTAMP_L(idx);
 | |
| 
 | |
| 	err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n",
 | |
| 			  port, idx, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block
 | |
|  * @hw: pointer to the HW struct
 | |
|  */
 | |
| static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw)
 | |
| {
 | |
| 	unsigned int port;
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
 | |
| 					 0);
 | |
| 		ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U,
 | |
| 					 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: port number
 | |
|  * @time: time to initialize the PHY port clocks to
 | |
|  *
 | |
|  * Write a new initial time value into registers of a specific PHY port.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					 u64 time)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* Tx case */
 | |
| 	err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
 | |
| 					   time);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Rx case */
 | |
| 	return ice_write_64b_ptp_reg_eth56g(hw, port,
 | |
| 					    PHY_REG_RX_TIMER_INC_PRE_L, time);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @time: Time to initialize the PHY port clocks to
 | |
|  *
 | |
|  * Program the PHY port registers with a new initial time value. The port
 | |
|  * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
 | |
|  * command. The time value is the upper 32 bits of the PHY timer, usually in
 | |
|  * units of nominal nanoseconds.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time)
 | |
| {
 | |
| 	u64 phy_time;
 | |
| 	u8 port;
 | |
| 
 | |
| 	/* The time represents the upper 32 bits of the PHY timer, so we need
 | |
| 	 * to shift to account for this when programming.
 | |
| 	 */
 | |
| 	phy_time = (u64)time << 32;
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time);
 | |
| 		if (err) {
 | |
| 			ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
 | |
| 				  port, err);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust
 | |
|  * @hw: pointer to HW struct
 | |
|  * @port: Port number to be programmed
 | |
|  * @time: time in cycles to adjust the port clocks
 | |
|  *
 | |
|  * Program the port for an atomic adjustment by writing the Tx and Rx timer
 | |
|  * registers. The atomic adjustment won't be completed until the driver issues
 | |
|  * an ICE_PTP_ADJ_TIME command.
 | |
|  *
 | |
|  * Note that time is not in units of nanoseconds. It is in clock time
 | |
|  * including the lower sub-nanosecond portion of the port timer.
 | |
|  *
 | |
|  * Negative adjustments are supported using 2s complement arithmetic.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time)
 | |
| {
 | |
| 	u32 l_time, u_time;
 | |
| 	int err;
 | |
| 
 | |
| 	l_time = lower_32_bits(time);
 | |
| 	u_time = upper_32_bits(time);
 | |
| 
 | |
| 	/* Tx case */
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
 | |
| 				       l_time);
 | |
| 	if (err)
 | |
| 		goto exit_err;
 | |
| 
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U,
 | |
| 				       u_time);
 | |
| 	if (err)
 | |
| 		goto exit_err;
 | |
| 
 | |
| 	/* Rx case */
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L,
 | |
| 				       l_time);
 | |
| 	if (err)
 | |
| 		goto exit_err;
 | |
| 
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U,
 | |
| 				       u_time);
 | |
| 	if (err)
 | |
| 		goto exit_err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_err:
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
 | |
| 		  port, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment
 | |
|  * @hw: pointer to HW struct
 | |
|  * @adj: adjustment in nanoseconds
 | |
|  *
 | |
|  * Prepare the PHY ports for an atomic time adjustment by programming the PHY
 | |
|  * Tx and Rx port registers. The actual adjustment is completed by issuing an
 | |
|  * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj)
 | |
| {
 | |
| 	s64 cycles;
 | |
| 	u8 port;
 | |
| 
 | |
| 	/* The port clock supports adjustment of the sub-nanosecond portion of
 | |
| 	 * the clock (lowest 32 bits). We shift the provided adjustment in
 | |
| 	 * nanoseconds by 32 to calculate the appropriate adjustment to program
 | |
| 	 * into the PHY ports.
 | |
| 	 */
 | |
| 	cycles = (s64)adj << 32;
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment
 | |
|  * @hw: pointer to HW struct
 | |
|  * @incval: new increment value to prepare
 | |
|  *
 | |
|  * Prepare each of the PHY ports for a new increment value by programming the
 | |
|  * port's TIMETUS registers. The new increment value will be updated after
 | |
|  * issuing an ICE_PTP_INIT_INCVAL command.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval)
 | |
| {
 | |
| 	u8 port;
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L,
 | |
| 						   incval);
 | |
| 		if (err) {
 | |
| 			ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
 | |
| 				  port, err);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_read_port_capture_eth56g - Read a port's local time capture
 | |
|  * @hw: pointer to HW struct
 | |
|  * @port: Port number to read
 | |
|  * @tx_ts: on return, the Tx port time capture
 | |
|  * @rx_ts: on return, the Rx port time capture
 | |
|  *
 | |
|  * Read the port's Tx and Rx local time capture values.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to read from PHY
 | |
|  */
 | |
| static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					    u64 *tx_ts, u64 *rx_ts)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* Tx case */
 | |
| 	err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L,
 | |
| 					  tx_ts);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts);
 | |
| 
 | |
| 	/* Rx case */
 | |
| 	err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L,
 | |
| 					  rx_ts);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command
 | |
|  * @hw: pointer to HW struct
 | |
|  * @port: Port to which cmd has to be sent
 | |
|  * @cmd: Command to be sent to the port
 | |
|  *
 | |
|  * Prepare the requested port for an upcoming timer sync command.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					 enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
 | |
| 	int err;
 | |
| 
 | |
| 	/* Tx case */
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Rx case */
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_get_speed_eth56g - Get link speed based on PHY link type
 | |
|  * @li: pointer to link information struct
 | |
|  *
 | |
|  * Return: simplified ETH56G PHY speed
 | |
|  */
 | |
| static enum ice_eth56g_link_spd
 | |
| ice_phy_get_speed_eth56g(struct ice_link_status *li)
 | |
| {
 | |
| 	u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low,
 | |
| 							 li->phy_type_high);
 | |
| 
 | |
| 	switch (speed) {
 | |
| 	case ICE_AQ_LINK_SPEED_1000MB:
 | |
| 		return ICE_ETH56G_LNK_SPD_1G;
 | |
| 	case ICE_AQ_LINK_SPEED_2500MB:
 | |
| 		return ICE_ETH56G_LNK_SPD_2_5G;
 | |
| 	case ICE_AQ_LINK_SPEED_10GB:
 | |
| 		return ICE_ETH56G_LNK_SPD_10G;
 | |
| 	case ICE_AQ_LINK_SPEED_25GB:
 | |
| 		return ICE_ETH56G_LNK_SPD_25G;
 | |
| 	case ICE_AQ_LINK_SPEED_40GB:
 | |
| 		return ICE_ETH56G_LNK_SPD_40G;
 | |
| 	case ICE_AQ_LINK_SPEED_50GB:
 | |
| 		switch (li->phy_type_low) {
 | |
| 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 | |
| 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 | |
| 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 | |
| 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 | |
| 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
 | |
| 		case ICE_PHY_TYPE_LOW_50G_AUI1:
 | |
| 			return ICE_ETH56G_LNK_SPD_50G;
 | |
| 		default:
 | |
| 			return ICE_ETH56G_LNK_SPD_50G2;
 | |
| 		}
 | |
| 	case ICE_AQ_LINK_SPEED_100GB:
 | |
| 		if (li->phy_type_high ||
 | |
| 		    li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2)
 | |
| 			return ICE_ETH56G_LNK_SPD_100G2;
 | |
| 		else
 | |
| 			return ICE_ETH56G_LNK_SPD_100G;
 | |
| 	default:
 | |
| 		return ICE_ETH56G_LNK_SPD_1G;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: port to configure
 | |
|  *
 | |
|  * Configure the number of TUs for the PAR and PCS clocks used as part of the
 | |
|  * timestamp calibration process.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - PHY read/write failed
 | |
|  */
 | |
| static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	u32 val;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH,
 | |
| 					ICE_ETH56G_NOMINAL_THRESH4);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
 | |
| 	case ICE_ETH56G_LNK_SPD_1G:
 | |
| 	case ICE_ETH56G_LNK_SPD_2_5G:
 | |
| 		err = ice_read_quad_ptp_reg_eth56g(hw, port,
 | |
| 						   PHY_GPCS_CONFIG_REG0, &val);
 | |
| 		if (err) {
 | |
| 			ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d",
 | |
| 				  err);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M;
 | |
| 		val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M,
 | |
| 				  ICE_ETH56G_NOMINAL_TX_THRESH);
 | |
| 
 | |
| 		err = ice_write_quad_ptp_reg_eth56g(hw, port,
 | |
| 						    PHY_GPCS_CONFIG_REG0, val);
 | |
| 		if (err) {
 | |
| 			ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d",
 | |
| 				  err);
 | |
| 			return err;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L,
 | |
| 					   ICE_ETH56G_NOMINAL_PCS_REF_TUS);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L,
 | |
| 					   ICE_ETH56G_NOMINAL_PCS_REF_INC);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings
 | |
|  * @hw: Pointer to the HW struct
 | |
|  * @port: Port to configure
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - PHY read/write failed
 | |
|  */
 | |
| int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	u8 quad_lane = port % ICE_PORTS_PER_QUAD;
 | |
| 	u32 addr, val, peer_delay;
 | |
| 	bool enable, sfd_ena;
 | |
| 	int err;
 | |
| 
 | |
| 	enable = hw->ptp.phy.eth56g.onestep_ena;
 | |
| 	peer_delay = hw->ptp.phy.eth56g.peer_delay;
 | |
| 	sfd_ena = hw->ptp.phy.eth56g.sfd_ena;
 | |
| 
 | |
| 	addr = PHY_PTP_1STEP_CONFIG;
 | |
| 	err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (enable)
 | |
| 		val |= BIT(quad_lane);
 | |
| 	else
 | |
| 		val &= ~BIT(quad_lane);
 | |
| 
 | |
| 	val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M);
 | |
| 
 | |
| 	err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	addr = PHY_PTP_1STEP_PEER_DELAY(quad_lane);
 | |
| 	val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay);
 | |
| 	if (peer_delay)
 | |
| 		val |= PHY_PTP_1STEP_PD_ADD_PD_M;
 | |
| 	val |= PHY_PTP_1STEP_PD_DLY_V_M;
 | |
| 	err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val &= ~PHY_PTP_1STEP_PD_DLY_V_M;
 | |
| 	err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	addr = PHY_MAC_XIF_MODE;
 | |
| 	err = ice_read_mac_reg_eth56g(hw, port, addr, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M |
 | |
| 		 PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M);
 | |
| 
 | |
| 	switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
 | |
| 	case ICE_ETH56G_LNK_SPD_1G:
 | |
| 	case ICE_ETH56G_LNK_SPD_2_5G:
 | |
| 		val |= PHY_MAC_XIF_GMII_TS_SEL_M;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) |
 | |
| 	       FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) |
 | |
| 	       FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena);
 | |
| 
 | |
| 	return ice_write_mac_reg_eth56g(hw, port, addr, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values
 | |
|  * @a: multiplier value
 | |
|  * @b: multiplicand value
 | |
|  *
 | |
|  * Return: result of multiplication
 | |
|  */
 | |
| static u32 mul_u32_u32_fx_q9(u32 a, u32 b)
 | |
| {
 | |
| 	return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_u32_u32_fx - Add two u32 fixed point values and discard overflow
 | |
|  * @a: first value
 | |
|  * @b: second value
 | |
|  *
 | |
|  * Return: result of addition
 | |
|  */
 | |
| static u32 add_u32_u32_fx(u32 a, u32 b)
 | |
| {
 | |
| 	return lower_32_bits(((u64)a + b));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_calc_bitslip_eth56g - Calculate bitslip value
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: port to configure
 | |
|  * @bs: bitslip multiplier
 | |
|  * @fc: FC-FEC enabled
 | |
|  * @rs: RS-FEC enabled
 | |
|  * @spd: link speed
 | |
|  *
 | |
|  * Return: calculated bitslip value
 | |
|  */
 | |
| static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs,
 | |
| 				       bool fc, bool rs,
 | |
| 				       enum ice_eth56g_link_spd spd)
 | |
| {
 | |
| 	u32 bitslip;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!bs || rs)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G) {
 | |
| 		err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP,
 | |
| 					       &bitslip);
 | |
| 	} else {
 | |
| 		u8 quad_lane = port % ICE_PORTS_PER_QUAD;
 | |
| 		u32 addr;
 | |
| 
 | |
| 		addr = PHY_REG_SD_BIT_SLIP(quad_lane);
 | |
| 		err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &bitslip);
 | |
| 	}
 | |
| 	if (err)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) {
 | |
| 		/* Bitslip register value of 0 corresponds to 10 so substitute
 | |
| 		 * it for calculations
 | |
| 		 */
 | |
| 		bitslip = 10;
 | |
| 	} else if (spd == ICE_ETH56G_LNK_SPD_10G ||
 | |
| 		   spd == ICE_ETH56G_LNK_SPD_25G) {
 | |
| 		if (fc)
 | |
| 			bitslip = bitslip * 2 + 32;
 | |
| 		else
 | |
| 			bitslip = (u32)((s32)bitslip * -1 + 20);
 | |
| 	}
 | |
| 
 | |
| 	bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W;
 | |
| 	return mul_u32_u32_fx_q9(bitslip, bs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_calc_deskew_eth56g - Calculate deskew value
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: port to configure
 | |
|  * @ds: deskew multiplier
 | |
|  * @rs: RS-FEC enabled
 | |
|  * @spd: link speed
 | |
|  *
 | |
|  * Return: calculated deskew value
 | |
|  */
 | |
| static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds,
 | |
| 				      bool rs, enum ice_eth56g_link_spd spd)
 | |
| {
 | |
| 	u32 deskew_i, deskew_f;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ds)
 | |
| 		return 0;
 | |
| 
 | |
| 	read_poll_timeout(ice_read_ptp_reg_eth56g, err,
 | |
| 			  FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500,
 | |
| 			  50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0,
 | |
| 			  &deskew_i);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i);
 | |
| 	deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i);
 | |
| 
 | |
| 	if (rs && spd == ICE_ETH56G_LNK_SPD_50G2)
 | |
| 		ds = 0x633; /* 3.1 */
 | |
| 	else if (rs && spd == ICE_ETH56G_LNK_SPD_100G)
 | |
| 		ds = 0x31b; /* 1.552 */
 | |
| 
 | |
| 	deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i);
 | |
| 	/* Shift 3 fractional bits to the end of the integer part */
 | |
| 	deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W;
 | |
| 	return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_set_offsets_eth56g - Set Tx/Rx offset values
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: port to configure
 | |
|  * @spd: link speed
 | |
|  * @cfg: structure to store output values
 | |
|  * @fc: FC-FEC enabled
 | |
|  * @rs: RS-FEC enabled
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port,
 | |
| 				      enum ice_eth56g_link_spd spd,
 | |
| 				      const struct ice_eth56g_mac_reg_cfg *cfg,
 | |
| 				      bool fc, bool rs)
 | |
| {
 | |
| 	u32 rx_offset, tx_offset, bs_ds;
 | |
| 	bool onestep, sfd;
 | |
| 
 | |
| 	onestep = hw->ptp.phy.eth56g.onestep_ena;
 | |
| 	sfd = hw->ptp.phy.eth56g.sfd_ena;
 | |
| 	bs_ds = cfg->rx_offset.bs_ds;
 | |
| 
 | |
| 	if (fc)
 | |
| 		rx_offset = cfg->rx_offset.fc;
 | |
| 	else if (rs)
 | |
| 		rx_offset = cfg->rx_offset.rs;
 | |
| 	else
 | |
| 		rx_offset = cfg->rx_offset.no_fec;
 | |
| 
 | |
| 	rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes);
 | |
| 	if (sfd)
 | |
| 		rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd);
 | |
| 
 | |
| 	if (spd < ICE_ETH56G_LNK_SPD_40G)
 | |
| 		bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs,
 | |
| 						    spd);
 | |
| 	else
 | |
| 		bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd);
 | |
| 	rx_offset = add_u32_u32_fx(rx_offset, bs_ds);
 | |
| 	rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT |
 | |
| 		     ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC;
 | |
| 
 | |
| 	if (fc)
 | |
| 		tx_offset = cfg->tx_offset.fc;
 | |
| 	else if (rs)
 | |
| 		tx_offset = cfg->tx_offset.rs;
 | |
| 	else
 | |
| 		tx_offset = cfg->tx_offset.no_fec;
 | |
| 	tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd +
 | |
| 		     cfg->tx_offset.onestep * onestep;
 | |
| 
 | |
| 	ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset);
 | |
| 	return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_mac_eth56g - Configure MAC for PTP
 | |
|  * @hw: Pointer to the HW struct
 | |
|  * @port: Port to configure
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	const struct ice_eth56g_mac_reg_cfg *cfg;
 | |
| 	enum ice_eth56g_link_spd spd;
 | |
| 	struct ice_link_status *li;
 | |
| 	bool fc = false;
 | |
| 	bool rs = false;
 | |
| 	bool onestep;
 | |
| 	u32 val;
 | |
| 	int err;
 | |
| 
 | |
| 	onestep = hw->ptp.phy.eth56g.onestep_ena;
 | |
| 	li = &hw->port_info->phy.link_info;
 | |
| 	spd = ice_phy_get_speed_eth56g(li);
 | |
| 	if (!!(li->an_info & ICE_AQ_FEC_EN)) {
 | |
| 		if (spd == ICE_ETH56G_LNK_SPD_10G) {
 | |
| 			fc = true;
 | |
| 		} else {
 | |
| 			fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN);
 | |
| 			rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN);
 | |
| 		}
 | |
| 	}
 | |
| 	cfg = ð56g_mac_cfg[spd];
 | |
| 
 | |
| 	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M,
 | |
| 			 cfg->tx_mode.def + rs * cfg->tx_mode.rs) |
 | |
| 	      FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) |
 | |
| 	      FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M,
 | |
| 			 cfg->tx_cw_dly.def +
 | |
| 			 onestep * cfg->tx_cw_dly.onestep) |
 | |
| 	      FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M,
 | |
| 			 cfg->rx_mode.def + rs * cfg->rx_mode.rs) |
 | |
| 	      FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M,
 | |
| 			 cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) |
 | |
| 	      FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M,
 | |
| 			 cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) |
 | |
| 	      FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk);
 | |
| 	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME,
 | |
| 				       cfg->blktime);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (spd == ICE_ETH56G_LNK_SPD_25G && !rs)
 | |
| 		val = 0;
 | |
| 	else
 | |
| 		val = cfg->mktime;
 | |
| 
 | |
| 	return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the timestamp port
 | |
|  * @ena: enable or disable interrupt
 | |
|  * @threshold: interrupt threshold
 | |
|  *
 | |
|  * Configure TX timestamp interrupt for the specified port
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - PHY read/write failed
 | |
|  */
 | |
| int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold)
 | |
| {
 | |
| 	int err;
 | |
| 	u32 val;
 | |
| 
 | |
| 	err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (ena) {
 | |
| 		val |= PHY_TS_INT_CONFIG_ENA_M;
 | |
| 		val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M;
 | |
| 		val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold);
 | |
| 	} else {
 | |
| 		val &= ~PHY_TS_INT_CONFIG_ENA_M;
 | |
| 	}
 | |
| 
 | |
| 	return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to read
 | |
|  * @phy_time: on return, the 64bit PHY timer value
 | |
|  * @phc_time: on return, the lower 64bits of PHC time
 | |
|  *
 | |
|  * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
 | |
|  * and PHC timer values.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - PHY read/write failed
 | |
|  */
 | |
| static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					    u64 *phy_time, u64 *phc_time)
 | |
| {
 | |
| 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
 | |
| 	u64 tx_time, rx_time;
 | |
| 	u32 zo, lo;
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	tmr_idx = ice_get_ptp_src_clock_index(hw);
 | |
| 
 | |
| 	/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
 | |
| 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
 | |
| 
 | |
| 	/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
 | |
| 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Issue the sync to start the ICE_PTP_READ_TIME capture */
 | |
| 	ice_ptp_exec_tmr_cmd(hw);
 | |
| 
 | |
| 	/* Read the captured PHC time from the shadow time registers */
 | |
| 	if (ice_is_primary(hw)) {
 | |
| 		zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
 | |
| 		lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
 | |
| 	} else {
 | |
| 		zo = rd32(ice_get_primary_hw(pf), GLTSYN_SHTIME_0(tmr_idx));
 | |
| 		lo = rd32(ice_get_primary_hw(pf), GLTSYN_SHTIME_L(tmr_idx));
 | |
| 	}
 | |
| 	*phc_time = (u64)lo << 32 | zo;
 | |
| 
 | |
| 	/* Read the captured PHY time from the PHY shadow registers */
 | |
| 	err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* If the PHY Tx and Rx timers don't match, log a warning message.
