forked from mirrors/linux
		
	 1422f28826
			
		
	
	
		1422f28826
		
	
	
	
	
		
			
			acquire/release_in_xmit() work as bit lock in rds_send_xmit(), so they are expected to ensure acquire/release memory ordering semantics. However, test_and_set_bit/clear_bit() don't imply such semantics, on top of this, following smp_mb__after_atomic() does not guarantee release ordering (memory barrier actually should be placed before clear_bit()). Instead, we use clear_bit_unlock/test_and_set_bit_lock() here. Fixes:0f4b1c7e89("rds: fix rds_send_xmit() serialization") Fixes:1f9ecd7eac("RDS: Pass rds_conn_path to rds_send_xmit()") Signed-off-by: Yewon Choi <woni9911@gmail.com> Reviewed-by: Michal Kubiak <michal.kubiak@intel.com> Link: https://lore.kernel.org/r/ZfQUxnNTO9AJmzwc@libra05 Signed-off-by: Paolo Abeni <pabeni@redhat.com>
		
			
				
	
	
		
			1509 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1509 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the
 | |
|  * OpenIB.org BSD license below:
 | |
|  *
 | |
|  *     Redistribution and use in source and binary forms, with or
 | |
|  *     without modification, are permitted provided that the following
 | |
|  *     conditions are met:
 | |
|  *
 | |
|  *      - Redistributions of source code must retain the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer.
 | |
|  *
 | |
|  *      - Redistributions in binary form must reproduce the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer in the documentation and/or other materials
 | |
|  *        provided with the distribution.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <net/sock.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/sizes.h>
 | |
| 
 | |
| #include "rds.h"
 | |
| 
 | |
| /* When transmitting messages in rds_send_xmit, we need to emerge from
 | |
|  * time to time and briefly release the CPU. Otherwise the softlock watchdog
 | |
|  * will kick our shin.
 | |
|  * Also, it seems fairer to not let one busy connection stall all the
 | |
|  * others.
 | |
|  *
 | |
|  * send_batch_count is the number of times we'll loop in send_xmit. Setting
 | |
|  * it to 0 will restore the old behavior (where we looped until we had
 | |
|  * drained the queue).
 | |
|  */
 | |
| static int send_batch_count = SZ_1K;
 | |
| module_param(send_batch_count, int, 0444);
 | |
| MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
 | |
| 
 | |
| static void rds_send_remove_from_sock(struct list_head *messages, int status);
 | |
| 
 | |
| /*
 | |
|  * Reset the send state.  Callers must ensure that this doesn't race with
 | |
|  * rds_send_xmit().
 | |
|  */
 | |
| void rds_send_path_reset(struct rds_conn_path *cp)
 | |
| {
 | |
| 	struct rds_message *rm, *tmp;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (cp->cp_xmit_rm) {
 | |
| 		rm = cp->cp_xmit_rm;
 | |
| 		cp->cp_xmit_rm = NULL;
 | |
| 		/* Tell the user the RDMA op is no longer mapped by the
 | |
| 		 * transport. This isn't entirely true (it's flushed out
 | |
| 		 * independently) but as the connection is down, there's
 | |
| 		 * no ongoing RDMA to/from that memory */
 | |
| 		rds_message_unmapped(rm);
 | |
| 		rds_message_put(rm);
 | |
| 	}
 | |
| 
 | |
| 	cp->cp_xmit_sg = 0;
 | |
| 	cp->cp_xmit_hdr_off = 0;
 | |
| 	cp->cp_xmit_data_off = 0;
 | |
| 	cp->cp_xmit_atomic_sent = 0;
 | |
| 	cp->cp_xmit_rdma_sent = 0;
 | |
| 	cp->cp_xmit_data_sent = 0;
 | |
| 
 | |
| 	cp->cp_conn->c_map_queued = 0;
 | |
| 
 | |
| 	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
 | |
| 	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
 | |
| 
 | |
| 	/* Mark messages as retransmissions, and move them to the send q */
 | |
| 	spin_lock_irqsave(&cp->cp_lock, flags);
 | |
| 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
 | |
| 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 | |
| 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
 | |
| 	}
 | |
| 	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
 | |
| 	spin_unlock_irqrestore(&cp->cp_lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_send_path_reset);
 | |
| 
 | |
| static int acquire_in_xmit(struct rds_conn_path *cp)
 | |
| {
 | |
| 	return test_and_set_bit_lock(RDS_IN_XMIT, &cp->cp_flags) == 0;
 | |
| }
 | |
| 
 | |
| static void release_in_xmit(struct rds_conn_path *cp)
 | |
| {
 | |
| 	clear_bit_unlock(RDS_IN_XMIT, &cp->cp_flags);
 | |
| 	/*
 | |
| 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
 | |
| 	 * hot path and finding waiters is very rare.  We don't want to walk
 | |
| 	 * the system-wide hashed waitqueue buckets in the fast path only to
 | |
| 	 * almost never find waiters.
 | |
| 	 */
 | |
| 	if (waitqueue_active(&cp->cp_waitq))
 | |
| 		wake_up_all(&cp->cp_waitq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're making the conscious trade-off here to only send one message
 | |
|  * down the connection at a time.
 | |
|  *   Pro:
 | |
|  *      - tx queueing is a simple fifo list
 | |
|  *   	- reassembly is optional and easily done by transports per conn
 | |
|  *      - no per flow rx lookup at all, straight to the socket
 | |
|  *   	- less per-frag memory and wire overhead
 | |
|  *   Con:
 | |
|  *      - queued acks can be delayed behind large messages
 | |
|  *   Depends:
 | |
|  *      - small message latency is higher behind queued large messages
 | |
|  *      - large message latency isn't starved by intervening small sends
 | |
|  */
 | |
| int rds_send_xmit(struct rds_conn_path *cp)
 | |
| {
 | |
| 	struct rds_connection *conn = cp->cp_conn;
 | |
| 	struct rds_message *rm;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int tmp;
 | |
| 	struct scatterlist *sg;
 | |
| 	int ret = 0;
 | |
| 	LIST_HEAD(to_be_dropped);
 | |
| 	int batch_count;
 | |
| 	unsigned long send_gen = 0;
 | |
| 	int same_rm = 0;
 | |
| 
 | |
| restart:
 | |
| 	batch_count = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * sendmsg calls here after having queued its message on the send
 | |
| 	 * queue.  We only have one task feeding the connection at a time.  If
 | |
| 	 * another thread is already feeding the queue then we back off.  This
 | |
| 	 * avoids blocking the caller and trading per-connection data between
 | |
| 	 * caches per message.