 | |
| 	 * Note that this should not happen in normal circumstances since the
 | |
| 	 * driver always programs them together.
 | |
| 	 */
 | |
| 	if (tx_time != rx_time)
 | |
| 		dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
 | |
| 			 port, tx_time, rx_time);
 | |
| 
 | |
| 	*phy_time = tx_time;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to synchronize
 | |
|  *
 | |
|  * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
 | |
|  * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
 | |
|  * simultaneous read of the PHY timer and PHC timer. Then we use the
 | |
|  * difference to calculate an appropriate 2s complement addition to add
 | |
|  * to the PHY timer in order to ensure it reads the same value as the
 | |
|  * primary PHC timer.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %-EBUSY- failed to acquire PTP semaphore
 | |
|  * * %other - PHY read/write failed
 | |
|  */
 | |
| static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	u64 phc_time, phy_time, difference;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ice_ptp_lock(hw)) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
 | |
| 	if (err)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	/* Calculate the amount required to add to the port time in order for
 | |
| 	 * it to match the PHC time.
 | |
| 	 *
 | |
| 	 * Note that the port adjustment is done using 2s complement
 | |
| 	 * arithmetic. This is convenient since it means that we can simply
 | |
| 	 * calculate the difference between the PHC time and the port time,
 | |
| 	 * and it will be interpreted correctly.
 | |
| 	 */
 | |
| 
 | |
| 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
 | |
| 	difference = phc_time - phy_time;
 | |
| 
 | |
| 	err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference);
 | |
| 	if (err)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
 | |
| 	if (err)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	/* Issue the sync to activate the time adjustment */
 | |
| 	ice_ptp_exec_tmr_cmd(hw);
 | |
| 
 | |
| 	/* Re-capture the timer values to flush the command registers and
 | |
| 	 * verify that the time was properly adjusted.
 | |
| 	 */
 | |
| 	err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
 | |
| 	if (err)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	dev_info(ice_hw_to_dev(hw),
 | |
| 		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
 | |
| 		 port, phy_time, phc_time);
 | |
| 
 | |
| err_unlock:
 | |
| 	ice_ptp_unlock(hw);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_stop_phy_timer_eth56g - Stop the PHY clock timer
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to stop
 | |
|  * @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS
 | |
|  *
 | |
|  * Stop the clock of a PHY port. This must be done as part of the flow to
 | |
|  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
 | |
|  * initialized or when link speed changes.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_start_phy_timer_eth56g - Start the PHY clock timer
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to start
 | |
|  *
 | |
|  * Start the clock of a PHY port. This must be done as part of the flow to
 | |
|  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
 | |
|  * initialized or when link speed changes.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - PHY read/write failed
 | |
|  */
 | |
| int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
 | |
| 	u32 lo, hi;
 | |
| 	u64 incval;
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	tmr_idx = ice_get_ptp_src_clock_index(hw);
 | |
| 
 | |
| 	err = ice_stop_phy_timer_eth56g(hw, port, false);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
 | |
| 
 | |
| 	err = ice_phy_cfg_parpcs_eth56g(hw, port);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_phy_cfg_ptp_1step_eth56g(hw, port);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_phy_cfg_mac_eth56g(hw, port);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (ice_is_primary(hw)) {
 | |
| 		lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
 | |
| 		hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
 | |
| 	} else {
 | |
| 		lo = rd32(ice_get_primary_hw(pf), GLTSYN_INCVAL_L(tmr_idx));
 | |
| 		hi = rd32(ice_get_primary_hw(pf), GLTSYN_INCVAL_H(tmr_idx));
 | |
| 	}
 | |
| 	incval = (u64)hi << 32 | lo;
 | |
| 
 | |
| 	err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ice_ptp_exec_tmr_cmd(hw);
 | |
| 
 | |
| 	err = ice_sync_phy_timer_eth56g(hw, port);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_phc_e825 - Perform E825 specific PHC initialization
 | |
|  * @hw: pointer to HW struct
 | |
|  *
 | |
|  * Perform E825-specific PTP hardware clock initialization steps.
 | |
|  *
 | |
|  * Return: 0 on success, negative error code otherwise.
 | |
|  */
 | |
| static int ice_ptp_init_phc_e825(struct ice_hw *hw)
 | |
| {
 | |
| 	/* Initialize the Clock Generation Unit */
 | |
| 	return ice_init_cgu_e82x(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @ts_status: the timestamp mask pointer
 | |
|  *
 | |
|  * Read the PHY Tx timestamp status mask indicating which ports have Tx
 | |
|  * timestamps available.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to read from PHY
 | |
|  */
 | |
| int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status)
 | |
| {
 | |
| 	const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g;
 | |
| 	u8 phy, mask;
 | |
| 	u32 status;
 | |
| 
 | |
| 	mask = (1 << hw->ptp.ports_per_phy) - 1;
 | |
| 	*ts_status = 0;
 | |
| 
 | |
| 	for (phy = 0; phy < params->num_phys; phy++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		*ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy);
 | |
| 	}
 | |
| 
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to read from
 | |
|  * @tstamp_ready: contents of the Tx memory status register
 | |
|  *
 | |
|  * Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in
 | |
|  * the PHY are ready. A set bit means the corresponding timestamp is valid and
 | |
|  * ready to be captured from the PHY timestamp block.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to read from PHY
 | |
|  */
 | |
| static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port,
 | |
| 					      u64 *tstamp_ready)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
 | |
| 					  tstamp_ready);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n",
 | |
| 			  port, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_phy_e825 - initialize PHY parameters
 | |
|  * @hw: pointer to the HW struct
 | |
|  */
 | |
| static void ice_ptp_init_phy_e825(struct ice_hw *hw)
 | |
| {
 | |
| 	struct ice_ptp_hw *ptp = &hw->ptp;
 | |
| 	struct ice_eth56g_params *params;
 | |
| 
 | |
| 	params = &ptp->phy.eth56g;
 | |
| 	params->onestep_ena = false;
 | |
| 	params->peer_delay = 0;
 | |
| 	params->sfd_ena = false;
 | |
| 	params->num_phys = 2;
 | |
| 	ptp->ports_per_phy = 4;
 | |
| 	ptp->num_lports = params->num_phys * ptp->ports_per_phy;
 | |
| }
 | |
| 
 | |
| /* E822 family functions
 | |
|  *
 | |
|  * The following functions operate on the E822 family of devices.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ice_fill_phy_msg_e82x - Fill message data for a PHY register access
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @msg: the PHY message buffer to fill in
 | |
|  * @port: the port to access
 | |
|  * @offset: the register offset
 | |
|  */
 | |
| static void ice_fill_phy_msg_e82x(struct ice_hw *hw,
 | |
| 				  struct ice_sbq_msg_input *msg, u8 port,
 | |
| 				  u16 offset)
 | |
| {
 | |
| 	int phy_port, quadtype;
 | |
| 
 | |
| 	phy_port = port % hw->ptp.ports_per_phy;
 | |
| 	quadtype = ICE_GET_QUAD_NUM(port) %
 | |
| 		   ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy);
 | |
| 
 | |
| 	if (quadtype == 0) {
 | |
| 		msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
 | |
| 		msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
 | |
| 	} else {
 | |
| 		msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
 | |
| 		msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
 | |
| 	}
 | |
| 
 | |
| 	msg->dest_dev = ice_sbq_dev_phy_0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register
 | |
|  * @low_addr: the low address to check
 | |
|  * @high_addr: on return, contains the high address of the 64bit register
 | |
|  *
 | |
|  * Checks if the provided low address is one of the known 64bit PHY values
 | |
|  * represented as two 32bit registers. If it is, return the appropriate high
 | |
|  * register offset to use.
 | |
|  */
 | |
| static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
 | |
| {
 | |
| 	switch (low_addr) {
 | |
| 	case P_REG_PAR_PCS_TX_OFFSET_L:
 | |
| 		*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
 | |
| 		return true;
 | |
| 	case P_REG_PAR_PCS_RX_OFFSET_L:
 | |
| 		*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
 | |
| 		return true;
 | |
| 	case P_REG_PAR_TX_TIME_L:
 | |
| 		*high_addr = P_REG_PAR_TX_TIME_U;
 | |
| 		return true;
 | |
| 	case P_REG_PAR_RX_TIME_L:
 | |
| 		*high_addr = P_REG_PAR_RX_TIME_U;
 | |
| 		return true;
 | |
| 	case P_REG_TOTAL_TX_OFFSET_L:
 | |
| 		*high_addr = P_REG_TOTAL_TX_OFFSET_U;
 | |
| 		return true;
 | |
| 	case P_REG_TOTAL_RX_OFFSET_L:
 | |
| 		*high_addr = P_REG_TOTAL_RX_OFFSET_U;
 | |
| 		return true;
 | |
| 	case P_REG_UIX66_10G_40G_L:
 | |
| 		*high_addr = P_REG_UIX66_10G_40G_U;
 | |
| 		return true;
 | |
| 	case P_REG_UIX66_25G_100G_L:
 | |
| 		*high_addr = P_REG_UIX66_25G_100G_U;
 | |
| 		return true;
 | |
| 	case P_REG_TX_CAPTURE_L:
 | |
| 		*high_addr = P_REG_TX_CAPTURE_U;
 | |
| 		return true;
 | |
| 	case P_REG_RX_CAPTURE_L:
 | |
| 		*high_addr = P_REG_RX_CAPTURE_U;
 | |
| 		return true;
 | |
| 	case P_REG_TX_TIMER_INC_PRE_L:
 | |
| 		*high_addr = P_REG_TX_TIMER_INC_PRE_U;
 | |
| 		return true;
 | |
| 	case P_REG_RX_TIMER_INC_PRE_L:
 | |
| 		*high_addr = P_REG_RX_TIMER_INC_PRE_U;
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register
 | |
|  * @low_addr: the low address to check
 | |
|  * @high_addr: on return, contains the high address of the 40bit value
 | |
|  *
 | |
|  * Checks if the provided low address is one of the known 40bit PHY values
 | |
|  * split into two registers with the lower 8 bits in the low register and the
 | |
|  * upper 32 bits in the high register. If it is, return the appropriate high
 | |
|  * register offset to use.
 | |
|  */
 | |
| static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
 | |
| {
 | |
| 	switch (low_addr) {
 | |
| 	case P_REG_TIMETUS_L:
 | |
| 		*high_addr = P_REG_TIMETUS_U;
 | |
| 		return true;
 | |
| 	case P_REG_PAR_RX_TUS_L:
 | |
| 		*high_addr = P_REG_PAR_RX_TUS_U;
 | |
| 		return true;
 | |
| 	case P_REG_PAR_TX_TUS_L:
 | |
| 		*high_addr = P_REG_PAR_TX_TUS_U;
 | |
| 		return true;
 | |
| 	case P_REG_PCS_RX_TUS_L:
 | |
| 		*high_addr = P_REG_PCS_RX_TUS_U;
 | |
| 		return true;
 | |
| 	case P_REG_PCS_TX_TUS_L:
 | |
| 		*high_addr = P_REG_PCS_TX_TUS_U;
 | |
| 		return true;
 | |
| 	case P_REG_DESK_PAR_RX_TUS_L:
 | |
| 		*high_addr = P_REG_DESK_PAR_RX_TUS_U;
 | |
| 		return true;
 | |
| 	case P_REG_DESK_PAR_TX_TUS_L:
 | |
| 		*high_addr = P_REG_DESK_PAR_TX_TUS_U;
 | |
| 		return true;
 | |
| 	case P_REG_DESK_PCS_RX_TUS_L:
 | |
| 		*high_addr = P_REG_DESK_PCS_RX_TUS_U;
 | |
| 		return true;
 | |
| 	case P_REG_DESK_PCS_TX_TUS_L:
 | |
| 		*high_addr = P_REG_DESK_PCS_TX_TUS_U;
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_reg_e82x - Read a PHY register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: PHY port to read from
 | |
|  * @offset: PHY register offset to read
 | |
|  * @val: on return, the contents read from the PHY
 | |
|  *
 | |
|  * Read a PHY register for the given port over the device sideband queue.
 | |
|  */
 | |
| static int
 | |
| ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input msg = {0};
 | |
| 	int err;
 | |
| 
 | |
| 	ice_fill_phy_msg_e82x(hw, &msg, port, offset);
 | |
| 	msg.opcode = ice_sbq_msg_rd;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	*val = msg.data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: PHY port to read from
 | |
|  * @low_addr: offset of the lower register to read from
 | |
|  * @val: on return, the contents of the 64bit value from the PHY registers
 | |
|  *
 | |
|  * Reads the two registers associated with a 64bit value and returns it in the
 | |
|  * val pointer. The offset always specifies the lower register offset to use.
 | |
|  * The high offset is looked up. This function only operates on registers
 | |
|  * known to be two parts of a 64bit value.
 | |
|  */
 | |
| static int
 | |
| ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
 | |
| {
 | |
| 	u32 low, high;
 | |
| 	u16 high_addr;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Only operate on registers known to be split into two 32bit
 | |
| 	 * registers.
 | |
| 	 */
 | |
| 	if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
 | |
| 			  low_addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, low_addr, &low);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
 | |
| 			  low_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, high_addr, &high);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
 | |
| 			  high_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	*val = (u64)high << 32 | low;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_phy_reg_e82x - Write a PHY register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: PHY port to write to
 | |
|  * @offset: PHY register offset to write
 | |
|  * @val: The value to write to the register
 | |
|  *
 | |
|  * Write a PHY register for the given port over the device sideband queue.
 | |
|  */
 | |
| static int
 | |
| ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input msg = {0};
 | |
| 	int err;
 | |
| 
 | |
| 	ice_fill_phy_msg_e82x(hw, &msg, port, offset);
 | |
| 	msg.opcode = ice_sbq_msg_wr;
 | |
| 	msg.data = val;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: port to write to
 | |
|  * @low_addr: offset of the low register
 | |
|  * @val: 40b value to write
 | |
|  *
 | |
|  * Write the provided 40b value to the two associated registers by splitting
 | |
|  * it up into two chunks, the lower 8 bits and the upper 32 bits.
 | |
|  */
 | |
| static int
 | |
| ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
 | |
| {
 | |
| 	u32 low, high;
 | |
| 	u16 high_addr;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Only operate on registers known to be split into a lower 8 bit
 | |
| 	 * register and an upper 32 bit register.
 | |
| 	 */
 | |
| 	if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
 | |
| 			  low_addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	low = FIELD_GET(P_REG_40B_LOW_M, val);
 | |
| 	high = (u32)(val >> P_REG_40B_HIGH_S);
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
 | |
| 			  low_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
 | |
| 			  high_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: PHY port to read from
 | |
|  * @low_addr: offset of the lower register to read from
 | |
|  * @val: the contents of the 64bit value to write to PHY
 | |
|  *
 | |
|  * Write the 64bit value to the two associated 32bit PHY registers. The offset
 | |
|  * is always specified as the lower register, and the high address is looked
 | |
|  * up. This function only operates on registers known to be two parts of
 | |
|  * a 64bit value.
 | |
|  */
 | |
| static int
 | |
| ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
 | |
| {
 | |
| 	u32 low, high;
 | |
| 	u16 high_addr;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Only operate on registers known to be split into two 32bit
 | |
| 	 * registers.
 | |
| 	 */
 | |
| 	if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
 | |
| 			  low_addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	low = lower_32_bits(val);
 | |
| 	high = upper_32_bits(val);
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
 | |
| 			  low_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
 | |
| 			  high_addr, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_fill_quad_msg_e82x - Fill message data for quad register access
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @msg: the PHY message buffer to fill in
 | |
|  * @quad: the quad to access
 | |
|  * @offset: the register offset
 | |
|  *
 | |
|  * Fill a message buffer for accessing a register in a quad shared between
 | |
|  * multiple PHYs.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0       - OK
 | |
|  * * %-EINVAL - invalid quad number
 | |
|  */
 | |
| static int ice_fill_quad_msg_e82x(struct ice_hw *hw,
 | |
| 				  struct ice_sbq_msg_input *msg, u8 quad,
 | |
| 				  u16 offset)
 | |
| {
 | |
| 	u32 addr;
 | |
| 
 | |
| 	if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	msg->dest_dev = ice_sbq_dev_phy_0;
 | |
| 
 | |
| 	if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy)))
 | |
| 		addr = Q_0_BASE + offset;
 | |
| 	else
 | |
| 		addr = Q_1_BASE + offset;
 | |
| 
 | |
| 	msg->msg_addr_low = lower_16_bits(addr);
 | |
| 	msg->msg_addr_high = upper_16_bits(addr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_quad_reg_e82x - Read a PHY quad register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @quad: quad to read from
 | |
|  * @offset: quad register offset to read
 | |
|  * @val: on return, the contents read from the quad
 | |
|  *
 | |
|  * Read a quad register over the device sideband queue. Quad registers are
 | |
|  * shared between multiple PHYs.
 | |
|  */
 | |
| int
 | |
| ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input msg = {0};
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	msg.opcode = ice_sbq_msg_rd;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	*val = msg.data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_quad_reg_e82x - Write a PHY quad register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @quad: quad to write to
 | |
|  * @offset: quad register offset to write
 | |
|  * @val: The value to write to the register
 | |
|  *
 | |
|  * Write a quad register over the device sideband queue. Quad registers are
 | |
|  * shared between multiple PHYs.
 | |
|  */
 | |
| int
 | |
| ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input msg = {0};
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	msg.opcode = ice_sbq_msg_wr;
 | |
| 	msg.data = val;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @quad: the quad to read from
 | |
|  * @idx: the timestamp index to read
 | |
|  * @tstamp: on return, the 40bit timestamp value
 | |
|  *
 | |
|  * Read a 40bit timestamp value out of the two associated registers in the
 | |
|  * quad memory block that is shared between the internal PHYs of the E822
 | |
|  * family of devices.
 | |
|  */
 | |
| static int
 | |
| ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
 | |
| {
 | |
| 	u16 lo_addr, hi_addr;
 | |
| 	u32 lo, hi;
 | |
| 	int err;
 | |
| 
 | |
| 	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
 | |
| 	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
 | |
| 
 | |
| 	err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* For E822 based internal PHYs, the timestamp is reported with the
 | |
| 	 * lower 8 bits in the low register, and the upper 32 bits in the high
 | |
| 	 * register.
 | |
| 	 */
 | |
| 	*tstamp = FIELD_PREP(PHY_40B_HIGH_M, hi) |
 | |
| 		  FIELD_PREP(PHY_40B_LOW_M, lo);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @quad: the quad to read from
 | |
|  * @idx: the timestamp index to reset
 | |
|  *
 | |
|  * Read the timestamp out of the quad to clear its timestamp status bit from
 | |
|  * the PHY quad block that is shared between the internal PHYs of the E822
 | |
|  * devices.
 | |
|  *
 | |
|  * Note that unlike E810, software cannot directly write to the quad memory
 | |
|  * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
 | |
|  * to determine which timestamps are valid. Reading a timestamp auto-clears
 | |
|  * the valid bit.
 | |
|  *
 | |
|  * To directly clear the contents of the timestamp block entirely, discarding
 | |
|  * all timestamp data at once, software should instead use
 | |
|  * ice_ptp_reset_ts_memory_quad_e82x().
 | |
|  *
 | |
|  * This function should only be called on an idx whose bit is set according to
 | |
|  * ice_get_phy_tx_tstamp_ready().
 | |
|  */
 | |
| static int
 | |
| ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx)
 | |
| {
 | |
| 	u64 unused_tstamp;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
 | |
| 			  quad, idx, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @quad: the quad to read from
 | |
|  *
 | |
|  * Clear all timestamps from the PHY quad block that is shared between the
 | |
|  * internal PHYs on the E822 devices.
 | |
|  */
 | |
| void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad)
 | |
| {
 | |
| 	ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
 | |
| 	ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks
 | |
|  * @hw: pointer to the HW struct
 | |
|  */
 | |
| static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw)
 | |
| {
 | |
| 	unsigned int quad;
 | |
| 
 | |
| 	for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++)
 | |
| 		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
 | |
|  * @hw: pointer to the HW struct
 | |
|  *
 | |
|  * Set the window length used for the vernier port calibration process.
 | |
|  */
 | |
| static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
 | |
| {
 | |
| 	u8 port;
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = ice_write_phy_reg_e82x(hw, port, P_REG_WL,
 | |
| 					     PTP_VERNIER_WL);
 | |
| 		if (err) {
 | |
| 			ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
 | |
| 				  port, err);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization
 | |
|  * @hw: pointer to HW struct
 | |
|  *
 | |
|  * Perform PHC initialization steps specific to E822 devices.
 | |
|  */
 | |
| static int ice_ptp_init_phc_e82x(struct ice_hw *hw)
 | |
| {
 | |
| 	int err;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* Enable reading switch and PHY registers over the sideband queue */
 | |
| #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
 | |
| #define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
 | |
| 	val = rd32(hw, PF_SB_REM_DEV_CTL);
 | |
| 	val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0);
 | |
| 	wr32(hw, PF_SB_REM_DEV_CTL, val);
 | |
| 
 | |
| 	/* Initialize the Clock Generation Unit */
 | |
| 	err = ice_init_cgu_e82x(hw);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Set window length for all the ports */
 | |
| 	return ice_ptp_set_vernier_wl(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @time: Time to initialize the PHY port clocks to
 | |
|  *
 | |
|  * Program the PHY port registers with a new initial time value. The port
 | |
|  * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
 | |
|  * command. The time value is the upper 32 bits of the PHY timer, usually in
 | |
|  * units of nominal nanoseconds.
 | |
|  */
 | |
| static int
 | |
| ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time)
 | |
| {
 | |
| 	u64 phy_time;
 | |
| 	u8 port;
 | |
| 	int err;
 | |
| 
 | |
| 	/* The time represents the upper 32 bits of the PHY timer, so we need
 | |
| 	 * to shift to account for this when programming.
 | |
| 	 */
 | |
| 	phy_time = (u64)time << 32;
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		/* Tx case */
 | |
| 		err = ice_write_64b_phy_reg_e82x(hw, port,
 | |
| 						 P_REG_TX_TIMER_INC_PRE_L,
 | |
| 						 phy_time);
 | |
| 		if (err)
 | |
| 			goto exit_err;
 | |
| 
 | |
| 		/* Rx case */
 | |
| 		err = ice_write_64b_phy_reg_e82x(hw, port,
 | |
| 						 P_REG_RX_TIMER_INC_PRE_L,
 | |
| 						 phy_time);
 | |
| 		if (err)
 | |
| 			goto exit_err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_err:
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
 | |
| 		  port, err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust
 | |
|  * @hw: pointer to HW struct
 | |
|  * @port: Port number to be programmed
 | |
|  * @time: time in cycles to adjust the port Tx and Rx clocks
 | |
|  *
 | |
|  * Program the port for an atomic adjustment by writing the Tx and Rx timer
 | |
|  * registers. The atomic adjustment won't be completed until the driver issues
 | |
|  * an ICE_PTP_ADJ_TIME command.
 | |
|  *
 | |
|  * Note that time is not in units of nanoseconds. It is in clock time
 | |
|  * including the lower sub-nanosecond portion of the port timer.
 | |
|  *
 | |
|  * Negative adjustments are supported using 2s complement arithmetic.
 | |
|  */
 | |
| static int
 | |
| ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time)
 | |
| {
 | |
| 	u32 l_time, u_time;
 | |
| 	int err;
 | |
| 
 | |
| 	l_time = lower_32_bits(time);
 | |
| 	u_time = upper_32_bits(time);
 | |
| 
 | |
| 	/* Tx case */
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L,
 | |
| 				     l_time);
 | |
| 	if (err)
 | |
| 		goto exit_err;
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U,
 | |
| 				     u_time);
 | |
| 	if (err)
 | |
| 		goto exit_err;
 | |
| 
 | |
| 	/* Rx case */
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L,
 | |
| 				     l_time);
 | |
| 	if (err)
 | |
| 		goto exit_err;
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U,
 | |
| 				     u_time);
 | |
| 	if (err)
 | |
| 		goto exit_err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_err:
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
 | |
| 		  port, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment
 | |
|  * @hw: pointer to HW struct
 | |
|  * @adj: adjustment in nanoseconds
 | |
|  *
 | |
|  * Prepare the PHY ports for an atomic time adjustment by programming the PHY
 | |
|  * Tx and Rx port registers. The actual adjustment is completed by issuing an
 | |
|  * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
 | |
|  */
 | |
| static int
 | |
| ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj)
 | |
| {
 | |
| 	s64 cycles;
 | |
| 	u8 port;
 | |
| 
 | |
| 	/* The port clock supports adjustment of the sub-nanosecond portion of
 | |
| 	 * the clock. We shift the provided adjustment in nanoseconds to
 | |
| 	 * calculate the appropriate adjustment to program into the PHY ports.
 | |
| 	 */
 | |
| 	if (adj > 0)
 | |
| 		cycles = (s64)adj << 32;
 | |
| 	else
 | |
| 		cycles = -(((s64)-adj) << 32);
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = ice_ptp_prep_port_adj_e82x(hw, port, cycles);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment
 | |
|  * @hw: pointer to HW struct
 | |
|  * @incval: new increment value to prepare
 | |
|  *
 | |
|  * Prepare each of the PHY ports for a new increment value by programming the
 | |
|  * port's TIMETUS registers. The new increment value will be updated after
 | |
|  * issuing an ICE_PTP_INIT_INCVAL command.
 | |
|  */
 | |
| static int
 | |
| ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval)
 | |
| {
 | |
| 	int err;
 | |
| 	u8 port;
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L,
 | |
| 						 incval);
 | |
| 		if (err)
 | |
| 			goto exit_err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_err:
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
 | |
| 		  port, err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_read_port_capture - Read a port's local time capture
 | |
|  * @hw: pointer to HW struct
 | |
|  * @port: Port number to read
 | |
|  * @tx_ts: on return, the Tx port time capture
 | |
|  * @rx_ts: on return, the Rx port time capture
 | |
|  *
 | |
|  * Read the port's Tx and Rx local time capture values.
 | |
|  *
 | |
|  * Note this has no equivalent for the E810 devices.
 | |
|  */
 | |
| static int
 | |
| ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* Tx case */
 | |
| 	err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
 | |
| 		  (unsigned long long)*tx_ts);
 | |
| 
 | |
| 	/* Rx case */
 | |
| 	err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
 | |
| 		  (unsigned long long)*rx_ts);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command
 | |
|  * @hw: pointer to HW struct
 | |
|  * @port: Port to which cmd has to be sent
 | |
|  * @cmd: Command to be sent to the port
 | |
|  *
 | |
|  * Prepare the requested port for an upcoming timer sync command.
 | |
|  *
 | |
|  * Note there is no equivalent of this operation on E810, as that device
 | |
|  * always handles all external PHYs internally.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write to PHY
 | |
|  */
 | |
| static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port,
 | |
| 				       enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
 | |
| 	int err;
 | |
| 
 | |
| 	/* Tx case */
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Rx case */
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD,
 | |
| 				     val | TS_CMD_RX_TYPE);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* E822 Vernier calibration functions
 | |
|  *
 | |
|  * The following functions are used as part of the vernier calibration of
 | |
|  * a port. This calibration increases the precision of the timestamps on the
 | |
|  * port.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode
 | |
|  * @hw: pointer to HW struct
 | |
|  * @port: the port to read from
 | |
|  * @link_out: if non-NULL, holds link speed on success
 | |
|  * @fec_out: if non-NULL, holds FEC algorithm on success
 | |
|  *
 | |
|  * Read the serdes data for the PHY port and extract the link speed and FEC
 | |
|  * algorithm.
 | |
|  */
 | |
| static int
 | |
| ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port,
 | |
| 			       enum ice_ptp_link_spd *link_out,
 | |
| 			       enum ice_ptp_fec_mode *fec_out)
 | |
| {
 | |
| 	enum ice_ptp_link_spd link;
 | |
| 	enum ice_ptp_fec_mode fec;
 | |
| 	u32 serdes;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine the FEC algorithm */
 | |
| 	fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
 | |
| 
 | |
| 	serdes &= P_REG_LINK_SPEED_SERDES_M;
 | |
| 
 | |
| 	/* Determine the link speed */
 | |
| 	if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
 | |
| 		switch (serdes) {
 | |
| 		case ICE_PTP_SERDES_25G:
 | |
| 			link = ICE_PTP_LNK_SPD_25G_RS;
 | |
| 			break;
 | |
| 		case ICE_PTP_SERDES_50G:
 | |
| 			link = ICE_PTP_LNK_SPD_50G_RS;
 | |
| 			break;
 | |
| 		case ICE_PTP_SERDES_100G:
 | |
| 			link = ICE_PTP_LNK_SPD_100G_RS;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (serdes) {
 | |
| 		case ICE_PTP_SERDES_1G:
 | |
| 			link = ICE_PTP_LNK_SPD_1G;
 | |
| 			break;
 | |
| 		case ICE_PTP_SERDES_10G:
 | |
| 			link = ICE_PTP_LNK_SPD_10G;
 | |
| 			break;
 | |
| 		case ICE_PTP_SERDES_25G:
 | |
| 			link = ICE_PTP_LNK_SPD_25G;
 | |
| 			break;
 | |
| 		case ICE_PTP_SERDES_40G:
 | |
| 			link = ICE_PTP_LNK_SPD_40G;
 | |
| 			break;
 | |
| 		case ICE_PTP_SERDES_50G:
 | |
| 			link = ICE_PTP_LNK_SPD_50G;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (link_out)
 | |
| 		*link_out = link;
 | |
| 	if (fec_out)
 | |
| 		*fec_out = fec;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp
 | |
|  * @hw: pointer to HW struct
 | |
|  * @port: to configure the quad for
 | |
|  */
 | |
| static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	enum ice_ptp_link_spd link_spd;
 | |
| 	int err;
 | |
| 	u32 val;
 | |
| 	u8 quad;
 | |
| 
 | |
| 	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
 | |
| 			  err);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	quad = ICE_GET_QUAD_NUM(port);
 | |
| 
 | |
| 	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
 | |
| 			  err);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (link_spd >= ICE_PTP_LNK_SPD_40G)
 | |
| 		val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
 | |
| 	else
 | |
| 		val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
 | |
| 
 | |
| 	err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
 | |
| 			  err);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822
 | |
|  * @hw: pointer to the HW structure
 | |
|  * @port: the port to configure
 | |
|  *
 | |
|  * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
 | |
|  * hardware clock time units (TUs). That is, determine the number of TUs per
 | |
|  * serdes unit interval, and program the UIX registers with this conversion.