 | |
| 	 */
 | |
| 	if (!acquire_in_xmit(cp)) {
 | |
| 		rds_stats_inc(s_send_lock_contention);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (rds_destroy_pending(cp->cp_conn)) {
 | |
| 		release_in_xmit(cp);
 | |
| 		ret = -ENETUNREACH; /* dont requeue send work */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we record the send generation after doing the xmit acquire.
 | |
| 	 * if someone else manages to jump in and do some work, we'll use
 | |
| 	 * this to avoid a goto restart farther down.
 | |
| 	 *
 | |
| 	 * The acquire_in_xmit() check above ensures that only one
 | |
| 	 * caller can increment c_send_gen at any time.
 | |
| 	 */
 | |
| 	send_gen = READ_ONCE(cp->cp_send_gen) + 1;
 | |
| 	WRITE_ONCE(cp->cp_send_gen, send_gen);
 | |
| 
 | |
| 	/*
 | |
| 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
 | |
| 	 * we do the opposite to avoid races.
 | |
| 	 */
 | |
| 	if (!rds_conn_path_up(cp)) {
 | |
| 		release_in_xmit(cp);
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (conn->c_trans->xmit_path_prepare)
 | |
| 		conn->c_trans->xmit_path_prepare(cp);
 | |
| 
 | |
| 	/*
 | |
| 	 * spin trying to push headers and data down the connection until
 | |
| 	 * the connection doesn't make forward progress.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 
 | |
| 		rm = cp->cp_xmit_rm;
 | |
| 
 | |
| 		if (!rm) {
 | |
| 			same_rm = 0;
 | |
| 		} else {
 | |
| 			same_rm++;
 | |
| 			if (same_rm >= 4096) {
 | |
| 				rds_stats_inc(s_send_stuck_rm);
 | |
| 				ret = -EAGAIN;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If between sending messages, we can send a pending congestion
 | |
| 		 * map update.
 | |
| 		 */
 | |
| 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
 | |
| 			rm = rds_cong_update_alloc(conn);
 | |
| 			if (IS_ERR(rm)) {
 | |
| 				ret = PTR_ERR(rm);
 | |
| 				break;
 | |
| 			}
 | |
| 			rm->data.op_active = 1;
 | |
| 			rm->m_inc.i_conn_path = cp;
 | |
| 			rm->m_inc.i_conn = cp->cp_conn;
 | |
| 
 | |
| 			cp->cp_xmit_rm = rm;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If not already working on one, grab the next message.
 | |
| 		 *
 | |
| 		 * cp_xmit_rm holds a ref while we're sending this message down
 | |
| 		 * the connction.  We can use this ref while holding the
 | |
| 		 * send_sem.. rds_send_reset() is serialized with it.
 | |
| 		 */
 | |
| 		if (!rm) {
 | |
| 			unsigned int len;
 | |
| 
 | |
| 			batch_count++;
 | |
| 
 | |
| 			/* we want to process as big a batch as we can, but
 | |
| 			 * we also want to avoid softlockups.  If we've been
 | |
| 			 * through a lot of messages, lets back off and see
 | |
| 			 * if anyone else jumps in
 | |
| 			 */
 | |
| 			if (batch_count >= send_batch_count)
 | |
| 				goto over_batch;
 | |
| 
 | |
| 			spin_lock_irqsave(&cp->cp_lock, flags);
 | |
| 
 | |
| 			if (!list_empty(&cp->cp_send_queue)) {
 | |
| 				rm = list_entry(cp->cp_send_queue.next,
 | |
| 						struct rds_message,
 | |
| 						m_conn_item);
 | |
| 				rds_message_addref(rm);
 | |
| 
 | |
| 				/*
 | |
| 				 * Move the message from the send queue to the retransmit
 | |
| 				 * list right away.
 | |
| 				 */
 | |
| 				list_move_tail(&rm->m_conn_item,
 | |
| 					       &cp->cp_retrans);
 | |
| 			}
 | |
| 
 | |
| 			spin_unlock_irqrestore(&cp->cp_lock, flags);
 | |
| 
 | |
| 			if (!rm)
 | |
| 				break;
 | |
| 
 | |
| 			/* Unfortunately, the way Infiniband deals with
 | |
| 			 * RDMA to a bad MR key is by moving the entire
 | |
| 			 * queue pair to error state. We could possibly
 | |
| 			 * recover from that, but right now we drop the
 | |
| 			 * connection.
 | |
| 			 * Therefore, we never retransmit messages with RDMA ops.
 | |
| 			 */
 | |
| 			if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
 | |
| 			    (rm->rdma.op_active &&
 | |
| 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
 | |
| 				spin_lock_irqsave(&cp->cp_lock, flags);
 | |
| 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
 | |
| 					list_move(&rm->m_conn_item, &to_be_dropped);
 | |
| 				spin_unlock_irqrestore(&cp->cp_lock, flags);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* Require an ACK every once in a while */
 | |
| 			len = ntohl(rm->m_inc.i_hdr.h_len);
 | |
| 			if (cp->cp_unacked_packets == 0 ||
 | |
| 			    cp->cp_unacked_bytes < len) {
 | |
| 				set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 | |
| 
 | |
| 				cp->cp_unacked_packets =
 | |
| 					rds_sysctl_max_unacked_packets;
 | |
| 				cp->cp_unacked_bytes =
 | |
| 					rds_sysctl_max_unacked_bytes;
 | |
| 				rds_stats_inc(s_send_ack_required);
 | |
| 			} else {
 | |
| 				cp->cp_unacked_bytes -= len;
 | |
| 				cp->cp_unacked_packets--;
 | |
| 			}
 | |
| 
 | |
| 			cp->cp_xmit_rm = rm;
 | |
| 		}
 | |
| 
 | |
| 		/* The transport either sends the whole rdma or none of it */
 | |
| 		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
 | |
| 			rm->m_final_op = &rm->rdma;
 | |
| 			/* The transport owns the mapped memory for now.
 | |
| 			 * You can't unmap it while it's on the send queue
 | |
| 			 */
 | |
| 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
 | |
| 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
 | |
| 			if (ret) {
 | |
| 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
 | |
| 				wake_up_interruptible(&rm->m_flush_wait);
 | |
| 				break;
 | |
| 			}
 | |
| 			cp->cp_xmit_rdma_sent = 1;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
 | |
| 			rm->m_final_op = &rm->atomic;
 | |
| 			/* The transport owns the mapped memory for now.