 | |
|  *
 | |
|  * This conversion is used as part of the calibration process when determining
 | |
|  * the additional error of a timestamp vs the real time of transmission or
 | |
|  * receipt of the packet.
 | |
|  *
 | |
|  * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
 | |
|  * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
 | |
|  *
 | |
|  * To calculate the conversion ratio, we use the following facts:
 | |
|  *
 | |
|  * a) the clock frequency in Hz (cycles per second)
 | |
|  * b) the number of TUs per cycle (the increment value of the clock)
 | |
|  * c) 1 second per 1 billion nanoseconds
 | |
|  * d) the duration of 66 UIs in nanoseconds
 | |
|  *
 | |
|  * Given these facts, we can use the following table to work out what ratios
 | |
|  * to multiply in order to get the number of TUs per 66 UIs:
 | |
|  *
 | |
|  * cycles |   1 second   | incval (TUs) | nanoseconds
 | |
|  * -------+--------------+--------------+-------------
 | |
|  * second | 1 billion ns |    cycle     |   66 UIs
 | |
|  *
 | |
|  * To perform the multiplication using integers without too much loss of
 | |
|  * precision, we can take use the following equation:
 | |
|  *
 | |
|  * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
 | |
|  *
 | |
|  * We scale up to using 6600 UI instead of 66 in order to avoid fractional
 | |
|  * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
 | |
|  *
 | |
|  * The increment value has a maximum expected range of about 34 bits, while
 | |
|  * the frequency value is about 29 bits. Multiplying these values shouldn't
 | |
|  * overflow the 64 bits. However, we must then further multiply them again by
 | |
|  * the Serdes unit interval duration. To avoid overflow here, we split the
 | |
|  * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
 | |
|  * a divide by 390,625,000. This does lose some precision, but avoids
 | |
|  * miscalculation due to arithmetic overflow.
 | |
|  */
 | |
| static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	u64 cur_freq, clk_incval, tu_per_sec, uix;
 | |
| 	int err;
 | |
| 
 | |
| 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
 | |
| 	clk_incval = ice_ptp_read_src_incval(hw);
 | |
| 
 | |
| 	/* Calculate TUs per second divided by 256 */
 | |
| 	tu_per_sec = (cur_freq * clk_incval) >> 8;
 | |
| 
 | |
| #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
 | |
| #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
 | |
| 
 | |
| 	/* Program the 10Gb/40Gb conversion ratio */
 | |
| 	uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
 | |
| 
 | |
| 	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L,
 | |
| 					 uix);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Program the 25Gb/100Gb conversion ratio */
 | |
| 	uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
 | |
| 
 | |
| 	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L,
 | |
| 					 uix);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: port to configure
 | |
|  *
 | |
|  * Configure the number of TUs for the PAR and PCS clocks used as part of the
 | |
|  * timestamp calibration process. This depends on the link speed, as the PHY
 | |
|  * uses different markers depending on the speed.
 | |
|  *
 | |
|  * 1Gb/10Gb/25Gb:
 | |
|  * - Tx/Rx PAR/PCS markers
 | |
|  *
 | |
|  * 25Gb RS:
 | |
|  * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
 | |
|  *
 | |
|  * 40Gb/50Gb:
 | |
|  * - Tx/Rx PAR/PCS markers
 | |
|  * - Rx Deskew PAR/PCS markers
 | |
|  *
 | |
|  * 50G RS and 100GB RS:
 | |
|  * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
 | |
|  * - Rx Deskew PAR/PCS markers
 | |
|  * - Tx PAR/PCS markers
 | |
|  *
 | |
|  * To calculate the conversion, we use the PHC clock frequency (cycles per
 | |
|  * second), the increment value (TUs per cycle), and the related PHY clock
 | |
|  * frequency to calculate the TUs per unit of the PHY link clock. The
 | |
|  * following table shows how the units convert:
 | |
|  *
 | |
|  * cycles |  TUs  | second
 | |
|  * -------+-------+--------
 | |
|  * second | cycle | cycles
 | |
|  *
 | |
|  * For each conversion register, look up the appropriate frequency from the
 | |
|  * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
 | |
|  * this to the appropriate register, preparing hardware to perform timestamp
 | |
|  * calibration to calculate the total Tx or Rx offset to adjust the timestamp
 | |
|  * in order to calibrate for the internal PHY delays.
 | |
|  *
 | |
|  * Note that the increment value ranges up to ~34 bits, and the clock
 | |
|  * frequency is ~29 bits, so multiplying them together should fit within the
 | |
|  * 64 bit arithmetic.
 | |
|  */
 | |
| static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
 | |
| 	enum ice_ptp_link_spd link_spd;
 | |
| 	enum ice_ptp_fec_mode fec_mode;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
 | |
| 	clk_incval = ice_ptp_read_src_incval(hw);
 | |
| 
 | |
| 	/* Calculate TUs per cycle of the PHC clock */
 | |
| 	tu_per_sec = cur_freq * clk_incval;
 | |
| 
 | |
| 	/* For each PHY conversion register, look up the appropriate link
 | |
| 	 * speed frequency and determine the TUs per that clock's cycle time.
 | |
| 	 * Split this into a high and low value and then program the
 | |
| 	 * appropriate register. If that link speed does not use the
 | |
| 	 * associated register, write zeros to clear it instead.
 | |
| 	 */
 | |
| 
 | |
| 	/* P_REG_PAR_TX_TUS */
 | |
| 	if (e822_vernier[link_spd].tx_par_clk)
 | |
| 		phy_tus = div_u64(tu_per_sec,
 | |
| 				  e822_vernier[link_spd].tx_par_clk);
 | |
| 	else
 | |
| 		phy_tus = 0;
 | |
| 
 | |
| 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L,
 | |
| 					 phy_tus);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* P_REG_PAR_RX_TUS */
 | |
| 	if (e822_vernier[link_spd].rx_par_clk)
 | |
| 		phy_tus = div_u64(tu_per_sec,
 | |
| 				  e822_vernier[link_spd].rx_par_clk);
 | |
| 	else
 | |
| 		phy_tus = 0;
 | |
| 
 | |
| 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L,
 | |
| 					 phy_tus);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* P_REG_PCS_TX_TUS */
 | |
| 	if (e822_vernier[link_spd].tx_pcs_clk)
 | |
| 		phy_tus = div_u64(tu_per_sec,
 | |
| 				  e822_vernier[link_spd].tx_pcs_clk);
 | |
| 	else
 | |
| 		phy_tus = 0;
 | |
| 
 | |
| 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L,
 | |
| 					 phy_tus);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* P_REG_PCS_RX_TUS */
 | |
| 	if (e822_vernier[link_spd].rx_pcs_clk)
 | |
| 		phy_tus = div_u64(tu_per_sec,
 | |
| 				  e822_vernier[link_spd].rx_pcs_clk);
 | |
| 	else
 | |
| 		phy_tus = 0;
 | |
| 
 | |
| 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L,
 | |
| 					 phy_tus);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* P_REG_DESK_PAR_TX_TUS */
 | |
| 	if (e822_vernier[link_spd].tx_desk_rsgb_par)
 | |
| 		phy_tus = div_u64(tu_per_sec,
 | |
| 				  e822_vernier[link_spd].tx_desk_rsgb_par);
 | |
| 	else
 | |
| 		phy_tus = 0;
 | |
| 
 | |
| 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L,
 | |
| 					 phy_tus);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* P_REG_DESK_PAR_RX_TUS */
 | |
| 	if (e822_vernier[link_spd].rx_desk_rsgb_par)
 | |
| 		phy_tus = div_u64(tu_per_sec,
 | |
| 				  e822_vernier[link_spd].rx_desk_rsgb_par);
 | |
| 	else
 | |
| 		phy_tus = 0;
 | |
| 
 | |
| 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L,
 | |
| 					 phy_tus);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* P_REG_DESK_PCS_TX_TUS */
 | |
| 	if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
 | |
| 		phy_tus = div_u64(tu_per_sec,
 | |
| 				  e822_vernier[link_spd].tx_desk_rsgb_pcs);
 | |
| 	else
 | |
| 		phy_tus = 0;
 | |
| 
 | |
| 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L,
 | |
| 					 phy_tus);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* P_REG_DESK_PCS_RX_TUS */
 | |
| 	if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
 | |
| 		phy_tus = div_u64(tu_per_sec,
 | |
| 				  e822_vernier[link_spd].rx_desk_rsgb_pcs);
 | |
| 	else
 | |
| 		phy_tus = 0;
 | |
| 
 | |
| 	return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L,
 | |
| 					  phy_tus);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @link_spd: the Link speed to calculate for
 | |
|  *
 | |
|  * Calculate the fixed offset due to known static latency data.
 | |
|  */
 | |
| static u64
 | |
| ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
 | |
| {
 | |
| 	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
 | |
| 
 | |
| 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
 | |
| 	clk_incval = ice_ptp_read_src_incval(hw);
 | |
| 
 | |
| 	/* Calculate TUs per second */
 | |
| 	tu_per_sec = cur_freq * clk_incval;
 | |
| 
 | |
| 	/* Calculate number of TUs to add for the fixed Tx latency. Since the
 | |
| 	 * latency measurement is in 1/100th of a nanosecond, we need to
 | |
| 	 * multiply by tu_per_sec and then divide by 1e11. This calculation
 | |
| 	 * overflows 64 bit integer arithmetic, so break it up into two
 | |
| 	 * divisions by 1e4 first then by 1e7.
 | |
| 	 */
 | |
| 	fixed_offset = div_u64(tu_per_sec, 10000);
 | |
| 	fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
 | |
| 	fixed_offset = div_u64(fixed_offset, 10000000);
 | |
| 
 | |
| 	return fixed_offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to configure
 | |
|  *
 | |
|  * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
 | |
|  * adjust Tx timestamps by. This is calculated by combining some known static
 | |
|  * latency along with the Vernier offset computations done by hardware.
 | |
|  *
 | |
|  * This function will not return successfully until the Tx offset calculations
 | |
|  * have been completed, which requires waiting until at least one packet has
 | |
|  * been transmitted by the device. It is safe to call this function
 | |
|  * periodically until calibration succeeds, as it will only program the offset
 | |
|  * once.
 | |
|  *
 | |
|  * To avoid overflow, when calculating the offset based on the known static
 | |
|  * latency values, we use measurements in 1/100th of a nanosecond, and divide
 | |
|  * the TUs per second up front. This avoids overflow while allowing
 | |
|  * calculation of the adjustment using integer arithmetic.
 | |
|  *
 | |
|  * Returns zero on success, -EBUSY if the hardware vernier offset
 | |
|  * calibration has not completed, or another error code on failure.
 | |
|  */
 | |
| int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	enum ice_ptp_link_spd link_spd;
 | |
| 	enum ice_ptp_fec_mode fec_mode;
 | |
| 	u64 total_offset, val;
 | |
| 	int err;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/* Nothing to do if we've already programmed the offset */
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, ®);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
 | |
| 			  port, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (reg)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, ®);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
 | |
| 			  port, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (!(reg & P_REG_TX_OV_STATUS_OV_M))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd);
 | |
| 
 | |
| 	/* Read the first Vernier offset from the PHY register and add it to
 | |
| 	 * the total offset.
 | |
| 	 */
 | |
| 	if (link_spd == ICE_PTP_LNK_SPD_1G ||
 | |
| 	    link_spd == ICE_PTP_LNK_SPD_10G ||
 | |
| 	    link_spd == ICE_PTP_LNK_SPD_25G ||
 | |
| 	    link_spd == ICE_PTP_LNK_SPD_25G_RS ||
 | |
| 	    link_spd == ICE_PTP_LNK_SPD_40G ||
 | |
| 	    link_spd == ICE_PTP_LNK_SPD_50G) {
 | |
| 		err = ice_read_64b_phy_reg_e82x(hw, port,
 | |
| 						P_REG_PAR_PCS_TX_OFFSET_L,
 | |
| 						&val);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		total_offset += val;
 | |
| 	}
 | |
| 
 | |
| 	/* For Tx, we only need to use the second Vernier offset for
 | |
| 	 * multi-lane link speeds with RS-FEC. The lanes will always be
 | |
| 	 * aligned.
 | |
| 	 */
 | |
| 	if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
 | |
| 	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
 | |
| 		err = ice_read_64b_phy_reg_e82x(hw, port,
 | |
| 						P_REG_PAR_TX_TIME_L,
 | |
| 						&val);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		total_offset += val;
 | |
| 	}
 | |
| 
 | |
| 	/* Now that the total offset has been calculated, program it to the
 | |
| 	 * PHY and indicate that the Tx offset is ready. After this,
 | |
| 	 * timestamps will be enabled.
 | |
| 	 */
 | |
| 	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L,
 | |
| 					 total_offset);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
 | |
| 		 port);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to adjust for
 | |
|  * @link_spd: the current link speed of the PHY
 | |
|  * @fec_mode: the current FEC mode of the PHY
 | |
|  * @pmd_adj: on return, the amount to adjust the Rx total offset by
 | |
|  *
 | |
|  * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
 | |
|  * This varies by link speed and FEC mode. The value calculated accounts for
 | |
|  * various delays caused when receiving a packet.
 | |
|  */
 | |
| static int
 | |
| ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port,
 | |
| 			  enum ice_ptp_link_spd link_spd,
 | |
| 			  enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
 | |
| {
 | |
| 	u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
 | |
| 	u8 pmd_align;
 | |
| 	u32 val;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	pmd_align = (u8)val;
 | |
| 
 | |
| 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
 | |
| 	clk_incval = ice_ptp_read_src_incval(hw);
 | |
| 
 | |
| 	/* Calculate TUs per second */
 | |
| 	tu_per_sec = cur_freq * clk_incval;
 | |
| 
 | |
| 	/* The PMD alignment adjustment measurement depends on the link speed,
 | |
| 	 * and whether FEC is enabled. For each link speed, the alignment
 | |
| 	 * adjustment is calculated by dividing a value by the length of
 | |
| 	 * a Time Unit in nanoseconds.
 | |
| 	 *
 | |
| 	 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
 | |
| 	 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
 | |
| 	 * 10G w/FEC: align * 0.1 * 32/33
 | |
| 	 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
 | |
| 	 * 25G w/FEC: align * 0.4 * 32/33
 | |
| 	 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
 | |
| 	 * 40G w/FEC: align * 0.1 * 32/33
 | |
| 	 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
 | |
| 	 * 50G w/FEC: align * 0.8 * 32/33
 | |
| 	 *
 | |
| 	 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
 | |
| 	 *
 | |
| 	 * To allow for calculating this value using integer arithmetic, we
 | |
| 	 * instead start with the number of TUs per second, (inverse of the
 | |
| 	 * length of a Time Unit in nanoseconds), multiply by a value based
 | |
| 	 * on the PMD alignment register, and then divide by the right value
 | |
| 	 * calculated based on the table above. To avoid integer overflow this
 | |
| 	 * division is broken up into a step of dividing by 125 first.
 | |
| 	 */
 | |
| 	if (link_spd == ICE_PTP_LNK_SPD_1G) {
 | |
| 		if (pmd_align == 4)
 | |
| 			mult = 10;
 | |
| 		else
 | |
| 			mult = (pmd_align + 6) % 10;
 | |
| 	} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
 | |
| 		   link_spd == ICE_PTP_LNK_SPD_25G ||
 | |
| 		   link_spd == ICE_PTP_LNK_SPD_40G ||
 | |
| 		   link_spd == ICE_PTP_LNK_SPD_50G) {
 | |
| 		/* If Clause 74 FEC, always calculate PMD adjust */
 | |
| 		if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
 | |
| 			mult = pmd_align;
 | |
| 		else
 | |
| 			mult = 0;
 | |
| 	} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
 | |
| 		   link_spd == ICE_PTP_LNK_SPD_50G_RS ||
 | |
| 		   link_spd == ICE_PTP_LNK_SPD_100G_RS) {
 | |
| 		if (pmd_align < 17)
 | |
| 			mult = pmd_align + 40;
 | |
| 		else
 | |
| 			mult = pmd_align;
 | |
| 	} else {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
 | |
| 			  link_spd);
 | |
| 		mult = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* In some cases, there's no need to adjust for the PMD alignment */
 | |
| 	if (!mult) {
 | |
| 		*pmd_adj = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the adjustment by multiplying TUs per second by the
 | |
| 	 * appropriate multiplier and divisor. To avoid overflow, we first
 | |
| 	 * divide by 125, and then handle remaining divisor based on the link
 | |
| 	 * speed pmd_adj_divisor value.
 | |
| 	 */
 | |
| 	adj = div_u64(tu_per_sec, 125);
 | |
| 	adj *= mult;
 | |
| 	adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
 | |
| 
 | |
| 	/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
 | |
| 	 * cycle count is necessary.
 | |
| 	 */
 | |
| 	if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
 | |
| 		u64 cycle_adj;
 | |
| 		u8 rx_cycle;
 | |
| 
 | |
| 		err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT,
 | |
| 					    &val);
 | |
| 		if (err) {
 | |
| 			ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
 | |
| 				  err);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
 | |
| 		if (rx_cycle) {
 | |
| 			mult = (4 - rx_cycle) * 40;
 | |
| 
 | |
| 			cycle_adj = div_u64(tu_per_sec, 125);
 | |
| 			cycle_adj *= mult;
 | |
| 			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
 | |
| 
 | |
| 			adj += cycle_adj;
 | |
| 		}
 | |
| 	} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
 | |
| 		u64 cycle_adj;
 | |
| 		u8 rx_cycle;
 | |
| 
 | |
| 		err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT,
 | |
| 					    &val);
 | |
| 		if (err) {
 | |
| 			ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
 | |
| 				  err);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
 | |
| 		if (rx_cycle) {
 | |
| 			mult = rx_cycle * 40;
 | |
| 
 | |
| 			cycle_adj = div_u64(tu_per_sec, 125);
 | |
| 			cycle_adj *= mult;
 | |
| 			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
 | |
| 
 | |
| 			adj += cycle_adj;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Return the calculated adjustment */
 | |
| 	*pmd_adj = adj;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port
 | |
|  * @hw: pointer to HW struct
 | |
|  * @link_spd: The Link speed to calculate for
 | |
|  *
 | |
|  * Determine the fixed Rx latency for a given link speed.
 | |
|  */
 | |
| static u64
 | |
| ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
 | |
| {
 | |
| 	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
 | |
| 
 | |
| 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
 | |
| 	clk_incval = ice_ptp_read_src_incval(hw);
 | |
| 
 | |
| 	/* Calculate TUs per second */
 | |
| 	tu_per_sec = cur_freq * clk_incval;
 | |
| 
 | |
| 	/* Calculate number of TUs to add for the fixed Rx latency. Since the
 | |
| 	 * latency measurement is in 1/100th of a nanosecond, we need to
 | |
| 	 * multiply by tu_per_sec and then divide by 1e11. This calculation
 | |
| 	 * overflows 64 bit integer arithmetic, so break it up into two
 | |
| 	 * divisions by 1e4 first then by 1e7.
 | |
| 	 */
 | |
| 	fixed_offset = div_u64(tu_per_sec, 10000);
 | |
| 	fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
 | |
| 	fixed_offset = div_u64(fixed_offset, 10000000);
 | |
| 
 | |
| 	return fixed_offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to configure
 | |
|  *
 | |
|  * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
 | |
|  * adjust Rx timestamps by. This combines calculations from the Vernier offset
 | |
|  * measurements taken in hardware with some data about known fixed delay as
 | |
|  * well as adjusting for multi-lane alignment delay.
 | |
|  *
 | |
|  * This function will not return successfully until the Rx offset calculations
 | |
|  * have been completed, which requires waiting until at least one packet has
 | |
|  * been received by the device. It is safe to call this function periodically
 | |
|  * until calibration succeeds, as it will only program the offset once.
 | |
|  *
 | |
|  * This function must be called only after the offset registers are valid,
 | |
|  * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
 | |
|  * has measured the offset.
 | |
|  *
 | |
|  * To avoid overflow, when calculating the offset based on the known static
 | |
|  * latency values, we use measurements in 1/100th of a nanosecond, and divide
 | |
|  * the TUs per second up front. This avoids overflow while allowing
 | |
|  * calculation of the adjustment using integer arithmetic.
 | |
|  *
 | |
|  * Returns zero on success, -EBUSY if the hardware vernier offset
 | |
|  * calibration has not completed, or another error code on failure.
 | |
|  */
 | |
| int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	enum ice_ptp_link_spd link_spd;
 | |
| 	enum ice_ptp_fec_mode fec_mode;
 | |
| 	u64 total_offset, pmd, val;
 | |
| 	int err;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/* Nothing to do if we've already programmed the offset */
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, ®);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
 | |
| 			  port, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (reg)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, ®);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
 | |
| 			  port, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (!(reg & P_REG_RX_OV_STATUS_OV_M))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd);
 | |
| 
 | |
| 	/* Read the first Vernier offset from the PHY register and add it to
 | |
| 	 * the total offset.
 | |
| 	 */
 | |
| 	err = ice_read_64b_phy_reg_e82x(hw, port,
 | |
| 					P_REG_PAR_PCS_RX_OFFSET_L,
 | |
| 					&val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	total_offset += val;
 | |
| 
 | |
| 	/* For Rx, all multi-lane link speeds include a second Vernier
 | |
| 	 * calibration, because the lanes might not be aligned.
 | |
| 	 */
 | |
| 	if (link_spd == ICE_PTP_LNK_SPD_40G ||
 | |
| 	    link_spd == ICE_PTP_LNK_SPD_50G ||
 | |
| 	    link_spd == ICE_PTP_LNK_SPD_50G_RS ||
 | |
| 	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
 | |
| 		err = ice_read_64b_phy_reg_e82x(hw, port,
 | |
| 						P_REG_PAR_RX_TIME_L,
 | |
| 						&val);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		total_offset += val;
 | |
| 	}
 | |
| 
 | |
| 	/* In addition, Rx must account for the PMD alignment */
 | |
| 	err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* For RS-FEC, this adjustment adds delay, but for other modes, it
 | |
| 	 * subtracts delay.
 | |
| 	 */
 | |
| 	if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
 | |
| 		total_offset += pmd;
 | |
| 	else
 | |
| 		total_offset -= pmd;
 | |
| 
 | |
| 	/* Now that the total offset has been calculated, program it to the
 | |
| 	 * PHY and indicate that the Rx offset is ready. After this,
 | |
| 	 * timestamps will be enabled.
 | |
| 	 */
 | |
| 	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L,
 | |
| 					 total_offset);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
 | |
| 		 port);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers
 | |
|  * @hw: pointer to the HW struct
 | |
|  *
 | |
|  * Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted
 | |
|  * and received timestamps as invalid.
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to write to PHY
 | |
|  */
 | |
| int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw)
 | |
| {
 | |
| 	u8 port;
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
 | |
| 		if (err) {
 | |
| 			dev_warn(ice_hw_to_dev(hw),
 | |
| 				 "Failed to clear PHY TX_OFFSET_READY register\n");
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
 | |
| 		if (err) {
 | |
| 			dev_warn(ice_hw_to_dev(hw),
 | |
| 				 "Failed to clear PHY RX_OFFSET_READY register\n");
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to read
 | |
|  * @phy_time: on return, the 64bit PHY timer value
 | |
|  * @phc_time: on return, the lower 64bits of PHC time
 | |
|  *
 | |
|  * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
 | |
|  * and PHC timer values.
 | |
|  */
 | |
| static int
 | |
| ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time,
 | |
| 			       u64 *phc_time)
 | |
| {
 | |
| 	u64 tx_time, rx_time;
 | |
| 	u32 zo, lo;
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	tmr_idx = ice_get_ptp_src_clock_index(hw);
 | |
| 
 | |
| 	/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
 | |
| 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
 | |
| 
 | |
| 	/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
 | |
| 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Issue the sync to start the ICE_PTP_READ_TIME capture */
 | |
| 	ice_ptp_exec_tmr_cmd(hw);
 | |
| 
 | |
| 	/* Read the captured PHC time from the shadow time registers */
 | |
| 	zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
 | |
| 	lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
 | |
| 	*phc_time = (u64)lo << 32 | zo;
 | |
| 
 | |
| 	/* Read the captured PHY time from the PHY shadow registers */
 | |
| 	err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* If the PHY Tx and Rx timers don't match, log a warning message.
 | |
| 	 * Note that this should not happen in normal circumstances since the
 | |
| 	 * driver always programs them together.
 | |
| 	 */
 | |
| 	if (tx_time != rx_time)
 | |
| 		dev_warn(ice_hw_to_dev(hw),
 | |
| 			 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
 | |
| 			 port, (unsigned long long)tx_time,
 | |
| 			 (unsigned long long)rx_time);
 | |
| 
 | |
| 	*phy_time = tx_time;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to synchronize
 | |
|  *
 | |
|  * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
 | |
|  * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
 | |
|  * simultaneous read of the PHY timer and PHC timer. Then we use the
 | |
|  * difference to calculate an appropriate 2s complement addition to add
 | |
|  * to the PHY timer in order to ensure it reads the same value as the
 | |
|  * primary PHC timer.
 | |
|  */
 | |
| static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	u64 phc_time, phy_time, difference;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ice_ptp_lock(hw)) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
 | |
| 	if (err)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	/* Calculate the amount required to add to the port time in order for
 | |
| 	 * it to match the PHC time.
 | |
| 	 *
 | |
| 	 * Note that the port adjustment is done using 2s complement
 | |
| 	 * arithmetic. This is convenient since it means that we can simply
 | |
| 	 * calculate the difference between the PHC time and the port time,
 | |
| 	 * and it will be interpreted correctly.
 | |
| 	 */
 | |
| 	difference = phc_time - phy_time;
 | |
| 
 | |
| 	err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference);
 | |
| 	if (err)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
 | |
| 	if (err)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	/* Do not perform any action on the main timer */
 | |
| 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
 | |
| 
 | |
| 	/* Issue the sync to activate the time adjustment */
 | |
| 	ice_ptp_exec_tmr_cmd(hw);
 | |
| 
 | |
| 	/* Re-capture the timer values to flush the command registers and
 | |
| 	 * verify that the time was properly adjusted.
 | |
| 	 */
 | |
| 	err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
 | |
| 	if (err)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	dev_info(ice_hw_to_dev(hw),
 | |
| 		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
 | |
| 		 port, (unsigned long long)phy_time,
 | |
| 		 (unsigned long long)phc_time);
 | |
| 
 | |
| 	ice_ptp_unlock(hw);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_unlock:
 | |
| 	ice_ptp_unlock(hw);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_stop_phy_timer_e82x - Stop the PHY clock timer
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to stop
 | |
|  * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
 | |
|  *
 | |
|  * Stop the clock of a PHY port. This must be done as part of the flow to
 | |
|  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
 | |
|  * initialized or when link speed changes.
 | |
|  */
 | |
| int
 | |
| ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset)
 | |
| {
 | |
| 	int err;
 | |
| 	u32 val;
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val &= ~P_REG_PS_START_M;
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val &= ~P_REG_PS_ENA_CLK_M;
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (soft_reset) {
 | |
| 		val |= P_REG_PS_SFT_RESET_M;
 | |
| 		err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_start_phy_timer_e82x - Start the PHY clock timer
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to start
 | |
|  *
 | |
|  * Start the clock of a PHY port. This must be done as part of the flow to
 | |
|  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
 | |
|  * initialized or when link speed changes.
 | |
|  *
 | |
|  * Hardware will take Vernier measurements on Tx or Rx of packets.
 | |
|  */
 | |
| int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port)
 | |
| {
 | |
| 	u32 lo, hi, val;
 | |
| 	u64 incval;
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	tmr_idx = ice_get_ptp_src_clock_index(hw);
 | |
| 
 | |
| 	err = ice_stop_phy_timer_e82x(hw, port, false);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ice_phy_cfg_lane_e82x(hw, port);
 | |
| 
 | |
| 	err = ice_phy_cfg_uix_e82x(hw, port);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_phy_cfg_parpcs_e82x(hw, port);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
 | |
| 	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
 | |
| 	incval = (u64)hi << 32 | lo;
 | |
| 
 | |
| 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Do not perform any action on the main timer */
 | |
| 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
 | |
| 
 | |
| 	ice_ptp_exec_tmr_cmd(hw);
 | |
| 
 | |
| 	err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val |= P_REG_PS_SFT_RESET_M;
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val |= P_REG_PS_START_M;
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val &= ~P_REG_PS_SFT_RESET_M;
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ice_ptp_exec_tmr_cmd(hw);
 | |
| 
 | |
| 	val |= P_REG_PS_ENA_CLK_M;
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val |= P_REG_PS_LOAD_OFFSET_M;
 | |
| 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ice_ptp_exec_tmr_cmd(hw);
 | |
| 
 | |
| 	err = ice_sync_phy_timer_e82x(hw, port);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @quad: the timestamp quad to read from
 | |
|  * @tstamp_ready: contents of the Tx memory status register
 | |
|  *
 | |
|  * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
 | |
|  * the PHY are ready. A set bit means the corresponding timestamp is valid and
 | |
|  * ready to be captured from the PHY timestamp block.
 | |
|  */
 | |
| static int
 | |
| ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
 | |
| {
 | |
| 	u32 hi, lo;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
 | |
| 			  quad, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
 | |
| 			  quad, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	*tstamp_ready = (u64)hi << 32 | (u64)lo;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @quad: the timestamp quad
 | |
|  * @ena: enable or disable interrupt
 | |
|  * @threshold: interrupt threshold
 | |
|  *
 | |
|  * Configure TX timestamp interrupt for the specified quad
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to read/write quad
 | |
|  */
 | |
| 
 | |
| int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold)
 | |
| {
 | |
| 	int err;
 | |
| 	u32 val;
 | |
| 
 | |
| 	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
 | |
| 	if (ena) {
 | |
| 		val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
 | |
| 		val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
 | |
| 		val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold);
 | |
| 	}
 | |
| 
 | |
| 	return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_phy_e82x - initialize PHY parameters
 | |
|  * @ptp: pointer to the PTP HW struct
 | |
|  */
 | |
| static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp)
 | |
| {
 | |
| 	ptp->num_lports = 8;
 | |
| 	ptp->ports_per_phy = 8;
 | |
| }
 | |
| 
 | |
| /* E810 functions
 | |
|  *
 | |
|  * The following functions operate on the E810 series devices which use
 | |
|  * a separate external PHY.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_reg_e810 - Read register from external PHY on E810
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @addr: the address to read from
 | |
|  * @val: On return, the value read from the PHY
 | |
|  *
 | |
|  * Read a register from the external PHY on the E810 device.
 | |
|  */
 | |
| static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input msg = {0};
 | |
| 	int err;
 | |
| 
 | |
| 	msg.msg_addr_low = lower_16_bits(addr);
 | |
| 	msg.msg_addr_high = upper_16_bits(addr);
 | |
| 	msg.opcode = ice_sbq_msg_rd;
 | |
| 	msg.dest_dev = ice_sbq_dev_phy_0;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	*val = msg.data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_phy_reg_e810 - Write register on external PHY on E810
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @addr: the address to writem to
 | |
|  * @val: the value to write to the PHY
 | |
|  *
 | |
|  * Write a value to a register of the external PHY on the E810 device.
 | |
|  */
 | |
| static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
 | |
| {
 | |
| 	struct ice_sbq_msg_input msg = {0};
 | |
| 	int err;
 | |
| 
 | |
| 	msg.msg_addr_low = lower_16_bits(addr);
 | |
| 	msg.msg_addr_high = upper_16_bits(addr);
 | |
| 	msg.opcode = ice_sbq_msg_wr;
 | |
| 	msg.dest_dev = ice_sbq_dev_phy_0;
 | |
| 	msg.data = val;
 | |
| 
 | |
| 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @idx: the timestamp index to read
 | |
|  * @hi: 8 bit timestamp high value
 | |
|  * @lo: 32 bit timestamp low value
 | |
|  *
 | |
|  * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
 | |
|  * timestamp block of the external PHY on the E810 device using the low latency
 | |
|  * timestamp read.