 | |
| 			 * You can't unmap it while it's on the send queue
 | |
| 			 */
 | |
| 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
 | |
| 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
 | |
| 			if (ret) {
 | |
| 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
 | |
| 				wake_up_interruptible(&rm->m_flush_wait);
 | |
| 				break;
 | |
| 			}
 | |
| 			cp->cp_xmit_atomic_sent = 1;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * A number of cases require an RDS header to be sent
 | |
| 		 * even if there is no data.
 | |
| 		 * We permit 0-byte sends; rds-ping depends on this.
 | |
| 		 * However, if there are exclusively attached silent ops,
 | |
| 		 * we skip the hdr/data send, to enable silent operation.
 | |
| 		 */
 | |
| 		if (rm->data.op_nents == 0) {
 | |
| 			int ops_present;
 | |
| 			int all_ops_are_silent = 1;
 | |
| 
 | |
| 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
 | |
| 			if (rm->atomic.op_active && !rm->atomic.op_silent)
 | |
| 				all_ops_are_silent = 0;
 | |
| 			if (rm->rdma.op_active && !rm->rdma.op_silent)
 | |
| 				all_ops_are_silent = 0;
 | |
| 
 | |
| 			if (ops_present && all_ops_are_silent
 | |
| 			    && !rm->m_rdma_cookie)
 | |
| 				rm->data.op_active = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
 | |
| 			rm->m_final_op = &rm->data;
 | |
| 
 | |
| 			ret = conn->c_trans->xmit(conn, rm,
 | |
| 						  cp->cp_xmit_hdr_off,
 | |
| 						  cp->cp_xmit_sg,
 | |
| 						  cp->cp_xmit_data_off);
 | |
| 			if (ret <= 0)
 | |
| 				break;
 | |
| 
 | |
| 			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
 | |
| 				tmp = min_t(int, ret,
 | |
| 					    sizeof(struct rds_header) -
 | |
| 					    cp->cp_xmit_hdr_off);
 | |
| 				cp->cp_xmit_hdr_off += tmp;
 | |
| 				ret -= tmp;
 | |
| 			}
 | |
| 
 | |
| 			sg = &rm->data.op_sg[cp->cp_xmit_sg];
 | |
| 			while (ret) {
 | |
| 				tmp = min_t(int, ret, sg->length -
 | |
| 						      cp->cp_xmit_data_off);
 | |
| 				cp->cp_xmit_data_off += tmp;
 | |
| 				ret -= tmp;
 | |
| 				if (cp->cp_xmit_data_off == sg->length) {
 | |
| 					cp->cp_xmit_data_off = 0;
 | |
| 					sg++;
 | |
| 					cp->cp_xmit_sg++;
 | |
| 					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
 | |
| 					       rm->data.op_nents);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
 | |
| 			    (cp->cp_xmit_sg == rm->data.op_nents))
 | |
| 				cp->cp_xmit_data_sent = 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * A rm will only take multiple times through this loop
 | |
| 		 * if there is a data op. Thus, if the data is sent (or there was
 | |
| 		 * none), then we're done with the rm.
 | |
| 		 */
 | |
| 		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
 | |
| 			cp->cp_xmit_rm = NULL;
 | |
| 			cp->cp_xmit_sg = 0;
 | |
| 			cp->cp_xmit_hdr_off = 0;
 | |
| 			cp->cp_xmit_data_off = 0;
 | |
| 			cp->cp_xmit_rdma_sent = 0;
 | |
| 			cp->cp_xmit_atomic_sent = 0;
 | |
| 			cp->cp_xmit_data_sent = 0;
 | |
| 
 | |
| 			rds_message_put(rm);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| over_batch:
 | |
| 	if (conn->c_trans->xmit_path_complete)
 | |
| 		conn->c_trans->xmit_path_complete(cp);
 | |
| 	release_in_xmit(cp);
 | |
| 
 | |
| 	/* Nuke any messages we decided not to retransmit. */
 | |
| 	if (!list_empty(&to_be_dropped)) {
 | |
| 		/* irqs on here, so we can put(), unlike above */
 | |
| 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
 | |
| 			rds_message_put(rm);
 | |
| 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Other senders can queue a message after we last test the send queue
 | |
| 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
 | |
| 	 * not try and send their newly queued message.  We need to check the
 | |
| 	 * send queue after having cleared RDS_IN_XMIT so that their message
 | |
| 	 * doesn't get stuck on the send queue.
 | |
| 	 *
 | |
| 	 * If the transport cannot continue (i.e ret != 0), then it must
 | |
| 	 * call us when more room is available, such as from the tx
 | |
| 	 * completion handler.
 | |
| 	 *
 | |
| 	 * We have an extra generation check here so that if someone manages
 | |
| 	 * to jump in after our release_in_xmit, we'll see that they have done
 | |
| 	 * some work and we will skip our goto
 | |
| 	 */
 | |
| 	if (ret == 0) {
 | |
| 		bool raced;
 | |
| 
 | |
| 		smp_mb();
 | |
| 		raced = send_gen != READ_ONCE(cp->cp_send_gen);
 | |
| 
 | |
| 		if ((test_bit(0, &conn->c_map_queued) ||
 | |
| 		    !list_empty(&cp->cp_send_queue)) && !raced) {
 | |
| 			if (batch_count < send_batch_count)
 | |
| 				goto restart;
 | |
| 			rcu_read_lock();
 | |
| 			if (rds_destroy_pending(cp->cp_conn))
 | |
| 				ret = -ENETUNREACH;
 | |
| 			else
 | |
| 				queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
 | |
| 			rcu_read_unlock();
 | |
| 		} else if (raced) {
 | |
| 			rds_stats_inc(s_send_lock_queue_raced);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_send_xmit);
 | |
| 
 | |
| static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
 | |
| {
 | |
| 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
 | |
| 
 | |
| 	assert_spin_locked(&rs->rs_lock);
 | |
| 
 | |
| 	BUG_ON(rs->rs_snd_bytes < len);
 | |
| 	rs->rs_snd_bytes -= len;
 | |
| 
 | |
| 	if (rs->rs_snd_bytes == 0)
 | |
| 		rds_stats_inc(s_send_queue_empty);
 | |
| }
 | |
| 
 | |
| static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
 | |
| 				    is_acked_func is_acked)
 | |
| {
 | |
| 	if (is_acked)
 | |
| 		return is_acked(rm, ack);
 | |
| 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is pretty similar to what happens below in the ACK
 | |
|  * handling code - except that we call here as soon as we get
 | |
|  * the IB send completion on the RDMA op and the accompanying
 | |
|  * message.