 | |
|  */
 | |
| static int
 | |
| ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
 | |
| {
 | |
| 	struct ice_e810_params *params = &hw->ptp.phy.e810;
 | |
| 	unsigned long flags;
 | |
| 	u32 val;
 | |
| 	int err;
 | |
| 
 | |
| 	spin_lock_irqsave(¶ms->atqbal_wq.lock, flags);
 | |
| 
 | |
| 	/* Wait for any pending in-progress low latency interrupt */
 | |
| 	err = wait_event_interruptible_locked_irq(params->atqbal_wq,
 | |
| 						  !(params->atqbal_flags &
 | |
| 						    ATQBAL_FLAGS_INTR_IN_PROGRESS));
 | |
| 	if (err) {
 | |
| 		spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Write TS index to read to the PF register so the FW can read it */
 | |
| 	val = FIELD_PREP(REG_LL_PROXY_H_TS_IDX, idx) | REG_LL_PROXY_H_EXEC;
 | |
| 	wr32(hw, REG_LL_PROXY_H, val);
 | |
| 
 | |
| 	/* Read the register repeatedly until the FW provides us the TS */
 | |
| 	err = read_poll_timeout_atomic(rd32, val,
 | |
| 				       !FIELD_GET(REG_LL_PROXY_H_EXEC, val), 10,
 | |
| 				       REG_LL_PROXY_H_TIMEOUT_US, false, hw,
 | |
| 				       REG_LL_PROXY_H);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
 | |
| 		spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* High 8 bit value of the TS is on the bits 16:23 */
 | |
| 	*hi = FIELD_GET(REG_LL_PROXY_H_TS_HIGH, val);
 | |
| 
 | |
| 	/* Read the low 32 bit value and set the TS valid bit */
 | |
| 	*lo = rd32(hw, REG_LL_PROXY_L) | TS_VALID;
 | |
| 
 | |
| 	spin_unlock_irqrestore(¶ms->atqbal_wq.lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @lport: the lport to read from
 | |
|  * @idx: the timestamp index to read
 | |
|  * @hi: 8 bit timestamp high value
 | |
|  * @lo: 32 bit timestamp low value
 | |
|  *
 | |
|  * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
 | |
|  * timestamp block of the external PHY on the E810 device using sideband queue.
 | |
|  */
 | |
| static int
 | |
| ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
 | |
| 			     u32 *lo)
 | |
| {
 | |
| 	u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
 | |
| 	u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
 | |
| 	u32 lo_val, hi_val;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	*lo = lo_val;
 | |
| 	*hi = (u8)hi_val;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @lport: the lport to read from
 | |
|  * @idx: the timestamp index to read
 | |
|  * @tstamp: on return, the 40bit timestamp value
 | |
|  *
 | |
|  * Read a 40bit timestamp value out of the timestamp block of the external PHY
 | |
|  * on the E810 device.
 | |
|  */
 | |
| static int
 | |
| ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
 | |
| {
 | |
| 	u32 lo = 0;
 | |
| 	u8 hi = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	if (hw->dev_caps.ts_dev_info.ts_ll_read)
 | |
| 		err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
 | |
| 	else
 | |
| 		err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* For E810 devices, the timestamp is reported with the lower 32 bits
 | |
| 	 * in the low register, and the upper 8 bits in the high register.
 | |
| 	 */
 | |
| 	*tstamp = FIELD_PREP(PHY_EXT_40B_HIGH_M, hi) |
 | |
| 		  FIELD_PREP(PHY_EXT_40B_LOW_M, lo);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @lport: the lport to read from
 | |
|  * @idx: the timestamp index to reset
 | |
|  *
 | |
|  * Read the timestamp and then forcibly overwrite its value to clear the valid
 | |
|  * bit from the timestamp block of the external PHY on the E810 device.
 | |
|  *
 | |
|  * This function should only be called on an idx whose bit is set according to
 | |
|  * ice_get_phy_tx_tstamp_ready().
 | |
|  */
 | |
| static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
 | |
| {
 | |
| 	u32 lo_addr, hi_addr;
 | |
| 	u64 unused_tstamp;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
 | |
| 			  lport, idx, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
 | |
| 	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
 | |
| 
 | |
| 	err = ice_write_phy_reg_e810(hw, lo_addr, 0);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
 | |
| 			  lport, idx, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_phy_reg_e810(hw, hi_addr, 0);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
 | |
| 			  lport, idx, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
 | |
|  * @hw: pointer to HW struct
 | |
|  *
 | |
|  * Perform E810-specific PTP hardware clock initialization steps.
 | |
|  *
 | |
|  * Return: 0 on success, other error codes when failed to initialize TimeSync
 | |
|  */
 | |
| static int ice_ptp_init_phc_e810(struct ice_hw *hw)
 | |
| {
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	ice_ptp_cfg_sync_delay(hw, ICE_E810_E830_SYNC_DELAY);
 | |
| 
 | |
| 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
 | |
| 				     GLTSYN_ENA_TSYN_ENA_M);
 | |
| 	if (err)
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
 | |
| 			  err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
 | |
|  * @hw: Board private structure
 | |
|  * @time: Time to initialize the PHY port clock to
 | |
|  *
 | |
|  * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
 | |
|  * initial clock time. The time will not actually be programmed until the
 | |
|  * driver issues an ICE_PTP_INIT_TIME command.
 | |
|  *
 | |
|  * The time value is the upper 32 bits of the PHY timer, usually in units of
 | |
|  * nominal nanoseconds.
 | |
|  */
 | |
| static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
 | |
| {
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_adj_ll_e810 - Prep PHY ports for a time adjustment
 | |
|  * @hw: pointer to HW struct
 | |
|  * @adj: adjustment value to program
 | |
|  *
 | |
|  * Use the low latency firmware interface to program PHY time adjustment to
 | |
|  * all PHY ports.
 | |
|  *
 | |
|  * Return: 0 on success, -EBUSY on timeout
 | |
|  */
 | |
| static int ice_ptp_prep_phy_adj_ll_e810(struct ice_hw *hw, s32 adj)
 | |
| {
 | |
| 	const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 	struct ice_e810_params *params = &hw->ptp.phy.e810;
 | |
| 	u32 val;
 | |
| 	int err;
 | |
| 
 | |
| 	spin_lock_irq(¶ms->atqbal_wq.lock);
 | |
| 
 | |
| 	/* Wait for any pending in-progress low latency interrupt */
 | |
| 	err = wait_event_interruptible_locked_irq(params->atqbal_wq,
 | |
| 						  !(params->atqbal_flags &
 | |
| 						    ATQBAL_FLAGS_INTR_IN_PROGRESS));
 | |
| 	if (err) {
 | |
| 		spin_unlock_irq(¶ms->atqbal_wq.lock);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	wr32(hw, REG_LL_PROXY_L, adj);
 | |
| 	val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_ADJ) |
 | |
| 	      FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC;
 | |
| 	wr32(hw, REG_LL_PROXY_H, val);
 | |
| 
 | |
| 	/* Read the register repeatedly until the FW indicates completion */
 | |
| 	err = read_poll_timeout_atomic(rd32, val,
 | |
| 				       !FIELD_GET(REG_LL_PROXY_H_EXEC, val),
 | |
| 				       10, REG_LL_PROXY_H_TIMEOUT_US, false, hw,
 | |
| 				       REG_LL_PROXY_H);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer adjustment using low latency interface\n");
 | |
| 		spin_unlock_irq(¶ms->atqbal_wq.lock);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(¶ms->atqbal_wq.lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
 | |
|  * @hw: pointer to HW struct
 | |
|  * @adj: adjustment value to program
 | |
|  *
 | |
|  * Prepare the PHY port for an atomic adjustment by programming the PHY
 | |
|  * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
 | |
|  * is completed by issuing an ICE_PTP_ADJ_TIME sync command.
 | |
|  *
 | |
|  * The adjustment value only contains the portion used for the upper 32bits of
 | |
|  * the PHY timer, usually in units of nominal nanoseconds. Negative
 | |
|  * adjustments are supported using 2s complement arithmetic.
 | |
|  */
 | |
| static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
 | |
| {
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update)
 | |
| 		return ice_ptp_prep_phy_adj_ll_e810(hw, adj);
 | |
| 
 | |
| 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 
 | |
| 	/* Adjustments are represented as signed 2's complement values in
 | |
| 	 * nanoseconds. Sub-nanosecond adjustment is not supported.
 | |
| 	 */
 | |
| 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_incval_ll_e810 - Prep PHY ports increment value change
 | |
|  * @hw: pointer to HW struct
 | |
|  * @incval: The new 40bit increment value to prepare
 | |
|  *
 | |
|  * Use the low latency firmware interface to program PHY time increment value
 | |
|  * for all PHY ports.
 | |
|  *
 | |
|  * Return: 0 on success, -EBUSY on timeout
 | |
|  */
 | |
| static int ice_ptp_prep_phy_incval_ll_e810(struct ice_hw *hw, u64 incval)
 | |
| {
 | |
| 	const u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 	struct ice_e810_params *params = &hw->ptp.phy.e810;
 | |
| 	u32 val;
 | |
| 	int err;
 | |
| 
 | |
| 	spin_lock_irq(¶ms->atqbal_wq.lock);
 | |
| 
 | |
| 	/* Wait for any pending in-progress low latency interrupt */
 | |
| 	err = wait_event_interruptible_locked_irq(params->atqbal_wq,
 | |
| 						  !(params->atqbal_flags &
 | |
| 						    ATQBAL_FLAGS_INTR_IN_PROGRESS));
 | |
| 	if (err) {
 | |
| 		spin_unlock_irq(¶ms->atqbal_wq.lock);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	wr32(hw, REG_LL_PROXY_L, lower_32_bits(incval));
 | |
| 	val = FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_CMD_M, REG_LL_PROXY_H_PHY_TMR_CMD_FREQ) |
 | |
| 	      FIELD_PREP(REG_LL_PROXY_H_TS_HIGH, (u8)upper_32_bits(incval)) |
 | |
| 	      FIELD_PREP(REG_LL_PROXY_H_PHY_TMR_IDX_M, tmr_idx) | REG_LL_PROXY_H_EXEC;
 | |
| 	wr32(hw, REG_LL_PROXY_H, val);
 | |
| 
 | |
| 	/* Read the register repeatedly until the FW indicates completion */
 | |
| 	err = read_poll_timeout_atomic(rd32, val,
 | |
| 				       !FIELD_GET(REG_LL_PROXY_H_EXEC, val),
 | |
| 				       10, REG_LL_PROXY_H_TIMEOUT_US, false, hw,
 | |
| 				       REG_LL_PROXY_H);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY timer increment using low latency interface\n");
 | |
| 		spin_unlock_irq(¶ms->atqbal_wq.lock);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(¶ms->atqbal_wq.lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
 | |
|  * @hw: pointer to HW struct
 | |
|  * @incval: The new 40bit increment value to prepare
 | |
|  *
 | |
|  * Prepare the PHY port for a new increment value by programming the PHY
 | |
|  * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
 | |
|  * completed by issuing an ICE_PTP_INIT_INCVAL command.
 | |
|  */
 | |
| static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
 | |
| {
 | |
| 	u32 high, low;
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	if (hw->dev_caps.ts_dev_info.ll_phy_tmr_update)
 | |
| 		return ice_ptp_prep_phy_incval_ll_e810(hw, incval);
 | |
| 
 | |
| 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 	low = lower_32_bits(incval);
 | |
| 	high = upper_32_bits(incval);
 | |
| 
 | |
| 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
 | |
| 			  err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
 | |
|  * @hw: pointer to HW struct
 | |
|  * @cmd: Command to be sent to the port
 | |
|  *
 | |
|  * Prepare the external PHYs connected to this device for a timer sync
 | |
|  * command.
 | |
|  */
 | |
| static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
 | |
| 
 | |
| 	return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to read
 | |
|  * @tstamp_ready: contents of the Tx memory status register
 | |
|  *
 | |
|  * E810 devices do not use a Tx memory status register. Instead simply
 | |
|  * indicate that all timestamps are currently ready.
 | |
|  */
 | |
| static int
 | |
| ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
 | |
| {
 | |
| 	*tstamp_ready = 0xFFFFFFFFFFFFFFFF;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* E810 SMA functions
 | |
|  *
 | |
|  * The following functions operate specifically on E810 hardware and are used
 | |
|  * to access the extended GPIOs available.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ice_read_sma_ctrl
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @data: pointer to data to be read from the GPIO controller
 | |
|  *
 | |
|  * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
 | |
|  * PCA9575 expander, so only bits 3-7 in data are valid.
 | |
|  */
 | |
| int ice_read_sma_ctrl(struct ice_hw *hw, u8 *data)
 | |
| {
 | |
| 	int status;
 | |
| 	u16 handle;
 | |
| 	u8 i;
 | |
| 
 | |
| 	status = ice_get_pca9575_handle(hw, &handle);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 
 | |
| 	*data = 0;
 | |
| 
 | |
| 	for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
 | |
| 		bool pin;
 | |
| 
 | |
| 		status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
 | |
| 					 &pin, NULL);
 | |
| 		if (status)
 | |
| 			break;
 | |
| 		*data |= (u8)(!pin) << i;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_write_sma_ctrl
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @data: data to be written to the GPIO controller
 | |
|  *
 | |
|  * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
 | |
|  * of the PCA9575 expander, so only bits 3-7 in data are valid.
 | |
|  */
 | |
| int ice_write_sma_ctrl(struct ice_hw *hw, u8 data)
 | |
| {
 | |
| 	int status;
 | |
| 	u16 handle;
 | |
| 	u8 i;
 | |
| 
 | |
| 	status = ice_get_pca9575_handle(hw, &handle);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 
 | |
| 	for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
 | |
| 		bool pin;
 | |
| 
 | |
| 		pin = !(data & (1 << i));
 | |
| 		status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
 | |
| 					 pin, NULL);
 | |
| 		if (status)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_read_sdp_ac - read SDP available connections section from NVM
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @entries: returns the SDP available connections section from NVM
 | |
|  * @num_entries: returns the number of valid entries
 | |
|  *
 | |
|  * Return: 0 on success, negative error code if NVM read failed or section does
 | |
|  * not exist or is corrupted
 | |
|  */
 | |
| int ice_ptp_read_sdp_ac(struct ice_hw *hw, __le16 *entries, uint *num_entries)
 | |
| {
 | |
| 	__le16 data;
 | |
| 	u32 offset;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ice_acquire_nvm(hw, ICE_RES_READ);
 | |
| 	if (err)
 | |
| 		goto exit;
 | |
| 
 | |
| 	/* Read the offset of SDP_AC */
 | |
| 	offset = ICE_AQC_NVM_SDP_AC_PTR_OFFSET;
 | |
| 	err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
 | |
| 			      NULL);
 | |
| 	if (err)
 | |
| 		goto exit;
 | |
| 
 | |
| 	/* Check if section exist */
 | |
| 	offset = FIELD_GET(ICE_AQC_NVM_SDP_AC_PTR_M, le16_to_cpu(data));
 | |
| 	if (offset == ICE_AQC_NVM_SDP_AC_PTR_INVAL) {
 | |
| 		err = -EINVAL;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	if (offset & ICE_AQC_NVM_SDP_AC_PTR_TYPE_M) {
 | |
| 		offset &= ICE_AQC_NVM_SDP_AC_PTR_M;
 | |
| 		offset *= ICE_AQC_NVM_SECTOR_UNIT;
 | |
| 	} else {
 | |
| 		offset *= sizeof(data);
 | |
| 	}
 | |
| 
 | |
| 	/* Skip reading section length and read the number of valid entries */
 | |
| 	offset += sizeof(data);
 | |
| 	err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
 | |
| 			      NULL);
 | |
| 	if (err)
 | |
| 		goto exit;
 | |
| 	*num_entries = le16_to_cpu(data);
 | |
| 
 | |
| 	/* Read SDP configuration section */
 | |
| 	offset += sizeof(data);
 | |
| 	err = ice_aq_read_nvm(hw, 0, offset, *num_entries * sizeof(data),
 | |
| 			      entries, false, true, NULL);
 | |
| 
 | |
| exit:
 | |
| 	if (err)
 | |
| 		dev_dbg(ice_hw_to_dev(hw), "Failed to configure SDP connection section\n");
 | |
| 	ice_release_nvm(hw);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_phy_e810 - initialize PHY parameters
 | |
|  * @ptp: pointer to the PTP HW struct
 | |
|  */
 | |
| static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp)
 | |
| {
 | |
| 	ptp->num_lports = 8;
 | |
| 	ptp->ports_per_phy = 4;
 | |
| 
 | |
| 	init_waitqueue_head(&ptp->phy.e810.atqbal_wq);
 | |
| }
 | |
| 
 | |
| /* E830 functions
 | |
|  *
 | |
|  * The following functions operate on the E830 series devices.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_phc_e830 - Perform E830 specific PHC initialization
 | |
|  * @hw: pointer to HW struct
 | |
|  *
 | |
|  * Perform E830-specific PTP hardware clock initialization steps.
 | |
|  */
 | |
| static void ice_ptp_init_phc_e830(const struct ice_hw *hw)
 | |
| {
 | |
| 	ice_ptp_cfg_sync_delay(hw, ICE_E810_E830_SYNC_DELAY);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_write_direct_incval_e830 - Prep PHY port increment value change
 | |
|  * @hw: pointer to HW struct
 | |
|  * @incval: The new 40bit increment value to prepare
 | |
|  *
 | |
|  * Prepare the PHY port for a new increment value by programming the PHC
 | |
|  * GLTSYN_INCVAL_L and GLTSYN_INCVAL_H registers. The actual change is
 | |
|  * completed by FW automatically.
 | |
|  */
 | |
| static void ice_ptp_write_direct_incval_e830(const struct ice_hw *hw,
 | |
| 					     u64 incval)
 | |
| {
 | |
| 	u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 
 | |
| 	wr32(hw, GLTSYN_INCVAL_L(tmr_idx), lower_32_bits(incval));
 | |
| 	wr32(hw, GLTSYN_INCVAL_H(tmr_idx), upper_32_bits(incval));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_write_direct_phc_time_e830 - Prepare PHY port with initial time
 | |
|  * @hw: Board private structure
 | |
|  * @time: Time to initialize the PHY port clock to
 | |
|  *
 | |
|  * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
 | |
|  * initial clock time. The time will not actually be programmed until the
 | |
|  * driver issues an ICE_PTP_INIT_TIME command.
 | |
|  *
 | |
|  * The time value is the upper 32 bits of the PHY timer, usually in units of
 | |
|  * nominal nanoseconds.
 | |
|  */
 | |
| static void ice_ptp_write_direct_phc_time_e830(const struct ice_hw *hw,
 | |
| 					       u64 time)
 | |
| {
 | |
| 	u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 
 | |
| 	wr32(hw, GLTSYN_TIME_0(tmr_idx), 0);
 | |
| 	wr32(hw, GLTSYN_TIME_L(tmr_idx), lower_32_bits(time));
 | |
| 	wr32(hw, GLTSYN_TIME_H(tmr_idx), upper_32_bits(time));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_port_cmd_e830 - Prepare all external PHYs for a timer command
 | |
|  * @hw: pointer to HW struct
 | |
|  * @cmd: Command to be sent to the port
 | |
|  *
 | |
|  * Prepare the external PHYs connected to this device for a timer sync
 | |
|  * command.
 | |
|  *
 | |
|  * Return: 0 on success, negative error code when PHY write failed
 | |
|  */
 | |
| static int ice_ptp_port_cmd_e830(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
 | |
| 
 | |
| 	return ice_write_phy_reg_e810(hw, E830_ETH_GLTSYN_CMD, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_tstamp_e830 - Read a PHY timestamp out of the external PHY
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @idx: the timestamp index to read
 | |
|  * @tstamp: on return, the 40bit timestamp value
 | |
|  *
 | |
|  * Read a 40bit timestamp value out of the timestamp block of the external PHY
 | |
|  * on the E830 device.
 | |
|  */
 | |
| static void ice_read_phy_tstamp_e830(const struct ice_hw *hw, u8 idx,
 | |
| 				     u64 *tstamp)
 | |
| {
 | |
| 	u32 hi, lo;
 | |
| 
 | |
| 	hi = rd32(hw, E830_PRTTSYN_TXTIME_H(idx));
 | |
| 	lo = rd32(hw, E830_PRTTSYN_TXTIME_L(idx));
 | |
| 
 | |
| 	/* For E830 devices, the timestamp is reported with the lower 32 bits
 | |
| 	 * in the low register, and the upper 8 bits in the high register.
 | |
| 	 */
 | |
| 	*tstamp = FIELD_PREP(PHY_EXT_40B_HIGH_M, hi) |
 | |
| 		  FIELD_PREP(PHY_EXT_40B_LOW_M, lo);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_phy_tx_tstamp_ready_e830 - Read Tx memory status register
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @port: the PHY port to read
 | |
|  * @tstamp_ready: contents of the Tx memory status register
 | |
|  */
 | |
| static void ice_get_phy_tx_tstamp_ready_e830(const struct ice_hw *hw, u8 port,
 | |
| 					     u64 *tstamp_ready)
 | |
| {
 | |
| 	*tstamp_ready = rd32(hw, E830_PRTMAC_TS_TX_MEM_VALID_H);
 | |
| 	*tstamp_ready <<= 32;
 | |
| 	*tstamp_ready |= rd32(hw, E830_PRTMAC_TS_TX_MEM_VALID_L);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_phy_e830 - initialize PHY parameters
 | |
|  * @ptp: pointer to the PTP HW struct
 | |
|  */
 | |
| static void ice_ptp_init_phy_e830(struct ice_ptp_hw *ptp)
 | |
| {
 | |
| 	ptp->num_lports = 8;
 | |
| 	ptp->ports_per_phy = 4;
 | |
| }
 | |
| 
 | |
| /* Device agnostic functions
 | |
|  *
 | |
|  * The following functions implement shared behavior common to all devices,
 | |
|  * possibly calling a device specific implementation where necessary.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_lock - Acquire PTP global semaphore register lock
 | |
|  * @hw: pointer to the HW struct
 | |
|  *
 | |
|  * Acquire the global PTP hardware semaphore lock. Returns true if the lock
 | |
|  * was acquired, false otherwise.
 | |
|  *
 | |
|  * The PFTSYN_SEM register sets the busy bit on read, returning the previous
 | |
|  * value. If software sees the busy bit cleared, this means that this function
 | |
|  * acquired the lock (and the busy bit is now set). If software sees the busy
 | |
|  * bit set, it means that another function acquired the lock.
 | |
|  *
 | |
|  * Software must clear the busy bit with a write to release the lock for other
 | |
|  * functions when done.
 | |
|  */
 | |
| bool ice_ptp_lock(struct ice_hw *hw)
 | |
| {
 | |
| 	u32 hw_lock;
 | |
| 	int i;
 | |
| 
 | |
| #define MAX_TRIES 15
 | |
| 
 | |
| 	for (i = 0; i < MAX_TRIES; i++) {
 | |
| 		hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
 | |
| 		hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
 | |
| 		if (hw_lock) {
 | |
| 			/* Somebody is holding the lock */
 | |
| 			usleep_range(5000, 6000);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return !hw_lock;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_unlock - Release PTP global semaphore register lock
 | |
|  * @hw: pointer to the HW struct
 | |
|  *
 | |
|  * Release the global PTP hardware semaphore lock. This is done by writing to
 | |
|  * the PFTSYN_SEM register.
 | |
|  */
 | |
| void ice_ptp_unlock(struct ice_hw *hw)
 | |
| {
 | |
| 	wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_hw - Initialize hw based on device type
 | |
|  * @hw: pointer to the HW structure
 | |
|  *
 | |
|  * Determine the PHY model for the device, and initialize hw
 | |
|  * for use by other functions.
 | |
|  */
 | |
| void ice_ptp_init_hw(struct ice_hw *hw)
 | |
| {
 | |
| 	struct ice_ptp_hw *ptp = &hw->ptp;
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 		ice_ptp_init_phy_e810(ptp);
 | |
| 		break;
 | |
| 	case ICE_MAC_E830:
 | |
| 		ice_ptp_init_phy_e830(ptp);
 | |
| 		break;
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		ice_ptp_init_phy_e82x(ptp);
 | |
| 		break;
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		ice_ptp_init_phy_e825(hw);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command
 | |
|  * @hw: pointer to HW struct
 | |
|  * @port: Port to which cmd has to be sent
 | |
|  * @cmd: Command to be sent to the port
 | |
|  *
 | |
|  * Prepare one port for the upcoming timer sync command. Do not use this for
 | |
|  * programming only a single port, instead use ice_ptp_one_port_cmd() to
 | |
|  * ensure non-modified ports get properly initialized to ICE_PTP_NOP.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  *  %-EBUSY - PHY type not supported
 | |
|  * * %other - failed to write port command
 | |
|  */
 | |
| static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port,
 | |
| 				  enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		return ice_ptp_write_port_cmd_e82x(hw, port, cmd);
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		return ice_ptp_write_port_cmd_eth56g(hw, port, cmd);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_one_port_cmd - Program one PHY port for a timer command
 | |
|  * @hw: pointer to HW struct
 | |
|  * @configured_port: the port that should execute the command
 | |
|  * @configured_cmd: the command to be executed on the configured port
 | |
|  *
 | |
|  * Prepare one port for executing a timer command, while preparing all other
 | |
|  * ports to ICE_PTP_NOP. This allows executing a command on a single port
 | |
|  * while ensuring all other ports do not execute stale commands.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write port command
 | |
|  */
 | |
| int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
 | |
| 			 enum ice_ptp_tmr_cmd configured_cmd)
 | |
| {
 | |
| 	u32 port;
 | |
| 
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		int err;
 | |
| 
 | |
| 		/* Program the configured port with the configured command,
 | |
| 		 * program all other ports with ICE_PTP_NOP.
 | |
| 		 */
 | |
| 		if (port == configured_port)
 | |
| 			err = ice_ptp_write_port_cmd(hw, port, configured_cmd);
 | |
| 		else
 | |
| 			err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP);
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_port_cmd - Prepare PHY ports for a timer sync command
 | |
|  * @hw: pointer to HW struct
 | |
|  * @cmd: the timer command to setup
 | |
|  *
 | |
|  * Prepare all PHY ports on this device for the requested timer command. For
 | |
|  * some families this can be done in one shot, but for other families each
 | |
|  * port must be configured individually.
 | |
|  *
 | |
|  * Return:
 | |
|  * * %0     - success
 | |
|  * * %other - failed to write port command
 | |
|  */
 | |
| static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	u32 port;
 | |
| 
 | |
| 	/* PHY models which can program all ports simultaneously */
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 		return ice_ptp_port_cmd_e810(hw, cmd);
 | |
| 	case ICE_MAC_E830:
 | |
| 		return ice_ptp_port_cmd_e830(hw, cmd);
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* PHY models which require programming each port separately */
 | |
| 	for (port = 0; port < hw->ptp.num_lports; port++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = ice_ptp_write_port_cmd(hw, port, cmd);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
 | |
|  * @hw: pointer to HW struct
 | |
|  * @cmd: the command to issue
 | |
|  *
 | |
|  * Prepare the source timer and PHY timers and then trigger the requested
 | |
|  * command. This causes the shadow registers previously written in preparation
 | |
|  * for the command to be synchronously applied to both the source and PHY
 | |
|  * timers.
 | |
|  */
 | |
| static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* First, prepare the source timer */
 | |
| 	ice_ptp_src_cmd(hw, cmd);
 | |
| 
 | |
| 	/* Next, prepare the ports */
 | |
| 	err = ice_ptp_port_cmd(hw, cmd);
 | |
| 	if (err) {
 | |
| 		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
 | |
| 			  cmd, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Write the sync command register to drive both source and PHY timer
 | |
| 	 * commands synchronously
 | |
| 	 */
 | |
| 	ice_ptp_exec_tmr_cmd(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_time - Initialize device time to provided value
 | |
|  * @hw: pointer to HW struct
 | |
|  * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
 | |
|  *
 | |
|  * Initialize the device to the specified time provided. This requires a three
 | |
|  * step process:
 | |
|  *
 | |
|  * 1) write the new init time to the source timer shadow registers
 | |
|  * 2) write the new init time to the PHY timer shadow registers
 | |
|  * 3) issue an init_time timer command to synchronously switch both the source
 | |
|  *    and port timers to the new init time value at the next clock cycle.
 | |
|  */
 | |
| int ice_ptp_init_time(struct ice_hw *hw, u64 time)
 | |
| {
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 
 | |
| 	/* Source timers */
 | |
| 	/* For E830 we don't need to use shadow registers, its automatic */
 | |
| 	if (hw->mac_type == ICE_MAC_E830) {
 | |
| 		ice_ptp_write_direct_phc_time_e830(hw, time);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
 | |
| 	wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
 | |
| 	wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
 | |
| 
 | |
| 	/* PHY timers */
 | |
| 	/* Fill Rx and Tx ports and send msg to PHY */
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 		err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
 | |
| 		break;
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF);
 | |
| 		break;
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		err = ice_ptp_prep_phy_time_eth56g(hw,
 | |
| 						   (u32)(time & 0xFFFFFFFF));
 | |
| 		break;
 | |
| 	default:
 | |
| 		err = -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_write_incval - Program PHC with new increment value
 | |
|  * @hw: pointer to HW struct
 | |
|  * @incval: Source timer increment value per clock cycle
 | |
|  *
 | |
|  * Program the PHC with a new increment value. This requires a three-step
 | |
|  * process:
 | |
|  *
 | |
|  * 1) Write the increment value to the source timer shadow registers
 | |
|  * 2) Write the increment value to the PHY timer shadow registers
 | |
|  * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
 | |
|  *    the source and port timers to the new increment value at the next clock
 | |
|  *    cycle.
 | |
|  */
 | |
| int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
 | |
| {
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 
 | |
| 	/* For E830 we don't need to use shadow registers, its automatic */
 | |
| 	if (hw->mac_type == ICE_MAC_E830) {
 | |
| 		ice_ptp_write_direct_incval_e830(hw, incval);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Shadow Adjust */
 | |
| 	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
 | |
| 	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 		err = ice_ptp_prep_phy_incval_e810(hw, incval);
 | |
| 		break;
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		err = ice_ptp_prep_phy_incval_e82x(hw, incval);
 | |
| 		break;
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		err = ice_ptp_prep_phy_incval_eth56g(hw, incval);
 | |
| 		break;
 | |
| 	default:
 | |
| 		err = -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_write_incval_locked - Program new incval while holding semaphore
 | |
|  * @hw: pointer to HW struct
 | |
|  * @incval: Source timer increment value per clock cycle
 | |
|  *
 | |
|  * Program a new PHC incval while holding the PTP semaphore.
 | |
|  */
 | |
| int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ice_ptp_lock(hw))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	err = ice_ptp_write_incval(hw, incval);
 | |
| 
 | |
| 	ice_ptp_unlock(hw);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_adj_clock - Adjust PHC clock time atomically
 | |
|  * @hw: pointer to HW struct
 | |
|  * @adj: Adjustment in nanoseconds
 | |
|  *
 | |
|  * Perform an atomic adjustment of the PHC time by the specified number of
 | |
|  * nanoseconds. This requires a three-step process:
 | |
|  *
 | |
|  * 1) Write the adjustment to the source timer shadow registers
 | |
|  * 2) Write the adjustment to the PHY timer shadow registers
 | |
|  * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
 | |
|  *    adjustment to both the source and port timers at the next clock cycle.
 | |
|  */
 | |
| int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
 | |
| {
 | |
| 	u8 tmr_idx;
 | |
| 	int err;
 | |
| 
 | |
| 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 
 | |
| 	/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
 | |
| 	 * For an ICE_PTP_ADJ_TIME command, this set of registers represents
 | |
| 	 * the value to add to the clock time. It supports subtraction by
 | |
| 	 * interpreting the value as a 2's complement integer.
 | |
| 	 */
 | |
| 	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
 | |
| 	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 		err = ice_ptp_prep_phy_adj_e810(hw, adj);
 | |
| 		break;
 | |
| 	case ICE_MAC_E830:
 | |
| 		/* E830 sync PHYs automatically after setting GLTSYN_SHADJ */
 | |
| 		return 0;
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		err = ice_ptp_prep_phy_adj_e82x(hw, adj);
 | |
| 		break;
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		err = ice_ptp_prep_phy_adj_eth56g(hw, adj);
 | |
| 		break;
 | |
| 	default:
 | |
| 		err = -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @block: the block to read from
 | |
|  * @idx: the timestamp index to read
 | |
|  * @tstamp: on return, the 40bit timestamp value
 | |
|  *
 | |
|  * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
 | |
|  * the block is the quad to read from. For E810 devices, the block is the
 | |
|  * logical port to read from.
 | |
|  */
 | |
| int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
 | |
| {
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 		return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
 | |
| 	case ICE_MAC_E830:
 | |
| 		ice_read_phy_tstamp_e830(hw, idx, tstamp);
 | |
| 		return 0;
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp);
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @block: the block to read from
 | |
|  * @idx: the timestamp index to reset
 | |
|  *
 | |
|  * Clear a timestamp from the timestamp block, discarding its value without
 | |
|  * returning it. This resets the memory status bit for the timestamp index
 | |
|  * allowing it to be reused for another timestamp in the future.