 | |
|  */
 | |
| void rds_rdma_send_complete(struct rds_message *rm, int status)
 | |
| {
 | |
| 	struct rds_sock *rs = NULL;
 | |
| 	struct rm_rdma_op *ro;
 | |
| 	struct rds_notifier *notifier;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 	ro = &rm->rdma;
 | |
| 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
 | |
| 	    ro->op_active && ro->op_notify && ro->op_notifier) {
 | |
| 		notifier = ro->op_notifier;
 | |
| 		rs = rm->m_rs;
 | |
| 		sock_hold(rds_rs_to_sk(rs));
 | |
| 
 | |
| 		notifier->n_status = status;
 | |
| 		spin_lock(&rs->rs_lock);
 | |
| 		list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
 | |
| 		spin_unlock(&rs->rs_lock);
 | |
| 
 | |
| 		ro->op_notifier = NULL;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 	if (rs) {
 | |
| 		rds_wake_sk_sleep(rs);
 | |
| 		sock_put(rds_rs_to_sk(rs));
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
 | |
| 
 | |
| /*
 | |
|  * Just like above, except looks at atomic op
 | |
|  */
 | |
| void rds_atomic_send_complete(struct rds_message *rm, int status)
 | |
| {
 | |
| 	struct rds_sock *rs = NULL;
 | |
| 	struct rm_atomic_op *ao;
 | |
| 	struct rds_notifier *notifier;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 	ao = &rm->atomic;
 | |
| 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
 | |
| 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
 | |
| 		notifier = ao->op_notifier;
 | |
| 		rs = rm->m_rs;
 | |
| 		sock_hold(rds_rs_to_sk(rs));
 | |
| 
 | |
| 		notifier->n_status = status;
 | |
| 		spin_lock(&rs->rs_lock);
 | |
| 		list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
 | |
| 		spin_unlock(&rs->rs_lock);
 | |
| 
 | |
| 		ao->op_notifier = NULL;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 	if (rs) {
 | |
| 		rds_wake_sk_sleep(rs);
 | |
| 		sock_put(rds_rs_to_sk(rs));
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
 | |
| 
 | |
| /*
 | |
|  * This is the same as rds_rdma_send_complete except we
 | |
|  * don't do any locking - we have all the ingredients (message,
 | |
|  * socket, socket lock) and can just move the notifier.
 | |
|  */
 | |
| static inline void
 | |
| __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
 | |
| {
 | |
| 	struct rm_rdma_op *ro;
 | |
| 	struct rm_atomic_op *ao;
 | |
| 
 | |
| 	ro = &rm->rdma;
 | |
| 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
 | |
| 		ro->op_notifier->n_status = status;
 | |
| 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
 | |
| 		ro->op_notifier = NULL;
 | |
| 	}
 | |
| 
 | |
| 	ao = &rm->atomic;
 | |
| 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
 | |
| 		ao->op_notifier->n_status = status;
 | |
| 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
 | |
| 		ao->op_notifier = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* No need to wake the app - caller does this */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This removes messages from the socket's list if they're on it.  The list
 | |
|  * argument must be private to the caller, we must be able to modify it
 | |
|  * without locks.  The messages must have a reference held for their
 | |
|  * position on the list.  This function will drop that reference after
 | |
|  * removing the messages from the 'messages' list regardless of if it found
 | |
|  * the messages on the socket list or not.
 | |
|  */
 | |
| static void rds_send_remove_from_sock(struct list_head *messages, int status)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rds_sock *rs = NULL;
 | |
| 	struct rds_message *rm;
 | |
| 
 | |
| 	while (!list_empty(messages)) {
 | |
| 		int was_on_sock = 0;
 | |
| 
 | |
| 		rm = list_entry(messages->next, struct rds_message,
 | |
| 				m_conn_item);
 | |
| 		list_del_init(&rm->m_conn_item);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we see this flag cleared then we're *sure* that someone
 | |
| 		 * else beat us to removing it from the sock.  If we race
 | |
| 		 * with their flag update we'll get the lock and then really
 | |
| 		 * see that the flag has been cleared.
 | |
| 		 *
 | |
| 		 * The message spinlock makes sure nobody clears rm->m_rs
 | |
| 		 * while we're messing with it. It does not prevent the
 | |
| 		 * message from being removed from the socket, though.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
 | |
| 			goto unlock_and_drop;
 | |
| 
 | |
| 		if (rs != rm->m_rs) {
 | |
| 			if (rs) {
 | |
| 				rds_wake_sk_sleep(rs);
 | |
| 				sock_put(rds_rs_to_sk(rs));
 | |
| 			}
 | |
| 			rs = rm->m_rs;
 | |
| 			if (rs)
 | |
| 				sock_hold(rds_rs_to_sk(rs));
 | |
| 		}
 | |
| 		if (!rs)
 | |
| 			goto unlock_and_drop;
 | |
| 		spin_lock(&rs->rs_lock);
 | |
| 
 | |
| 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
 | |
| 			struct rm_rdma_op *ro = &rm->rdma;
 | |
| 			struct rds_notifier *notifier;
 | |
| 
 | |
| 			list_del_init(&rm->m_sock_item);
 | |
| 			rds_send_sndbuf_remove(rs, rm);
 | |
| 
 | |
| 			if (ro->op_active && ro->op_notifier &&
 | |
| 			       (ro->op_notify || (ro->op_recverr && status))) {
 | |
| 				notifier = ro->op_notifier;
 | |
| 				list_add_tail(¬ifier->n_list,
 | |
| 						&rs->rs_notify_queue);
 | |
| 				if (!notifier->n_status)
 | |
| 					notifier->n_status = status;
 | |
| 				rm->rdma.op_notifier = NULL;
 | |
| 			}
 | |
| 			was_on_sock = 1;
 | |
| 		}
 | |
| 		spin_unlock(&rs->rs_lock);
 | |
| 
 | |
| unlock_and_drop:
 | |
| 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 		rds_message_put(rm);
 | |
| 		if (was_on_sock)
 | |
| 			rds_message_put(rm);
 | |
| 	}
 | |
| 
 | |
| 	if (rs) {
 | |
| 		rds_wake_sk_sleep(rs);
 | |
| 		sock_put(rds_rs_to_sk(rs));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transports call here when they've determined that the receiver queued
 | |
|  * messages up to, and including, the given sequence number.  Messages are
 | |
|  * moved to the retrans queue when rds_send_xmit picks them off the send
 | |
|  * queue. This means that in the TCP case, the message may not have been
 | |
|  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
 | |
|  * checks the RDS_MSG_HAS_ACK_SEQ bit.
 | |
|  */
 | |
| void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
 | |
| 			      is_acked_func is_acked)
 | |
| {
 | |
| 	struct rds_message *rm, *tmp;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->cp_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
 | |
| 		if (!rds_send_is_acked(rm, ack, is_acked))
 | |
| 			break;
 | |
| 
 | |
| 		list_move(&rm->m_conn_item, &list);
 | |
| 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 | |
| 	}
 | |
| 
 | |
| 	/* order flag updates with spin locks */
 | |
| 	if (!list_empty(&list))
 | |
| 		smp_mb__after_atomic();
 | |
| 
 | |
| 	spin_unlock_irqrestore(&cp->cp_lock, flags);
 | |
| 
 | |
| 	/* now remove the messages from the sock list as needed */
 | |
| 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
 | |
| 
 | |
| void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
 | |
| 			 is_acked_func is_acked)
 | |
| {
 | |
| 	WARN_ON(conn->c_trans->t_mp_capable);
 | |
| 	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_send_drop_acked);
 | |
| 
 | |
| void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
 | |
| {
 | |
| 	struct rds_message *rm, *tmp;
 | |
| 	struct rds_connection *conn;
 | |
| 	struct rds_conn_path *cp;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	/* get all the messages we're dropping under the rs lock */
 | |
| 	spin_lock_irqsave(&rs->rs_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
 | |
| 		if (dest &&
 | |
| 		    (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
 | |
| 		     dest->sin6_port != rm->m_inc.i_hdr.h_dport))
 | |
| 			continue;
 | |
| 
 | |
| 		list_move(&rm->m_sock_item, &list);
 | |
| 		rds_send_sndbuf_remove(rs, rm);
 | |
| 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
 | |
| 	}
 | |
| 
 | |
| 	/* order flag updates with the rs lock */
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rs->rs_lock, flags);
 | |
| 
 | |
| 	if (list_empty(&list))
 | |
| 		return;
 | |
| 
 | |
| 	/* Remove the messages from the conn */
 | |
| 	list_for_each_entry(rm, &list, m_sock_item) {
 | |
| 
 | |
| 		conn = rm->m_inc.i_conn;
 | |
| 		if (conn->c_trans->t_mp_capable)
 | |
| 			cp = rm->m_inc.i_conn_path;
 | |
| 		else
 | |
| 			cp = &conn->c_path[0];
 | |
| 
 | |
| 		spin_lock_irqsave(&cp->cp_lock, flags);
 | |
| 		/*
 | |
| 		 * Maybe someone else beat us to removing rm from the conn.
 | |
| 		 * If we race with their flag update we'll get the lock and
 | |
| 		 * then really see that the flag has been cleared.
 | |
| 		 */
 | |
| 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
 | |
| 			spin_unlock_irqrestore(&cp->cp_lock, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		list_del_init(&rm->m_conn_item);
 | |
| 		spin_unlock_irqrestore(&cp->cp_lock, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
 | |
| 		 * but we can now.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 		spin_lock(&rs->rs_lock);
 | |
| 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
 | |
| 		spin_unlock(&rs->rs_lock);
 | |
| 
 | |
| 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 		rds_message_put(rm);
 | |
| 	}
 | |
| 
 | |
| 	rds_wake_sk_sleep(rs);
 | |
| 
 | |
| 	while (!list_empty(&list)) {
 | |
| 		rm = list_entry(list.next, struct rds_message, m_sock_item);
 | |
| 		list_del_init(&rm->m_sock_item);
 | |
| 		rds_message_wait(rm);
 | |
| 
 | |
| 		/* just in case the code above skipped this message
 | |
| 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
 | |
| 		 * taking m_rs_lock is the only thing that keeps us
 | |
| 		 * from racing with ack processing.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 		spin_lock(&rs->rs_lock);
 | |
| 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
 | |
| 		spin_unlock(&rs->rs_lock);
 | |
| 
 | |
| 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 | |
| 
 | |
| 		rds_message_put(rm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we only want this to fire once so we use the callers 'queued'.  It's
 | |
|  * possible that another thread can race with us and remove the
 | |
|  * message from the flow with RDS_CANCEL_SENT_TO.
 | |
|  */
 | |
| static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
 | |
| 			     struct rds_conn_path *cp,
 | |
| 			     struct rds_message *rm, __be16 sport,
 | |
| 			     __be16 dport, int *queued)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 len;
 | |
| 
 | |
| 	if (*queued)
 | |
| 		goto out;
 | |
| 
 | |
| 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
 | |
| 
 | |
| 	/* this is the only place which holds both the socket's rs_lock
 | |
| 	 * and the connection's c_lock */
 | |
| 	spin_lock_irqsave(&rs->rs_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a little space in sndbuf, we don't queue anything,
 | |
| 	 * and userspace gets -EAGAIN. But poll() indicates there's send
 | |
| 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
 | |
| 	 * freed up by incoming acks. So we check the *old* value of
 | |
| 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
 | |
| 	 * and poll() now knows no more data can be sent.
 | |
| 	 */
 | |
| 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
 | |
| 		rs->rs_snd_bytes += len;
 | |
| 
 | |
| 		/* let recv side know we are close to send space exhaustion.
 | |
| 		 * This is probably not the optimal way to do it, as this
 | |
| 		 * means we set the flag on *all* messages as soon as our
 | |
| 		 * throughput hits a certain threshold.
 | |
| 		 */
 | |
| 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
 | |
| 			set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 | |
| 
 | |
| 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
 | |
| 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
 | |
| 		rds_message_addref(rm);
 | |
| 		sock_hold(rds_rs_to_sk(rs));
 | |
| 		rm->m_rs = rs;
 | |
| 
 | |
| 		/* The code ordering is a little weird, but we're
 | |
| 		   trying to minimize the time we hold c_lock */
 | |
| 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
 | |
| 		rm->m_inc.i_conn = conn;
 | |
| 		rm->m_inc.i_conn_path = cp;
 | |
| 		rds_message_addref(rm);
 | |
| 
 | |
| 		spin_lock(&cp->cp_lock);
 | |
| 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
 | |
| 		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
 | |
| 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 | |
| 		spin_unlock(&cp->cp_lock);
 | |
| 
 | |
| 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
 | |
| 			 rm, len, rs, rs->rs_snd_bytes,
 | |
| 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
 | |
| 
 | |
| 		*queued = 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rs->rs_lock, flags);
 | |
| out:
 | |
| 	return *queued;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rds_message is getting to be quite complicated, and we'd like to allocate
 | |
|  * it all in one go. This figures out how big it needs to be up front.
 | |
|  */
 | |
| static int rds_rm_size(struct msghdr *msg, int num_sgs,
 | |
| 		       struct rds_iov_vector_arr *vct)
 | |
| {
 | |
| 	struct cmsghdr *cmsg;
 | |
| 	int size = 0;
 | |
| 	int cmsg_groups = 0;
 | |
| 	int retval;
 | |
| 	bool zcopy_cookie = false;
 | |
| 	struct rds_iov_vector *iov, *tmp_iov;
 | |
| 
 | |
| 	if (num_sgs < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for_each_cmsghdr(cmsg, msg) {
 | |
| 		if (!CMSG_OK(msg, cmsg))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (cmsg->cmsg_level != SOL_RDS)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (cmsg->cmsg_type) {
 | |
| 		case RDS_CMSG_RDMA_ARGS:
 | |
| 			if (vct->indx >= vct->len) {
 | |
| 				vct->len += vct->incr;
 | |
| 				tmp_iov =
 | |
| 					krealloc(vct->vec,
 | |
| 						 vct->len *
 | |
| 						 sizeof(struct rds_iov_vector),
 | |
| 						 GFP_KERNEL);
 | |
| 				if (!tmp_iov) {
 | |
| 					vct->len -= vct->incr;
 | |
| 					return -ENOMEM;
 | |
| 				}
 | |
| 				vct->vec = tmp_iov;
 | |
| 			}
 | |
| 			iov = &vct->vec[vct->indx];
 | |
| 			memset(iov, 0, sizeof(struct rds_iov_vector));
 | |
| 			vct->indx++;
 | |
| 			cmsg_groups |= 1;
 | |
| 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
 | |
| 			if (retval < 0)
 | |
| 				return retval;
 | |
| 			size += retval;
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		case RDS_CMSG_ZCOPY_COOKIE:
 | |
| 			zcopy_cookie = true;
 | |
| 			fallthrough;
 | |
| 
 | |
| 		case RDS_CMSG_RDMA_DEST:
 | |
| 		case RDS_CMSG_RDMA_MAP:
 | |
| 			cmsg_groups |= 2;
 | |
| 			/* these are valid but do no add any size */
 | |
| 			break;
 | |
| 
 | |
| 		case RDS_CMSG_ATOMIC_CSWP:
 | |
| 		case RDS_CMSG_ATOMIC_FADD:
 | |
| 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
 | |
| 		case RDS_CMSG_MASKED_ATOMIC_FADD:
 | |
| 			cmsg_groups |= 1;
 | |
| 			size += sizeof(struct scatterlist);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	size += num_sgs * sizeof(struct scatterlist);
 | |
| 
 | |
| 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
 | |
| 	if (cmsg_groups == 3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
 | |
| 			  struct cmsghdr *cmsg)
 | |
| {
 | |
| 	u32 *cookie;
 | |
| 
 | |
| 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
 | |
| 	    !rm->data.op_mmp_znotifier)
 | |
| 		return -EINVAL;
 | |
| 	cookie = CMSG_DATA(cmsg);
 | |
| 	rm->data.op_mmp_znotifier->z_cookie = *cookie;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
 | |
| 			 struct msghdr *msg, int *allocated_mr,
 | |
| 			 struct rds_iov_vector_arr *vct)
 | |
| {
 | |
| 	struct cmsghdr *cmsg;
 | |
| 	int ret = 0, ind = 0;
 | |
| 
 | |
| 	for_each_cmsghdr(cmsg, msg) {
 | |
| 		if (!CMSG_OK(msg, cmsg))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (cmsg->cmsg_level != SOL_RDS)
 | |
| 			continue;
 | |
| 
 | |
| 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
 | |
| 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
 | |
| 		 */
 | |
| 		switch (cmsg->cmsg_type) {
 | |
| 		case RDS_CMSG_RDMA_ARGS:
 | |
| 			if (ind >= vct->indx)
 | |
| 				return -ENOMEM;
 | |
| 			ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
 | |
| 			ind++;
 | |
| 			break;
 | |
| 
 | |
| 		case RDS_CMSG_RDMA_DEST:
 | |
| 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
 | |
| 			break;
 | |
| 
 | |
| 		case RDS_CMSG_RDMA_MAP:
 | |
| 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
 | |
| 			if (!ret)
 | |
| 				*allocated_mr = 1;
 | |
| 			else if (ret == -ENODEV)
 | |
| 				/* Accommodate the get_mr() case which can fail
 | |
| 				 * if connection isn't established yet.
 | |
| 				 */
 | |
| 				ret = -EAGAIN;
 | |
| 			break;
 | |
| 		case RDS_CMSG_ATOMIC_CSWP:
 | |
| 		case RDS_CMSG_ATOMIC_FADD:
 | |
| 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
 | |
| 		case RDS_CMSG_MASKED_ATOMIC_FADD:
 | |
| 			ret = rds_cmsg_atomic(rs, rm, cmsg);
 | |
| 			break;
 | |
| 
 | |
| 		case RDS_CMSG_ZCOPY_COOKIE:
 | |
| 			ret = rds_cmsg_zcopy(rs, rm, cmsg);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rds_send_mprds_hash(struct rds_sock *rs,
 | |
| 			       struct rds_connection *conn, int nonblock)
 | |
| {
 | |
| 	int hash;
 | |
| 
 | |
| 	if (conn->c_npaths == 0)
 | |
| 		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
 | |
| 	else
 | |
| 		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
 | |
| 	if (conn->c_npaths == 0 && hash != 0) {
 | |
| 		rds_send_ping(conn, 0);
 | |
| 
 | |
| 		/* The underlying connection is not up yet.  Need to wait
 | |
| 		 * until it is up to be sure that the non-zero c_path can be
 | |
| 		 * used.  But if we are interrupted, we have to use the zero
 | |
| 		 * c_path in case the connection ends up being non-MP capable.
 | |
| 		 */
 | |
| 		if (conn->c_npaths == 0) {
 | |
| 			/* Cannot wait for the connection be made, so just use
 | |
| 			 * the base c_path.
 | |
| 			 */
 | |
| 			if (nonblock)
 | |
| 				return 0;
 | |
| 			if (wait_event_interruptible(conn->c_hs_waitq,
 | |
| 						     conn->c_npaths != 0))
 | |
| 				hash = 0;
 | |
| 		}
 | |
| 		if (conn->c_npaths == 1)
 | |
| 			hash = 0;
 | |
| 	}
 | |
| 	return hash;
 | |
| }
 | |
| 
 | |
| static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
 | |
| {
 | |
| 	struct rds_rdma_args *args;
 | |
| 	struct cmsghdr *cmsg;
 | |
| 
 | |
| 	for_each_cmsghdr(cmsg, msg) {
 | |
| 		if (!CMSG_OK(msg, cmsg))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (cmsg->cmsg_level != SOL_RDS)
 | |
| 			continue;
 | |
| 
 | |
| 		if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
 | |
| 			if (cmsg->cmsg_len <
 | |
| 			    CMSG_LEN(sizeof(struct rds_rdma_args)))
 | |
| 				return -EINVAL;
 | |
| 			args = CMSG_DATA(cmsg);
 | |
| 			*rdma_bytes += args->remote_vec.bytes;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
 | |
| {
 | |
| 	struct sock *sk = sock->sk;
 | |
| 	struct rds_sock *rs = rds_sk_to_rs(sk);
 | |
| 	DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
 | |
| 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
 | |
| 	__be16 dport;
 | |
| 	struct rds_message *rm = NULL;
 | |
| 	struct rds_connection *conn;
 | |
| 	int ret = 0;
 | |
| 	int queued = 0, allocated_mr = 0;
 | |
| 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
 | |
| 	long timeo = sock_sndtimeo(sk, nonblock);
 | |
| 	struct rds_conn_path *cpath;
 | |
| 	struct in6_addr daddr;
 | |
| 	__u32 scope_id = 0;
 | |
| 	size_t rdma_payload_len = 0;
 | |
| 	bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
 | |
| 		      sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
 | |
| 	int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE);
 | |
| 	int namelen;
 | |
| 	struct rds_iov_vector_arr vct;
 | |
| 	int ind;
 | |
| 
 | |
| 	memset(&vct, 0, sizeof(vct));
 | |
| 
 | |
| 	/* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
 | |
| 	vct.incr = 1;
 | |
| 
 | |
| 	/* Mirror Linux UDP mirror of BSD error message compatibility */
 | |
| 	/* XXX: Perhaps MSG_MORE someday */
 | |
| 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	namelen = msg->msg_namelen;
 | |
| 	if (namelen != 0) {
 | |
| 		if (namelen < sizeof(*usin)) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		switch (usin->sin_family) {
 | |
| 		case AF_INET:
 | |
| 			if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
 | |
| 			    usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
 | |
| 			    ipv4_is_multicast(usin->sin_addr.s_addr)) {
 | |
| 				ret = -EINVAL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
 | |
| 			dport = usin->sin_port;
 | |
| 			break;
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_IPV6)
 | |
| 		case AF_INET6: {
 | |
| 			int addr_type;
 | |
| 
 | |
| 			if (namelen < sizeof(*sin6)) {
 | |
| 				ret = -EINVAL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			addr_type = ipv6_addr_type(&sin6->sin6_addr);
 | |
| 			if (!(addr_type & IPV6_ADDR_UNICAST)) {
 | |
| 				__be32 addr4;
 | |
| 
 | |
| 				if (!(addr_type & IPV6_ADDR_MAPPED)) {
 | |
| 					ret = -EINVAL;
 | |
| 					goto out;
 | |
| 				}
 | |
| 
 | |
| 				/* It is a mapped address.  Need to do some
 | |
| 				 * sanity checks.
 | |
| 				 */
 | |
| 				addr4 = sin6->sin6_addr.s6_addr32[3];
 | |
| 				if (addr4 == htonl(INADDR_ANY) ||
 | |
| 				    addr4 == htonl(INADDR_BROADCAST) ||
 | |
| 				    ipv4_is_multicast(addr4)) {
 | |
| 					ret = -EINVAL;
 | |
| 					goto out;
 | |
| 				}
 | |
| 			}
 | |
| 			if (addr_type & IPV6_ADDR_LINKLOCAL) {
 | |
| 				if (sin6->sin6_scope_id == 0) {
 | |
| 					ret = -EINVAL;
 | |
| 					goto out;
 | |
| 				}
 | |
| 				scope_id = sin6->sin6_scope_id;
 | |
| 			}
 | |
| 
 | |
| 			daddr = sin6->sin6_addr;
 | |
| 			dport = sin6->sin6_port;
 | |
| 			break;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		default:
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* We only care about consistency with ->connect() */
 | |
| 		lock_sock(sk);
 | |
| 		daddr = rs->rs_conn_addr;
 | |
| 		dport = rs->rs_conn_port;
 | |
| 		scope_id = rs->rs_bound_scope_id;
 | |
| 		release_sock(sk);
 | |
| 	}
 | |
| 
 | |
| 	lock_sock(sk);
 | |
| 	if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
 | |
| 		release_sock(sk);
 | |
| 		ret = -ENOTCONN;
 | |
| 		goto out;
 | |
| 	} else if (namelen != 0) {
 | |
| 		/* Cannot send to an IPv4 address using an IPv6 source
 | |
| 		 * address and cannot send to an IPv6 address using an
 | |
| 		 * IPv4 source address.
 | |
| 		 */
 | |
| 		if (ipv6_addr_v4mapped(&daddr) ^
 | |
| 		    ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
 | |
| 			release_sock(sk);
 | |
| 			ret = -EOPNOTSUPP;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/* If the socket is already bound to a link local address,
 | |
| 		 * it can only send to peers on the same link.  But allow
 | |
| 		 * communicating between link local and non-link local address.
 | |
| 		 */
 | |
| 		if (scope_id != rs->rs_bound_scope_id) {
 | |
| 			if (!scope_id) {
 | |
| 				scope_id = rs->rs_bound_scope_id;
 | |
| 			} else if (rs->rs_bound_scope_id) {
 | |
| 				release_sock(sk);
 | |
| 				ret = -EINVAL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	release_sock(sk);
 | |
| 
 | |
| 	ret = rds_rdma_bytes(msg, &rdma_payload_len);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
 | |
| 		ret = -EMSGSIZE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (payload_len > rds_sk_sndbuf(rs)) {
 | |
| 		ret = -EMSGSIZE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (zcopy) {
 | |
| 		if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
 | |
| 			ret = -EOPNOTSUPP;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
 | |
| 	}
 | |
| 	/* size of rm including all sgs */
 | |
| 	ret = rds_rm_size(msg, num_sgs, &vct);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rm = rds_message_alloc(ret, GFP_KERNEL);
 | |
| 	if (!rm) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Attach data to the rm */
 | |
| 	if (payload_len) {
 | |
| 		rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
 | |
| 		if (IS_ERR(rm->data.op_sg)) {
 | |
| 			ret = PTR_ERR(rm->data.op_sg);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	rm->data.op_active = 1;
 | |
| 
 | |
| 	rm->m_daddr = daddr;
 | |
| 
 | |
| 	/* rds_conn_create has a spinlock that runs with IRQ off.
 | |
| 	 * Caching the conn in the socket helps a lot. */
 | |
| 	if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) &&
 | |
| 	    rs->rs_tos == rs->rs_conn->c_tos) {
 | |
| 		conn = rs->rs_conn;
 | |
| 	} else {
 | |
| 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
 | |
| 						&rs->rs_bound_addr, &daddr,
 | |
| 						rs->rs_transport, rs->rs_tos,
 | |
| 						sock->sk->sk_allocation,
 | |
| 						scope_id);
 | |
| 		if (IS_ERR(conn)) {
 | |
| 			ret = PTR_ERR(conn);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		rs->rs_conn = conn;
 | |
| 	}
 | |
| 
 | |
| 	if (conn->c_trans->t_mp_capable)
 | |
| 		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
 | |
| 	else
 | |
| 		cpath = &conn->c_path[0];
 | |
| 
 | |
| 	rm->m_conn_path = cpath;
 | |
| 
 | |
| 	/* Parse any control messages the user may have included. */
 | |
| 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
 | |
| 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
 | |
| 			       &rm->rdma, conn->c_trans->xmit_rdma);
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
 | |
| 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
 | |
| 			       &rm->atomic, conn->c_trans->xmit_atomic);
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (rds_destroy_pending(conn)) {
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (rds_conn_path_down(cpath))
 | |
| 		rds_check_all_paths(conn);
 | |
| 
 | |
| 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
 | |
| 	if (ret) {
 | |
| 		rs->rs_seen_congestion = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
 | |
| 				  dport, &queued)) {
 | |
| 		rds_stats_inc(s_send_queue_full);
 | |
| 
 | |
| 		if (nonblock) {
 | |
| 			ret = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
 | |
| 					rds_send_queue_rm(rs, conn, cpath, rm,
 | |
| 							  rs->rs_bound_port,
 | |
| 							  dport,
 | |
| 							  &queued),
 | |
| 					timeo);
 | |
| 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
 | |
| 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = timeo;
 | |
| 		if (ret == 0)
 | |
| 			ret = -ETIMEDOUT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By now we've committed to the send.  We reuse rds_send_worker()
 | |
| 	 * to retry sends in the rds thread if the transport asks us to.
 | |
| 	 */
 | |
| 	rds_stats_inc(s_send_queued);
 | |
| 
 | |
| 	ret = rds_send_xmit(cpath);
 | |
| 	if (ret == -ENOMEM || ret == -EAGAIN) {
 | |
| 		ret = 0;
 | |
| 		rcu_read_lock();
 | |
| 		if (rds_destroy_pending(cpath->cp_conn))
 | |
| 			ret = -ENETUNREACH;
 | |
| 		else
 | |
| 			queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	rds_message_put(rm);
 | |
| 
 | |
| 	for (ind = 0; ind < vct.indx; ind++)
 | |
| 		kfree(vct.vec[ind].iov);
 | |
| 	kfree(vct.vec);
 | |
| 
 | |
| 	return payload_len;
 | |
| 
 | |
| out:
 | |
| 	for (ind = 0; ind < vct.indx; ind++)
 | |
| 		kfree(vct.vec[ind].iov);
 | |
| 	kfree(vct.vec);
 | |
| 
 | |
| 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
 | |
| 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
 | |
| 	 * or in any other way, we need to destroy the MR again */
 | |
| 	if (allocated_mr)
 | |
| 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
 | |
| 
 | |
| 	if (rm)
 | |
| 		rds_message_put(rm);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * send out a probe. Can be shared by rds_send_ping,
 | |
|  * rds_send_pong, rds_send_hb.
 | |
|  * rds_send_hb should use h_flags
 | |
|  *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
 | |
|  * or
 | |
|  *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
 | |
|  */
 | |
| static int
 | |
| rds_send_probe(struct rds_conn_path *cp, __be16 sport,
 | |
| 	       __be16 dport, u8 h_flags)
 | |
| {
 | |
| 	struct rds_message *rm;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rm = rds_message_alloc(0, GFP_ATOMIC);
 | |
| 	if (!rm) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rm->m_daddr = cp->cp_conn->c_faddr;
 | |
| 	rm->data.op_active = 1;
 | |
| 
 | |
| 	rds_conn_path_connect_if_down(cp);
 | |
| 
 | |
| 	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->cp_lock, flags);
 | |
| 	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
 | |
| 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 | |
| 	rds_message_addref(rm);
 | |
| 	rm->m_inc.i_conn = cp->cp_conn;
 | |
| 	rm->m_inc.i_conn_path = cp;
 | |
| 
 | |
| 	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
 | |
| 				    cp->cp_next_tx_seq);
 | |
| 	rm->m_inc.i_hdr.h_flags |= h_flags;
 | |
| 	cp->cp_next_tx_seq++;
 | |
| 
 | |
| 	if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
 | |
| 	    cp->cp_conn->c_trans->t_mp_capable) {
 | |
| 		u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
 | |
| 		u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
 | |
| 
 | |
| 		rds_message_add_extension(&rm->m_inc.i_hdr,
 | |
| 					  RDS_EXTHDR_NPATHS, &npaths,
 | |
| 					  sizeof(npaths));
 | |
| 		rds_message_add_extension(&rm->m_inc.i_hdr,
 | |
| 					  RDS_EXTHDR_GEN_NUM,
 | |
| 					  &my_gen_num,
 | |
| 					  sizeof(u32));
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&cp->cp_lock, flags);
 | |
| 
 | |
| 	rds_stats_inc(s_send_queued);
 | |
| 	rds_stats_inc(s_send_pong);
 | |
| 
 | |
| 	/* schedule the send work on rds_wq */
 | |
| 	rcu_read_lock();
 | |
| 	if (!rds_destroy_pending(cp->cp_conn))
 | |
| 		queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	rds_message_put(rm);
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	if (rm)
 | |
| 		rds_message_put(rm);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int
 | |
| rds_send_pong(struct rds_conn_path *cp, __be16 dport)
 | |
| {
 | |
| 	return rds_send_probe(cp, 0, dport, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| rds_send_ping(struct rds_connection *conn, int cp_index)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rds_conn_path *cp = &conn->c_path[cp_index];
 | |
| 
 | |
| 	spin_lock_irqsave(&cp->cp_lock, flags);
 | |
| 	if (conn->c_ping_triggered) {
 | |
| 		spin_unlock_irqrestore(&cp->cp_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	conn->c_ping_triggered = 1;
 | |
| 	spin_unlock_irqrestore(&cp->cp_lock, flags);
 | |
| 	rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rds_send_ping);
 |