 | |
|  *
 | |
|  * For E822 devices, the block number is the PHY quad to clear from. For E810
 | |
|  * devices, the block number is the logical port to clear from.
 | |
|  *
 | |
|  * This function must only be called on a timestamp index whose valid bit is
 | |
|  * set according to ice_get_phy_tx_tstamp_ready().
 | |
|  */
 | |
| int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
 | |
| {
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 		return ice_clear_phy_tstamp_e810(hw, block, idx);
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		return ice_clear_phy_tstamp_e82x(hw, block, idx);
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		return ice_clear_ptp_tstamp_eth56g(hw, block, idx);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_pf_c827_idx - find and return the C827 index for the current pf
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @idx: index of the found C827 PHY
 | |
|  * Return:
 | |
|  * * 0 - success
 | |
|  * * negative - failure
 | |
|  */
 | |
| static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
 | |
| {
 | |
| 	struct ice_aqc_get_link_topo cmd;
 | |
| 	u8 node_part_number;
 | |
| 	u16 node_handle;
 | |
| 	int status;
 | |
| 	u8 ctx;
 | |
| 
 | |
| 	if (hw->mac_type != ICE_MAC_E810)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
 | |
| 		*idx = C827_0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 
 | |
| 	ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
 | |
| 	ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
 | |
| 	cmd.addr.topo_params.node_type_ctx = ctx;
 | |
| 
 | |
| 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
 | |
| 					 &node_handle);
 | |
| 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (node_handle == E810C_QSFP_C827_0_HANDLE)
 | |
| 		*idx = C827_0;
 | |
| 	else if (node_handle == E810C_QSFP_C827_1_HANDLE)
 | |
| 		*idx = C827_1;
 | |
| 	else
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
 | |
|  * @hw: pointer to the HW struct
 | |
|  */
 | |
| void ice_ptp_reset_ts_memory(struct ice_hw *hw)
 | |
| {
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		ice_ptp_reset_ts_memory_e82x(hw);
 | |
| 		break;
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		ice_ptp_reset_ts_memory_eth56g(hw);
 | |
| 		break;
 | |
| 	case ICE_MAC_E810:
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ptp_init_phc - Initialize PTP hardware clock
 | |
|  * @hw: pointer to the HW struct
 | |
|  *
 | |
|  * Perform the steps required to initialize the PTP hardware clock.
 | |
|  */
 | |
| int ice_ptp_init_phc(struct ice_hw *hw)
 | |
| {
 | |
| 	u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 | |
| 
 | |
| 	/* Enable source clocks */
 | |
| 	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
 | |
| 
 | |
| 	/* Clear event err indications for auxiliary pins */
 | |
| 	(void)rd32(hw, GLTSYN_STAT(src_idx));
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 		return ice_ptp_init_phc_e810(hw);
 | |
| 	case ICE_MAC_E830:
 | |
| 		ice_ptp_init_phc_e830(hw);
 | |
| 		return 0;
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		return ice_ptp_init_phc_e82x(hw);
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		return ice_ptp_init_phc_e825(hw);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
 | |
|  * @hw: pointer to the HW struct
 | |
|  * @block: the timestamp block to check
 | |
|  * @tstamp_ready: storage for the PHY Tx memory status information
 | |
|  *
 | |
|  * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
 | |
|  * which indicates which timestamps in the block may be captured. A set bit
 | |
|  * means the timestamp can be read. An unset bit means the timestamp is not
 | |
|  * ready and software should avoid reading the register.
 | |
|  */
 | |
| int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
 | |
| {
 | |
| 	switch (hw->mac_type) {
 | |
| 	case ICE_MAC_E810:
 | |
| 		return ice_get_phy_tx_tstamp_ready_e810(hw, block,
 | |
| 							tstamp_ready);
 | |
| 	case ICE_MAC_E830:
 | |
| 		ice_get_phy_tx_tstamp_ready_e830(hw, block, tstamp_ready);
 | |
| 		return 0;
 | |
| 	case ICE_MAC_GENERIC:
 | |
| 		return ice_get_phy_tx_tstamp_ready_e82x(hw, block,
 | |
| 							tstamp_ready);
 | |
| 	case ICE_MAC_GENERIC_3K_E825:
 | |
| 		return ice_get_phy_tx_tstamp_ready_eth56g(hw, block,
 | |
| 							  tstamp_ready);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cgu_get_pin_desc_e823 - get pin description array
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @input: if request is done against input or output pin
 | |
|  * @size: number of inputs/outputs
 | |
|  *
 | |
|  * Return: pointer to pin description array associated to given hw.
 | |
|  */
 | |
| static const struct ice_cgu_pin_desc *
 | |
| ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
 | |
| {
 | |
| 	static const struct ice_cgu_pin_desc *t;
 | |
| 
 | |
| 	if (hw->cgu_part_number ==
 | |
| 	    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
 | |
| 		if (input) {
 | |
| 			t = ice_e823_zl_cgu_inputs;
 | |
| 			*size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
 | |
| 		} else {
 | |
| 			t = ice_e823_zl_cgu_outputs;
 | |
| 			*size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
 | |
| 		}
 | |
| 	} else if (hw->cgu_part_number ==
 | |
| 		   ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
 | |
| 		if (input) {
 | |
| 			t = ice_e823_si_cgu_inputs;
 | |
| 			*size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
 | |
| 		} else {
 | |
| 			t = ice_e823_si_cgu_outputs;
 | |
| 			*size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
 | |
| 		}
 | |
| 	} else {
 | |
| 		t = NULL;
 | |
| 		*size = 0;
 | |
| 	}
 | |
| 
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cgu_get_pin_desc - get pin description array
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @input: if request is done against input or output pins
 | |
|  * @size: size of array returned by function
 | |
|  *
 | |
|  * Return: pointer to pin description array associated to given hw.
 | |
|  */
 | |
| static const struct ice_cgu_pin_desc *
 | |
| ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
 | |
| {
 | |
| 	const struct ice_cgu_pin_desc *t = NULL;
 | |
| 
 | |
| 	switch (hw->device_id) {
 | |
| 	case ICE_DEV_ID_E810C_SFP:
 | |
| 		if (input) {
 | |
| 			t = ice_e810t_sfp_cgu_inputs;
 | |
| 			*size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
 | |
| 		} else {
 | |
| 			t = ice_e810t_sfp_cgu_outputs;
 | |
| 			*size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
 | |
| 		}
 | |
| 		break;
 | |
| 	case ICE_DEV_ID_E810C_QSFP:
 | |
| 		if (input) {
 | |
| 			t = ice_e810t_qsfp_cgu_inputs;
 | |
| 			*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
 | |
| 		} else {
 | |
| 			t = ice_e810t_qsfp_cgu_outputs;
 | |
| 			*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
 | |
| 		}
 | |
| 		break;
 | |
| 	case ICE_DEV_ID_E823L_10G_BASE_T:
 | |
| 	case ICE_DEV_ID_E823L_1GBE:
 | |
| 	case ICE_DEV_ID_E823L_BACKPLANE:
 | |
| 	case ICE_DEV_ID_E823L_QSFP:
 | |
| 	case ICE_DEV_ID_E823L_SFP:
 | |
| 	case ICE_DEV_ID_E823C_10G_BASE_T:
 | |
| 	case ICE_DEV_ID_E823C_BACKPLANE:
 | |
| 	case ICE_DEV_ID_E823C_QSFP:
 | |
| 	case ICE_DEV_ID_E823C_SFP:
 | |
| 	case ICE_DEV_ID_E823C_SGMII:
 | |
| 		t = ice_cgu_get_pin_desc_e823(hw, input, size);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cgu_get_num_pins - get pin description array size
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @input: if request is done against input or output pins
 | |
|  *
 | |
|  * Return: size of pin description array for given hw.
 | |
|  */
 | |
| int ice_cgu_get_num_pins(struct ice_hw *hw, bool input)
 | |
| {
 | |
| 	const struct ice_cgu_pin_desc *t;
 | |
| 	int size;
 | |
| 
 | |
| 	t = ice_cgu_get_pin_desc(hw, input, &size);
 | |
| 	if (t)
 | |
| 		return size;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cgu_get_pin_type - get pin's type
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @pin: pin index
 | |
|  * @input: if request is done against input or output pin
 | |
|  *
 | |
|  * Return: type of a pin.
 | |
|  */
 | |
| enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
 | |
| {
 | |
| 	const struct ice_cgu_pin_desc *t;
 | |
| 	int t_size;
 | |
| 
 | |
| 	t = ice_cgu_get_pin_desc(hw, input, &t_size);
 | |
| 
 | |
| 	if (!t)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pin >= t_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	return t[pin].type;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cgu_get_pin_freq_supp - get pin's supported frequency
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @pin: pin index
 | |
|  * @input: if request is done against input or output pin
 | |
|  * @num: output number of supported frequencies
 | |
|  *
 | |
|  * Get frequency supported number and array of supported frequencies.
 | |
|  *
 | |
|  * Return: array of supported frequencies for given pin.
 | |
|  */
 | |
| struct dpll_pin_frequency *
 | |
| ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
 | |
| {
 | |
| 	const struct ice_cgu_pin_desc *t;
 | |
| 	int t_size;
 | |
| 
 | |
| 	*num = 0;
 | |
| 	t = ice_cgu_get_pin_desc(hw, input, &t_size);
 | |
| 	if (!t)
 | |
| 		return NULL;
 | |
| 	if (pin >= t_size)
 | |
| 		return NULL;
 | |
| 	*num = t[pin].freq_supp_num;
 | |
| 
 | |
| 	return t[pin].freq_supp;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cgu_get_pin_name - get pin's name
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @pin: pin index
 | |
|  * @input: if request is done against input or output pin
 | |
|  *
 | |
|  * Return:
 | |
|  * * null terminated char array with name
 | |
|  * * NULL in case of failure
 | |
|  */
 | |
| const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
 | |
| {
 | |
| 	const struct ice_cgu_pin_desc *t;
 | |
| 	int t_size;
 | |
| 
 | |
| 	t = ice_cgu_get_pin_desc(hw, input, &t_size);
 | |
| 
 | |
| 	if (!t)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pin >= t_size)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return t[pin].name;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_cgu_state - get the state of the DPLL
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @dpll_idx: Index of internal DPLL unit
 | |
|  * @last_dpll_state: last known state of DPLL
 | |
|  * @pin: pointer to a buffer for returning currently active pin
 | |
|  * @ref_state: reference clock state
 | |
|  * @eec_mode: eec mode of the DPLL
 | |
|  * @phase_offset: pointer to a buffer for returning phase offset
 | |
|  * @dpll_state: state of the DPLL (output)
 | |
|  *
 | |
|  * This function will read the state of the DPLL(dpll_idx). Non-null
 | |
|  * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
 | |
|  * retrieve currently active pin, state, mode and phase_offset respectively.
 | |
|  *
 | |
|  * Return: state of the DPLL
 | |
|  */
 | |
| int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
 | |
| 		      enum dpll_lock_status last_dpll_state, u8 *pin,
 | |
| 		      u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
 | |
| 		      enum dpll_lock_status *dpll_state)
 | |
| {
 | |
| 	u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
 | |
| 	s64 hw_phase_offset;
 | |
| 	int status;
 | |
| 
 | |
| 	status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state,
 | |
| 					    &hw_dpll_state, &hw_config,
 | |
| 					    &hw_phase_offset, &hw_eec_mode);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 
 | |
| 	if (pin)
 | |
| 		/* current ref pin in dpll_state_refsel_status_X register */
 | |
| 		*pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
 | |
| 	if (phase_offset)
 | |
| 		*phase_offset = hw_phase_offset;
 | |
| 	if (ref_state)
 | |
| 		*ref_state = hw_ref_state;
 | |
| 	if (eec_mode)
 | |
| 		*eec_mode = hw_eec_mode;
 | |
| 	if (!dpll_state)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
 | |
| 	 * it would never return to FREERUN. This aligns to ITU-T G.781
 | |
| 	 * Recommendation. We cannot report HOLDOVER as HO memory is cleared
 | |
| 	 * while switching to another reference.
 | |
| 	 * Only for situations where previous state was either: "LOCKED without
 | |
| 	 * HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
 | |
| 	 */
 | |
| 	if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
 | |
| 		if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
 | |
| 			*dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
 | |
| 		else
 | |
| 			*dpll_state = DPLL_LOCK_STATUS_LOCKED;
 | |
| 	} else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
 | |
| 		   last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
 | |
| 		*dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
 | |
| 	} else {
 | |
| 		*dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @base_idx: returns index of first recovered clock pin on device
 | |
|  * @pin_num: returns number of recovered clock pins available on device
 | |
|  *
 | |
|  * Based on hw provide caller info about recovery clock pins available on the
 | |
|  * board.
 | |
|  *
 | |
|  * Return:
 | |
|  * * 0 - success, information is valid
 | |
|  * * negative - failure, information is not valid
 | |
|  */
 | |
| int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
 | |
| {
 | |
| 	u8 phy_idx;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (hw->device_id) {
 | |
| 	case ICE_DEV_ID_E810C_SFP:
 | |
| 	case ICE_DEV_ID_E810C_QSFP:
 | |
| 
 | |
| 		ret = ice_get_pf_c827_idx(hw, &phy_idx);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		*base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
 | |
| 		*pin_num = ICE_E810_RCLK_PINS_NUM;
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	case ICE_DEV_ID_E823L_10G_BASE_T:
 | |
| 	case ICE_DEV_ID_E823L_1GBE:
 | |
| 	case ICE_DEV_ID_E823L_BACKPLANE:
 | |
| 	case ICE_DEV_ID_E823L_QSFP:
 | |
| 	case ICE_DEV_ID_E823L_SFP:
 | |
| 	case ICE_DEV_ID_E823C_10G_BASE_T:
 | |
| 	case ICE_DEV_ID_E823C_BACKPLANE:
 | |
| 	case ICE_DEV_ID_E823C_QSFP:
 | |
| 	case ICE_DEV_ID_E823C_SFP:
 | |
| 	case ICE_DEV_ID_E823C_SGMII:
 | |
| 		*pin_num = ICE_E82X_RCLK_PINS_NUM;
 | |
| 		ret = 0;
 | |
| 		if (hw->cgu_part_number ==
 | |
| 		    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
 | |
| 			*base_idx = ZL_REF1P;
 | |
| 		else if (hw->cgu_part_number ==
 | |
| 			 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
 | |
| 			*base_idx = SI_REF1P;
 | |
| 		else
 | |
| 			ret = -ENODEV;
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -ENODEV;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cgu_get_output_pin_state_caps - get output pin state capabilities
 | |
|  * @hw: pointer to the hw struct
 | |
|  * @pin_id: id of a pin
 | |
|  * @caps: capabilities to modify
 | |
|  *
 | |
|  * Return:
 | |
|  * * 0 - success, state capabilities were modified
 | |
|  * * negative - failure, capabilities were not modified
 | |
|  */
 | |
| int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id,
 | |
| 				      unsigned long *caps)
 | |
| {
 | |
| 	bool can_change = true;
 | |
| 
 | |
| 	switch (hw->device_id) {
 | |
| 	case ICE_DEV_ID_E810C_SFP:
 | |
| 		if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3)
 | |
| 			can_change = false;
 | |
| 		break;
 | |
| 	case ICE_DEV_ID_E810C_QSFP:
 | |
| 		if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4)
 | |
| 			can_change = false;
 | |
| 		break;
 | |
| 	case ICE_DEV_ID_E823L_10G_BASE_T:
 | |
| 	case ICE_DEV_ID_E823L_1GBE:
 | |
| 	case ICE_DEV_ID_E823L_BACKPLANE:
 | |
| 	case ICE_DEV_ID_E823L_QSFP:
 | |
| 	case ICE_DEV_ID_E823L_SFP:
 | |
| 	case ICE_DEV_ID_E823C_10G_BASE_T:
 | |
| 	case ICE_DEV_ID_E823C_BACKPLANE:
 | |
| 	case ICE_DEV_ID_E823C_QSFP:
 | |
| 	case ICE_DEV_ID_E823C_SFP:
 | |
| 	case ICE_DEV_ID_E823C_SGMII:
 | |
| 		if (hw->cgu_part_number ==
 | |
| 		    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 &&
 | |
| 		    pin_id == ZL_OUT2)
 | |
| 			can_change = false;
 | |
| 		else if (hw->cgu_part_number ==
 | |
| 			 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 &&
 | |
| 			 pin_id == SI_OUT1)
 | |
| 			can_change = false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (can_change)
 | |
| 		*caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
 | |
| 	else
 | |
| 		*caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |