forked from mirrors/linux
		
	 06b22ef295
			
		
	
	
		06b22ef295
		
	
	
	
	
		
			
			Now when the new request socket is created from the listening socket, it's recorded what MKT was used by the peer. tcp_rsk_used_ao() is a new helper for checking if TCP-AO option was used to create the request socket. tcp_ao_copy_all_matching() will copy all keys that match the peer on the request socket, as well as preparing them for the usage (creating traffic keys). Co-developed-by: Francesco Ruggeri <fruggeri@arista.com> Signed-off-by: Francesco Ruggeri <fruggeri@arista.com> Co-developed-by: Salam Noureddine <noureddine@arista.com> Signed-off-by: Salam Noureddine <noureddine@arista.com> Signed-off-by: Dmitry Safonov <dima@arista.com> Acked-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			4341 lines
		
	
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4341 lines
		
	
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * INET		An implementation of the TCP/IP protocol suite for the LINUX
 | |
|  *		operating system.  INET is implemented using the  BSD Socket
 | |
|  *		interface as the means of communication with the user level.
 | |
|  *
 | |
|  *		Implementation of the Transmission Control Protocol(TCP).
 | |
|  *
 | |
|  * Authors:	Ross Biro
 | |
|  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 | |
|  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 | |
|  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 | |
|  *		Florian La Roche, <flla@stud.uni-sb.de>
 | |
|  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 | |
|  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 | |
|  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 | |
|  *		Matthew Dillon, <dillon@apollo.west.oic.com>
 | |
|  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 | |
|  *		Jorge Cwik, <jorge@laser.satlink.net>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
 | |
|  *				:	Fragmentation on mtu decrease
 | |
|  *				:	Segment collapse on retransmit
 | |
|  *				:	AF independence
 | |
|  *
 | |
|  *		Linus Torvalds	:	send_delayed_ack
 | |
|  *		David S. Miller	:	Charge memory using the right skb
 | |
|  *					during syn/ack processing.
 | |
|  *		David S. Miller :	Output engine completely rewritten.
 | |
|  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
 | |
|  *		Cacophonix Gaul :	draft-minshall-nagle-01
 | |
|  *		J Hadi Salim	:	ECN support
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "TCP: " fmt
 | |
| 
 | |
| #include <net/tcp.h>
 | |
| #include <net/mptcp.h>
 | |
| 
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/static_key.h>
 | |
| 
 | |
| #include <trace/events/tcp.h>
 | |
| 
 | |
| /* Refresh clocks of a TCP socket,
 | |
|  * ensuring monotically increasing values.
 | |
|  */
 | |
| void tcp_mstamp_refresh(struct tcp_sock *tp)
 | |
| {
 | |
| 	u64 val = tcp_clock_ns();
 | |
| 
 | |
| 	tp->tcp_clock_cache = val;
 | |
| 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
 | |
| }
 | |
| 
 | |
| static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
 | |
| 			   int push_one, gfp_t gfp);
 | |
| 
 | |
| /* Account for new data that has been sent to the network. */
 | |
| static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	unsigned int prior_packets = tp->packets_out;
 | |
| 
 | |
| 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
 | |
| 
 | |
| 	__skb_unlink(skb, &sk->sk_write_queue);
 | |
| 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
 | |
| 
 | |
| 	if (tp->highest_sack == NULL)
 | |
| 		tp->highest_sack = skb;
 | |
| 
 | |
| 	tp->packets_out += tcp_skb_pcount(skb);
 | |
| 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
 | |
| 		tcp_rearm_rto(sk);
 | |
| 
 | |
| 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
 | |
| 		      tcp_skb_pcount(skb));
 | |
| 	tcp_check_space(sk);
 | |
| }
 | |
| 
 | |
| /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
 | |
|  * window scaling factor due to loss of precision.
 | |
|  * If window has been shrunk, what should we make? It is not clear at all.
 | |
|  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
 | |
|  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
 | |
|  * invalid. OK, let's make this for now:
 | |
|  */
 | |
| static inline __u32 tcp_acceptable_seq(const struct sock *sk)
 | |
| {
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
 | |
| 	    (tp->rx_opt.wscale_ok &&
 | |
| 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
 | |
| 		return tp->snd_nxt;
 | |
| 	else
 | |
| 		return tcp_wnd_end(tp);
 | |
| }
 | |
| 
 | |
| /* Calculate mss to advertise in SYN segment.
 | |
|  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 | |
|  *
 | |
|  * 1. It is independent of path mtu.
 | |
|  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 | |
|  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 | |
|  *    attached devices, because some buggy hosts are confused by
 | |
|  *    large MSS.
 | |
|  * 4. We do not make 3, we advertise MSS, calculated from first
 | |
|  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 | |
|  *    This may be overridden via information stored in routing table.
 | |
|  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 | |
|  *    probably even Jumbo".
 | |
|  */
 | |
| static __u16 tcp_advertise_mss(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	const struct dst_entry *dst = __sk_dst_get(sk);
 | |
| 	int mss = tp->advmss;
 | |
| 
 | |
| 	if (dst) {
 | |
| 		unsigned int metric = dst_metric_advmss(dst);
 | |
| 
 | |
| 		if (metric < mss) {
 | |
| 			mss = metric;
 | |
| 			tp->advmss = mss;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (__u16)mss;
 | |
| }
 | |
| 
 | |
| /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 | |
|  * This is the first part of cwnd validation mechanism.
 | |
|  */
 | |
| void tcp_cwnd_restart(struct sock *sk, s32 delta)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 | |
| 	u32 cwnd = tcp_snd_cwnd(tp);
 | |
| 
 | |
| 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 | |
| 
 | |
| 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 | |
| 	restart_cwnd = min(restart_cwnd, cwnd);
 | |
| 
 | |
| 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 | |
| 		cwnd >>= 1;
 | |
| 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
 | |
| 	tp->snd_cwnd_stamp = tcp_jiffies32;
 | |
| 	tp->snd_cwnd_used = 0;
 | |
| }
 | |
| 
 | |
| /* Congestion state accounting after a packet has been sent. */
 | |
| static void tcp_event_data_sent(struct tcp_sock *tp,
 | |
| 				struct sock *sk)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	const u32 now = tcp_jiffies32;
 | |
| 
 | |
| 	if (tcp_packets_in_flight(tp) == 0)
 | |
| 		tcp_ca_event(sk, CA_EVENT_TX_START);
 | |
| 
 | |
| 	tp->lsndtime = now;
 | |
| 
 | |
| 	/* If it is a reply for ato after last received
 | |
| 	 * packet, increase pingpong count.
 | |
| 	 */
 | |
| 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 | |
| 		inet_csk_inc_pingpong_cnt(sk);
 | |
| }
 | |
| 
 | |
| /* Account for an ACK we sent. */
 | |
| static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (unlikely(tp->compressed_ack)) {
 | |
| 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
 | |
| 			      tp->compressed_ack);
 | |
| 		tp->compressed_ack = 0;
 | |
| 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
 | |
| 			__sock_put(sk);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(rcv_nxt != tp->rcv_nxt))
 | |
| 		return;  /* Special ACK sent by DCTCP to reflect ECN */
 | |
| 	tcp_dec_quickack_mode(sk);
 | |
| 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 | |
| }
 | |
| 
 | |
| /* Determine a window scaling and initial window to offer.
 | |
|  * Based on the assumption that the given amount of space
 | |
|  * will be offered. Store the results in the tp structure.
 | |
|  * NOTE: for smooth operation initial space offering should
 | |
|  * be a multiple of mss if possible. We assume here that mss >= 1.
 | |
|  * This MUST be enforced by all callers.
 | |
|  */
 | |
| void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
 | |
| 			       __u32 *rcv_wnd, __u32 *window_clamp,
 | |
| 			       int wscale_ok, __u8 *rcv_wscale,
 | |
| 			       __u32 init_rcv_wnd)
 | |
| {
 | |
| 	unsigned int space = (__space < 0 ? 0 : __space);
 | |
| 
 | |
| 	/* If no clamp set the clamp to the max possible scaled window */
 | |
| 	if (*window_clamp == 0)
 | |
| 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
 | |
| 	space = min(*window_clamp, space);
 | |
| 
 | |
| 	/* Quantize space offering to a multiple of mss if possible. */
 | |
| 	if (space > mss)
 | |
| 		space = rounddown(space, mss);
 | |
| 
 | |
| 	/* NOTE: offering an initial window larger than 32767
 | |
| 	 * will break some buggy TCP stacks. If the admin tells us
 | |
| 	 * it is likely we could be speaking with such a buggy stack
 | |
| 	 * we will truncate our initial window offering to 32K-1
 | |
| 	 * unless the remote has sent us a window scaling option,
 | |
| 	 * which we interpret as a sign the remote TCP is not
 | |
| 	 * misinterpreting the window field as a signed quantity.
 | |
| 	 */
 | |
| 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
 | |
| 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 | |
| 	else
 | |
| 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
 | |
| 
 | |
| 	if (init_rcv_wnd)
 | |
| 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 | |
| 
 | |
| 	*rcv_wscale = 0;
 | |
| 	if (wscale_ok) {
 | |
| 		/* Set window scaling on max possible window */
 | |
| 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
 | |
| 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
 | |
| 		space = min_t(u32, space, *window_clamp);
 | |
| 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
 | |
| 				      0, TCP_MAX_WSCALE);
 | |
| 	}
 | |
| 	/* Set the clamp no higher than max representable value */
 | |
| 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_select_initial_window);
 | |
| 
 | |
| /* Chose a new window to advertise, update state in tcp_sock for the
 | |
|  * socket, and return result with RFC1323 scaling applied.  The return
 | |
|  * value can be stuffed directly into th->window for an outgoing
 | |
|  * frame.
 | |
|  */
 | |
| static u16 tcp_select_window(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct net *net = sock_net(sk);
 | |
| 	u32 old_win = tp->rcv_wnd;
 | |
| 	u32 cur_win, new_win;
 | |
| 
 | |
| 	/* Make the window 0 if we failed to queue the data because we
 | |
| 	 * are out of memory. The window is temporary, so we don't store
 | |
| 	 * it on the socket.
 | |
| 	 */
 | |
| 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
 | |
| 		return 0;
 | |
| 
 | |
| 	cur_win = tcp_receive_window(tp);
 | |
| 	new_win = __tcp_select_window(sk);
 | |
| 	if (new_win < cur_win) {
 | |
| 		/* Danger Will Robinson!
 | |
| 		 * Don't update rcv_wup/rcv_wnd here or else
 | |
| 		 * we will not be able to advertise a zero
 | |
| 		 * window in time.  --DaveM
 | |
| 		 *
 | |
| 		 * Relax Will Robinson.
 | |
| 		 */
 | |
| 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
 | |
| 			/* Never shrink the offered window */
 | |
| 			if (new_win == 0)
 | |
| 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
 | |
| 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tp->rcv_wnd = new_win;
 | |
| 	tp->rcv_wup = tp->rcv_nxt;
 | |
| 
 | |
| 	/* Make sure we do not exceed the maximum possible
 | |
| 	 * scaled window.
 | |
| 	 */
 | |
| 	if (!tp->rx_opt.rcv_wscale &&
 | |
| 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
 | |
| 		new_win = min(new_win, MAX_TCP_WINDOW);
 | |
| 	else
 | |
| 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 | |
| 
 | |
| 	/* RFC1323 scaling applied */
 | |
| 	new_win >>= tp->rx_opt.rcv_wscale;
 | |
| 
 | |
| 	/* If we advertise zero window, disable fast path. */
 | |
| 	if (new_win == 0) {
 | |
| 		tp->pred_flags = 0;
 | |
| 		if (old_win)
 | |
| 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
 | |
| 	} else if (old_win == 0) {
 | |
| 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
 | |
| 	}
 | |
| 
 | |
| 	return new_win;
 | |
| }
 | |
| 
 | |
| /* Packet ECN state for a SYN-ACK */
 | |
| static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 | |
| 	if (!(tp->ecn_flags & TCP_ECN_OK))
 | |
| 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 | |
| 	else if (tcp_ca_needs_ecn(sk) ||
 | |
| 		 tcp_bpf_ca_needs_ecn(sk))
 | |
| 		INET_ECN_xmit(sk);
 | |
| }
 | |
| 
 | |
| /* Packet ECN state for a SYN.  */
 | |
| static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
 | |
| 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
 | |
| 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
 | |
| 
 | |
| 	if (!use_ecn) {
 | |
| 		const struct dst_entry *dst = __sk_dst_get(sk);
 | |
| 
 | |
| 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 | |
| 			use_ecn = true;
 | |
| 	}
 | |
| 
 | |
| 	tp->ecn_flags = 0;
 | |
| 
 | |
| 	if (use_ecn) {
 | |
| 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 | |
| 		tp->ecn_flags = TCP_ECN_OK;
 | |
| 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
 | |
| 			INET_ECN_xmit(sk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
 | |
| 		/* tp->ecn_flags are cleared at a later point in time when
 | |
| 		 * SYN ACK is ultimatively being received.
 | |
| 		 */
 | |
| 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 | |
| }
 | |
| 
 | |
| static void
 | |
| tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 | |
| {
 | |
| 	if (inet_rsk(req)->ecn_ok)
 | |
| 		th->ece = 1;
 | |
| }
 | |
| 
 | |
| /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 | |
|  * be sent.
 | |
|  */
 | |
| static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 | |
| 			 struct tcphdr *th, int tcp_header_len)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (tp->ecn_flags & TCP_ECN_OK) {
 | |
| 		/* Not-retransmitted data segment: set ECT and inject CWR. */
 | |
| 		if (skb->len != tcp_header_len &&
 | |
| 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 | |
| 			INET_ECN_xmit(sk);
 | |
| 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 | |
| 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 | |
| 				th->cwr = 1;
 | |
| 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 | |
| 			}
 | |
| 		} else if (!tcp_ca_needs_ecn(sk)) {
 | |
| 			/* ACK or retransmitted segment: clear ECT|CE */
 | |
| 			INET_ECN_dontxmit(sk);
 | |
| 		}
 | |
| 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 | |
| 			th->ece = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Constructs common control bits of non-data skb. If SYN/FIN is present,
 | |
|  * auto increment end seqno.
 | |
|  */
 | |
| static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 | |
| {
 | |
| 	skb->ip_summed = CHECKSUM_PARTIAL;
 | |
| 
 | |
| 	TCP_SKB_CB(skb)->tcp_flags = flags;
 | |
| 
 | |
| 	tcp_skb_pcount_set(skb, 1);
 | |
| 
 | |
| 	TCP_SKB_CB(skb)->seq = seq;
 | |
| 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 | |
| 		seq++;
 | |
| 	TCP_SKB_CB(skb)->end_seq = seq;
 | |
| }
 | |
| 
 | |
| static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 | |
| {
 | |
| 	return tp->snd_una != tp->snd_up;
 | |
| }
 | |
| 
 | |
| #define OPTION_SACK_ADVERTISE	BIT(0)
 | |
| #define OPTION_TS		BIT(1)
 | |
| #define OPTION_MD5		BIT(2)
 | |
| #define OPTION_WSCALE		BIT(3)
 | |
| #define OPTION_FAST_OPEN_COOKIE	BIT(8)
 | |
| #define OPTION_SMC		BIT(9)
 | |
| #define OPTION_MPTCP		BIT(10)
 | |
| #define OPTION_AO		BIT(11)
 | |
| 
 | |
| static void smc_options_write(__be32 *ptr, u16 *options)
 | |
| {
 | |
| #if IS_ENABLED(CONFIG_SMC)
 | |
| 	if (static_branch_unlikely(&tcp_have_smc)) {
 | |
| 		if (unlikely(OPTION_SMC & *options)) {
 | |
| 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
 | |
| 				       (TCPOPT_NOP  << 16) |
 | |
| 				       (TCPOPT_EXP <<  8) |
 | |
| 				       (TCPOLEN_EXP_SMC_BASE));
 | |
| 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct tcp_out_options {
 | |
| 	u16 options;		/* bit field of OPTION_* */
 | |
| 	u16 mss;		/* 0 to disable */
 | |
| 	u8 ws;			/* window scale, 0 to disable */
 | |
| 	u8 num_sack_blocks;	/* number of SACK blocks to include */
 | |
| 	u8 hash_size;		/* bytes in hash_location */
 | |
| 	u8 bpf_opt_len;		/* length of BPF hdr option */
 | |
| 	__u8 *hash_location;	/* temporary pointer, overloaded */
 | |
| 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 | |
| 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 | |
| 	struct mptcp_out_options mptcp;
 | |
| };
 | |
| 
 | |
| static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
 | |
| 				struct tcp_sock *tp,
 | |
| 				struct tcp_out_options *opts)
 | |
| {
 | |
| #if IS_ENABLED(CONFIG_MPTCP)
 | |
| 	if (unlikely(OPTION_MPTCP & opts->options))
 | |
| 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_BPF
 | |
| static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
 | |
| 					enum tcp_synack_type synack_type)
 | |
| {
 | |
| 	if (unlikely(!skb))
 | |
| 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
 | |
| 
 | |
| 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
 | |
| 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* req, syn_skb and synack_type are used when writing synack */
 | |
| static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 | |
| 				  struct request_sock *req,
 | |
| 				  struct sk_buff *syn_skb,
 | |
| 				  enum tcp_synack_type synack_type,
 | |
| 				  struct tcp_out_options *opts,
 | |
| 				  unsigned int *remaining)
 | |
| {
 | |
| 	struct bpf_sock_ops_kern sock_ops;
 | |
| 	int err;
 | |
| 
 | |
| 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 | |
| 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
 | |
| 	    !*remaining)
 | |
| 		return;
 | |
| 
 | |
| 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
 | |
| 
 | |
| 	/* init sock_ops */
 | |
| 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 | |
| 
 | |
| 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
 | |
| 
 | |
| 	if (req) {
 | |
| 		/* The listen "sk" cannot be passed here because
 | |
| 		 * it is not locked.  It would not make too much
 | |
| 		 * sense to do bpf_setsockopt(listen_sk) based
 | |
| 		 * on individual connection request also.
 | |
| 		 *
 | |
| 		 * Thus, "req" is passed here and the cgroup-bpf-progs
 | |
| 		 * of the listen "sk" will be run.
 | |
| 		 *
 | |
| 		 * "req" is also used here for fastopen even the "sk" here is
 | |
| 		 * a fullsock "child" sk.  It is to keep the behavior
 | |
| 		 * consistent between fastopen and non-fastopen on
 | |
| 		 * the bpf programming side.
 | |
| 		 */
 | |
| 		sock_ops.sk = (struct sock *)req;
 | |
| 		sock_ops.syn_skb = syn_skb;
 | |
| 	} else {
 | |
| 		sock_owned_by_me(sk);
 | |
| 
 | |
| 		sock_ops.is_fullsock = 1;
 | |
| 		sock_ops.sk = sk;
 | |
| 	}
 | |
| 
 | |
| 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 | |
| 	sock_ops.remaining_opt_len = *remaining;
 | |
| 	/* tcp_current_mss() does not pass a skb */
 | |
| 	if (skb)
 | |
| 		bpf_skops_init_skb(&sock_ops, skb, 0);
 | |
| 
 | |
| 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 | |
| 
 | |
| 	if (err || sock_ops.remaining_opt_len == *remaining)
 | |
| 		return;
 | |
| 
 | |
| 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
 | |
| 	/* round up to 4 bytes */
 | |
| 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
 | |
| 
 | |
| 	*remaining -= opts->bpf_opt_len;
 | |
| }
 | |
| 
 | |
| static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 | |
| 				    struct request_sock *req,
 | |
| 				    struct sk_buff *syn_skb,
 | |
| 				    enum tcp_synack_type synack_type,
 | |
| 				    struct tcp_out_options *opts)
 | |
| {
 | |
| 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
 | |
| 	struct bpf_sock_ops_kern sock_ops;
 | |
| 	int err;
 | |
| 
 | |
| 	if (likely(!max_opt_len))
 | |
| 		return;
 | |
| 
 | |
| 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 | |
| 
 | |
| 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
 | |
| 
 | |
| 	if (req) {
 | |
| 		sock_ops.sk = (struct sock *)req;
 | |
| 		sock_ops.syn_skb = syn_skb;
 | |
| 	} else {
 | |
| 		sock_owned_by_me(sk);
 | |
| 
 | |
| 		sock_ops.is_fullsock = 1;
 | |
| 		sock_ops.sk = sk;
 | |
| 	}
 | |
| 
 | |
| 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 | |
| 	sock_ops.remaining_opt_len = max_opt_len;
 | |
| 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
 | |
| 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
 | |
| 
 | |
| 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 | |
| 
 | |
| 	if (err)
 | |
| 		nr_written = 0;
 | |
| 	else
 | |
| 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
 | |
| 
 | |
| 	if (nr_written < max_opt_len)
 | |
| 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
 | |
| 		       max_opt_len - nr_written);
 | |
| }
 | |
| #else
 | |
| static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 | |
| 				  struct request_sock *req,
 | |
| 				  struct sk_buff *syn_skb,
 | |
| 				  enum tcp_synack_type synack_type,
 | |
| 				  struct tcp_out_options *opts,
 | |
| 				  unsigned int *remaining)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 | |
| 				    struct request_sock *req,
 | |
| 				    struct sk_buff *syn_skb,
 | |
| 				    enum tcp_synack_type synack_type,
 | |
| 				    struct tcp_out_options *opts)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Write previously computed TCP options to the packet.
 | |
|  *
 | |
|  * Beware: Something in the Internet is very sensitive to the ordering of
 | |
|  * TCP options, we learned this through the hard way, so be careful here.
 | |
|  * Luckily we can at least blame others for their non-compliance but from
 | |
|  * inter-operability perspective it seems that we're somewhat stuck with
 | |
|  * the ordering which we have been using if we want to keep working with
 | |
|  * those broken things (not that it currently hurts anybody as there isn't
 | |
|  * particular reason why the ordering would need to be changed).
 | |
|  *
 | |
|  * At least SACK_PERM as the first option is known to lead to a disaster
 | |
|  * (but it may well be that other scenarios fail similarly).
 | |
|  */
 | |
| static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
 | |
| 			      const struct tcp_request_sock *tcprsk,
 | |
| 			      struct tcp_out_options *opts,
 | |
| 			      struct tcp_key *key)
 | |
| {
 | |
| 	__be32 *ptr = (__be32 *)(th + 1);
 | |
| 	u16 options = opts->options;	/* mungable copy */
 | |
| 
 | |
| 	if (tcp_key_is_md5(key)) {
 | |
| 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 | |
| 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 | |
| 		/* overload cookie hash location */
 | |
| 		opts->hash_location = (__u8 *)ptr;
 | |
| 		ptr += 4;
 | |
| 	} else if (tcp_key_is_ao(key)) {
 | |
| #ifdef CONFIG_TCP_AO
 | |
| 		u8 maclen = tcp_ao_maclen(key->ao_key);
 | |
| 
 | |
| 		if (tcprsk) {
 | |
| 			u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
 | |
| 
 | |
| 			*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
 | |
| 				       (tcprsk->ao_keyid << 8) |
 | |
| 				       (tcprsk->ao_rcv_next));
 | |
| 		} else {
 | |
| 			struct tcp_ao_key *rnext_key;
 | |
| 			struct tcp_ao_info *ao_info;
 | |
| 
 | |
| 			ao_info = rcu_dereference_check(tp->ao_info,
 | |
| 				lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
 | |
| 			rnext_key = READ_ONCE(ao_info->rnext_key);
 | |
| 			if (WARN_ON_ONCE(!rnext_key))
 | |
| 				goto out_ao;
 | |
| 			*ptr++ = htonl((TCPOPT_AO << 24) |
 | |
| 				       (tcp_ao_len(key->ao_key) << 16) |
 | |
| 				       (key->ao_key->sndid << 8) |
 | |
| 				       (rnext_key->rcvid));
 | |
| 		}
 | |
| 		opts->hash_location = (__u8 *)ptr;
 | |
| 		ptr += maclen / sizeof(*ptr);
 | |
| 		if (unlikely(maclen % sizeof(*ptr))) {
 | |
| 			memset(ptr, TCPOPT_NOP, sizeof(*ptr));
 | |
| 			ptr++;
 | |
| 		}
 | |
| out_ao:
 | |
| #endif
 | |
| 	}
 | |
| 	if (unlikely(opts->mss)) {
 | |
| 		*ptr++ = htonl((TCPOPT_MSS << 24) |
 | |
| 			       (TCPOLEN_MSS << 16) |
 | |
| 			       opts->mss);
 | |
| 	}
 | |
| 
 | |
| 	if (likely(OPTION_TS & options)) {
 | |
| 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 | |
| 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 | |
| 				       (TCPOLEN_SACK_PERM << 16) |
 | |
| 				       (TCPOPT_TIMESTAMP << 8) |
 | |
| 				       TCPOLEN_TIMESTAMP);
 | |
| 			options &= ~OPTION_SACK_ADVERTISE;
 | |
| 		} else {
 | |
| 			*ptr++ = htonl((TCPOPT_NOP << 24) |
 | |
| 				       (TCPOPT_NOP << 16) |
 | |
| 				       (TCPOPT_TIMESTAMP << 8) |
 | |
| 				       TCPOLEN_TIMESTAMP);
 | |
| 		}
 | |
| 		*ptr++ = htonl(opts->tsval);
 | |
| 		*ptr++ = htonl(opts->tsecr);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 | |
| 		*ptr++ = htonl((TCPOPT_NOP << 24) |
 | |
| 			       (TCPOPT_NOP << 16) |
 | |
| 			       (TCPOPT_SACK_PERM << 8) |
 | |
| 			       TCPOLEN_SACK_PERM);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(OPTION_WSCALE & options)) {
 | |
| 		*ptr++ = htonl((TCPOPT_NOP << 24) |
 | |
| 			       (TCPOPT_WINDOW << 16) |
 | |
| 			       (TCPOLEN_WINDOW << 8) |
 | |
| 			       opts->ws);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(opts->num_sack_blocks)) {
 | |
| 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 | |
| 			tp->duplicate_sack : tp->selective_acks;
 | |
| 		int this_sack;
 | |
| 
 | |
| 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 | |
| 			       (TCPOPT_NOP  << 16) |
 | |
| 			       (TCPOPT_SACK <<  8) |
 | |
| 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 | |
| 						     TCPOLEN_SACK_PERBLOCK)));
 | |
| 
 | |
| 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 | |
| 		     ++this_sack) {
 | |
| 			*ptr++ = htonl(sp[this_sack].start_seq);
 | |
| 			*ptr++ = htonl(sp[this_sack].end_seq);
 | |
| 		}
 | |
| 
 | |
| 		tp->rx_opt.dsack = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 | |
| 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 | |
| 		u8 *p = (u8 *)ptr;
 | |
| 		u32 len; /* Fast Open option length */
 | |
| 
 | |
| 		if (foc->exp) {
 | |
| 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 | |
| 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 | |
| 				     TCPOPT_FASTOPEN_MAGIC);
 | |
| 			p += TCPOLEN_EXP_FASTOPEN_BASE;
 | |
| 		} else {
 | |
| 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
 | |
| 			*p++ = TCPOPT_FASTOPEN;
 | |
| 			*p++ = len;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(p, foc->val, foc->len);
 | |
| 		if ((len & 3) == 2) {
 | |
| 			p[foc->len] = TCPOPT_NOP;
 | |
| 			p[foc->len + 1] = TCPOPT_NOP;
 | |
| 		}
 | |
| 		ptr += (len + 3) >> 2;
 | |
| 	}
 | |
| 
 | |
| 	smc_options_write(ptr, &options);
 | |
| 
 | |
| 	mptcp_options_write(th, ptr, tp, opts);
 | |
| }
 | |
| 
 | |
| static void smc_set_option(const struct tcp_sock *tp,
 | |
| 			   struct tcp_out_options *opts,
 | |
| 			   unsigned int *remaining)
 | |
| {
 | |
| #if IS_ENABLED(CONFIG_SMC)
 | |
| 	if (static_branch_unlikely(&tcp_have_smc)) {
 | |
| 		if (tp->syn_smc) {
 | |
| 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 | |
| 				opts->options |= OPTION_SMC;
 | |
| 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void smc_set_option_cond(const struct tcp_sock *tp,
 | |
| 				const struct inet_request_sock *ireq,
 | |
| 				struct tcp_out_options *opts,
 | |
| 				unsigned int *remaining)
 | |
| {
 | |
| #if IS_ENABLED(CONFIG_SMC)
 | |
| 	if (static_branch_unlikely(&tcp_have_smc)) {
 | |
| 		if (tp->syn_smc && ireq->smc_ok) {
 | |
| 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 | |
| 				opts->options |= OPTION_SMC;
 | |
| 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void mptcp_set_option_cond(const struct request_sock *req,
 | |
| 				  struct tcp_out_options *opts,
 | |
| 				  unsigned int *remaining)
 | |
| {
 | |
| 	if (rsk_is_mptcp(req)) {
 | |
| 		unsigned int size;
 | |
| 
 | |
| 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
 | |
| 			if (*remaining >= size) {
 | |
| 				opts->options |= OPTION_MPTCP;
 | |
| 				*remaining -= size;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Compute TCP options for SYN packets. This is not the final
 | |
|  * network wire format yet.
 | |
|  */
 | |
| static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 | |
| 				struct tcp_out_options *opts,
 | |
| 				struct tcp_key *key)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 | |
| 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 | |
| 	bool timestamps;
 | |
| 
 | |
| 	/* Better than switch (key.type) as it has static branches */
 | |
| 	if (tcp_key_is_md5(key)) {
 | |
| 		timestamps = false;
 | |
| 		opts->options |= OPTION_MD5;
 | |
| 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 | |
| 	} else {
 | |
| 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
 | |
| 		if (tcp_key_is_ao(key)) {
 | |
| 			opts->options |= OPTION_AO;
 | |
| 			remaining -= tcp_ao_len(key->ao_key);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We always get an MSS option.  The option bytes which will be seen in
 | |
| 	 * normal data packets should timestamps be used, must be in the MSS
 | |
| 	 * advertised.  But we subtract them from tp->mss_cache so that
 | |
| 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 | |
| 	 * fact here if necessary.  If we don't do this correctly, as a
 | |
| 	 * receiver we won't recognize data packets as being full sized when we
 | |
| 	 * should, and thus we won't abide by the delayed ACK rules correctly.
 | |
| 	 * SACKs don't matter, we never delay an ACK when we have any of those
 | |
| 	 * going out.  */
 | |
| 	opts->mss = tcp_advertise_mss(sk);
 | |
| 	remaining -= TCPOLEN_MSS_ALIGNED;
 | |
| 
 | |
| 	if (likely(timestamps)) {
 | |
| 		opts->options |= OPTION_TS;
 | |
| 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
 | |
| 		opts->tsecr = tp->rx_opt.ts_recent;
 | |
| 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 | |
| 	}
 | |
| 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
 | |
| 		opts->ws = tp->rx_opt.rcv_wscale;
 | |
| 		opts->options |= OPTION_WSCALE;
 | |
| 		remaining -= TCPOLEN_WSCALE_ALIGNED;
 | |
| 	}
 | |
| 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
 | |
| 		opts->options |= OPTION_SACK_ADVERTISE;
 | |
| 		if (unlikely(!(OPTION_TS & opts->options)))
 | |
| 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 | |
| 	}
 | |
| 
 | |
| 	if (fastopen && fastopen->cookie.len >= 0) {
 | |
| 		u32 need = fastopen->cookie.len;
 | |
| 
 | |
| 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 | |
| 					       TCPOLEN_FASTOPEN_BASE;
 | |
| 		need = (need + 3) & ~3U;  /* Align to 32 bits */
 | |
| 		if (remaining >= need) {
 | |
| 			opts->options |= OPTION_FAST_OPEN_COOKIE;
 | |
| 			opts->fastopen_cookie = &fastopen->cookie;
 | |
| 			remaining -= need;
 | |
| 			tp->syn_fastopen = 1;
 | |
| 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	smc_set_option(tp, opts, &remaining);
 | |
| 
 | |
| 	if (sk_is_mptcp(sk)) {
 | |
| 		unsigned int size;
 | |
| 
 | |
| 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
 | |
| 			opts->options |= OPTION_MPTCP;
 | |
| 			remaining -= size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
 | |
| 
 | |
| 	return MAX_TCP_OPTION_SPACE - remaining;
 | |
| }
 | |
| 
 | |
| /* Set up TCP options for SYN-ACKs. */
 | |
| static unsigned int tcp_synack_options(const struct sock *sk,
 | |
| 				       struct request_sock *req,
 | |
| 				       unsigned int mss, struct sk_buff *skb,
 | |
| 				       struct tcp_out_options *opts,
 | |
| 				       const struct tcp_md5sig_key *md5,
 | |
| 				       struct tcp_fastopen_cookie *foc,
 | |
| 				       enum tcp_synack_type synack_type,
 | |
| 				       struct sk_buff *syn_skb)
 | |
| {
 | |
| 	struct inet_request_sock *ireq = inet_rsk(req);
 | |
| 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 | |
| 
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 	if (md5) {
 | |
| 		opts->options |= OPTION_MD5;
 | |
| 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 | |
| 
 | |
| 		/* We can't fit any SACK blocks in a packet with MD5 + TS
 | |
| 		 * options. There was discussion about disabling SACK
 | |
| 		 * rather than TS in order to fit in better with old,
 | |
| 		 * buggy kernels, but that was deemed to be unnecessary.
 | |
| 		 */
 | |
| 		if (synack_type != TCP_SYNACK_COOKIE)
 | |
| 			ireq->tstamp_ok &= !ireq->sack_ok;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* We always send an MSS option. */
 | |
| 	opts->mss = mss;
 | |
| 	remaining -= TCPOLEN_MSS_ALIGNED;
 | |
| 
 | |
| 	if (likely(ireq->wscale_ok)) {
 | |
| 		opts->ws = ireq->rcv_wscale;
 | |
| 		opts->options |= OPTION_WSCALE;
 | |
| 		remaining -= TCPOLEN_WSCALE_ALIGNED;
 | |
| 	}
 | |
| 	if (likely(ireq->tstamp_ok)) {
 | |
| 		opts->options |= OPTION_TS;
 | |
| 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
 | |
| 			      tcp_rsk(req)->ts_off;
 | |
| 		opts->tsecr = READ_ONCE(req->ts_recent);
 | |
| 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 | |
| 	}
 | |
| 	if (likely(ireq->sack_ok)) {
 | |
| 		opts->options |= OPTION_SACK_ADVERTISE;
 | |
| 		if (unlikely(!ireq->tstamp_ok))
 | |
| 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 | |
| 	}
 | |
| 	if (foc != NULL && foc->len >= 0) {
 | |
| 		u32 need = foc->len;
 | |
| 
 | |
| 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 | |
| 				   TCPOLEN_FASTOPEN_BASE;
 | |
| 		need = (need + 3) & ~3U;  /* Align to 32 bits */
 | |
| 		if (remaining >= need) {
 | |
| 			opts->options |= OPTION_FAST_OPEN_COOKIE;
 | |
| 			opts->fastopen_cookie = foc;
 | |
| 			remaining -= need;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mptcp_set_option_cond(req, opts, &remaining);
 | |
| 
 | |
| 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
 | |
| 
 | |
| 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
 | |
| 			      synack_type, opts, &remaining);
 | |
| 
 | |
| 	return MAX_TCP_OPTION_SPACE - remaining;
 | |
| }
 | |
| 
 | |
| /* Compute TCP options for ESTABLISHED sockets. This is not the
 | |
|  * final wire format yet.
 | |
|  */
 | |
| static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 | |
| 					struct tcp_out_options *opts,
 | |
| 					struct tcp_key *key)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	unsigned int size = 0;
 | |
| 	unsigned int eff_sacks;
 | |
| 
 | |
| 	opts->options = 0;
 | |
| 
 | |
| 	/* Better than switch (key.type) as it has static branches */
 | |
| 	if (tcp_key_is_md5(key)) {
 | |
| 		opts->options |= OPTION_MD5;
 | |
| 		size += TCPOLEN_MD5SIG_ALIGNED;
 | |
| 	} else if (tcp_key_is_ao(key)) {
 | |
| 		opts->options |= OPTION_AO;
 | |
| 		size += tcp_ao_len(key->ao_key);
 | |
| 	}
 | |
| 
 | |
| 	if (likely(tp->rx_opt.tstamp_ok)) {
 | |
| 		opts->options |= OPTION_TS;
 | |
| 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
 | |
| 				tp->tsoffset : 0;
 | |
| 		opts->tsecr = tp->rx_opt.ts_recent;
 | |
| 		size += TCPOLEN_TSTAMP_ALIGNED;
 | |
| 	}
 | |
| 
 | |
| 	/* MPTCP options have precedence over SACK for the limited TCP
 | |
| 	 * option space because a MPTCP connection would be forced to
 | |
| 	 * fall back to regular TCP if a required multipath option is
 | |
| 	 * missing. SACK still gets a chance to use whatever space is
 | |
| 	 * left.
 | |
| 	 */
 | |
| 	if (sk_is_mptcp(sk)) {
 | |
| 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 | |
| 		unsigned int opt_size = 0;
 | |
| 
 | |
| 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
 | |
| 					      &opts->mptcp)) {
 | |
| 			opts->options |= OPTION_MPTCP;
 | |
| 			size += opt_size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 | |
| 	if (unlikely(eff_sacks)) {
 | |
| 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 | |
| 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
 | |
| 					 TCPOLEN_SACK_PERBLOCK))
 | |
| 			return size;
 | |
| 
 | |
| 		opts->num_sack_blocks =
 | |
| 			min_t(unsigned int, eff_sacks,
 | |
| 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 | |
| 			      TCPOLEN_SACK_PERBLOCK);
 | |
| 
 | |
| 		size += TCPOLEN_SACK_BASE_ALIGNED +
 | |
| 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
 | |
| 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
 | |
| 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 | |
| 
 | |
| 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
 | |
| 
 | |
| 		size = MAX_TCP_OPTION_SPACE - remaining;
 | |
| 	}
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* TCP SMALL QUEUES (TSQ)
 | |
|  *
 | |
|  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 | |
|  * to reduce RTT and bufferbloat.
 | |
|  * We do this using a special skb destructor (tcp_wfree).
 | |
|  *
 | |
|  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 | |
|  * needs to be reallocated in a driver.
 | |
|  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 | |
|  *
 | |
|  * Since transmit from skb destructor is forbidden, we use a tasklet
 | |
|  * to process all sockets that eventually need to send more skbs.
 | |
|  * We use one tasklet per cpu, with its own queue of sockets.
 | |
|  */
 | |
| struct tsq_tasklet {
 | |
| 	struct tasklet_struct	tasklet;
 | |
| 	struct list_head	head; /* queue of tcp sockets */
 | |
| };
 | |
| static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 | |
| 
 | |
| static void tcp_tsq_write(struct sock *sk)
 | |
| {
 | |
| 	if ((1 << sk->sk_state) &
 | |
| 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 | |
| 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
 | |
| 		struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 		if (tp->lost_out > tp->retrans_out &&
 | |
| 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
 | |
| 			tcp_mstamp_refresh(tp);
 | |
| 			tcp_xmit_retransmit_queue(sk);
 | |
| 		}
 | |
| 
 | |
| 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
 | |
| 			       0, GFP_ATOMIC);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void tcp_tsq_handler(struct sock *sk)
 | |
| {
 | |
| 	bh_lock_sock(sk);
 | |
| 	if (!sock_owned_by_user(sk))
 | |
| 		tcp_tsq_write(sk);
 | |
| 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
 | |
| 		sock_hold(sk);
 | |
| 	bh_unlock_sock(sk);
 | |
| }
 | |
| /*
 | |
|  * One tasklet per cpu tries to send more skbs.
 | |
|  * We run in tasklet context but need to disable irqs when
 | |
|  * transferring tsq->head because tcp_wfree() might
 | |
|  * interrupt us (non NAPI drivers)
 | |
|  */
 | |
| static void tcp_tasklet_func(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
 | |
| 	LIST_HEAD(list);
 | |
| 	unsigned long flags;
 | |
| 	struct list_head *q, *n;
 | |
| 	struct tcp_sock *tp;
 | |
| 	struct sock *sk;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	list_splice_init(&tsq->head, &list);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	list_for_each_safe(q, n, &list) {
 | |
| 		tp = list_entry(q, struct tcp_sock, tsq_node);
 | |
| 		list_del(&tp->tsq_node);
 | |
| 
 | |
| 		sk = (struct sock *)tp;
 | |
| 		smp_mb__before_atomic();
 | |
| 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
 | |
| 
 | |
| 		tcp_tsq_handler(sk);
 | |
| 		sk_free(sk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
 | |
| 			  TCPF_WRITE_TIMER_DEFERRED |	\
 | |
| 			  TCPF_DELACK_TIMER_DEFERRED |	\
 | |
| 			  TCPF_MTU_REDUCED_DEFERRED |	\
 | |
| 			  TCPF_ACK_DEFERRED)
 | |
| /**
 | |
|  * tcp_release_cb - tcp release_sock() callback
 | |
|  * @sk: socket
 | |
|  *
 | |
|  * called from release_sock() to perform protocol dependent
 | |
|  * actions before socket release.
 | |
|  */
 | |
| void tcp_release_cb(struct sock *sk)
 | |
| {
 | |
| 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
 | |
| 	unsigned long nflags;
 | |
| 
 | |
| 	/* perform an atomic operation only if at least one flag is set */
 | |
| 	do {
 | |
| 		if (!(flags & TCP_DEFERRED_ALL))
 | |
| 			return;
 | |
| 		nflags = flags & ~TCP_DEFERRED_ALL;
 | |
| 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
 | |
| 
 | |
| 	if (flags & TCPF_TSQ_DEFERRED) {
 | |
| 		tcp_tsq_write(sk);
 | |
| 		__sock_put(sk);
 | |
| 	}
 | |
| 
 | |
| 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
 | |
| 		tcp_write_timer_handler(sk);
 | |
| 		__sock_put(sk);
 | |
| 	}
 | |
| 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
 | |
| 		tcp_delack_timer_handler(sk);
 | |
| 		__sock_put(sk);
 | |
| 	}
 | |
| 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
 | |
| 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
 | |
| 		__sock_put(sk);
 | |
| 	}
 | |
| 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
 | |
| 		tcp_send_ack(sk);
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_release_cb);
 | |
| 
 | |
| void __init tcp_tasklet_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 | |
| 
 | |
| 		INIT_LIST_HEAD(&tsq->head);
 | |
| 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write buffer destructor automatically called from kfree_skb.
 | |
|  * We can't xmit new skbs from this context, as we might already
 | |
|  * hold qdisc lock.
 | |
|  */
 | |
| void tcp_wfree(struct sk_buff *skb)
 | |
| {
 | |
| 	struct sock *sk = skb->sk;
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	unsigned long flags, nval, oval;
 | |
| 	struct tsq_tasklet *tsq;
 | |
| 	bool empty;
 | |
| 
 | |
| 	/* Keep one reference on sk_wmem_alloc.
 | |
| 	 * Will be released by sk_free() from here or tcp_tasklet_func()
 | |
| 	 */
 | |
| 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
 | |
| 
 | |
| 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
 | |
| 	 * Wait until our queues (qdisc + devices) are drained.
 | |
| 	 * This gives :
 | |
| 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
 | |
| 	 * - chance for incoming ACK (processed by another cpu maybe)
 | |
| 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
 | |
| 	 */
 | |
| 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
 | |
| 		goto out;
 | |
| 
 | |
| 	oval = smp_load_acquire(&sk->sk_tsq_flags);
 | |
| 	do {
 | |
| 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
 | |
| 			goto out;
 | |
| 
 | |
| 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
 | |
| 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
 | |
| 
 | |
| 	/* queue this socket to tasklet queue */
 | |
| 	local_irq_save(flags);
 | |
| 	tsq = this_cpu_ptr(&tsq_tasklet);
 | |
| 	empty = list_empty(&tsq->head);
 | |
| 	list_add(&tp->tsq_node, &tsq->head);
 | |
| 	if (empty)
 | |
| 		tasklet_schedule(&tsq->tasklet);
 | |
| 	local_irq_restore(flags);
 | |
| 	return;
 | |
| out:
 | |
| 	sk_free(sk);
 | |
| }
 | |
| 
 | |
| /* Note: Called under soft irq.
 | |
|  * We can call TCP stack right away, unless socket is owned by user.
 | |
|  */
 | |
| enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
 | |
| {
 | |
| 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
 | |
| 	struct sock *sk = (struct sock *)tp;
 | |
| 
 | |
| 	tcp_tsq_handler(sk);
 | |
| 	sock_put(sk);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
 | |
| 				      u64 prior_wstamp)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (sk->sk_pacing_status != SK_PACING_NONE) {
 | |
| 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
 | |
| 
 | |
| 		/* Original sch_fq does not pace first 10 MSS
 | |
| 		 * Note that tp->data_segs_out overflows after 2^32 packets,
 | |
| 		 * this is a minor annoyance.
 | |
| 		 */
 | |
| 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
 | |
| 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
 | |
| 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
 | |
| 
 | |
| 			/* take into account OS jitter */
 | |
| 			len_ns -= min_t(u64, len_ns / 2, credit);
 | |
| 			tp->tcp_wstamp_ns += len_ns;
 | |
| 		}
 | |
| 	}
 | |
| 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
 | |
| }
 | |
| 
 | |
| INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
 | |
| INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
 | |
| INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
 | |
| 
 | |
| /* This routine actually transmits TCP packets queued in by
 | |
|  * tcp_do_sendmsg().  This is used by both the initial
 | |
|  * transmission and possible later retransmissions.
 | |
|  * All SKB's seen here are completely headerless.  It is our
 | |
|  * job to build the TCP header, and pass the packet down to
 | |
|  * IP so it can do the same plus pass the packet off to the
 | |
|  * device.
 | |
|  *
 | |
|  * We are working here with either a clone of the original
 | |
|  * SKB, or a fresh unique copy made by the retransmit engine.
 | |
|  */
 | |
| static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
 | |
| 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
 | |
| {
 | |
| 	const struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct inet_sock *inet;
 | |
| 	struct tcp_sock *tp;
 | |
| 	struct tcp_skb_cb *tcb;
 | |
| 	struct tcp_out_options opts;
 | |
| 	unsigned int tcp_options_size, tcp_header_size;
 | |
| 	struct sk_buff *oskb = NULL;
 | |
| 	struct tcp_key key;
 | |
| 	struct tcphdr *th;
 | |
| 	u64 prior_wstamp;
 | |
| 	int err;
 | |
| 
 | |
| 	BUG_ON(!skb || !tcp_skb_pcount(skb));
 | |
| 	tp = tcp_sk(sk);
 | |
| 	prior_wstamp = tp->tcp_wstamp_ns;
 | |
| 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
 | |
| 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
 | |
| 	if (clone_it) {
 | |
| 		oskb = skb;
 | |
| 
 | |
| 		tcp_skb_tsorted_save(oskb) {
 | |
| 			if (unlikely(skb_cloned(oskb)))
 | |
| 				skb = pskb_copy(oskb, gfp_mask);
 | |
| 			else
 | |
| 				skb = skb_clone(oskb, gfp_mask);
 | |
| 		} tcp_skb_tsorted_restore(oskb);
 | |
| 
 | |
| 		if (unlikely(!skb))
 | |
| 			return -ENOBUFS;
 | |
| 		/* retransmit skbs might have a non zero value in skb->dev
 | |
| 		 * because skb->dev is aliased with skb->rbnode.rb_left
 | |
| 		 */
 | |
| 		skb->dev = NULL;
 | |
| 	}
 | |
| 
 | |
| 	inet = inet_sk(sk);
 | |
| 	tcb = TCP_SKB_CB(skb);
 | |
| 	memset(&opts, 0, sizeof(opts));
 | |
| 
 | |
| 	tcp_get_current_key(sk, &key);
 | |
| 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
 | |
| 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
 | |
| 	} else {
 | |
| 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
 | |
| 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
 | |
| 		 * at receiver : This slightly improve GRO performance.
 | |
| 		 * Note that we do not force the PSH flag for non GSO packets,
 | |
| 		 * because they might be sent under high congestion events,
 | |
| 		 * and in this case it is better to delay the delivery of 1-MSS
 | |
| 		 * packets and thus the corresponding ACK packet that would
 | |
| 		 * release the following packet.
 | |
| 		 */
 | |
| 		if (tcp_skb_pcount(skb) > 1)
 | |
| 			tcb->tcp_flags |= TCPHDR_PSH;
 | |
| 	}
 | |
| 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
 | |
| 
 | |
| 	/* We set skb->ooo_okay to one if this packet can select
 | |
| 	 * a different TX queue than prior packets of this flow,
 | |
| 	 * to avoid self inflicted reorders.
 | |
| 	 * The 'other' queue decision is based on current cpu number
 | |
| 	 * if XPS is enabled, or sk->sk_txhash otherwise.
 | |
| 	 * We can switch to another (and better) queue if:
 | |
| 	 * 1) No packet with payload is in qdisc/device queues.
 | |
| 	 *    Delays in TX completion can defeat the test
 | |
| 	 *    even if packets were already sent.
 | |
| 	 * 2) Or rtx queue is empty.
 | |
| 	 *    This mitigates above case if ACK packets for
 | |
| 	 *    all prior packets were already processed.
 | |
| 	 */
 | |
| 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
 | |
| 			tcp_rtx_queue_empty(sk);
 | |
| 
 | |
| 	/* If we had to use memory reserve to allocate this skb,
 | |
| 	 * this might cause drops if packet is looped back :
 | |
| 	 * Other socket might not have SOCK_MEMALLOC.
 | |
| 	 * Packets not looped back do not care about pfmemalloc.
 | |
| 	 */
 | |
| 	skb->pfmemalloc = 0;
 | |
| 
 | |
| 	skb_push(skb, tcp_header_size);
 | |
| 	skb_reset_transport_header(skb);
 | |
| 
 | |
| 	skb_orphan(skb);
 | |
| 	skb->sk = sk;
 | |
| 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
 | |
| 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
 | |
| 
 | |
| 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
 | |
| 
 | |
| 	/* Build TCP header and checksum it. */
 | |
| 	th = (struct tcphdr *)skb->data;
 | |
| 	th->source		= inet->inet_sport;
 | |
| 	th->dest		= inet->inet_dport;
 | |
| 	th->seq			= htonl(tcb->seq);
 | |
| 	th->ack_seq		= htonl(rcv_nxt);
 | |
| 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
 | |
| 					tcb->tcp_flags);
 | |
| 
 | |
| 	th->check		= 0;
 | |
| 	th->urg_ptr		= 0;
 | |
| 
 | |
| 	/* The urg_mode check is necessary during a below snd_una win probe */
 | |
| 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
 | |
| 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
 | |
| 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
 | |
| 			th->urg = 1;
 | |
| 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
 | |
| 			th->urg_ptr = htons(0xFFFF);
 | |
| 			th->urg = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
 | |
| 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
 | |
| 		th->window      = htons(tcp_select_window(sk));
 | |
| 		tcp_ecn_send(sk, skb, th, tcp_header_size);
 | |
| 	} else {
 | |
| 		/* RFC1323: The window in SYN & SYN/ACK segments
 | |
| 		 * is never scaled.
 | |
| 		 */
 | |
| 		th->window	= htons(min(tp->rcv_wnd, 65535U));
 | |
| 	}
 | |
| 
 | |
| 	tcp_options_write(th, tp, NULL, &opts, &key);
 | |
| 
 | |
| 	if (tcp_key_is_md5(&key)) {
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 		/* Calculate the MD5 hash, as we have all we need now */
 | |
| 		sk_gso_disable(sk);
 | |
| 		tp->af_specific->calc_md5_hash(opts.hash_location,
 | |
| 					       key.md5_key, sk, skb);
 | |
| #endif
 | |
| 	} else if (tcp_key_is_ao(&key)) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
 | |
| 					  opts.hash_location);
 | |
| 		if (err) {
 | |
| 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* BPF prog is the last one writing header option */
 | |
| 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
 | |
| 
 | |
| 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
 | |
| 			   tcp_v6_send_check, tcp_v4_send_check,
 | |
| 			   sk, skb);
 | |
| 
 | |
| 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
 | |
| 		tcp_event_ack_sent(sk, rcv_nxt);
 | |
| 
 | |
| 	if (skb->len != tcp_header_size) {
 | |
| 		tcp_event_data_sent(tp, sk);
 | |
| 		tp->data_segs_out += tcp_skb_pcount(skb);
 | |
| 		tp->bytes_sent += skb->len - tcp_header_size;
 | |
| 	}
 | |
| 
 | |
| 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
 | |
| 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
 | |
| 			      tcp_skb_pcount(skb));
 | |
| 
 | |
| 	tp->segs_out += tcp_skb_pcount(skb);
 | |
| 	skb_set_hash_from_sk(skb, sk);
 | |
| 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
 | |
| 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
 | |
| 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
 | |
| 
 | |
| 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
 | |
| 
 | |
| 	/* Cleanup our debris for IP stacks */
 | |
| 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
 | |
| 			       sizeof(struct inet6_skb_parm)));
 | |
| 
 | |
| 	tcp_add_tx_delay(skb, tp);
 | |
| 
 | |
| 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
 | |
| 				 inet6_csk_xmit, ip_queue_xmit,
 | |
| 				 sk, skb, &inet->cork.fl);
 | |
| 
 | |
| 	if (unlikely(err > 0)) {
 | |
| 		tcp_enter_cwr(sk);
 | |
| 		err = net_xmit_eval(err);
 | |
| 	}
 | |
| 	if (!err && oskb) {
 | |
| 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
 | |
| 		tcp_rate_skb_sent(sk, oskb);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
 | |
| 			    gfp_t gfp_mask)
 | |
| {
 | |
| 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
 | |
| 				  tcp_sk(sk)->rcv_nxt);
 | |
| }
 | |
| 
 | |
| /* This routine just queues the buffer for sending.
 | |
|  *
 | |
|  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
 | |
|  * otherwise socket can stall.
 | |
|  */
 | |
| static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	/* Advance write_seq and place onto the write_queue. */
 | |
| 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
 | |
| 	__skb_header_release(skb);
 | |
| 	tcp_add_write_queue_tail(sk, skb);
 | |
| 	sk_wmem_queued_add(sk, skb->truesize);
 | |
| 	sk_mem_charge(sk, skb->truesize);
 | |
| }
 | |
| 
 | |
| /* Initialize TSO segments for a packet. */
 | |
| static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
 | |
| {
 | |
| 	if (skb->len <= mss_now) {
 | |
| 		/* Avoid the costly divide in the normal
 | |
| 		 * non-TSO case.
 | |
| 		 */
 | |
| 		tcp_skb_pcount_set(skb, 1);
 | |
| 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
 | |
| 	} else {
 | |
| 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
 | |
| 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Pcount in the middle of the write queue got changed, we need to do various
 | |
|  * tweaks to fix counters
 | |
|  */
 | |
| static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	tp->packets_out -= decr;
 | |
| 
 | |
| 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
 | |
| 		tp->sacked_out -= decr;
 | |
| 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
 | |
| 		tp->retrans_out -= decr;
 | |
| 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
 | |
| 		tp->lost_out -= decr;
 | |
| 
 | |
| 	/* Reno case is special. Sigh... */
 | |
| 	if (tcp_is_reno(tp) && decr > 0)
 | |
| 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
 | |
| 
 | |
| 	if (tp->lost_skb_hint &&
 | |
| 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
 | |
| 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
 | |
| 		tp->lost_cnt_hint -= decr;
 | |
| 
 | |
| 	tcp_verify_left_out(tp);
 | |
| }
 | |
| 
 | |
| static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
 | |
| {
 | |
| 	return TCP_SKB_CB(skb)->txstamp_ack ||
 | |
| 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
 | |
| }
 | |
| 
 | |
| static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
 | |
| {
 | |
| 	struct skb_shared_info *shinfo = skb_shinfo(skb);
 | |
| 
 | |
| 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
 | |
| 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
 | |
| 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
 | |
| 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
 | |
| 
 | |
| 		shinfo->tx_flags &= ~tsflags;
 | |
| 		shinfo2->tx_flags |= tsflags;
 | |
| 		swap(shinfo->tskey, shinfo2->tskey);
 | |
| 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
 | |
| 		TCP_SKB_CB(skb)->txstamp_ack = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
 | |
| {
 | |
| 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
 | |
| 	TCP_SKB_CB(skb)->eor = 0;
 | |
| }
 | |
| 
 | |
| /* Insert buff after skb on the write or rtx queue of sk.  */
 | |
| static void tcp_insert_write_queue_after(struct sk_buff *skb,
 | |
| 					 struct sk_buff *buff,
 | |
| 					 struct sock *sk,
 | |
| 					 enum tcp_queue tcp_queue)
 | |
| {
 | |
| 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
 | |
| 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
 | |
| 	else
 | |
| 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
 | |
| }
 | |
| 
 | |
| /* Function to create two new TCP segments.  Shrinks the given segment
 | |
|  * to the specified size and appends a new segment with the rest of the
 | |
|  * packet to the list.  This won't be called frequently, I hope.
 | |
|  * Remember, these are still headerless SKBs at this point.
 | |
|  */
 | |
| int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 | |
| 		 struct sk_buff *skb, u32 len,
 | |
| 		 unsigned int mss_now, gfp_t gfp)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *buff;
 | |
| 	int old_factor;
 | |
| 	long limit;
 | |
| 	int nlen;
 | |
| 	u8 flags;
 | |
| 
 | |
| 	if (WARN_ON(len > skb->len))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
 | |
| 
 | |
| 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
 | |
| 	 * We need some allowance to not penalize applications setting small
 | |
| 	 * SO_SNDBUF values.
 | |
| 	 * Also allow first and last skb in retransmit queue to be split.
 | |
| 	 */
 | |
| 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
 | |
| 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
 | |
| 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
 | |
| 		     skb != tcp_rtx_queue_head(sk) &&
 | |
| 		     skb != tcp_rtx_queue_tail(sk))) {
 | |
| 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_unclone_keeptruesize(skb, gfp))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Get a new skb... force flag on. */
 | |
| 	buff = tcp_stream_alloc_skb(sk, gfp, true);
 | |
| 	if (!buff)
 | |
| 		return -ENOMEM; /* We'll just try again later. */
 | |
| 	skb_copy_decrypted(buff, skb);
 | |
| 	mptcp_skb_ext_copy(buff, skb);
 | |
| 
 | |
| 	sk_wmem_queued_add(sk, buff->truesize);
 | |
| 	sk_mem_charge(sk, buff->truesize);
 | |
| 	nlen = skb->len - len;
 | |
| 	buff->truesize += nlen;
 | |
| 	skb->truesize -= nlen;
 | |
| 
 | |
| 	/* Correct the sequence numbers. */
 | |
| 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
 | |
| 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
 | |
| 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
 | |
| 
 | |
| 	/* PSH and FIN should only be set in the second packet. */
 | |
| 	flags = TCP_SKB_CB(skb)->tcp_flags;
 | |
| 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
 | |
| 	TCP_SKB_CB(buff)->tcp_flags = flags;
 | |
| 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
 | |
| 	tcp_skb_fragment_eor(skb, buff);
 | |
| 
 | |
| 	skb_split(skb, buff, len);
 | |
| 
 | |
| 	skb_set_delivery_time(buff, skb->tstamp, true);
 | |
| 	tcp_fragment_tstamp(skb, buff);
 | |
| 
 | |
| 	old_factor = tcp_skb_pcount(skb);
 | |
| 
 | |
| 	/* Fix up tso_factor for both original and new SKB.  */
 | |
| 	tcp_set_skb_tso_segs(skb, mss_now);
 | |
| 	tcp_set_skb_tso_segs(buff, mss_now);
 | |
| 
 | |
| 	/* Update delivered info for the new segment */
 | |
| 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
 | |
| 
 | |
| 	/* If this packet has been sent out already, we must
 | |
| 	 * adjust the various packet counters.
 | |
| 	 */
 | |
| 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
 | |
| 		int diff = old_factor - tcp_skb_pcount(skb) -
 | |
| 			tcp_skb_pcount(buff);
 | |
| 
 | |
| 		if (diff)
 | |
| 			tcp_adjust_pcount(sk, skb, diff);
 | |
| 	}
 | |
| 
 | |
| 	/* Link BUFF into the send queue. */
 | |
| 	__skb_header_release(buff);
 | |
| 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
 | |
| 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
 | |
| 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This is similar to __pskb_pull_tail(). The difference is that pulled
 | |
|  * data is not copied, but immediately discarded.
 | |
|  */
 | |
| static int __pskb_trim_head(struct sk_buff *skb, int len)
 | |
| {
 | |
| 	struct skb_shared_info *shinfo;
 | |
| 	int i, k, eat;
 | |
| 
 | |
| 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
 | |
| 	eat = len;
 | |
| 	k = 0;
 | |
| 	shinfo = skb_shinfo(skb);
 | |
| 	for (i = 0; i < shinfo->nr_frags; i++) {
 | |
| 		int size = skb_frag_size(&shinfo->frags[i]);
 | |
| 
 | |
| 		if (size <= eat) {
 | |
| 			skb_frag_unref(skb, i);
 | |
| 			eat -= size;
 | |
| 		} else {
 | |
| 			shinfo->frags[k] = shinfo->frags[i];
 | |
| 			if (eat) {
 | |
| 				skb_frag_off_add(&shinfo->frags[k], eat);
 | |
| 				skb_frag_size_sub(&shinfo->frags[k], eat);
 | |
| 				eat = 0;
 | |
| 			}
 | |
| 			k++;
 | |
| 		}
 | |
| 	}
 | |
| 	shinfo->nr_frags = k;
 | |
| 
 | |
| 	skb->data_len -= len;
 | |
| 	skb->len = skb->data_len;
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /* Remove acked data from a packet in the transmit queue. */
 | |
| int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
 | |
| {
 | |
| 	u32 delta_truesize;
 | |
| 
 | |
| 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	delta_truesize = __pskb_trim_head(skb, len);
 | |
| 
 | |
| 	TCP_SKB_CB(skb)->seq += len;
 | |
| 
 | |
| 	skb->truesize	   -= delta_truesize;
 | |
| 	sk_wmem_queued_add(sk, -delta_truesize);
 | |
| 	if (!skb_zcopy_pure(skb))
 | |
| 		sk_mem_uncharge(sk, delta_truesize);
 | |
| 
 | |
| 	/* Any change of skb->len requires recalculation of tso factor. */
 | |
| 	if (tcp_skb_pcount(skb) > 1)
 | |
| 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Calculate MSS not accounting any TCP options.  */
 | |
| static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
 | |
| {
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	const struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	int mss_now;
 | |
| 
 | |
| 	/* Calculate base mss without TCP options:
 | |
| 	   It is MMS_S - sizeof(tcphdr) of rfc1122
 | |
| 	 */
 | |
| 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
 | |
| 
 | |
| 	/* Clamp it (mss_clamp does not include tcp options) */
 | |
| 	if (mss_now > tp->rx_opt.mss_clamp)
 | |
| 		mss_now = tp->rx_opt.mss_clamp;
 | |
| 
 | |
| 	/* Now subtract optional transport overhead */
 | |
| 	mss_now -= icsk->icsk_ext_hdr_len;
 | |
| 
 | |
| 	/* Then reserve room for full set of TCP options and 8 bytes of data */
 | |
| 	mss_now = max(mss_now,
 | |
| 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
 | |
| 	return mss_now;
 | |
| }
 | |
| 
 | |
| /* Calculate MSS. Not accounting for SACKs here.  */
 | |
| int tcp_mtu_to_mss(struct sock *sk, int pmtu)
 | |
| {
 | |
| 	/* Subtract TCP options size, not including SACKs */
 | |
| 	return __tcp_mtu_to_mss(sk, pmtu) -
 | |
| 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_mtu_to_mss);
 | |
| 
 | |
| /* Inverse of above */
 | |
| int tcp_mss_to_mtu(struct sock *sk, int mss)
 | |
| {
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	const struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 
 | |
| 	return mss +
 | |
| 	      tp->tcp_header_len +
 | |
| 	      icsk->icsk_ext_hdr_len +
 | |
| 	      icsk->icsk_af_ops->net_header_len;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_mss_to_mtu);
 | |
| 
 | |
| /* MTU probing init per socket */
 | |
| void tcp_mtup_init(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct net *net = sock_net(sk);
 | |
| 
 | |
| 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
 | |
| 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
 | |
| 			       icsk->icsk_af_ops->net_header_len;
 | |
| 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
 | |
| 	icsk->icsk_mtup.probe_size = 0;
 | |
| 	if (icsk->icsk_mtup.enabled)
 | |
| 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_mtup_init);
 | |
| 
 | |
| /* This function synchronize snd mss to current pmtu/exthdr set.
 | |
| 
 | |
|    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
 | |
|    for TCP options, but includes only bare TCP header.
 | |
| 
 | |
|    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
 | |
|    It is minimum of user_mss and mss received with SYN.
 | |
|    It also does not include TCP options.
 | |
| 
 | |
|    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
 | |
| 
 | |
|    tp->mss_cache is current effective sending mss, including
 | |
|    all tcp options except for SACKs. It is evaluated,
 | |
|    taking into account current pmtu, but never exceeds
 | |
|    tp->rx_opt.mss_clamp.
 | |
| 
 | |
|    NOTE1. rfc1122 clearly states that advertised MSS
 | |
|    DOES NOT include either tcp or ip options.
 | |
| 
 | |
|    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
 | |
|    are READ ONLY outside this function.		--ANK (980731)
 | |
|  */
 | |
| unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	int mss_now;
 | |
| 
 | |
| 	if (icsk->icsk_mtup.search_high > pmtu)
 | |
| 		icsk->icsk_mtup.search_high = pmtu;
 | |
| 
 | |
| 	mss_now = tcp_mtu_to_mss(sk, pmtu);
 | |
| 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
 | |
| 
 | |
| 	/* And store cached results */
 | |
| 	icsk->icsk_pmtu_cookie = pmtu;
 | |
| 	if (icsk->icsk_mtup.enabled)
 | |
| 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
 | |
| 	tp->mss_cache = mss_now;
 | |
| 
 | |
| 	return mss_now;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_sync_mss);
 | |
| 
 | |
| /* Compute the current effective MSS, taking SACKs and IP options,
 | |
|  * and even PMTU discovery events into account.
 | |
|  */
 | |
| unsigned int tcp_current_mss(struct sock *sk)
 | |
| {
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	const struct dst_entry *dst = __sk_dst_get(sk);
 | |
| 	u32 mss_now;
 | |
| 	unsigned int header_len;
 | |
| 	struct tcp_out_options opts;
 | |
| 	struct tcp_key key;
 | |
| 
 | |
| 	mss_now = tp->mss_cache;
 | |
| 
 | |
| 	if (dst) {
 | |
| 		u32 mtu = dst_mtu(dst);
 | |
| 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
 | |
| 			mss_now = tcp_sync_mss(sk, mtu);
 | |
| 	}
 | |
| 	tcp_get_current_key(sk, &key);
 | |
| 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
 | |
| 		     sizeof(struct tcphdr);
 | |
| 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
 | |
| 	 * some common options. If this is an odd packet (because we have SACK
 | |
| 	 * blocks etc) then our calculated header_len will be different, and
 | |
| 	 * we have to adjust mss_now correspondingly */
 | |
| 	if (header_len != tp->tcp_header_len) {
 | |
| 		int delta = (int) header_len - tp->tcp_header_len;
 | |
| 		mss_now -= delta;
 | |
| 	}
 | |
| 
 | |
| 	return mss_now;
 | |
| }
 | |
| 
 | |
| /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
 | |
|  * As additional protections, we do not touch cwnd in retransmission phases,
 | |
|  * and if application hit its sndbuf limit recently.
 | |
|  */
 | |
| static void tcp_cwnd_application_limited(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
 | |
| 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
 | |
| 		/* Limited by application or receiver window. */
 | |
| 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
 | |
| 		u32 win_used = max(tp->snd_cwnd_used, init_win);
 | |
| 		if (win_used < tcp_snd_cwnd(tp)) {
 | |
| 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
 | |
| 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
 | |
| 		}
 | |
| 		tp->snd_cwnd_used = 0;
 | |
| 	}
 | |
| 	tp->snd_cwnd_stamp = tcp_jiffies32;
 | |
| }
 | |
| 
 | |
| static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
 | |
| {
 | |
| 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	/* Track the strongest available signal of the degree to which the cwnd
 | |
| 	 * is fully utilized. If cwnd-limited then remember that fact for the
 | |
| 	 * current window. If not cwnd-limited then track the maximum number of
 | |
| 	 * outstanding packets in the current window. (If cwnd-limited then we
 | |
| 	 * chose to not update tp->max_packets_out to avoid an extra else
 | |
| 	 * clause with no functional impact.)
 | |
| 	 */
 | |
| 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
 | |
| 	    is_cwnd_limited ||
 | |
| 	    (!tp->is_cwnd_limited &&
 | |
| 	     tp->packets_out > tp->max_packets_out)) {
 | |
| 		tp->is_cwnd_limited = is_cwnd_limited;
 | |
| 		tp->max_packets_out = tp->packets_out;
 | |
| 		tp->cwnd_usage_seq = tp->snd_nxt;
 | |
| 	}
 | |
| 
 | |
| 	if (tcp_is_cwnd_limited(sk)) {
 | |
| 		/* Network is feed fully. */
 | |
| 		tp->snd_cwnd_used = 0;
 | |
| 		tp->snd_cwnd_stamp = tcp_jiffies32;
 | |
| 	} else {
 | |
| 		/* Network starves. */
 | |
| 		if (tp->packets_out > tp->snd_cwnd_used)
 | |
| 			tp->snd_cwnd_used = tp->packets_out;
 | |
| 
 | |
| 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
 | |
| 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
 | |
| 		    !ca_ops->cong_control)
 | |
| 			tcp_cwnd_application_limited(sk);
 | |
| 
 | |
| 		/* The following conditions together indicate the starvation
 | |
| 		 * is caused by insufficient sender buffer:
 | |
| 		 * 1) just sent some data (see tcp_write_xmit)
 | |
| 		 * 2) not cwnd limited (this else condition)
 | |
| 		 * 3) no more data to send (tcp_write_queue_empty())
 | |
| 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
 | |
| 		 */
 | |
| 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
 | |
| 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
 | |
| 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
 | |
| 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Minshall's variant of the Nagle send check. */
 | |
| static bool tcp_minshall_check(const struct tcp_sock *tp)
 | |
| {
 | |
| 	return after(tp->snd_sml, tp->snd_una) &&
 | |
| 		!after(tp->snd_sml, tp->snd_nxt);
 | |
| }
 | |
| 
 | |
| /* Update snd_sml if this skb is under mss
 | |
|  * Note that a TSO packet might end with a sub-mss segment
 | |
|  * The test is really :
 | |
|  * if ((skb->len % mss) != 0)
 | |
|  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
 | |
|  * But we can avoid doing the divide again given we already have
 | |
|  *  skb_pcount = skb->len / mss_now
 | |
|  */
 | |
| static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
 | |
| 				const struct sk_buff *skb)
 | |
| {
 | |
| 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
 | |
| 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
 | |
| }
 | |
| 
 | |
| /* Return false, if packet can be sent now without violation Nagle's rules:
 | |
|  * 1. It is full sized. (provided by caller in %partial bool)
 | |
|  * 2. Or it contains FIN. (already checked by caller)
 | |
|  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
 | |
|  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
 | |
|  *    With Minshall's modification: all sent small packets are ACKed.
 | |
|  */
 | |
| static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
 | |
| 			    int nonagle)
 | |
| {
 | |
| 	return partial &&
 | |
| 		((nonagle & TCP_NAGLE_CORK) ||
 | |
| 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
 | |
| }
 | |
| 
 | |
| /* Return how many segs we'd like on a TSO packet,
 | |
|  * depending on current pacing rate, and how close the peer is.
 | |
|  *
 | |
|  * Rationale is:
 | |
|  * - For close peers, we rather send bigger packets to reduce
 | |
|  *   cpu costs, because occasional losses will be repaired fast.
 | |
|  * - For long distance/rtt flows, we would like to get ACK clocking
 | |
|  *   with 1 ACK per ms.
 | |
|  *
 | |
|  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
 | |
|  * in bigger TSO bursts. We we cut the RTT-based allowance in half
 | |
|  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
 | |
|  * is below 1500 bytes after 6 * ~500 usec = 3ms.
 | |
|  */
 | |
| static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
 | |
| 			    int min_tso_segs)
 | |
| {
 | |
| 	unsigned long bytes;
 | |
| 	u32 r;
 | |
| 
 | |
| 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
 | |
| 
 | |
| 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
 | |
| 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
 | |
| 		bytes += sk->sk_gso_max_size >> r;
 | |
| 
 | |
| 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
 | |
| 
 | |
| 	return max_t(u32, bytes / mss_now, min_tso_segs);
 | |
| }
 | |
| 
 | |
| /* Return the number of segments we want in the skb we are transmitting.
 | |
|  * See if congestion control module wants to decide; otherwise, autosize.
 | |
|  */
 | |
| static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
 | |
| {
 | |
| 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 | |
| 	u32 min_tso, tso_segs;
 | |
| 
 | |
| 	min_tso = ca_ops->min_tso_segs ?
 | |
| 			ca_ops->min_tso_segs(sk) :
 | |
| 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
 | |
| 
 | |
| 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
 | |
| 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
 | |
| }
 | |
| 
 | |
| /* Returns the portion of skb which can be sent right away */
 | |
| static unsigned int tcp_mss_split_point(const struct sock *sk,
 | |
| 					const struct sk_buff *skb,
 | |
| 					unsigned int mss_now,
 | |
| 					unsigned int max_segs,
 | |
| 					int nonagle)
 | |
| {
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	u32 partial, needed, window, max_len;
 | |
| 
 | |
| 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
 | |
| 	max_len = mss_now * max_segs;
 | |
| 
 | |
| 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
 | |
| 		return max_len;
 | |
| 
 | |
| 	needed = min(skb->len, window);
 | |
| 
 | |
| 	if (max_len <= needed)
 | |
| 		return max_len;
 | |
| 
 | |
| 	partial = needed % mss_now;
 | |
| 	/* If last segment is not a full MSS, check if Nagle rules allow us
 | |
| 	 * to include this last segment in this skb.
 | |
| 	 * Otherwise, we'll split the skb at last MSS boundary
 | |
| 	 */
 | |
| 	if (tcp_nagle_check(partial != 0, tp, nonagle))
 | |
| 		return needed - partial;
 | |
| 
 | |
| 	return needed;
 | |
| }
 | |
| 
 | |
| /* Can at least one segment of SKB be sent right now, according to the
 | |
|  * congestion window rules?  If so, return how many segments are allowed.
 | |
|  */
 | |
| static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
 | |
| 					 const struct sk_buff *skb)
 | |
| {
 | |
| 	u32 in_flight, cwnd, halfcwnd;
 | |
| 
 | |
| 	/* Don't be strict about the congestion window for the final FIN.  */
 | |
| 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
 | |
| 	    tcp_skb_pcount(skb) == 1)
 | |
| 		return 1;
 | |
| 
 | |
| 	in_flight = tcp_packets_in_flight(tp);
 | |
| 	cwnd = tcp_snd_cwnd(tp);
 | |
| 	if (in_flight >= cwnd)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* For better scheduling, ensure we have at least
 | |
| 	 * 2 GSO packets in flight.
 | |
| 	 */
 | |
| 	halfcwnd = max(cwnd >> 1, 1U);
 | |
| 	return min(halfcwnd, cwnd - in_flight);
 | |
| }
 | |
| 
 | |
| /* Initialize TSO state of a skb.
 | |
|  * This must be invoked the first time we consider transmitting
 | |
|  * SKB onto the wire.
 | |
|  */
 | |
| static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
 | |
| {
 | |
| 	int tso_segs = tcp_skb_pcount(skb);
 | |
| 
 | |
| 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
 | |
| 		tcp_set_skb_tso_segs(skb, mss_now);
 | |
| 		tso_segs = tcp_skb_pcount(skb);
 | |
| 	}
 | |
| 	return tso_segs;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Return true if the Nagle test allows this packet to be
 | |
|  * sent now.
 | |
|  */
 | |
| static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
 | |
| 				  unsigned int cur_mss, int nonagle)
 | |
| {
 | |
| 	/* Nagle rule does not apply to frames, which sit in the middle of the
 | |
| 	 * write_queue (they have no chances to get new data).
 | |
| 	 *
 | |
| 	 * This is implemented in the callers, where they modify the 'nonagle'
 | |
| 	 * argument based upon the location of SKB in the send queue.
 | |
| 	 */
 | |
| 	if (nonagle & TCP_NAGLE_PUSH)
 | |
| 		return true;
 | |
| 
 | |
| 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
 | |
| 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
 | |
| 		return true;
 | |
| 
 | |
| 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Does at least the first segment of SKB fit into the send window? */
 | |
| static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
 | |
| 			     const struct sk_buff *skb,
 | |
| 			     unsigned int cur_mss)
 | |
| {
 | |
| 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
 | |
| 
 | |
| 	if (skb->len > cur_mss)
 | |
| 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
 | |
| 
 | |
| 	return !after(end_seq, tcp_wnd_end(tp));
 | |
| }
 | |
| 
 | |
| /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
 | |
|  * which is put after SKB on the list.  It is very much like
 | |
|  * tcp_fragment() except that it may make several kinds of assumptions
 | |
|  * in order to speed up the splitting operation.  In particular, we
 | |
|  * know that all the data is in scatter-gather pages, and that the
 | |
|  * packet has never been sent out before (and thus is not cloned).
 | |
|  */
 | |
| static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
 | |
| 			unsigned int mss_now, gfp_t gfp)
 | |
| {
 | |
| 	int nlen = skb->len - len;
 | |
| 	struct sk_buff *buff;
 | |
| 	u8 flags;
 | |
| 
 | |
| 	/* All of a TSO frame must be composed of paged data.  */
 | |
| 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
 | |
| 
 | |
| 	buff = tcp_stream_alloc_skb(sk, gfp, true);
 | |
| 	if (unlikely(!buff))
 | |
| 		return -ENOMEM;
 | |
| 	skb_copy_decrypted(buff, skb);
 | |
| 	mptcp_skb_ext_copy(buff, skb);
 | |
| 
 | |
| 	sk_wmem_queued_add(sk, buff->truesize);
 | |
| 	sk_mem_charge(sk, buff->truesize);
 | |
| 	buff->truesize += nlen;
 | |
| 	skb->truesize -= nlen;
 | |
| 
 | |
| 	/* Correct the sequence numbers. */
 | |
| 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
 | |
| 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
 | |
| 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
 | |
| 
 | |
| 	/* PSH and FIN should only be set in the second packet. */
 | |
| 	flags = TCP_SKB_CB(skb)->tcp_flags;
 | |
| 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
 | |
| 	TCP_SKB_CB(buff)->tcp_flags = flags;
 | |
| 
 | |
| 	tcp_skb_fragment_eor(skb, buff);
 | |
| 
 | |
| 	skb_split(skb, buff, len);
 | |
| 	tcp_fragment_tstamp(skb, buff);
 | |
| 
 | |
| 	/* Fix up tso_factor for both original and new SKB.  */
 | |
| 	tcp_set_skb_tso_segs(skb, mss_now);
 | |
| 	tcp_set_skb_tso_segs(buff, mss_now);
 | |
| 
 | |
| 	/* Link BUFF into the send queue. */
 | |
| 	__skb_header_release(buff);
 | |
| 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Try to defer sending, if possible, in order to minimize the amount
 | |
|  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
 | |
|  *
 | |
|  * This algorithm is from John Heffner.
 | |
|  */
 | |
| static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
 | |
| 				 bool *is_cwnd_limited,
 | |
| 				 bool *is_rwnd_limited,
 | |
| 				 u32 max_segs)
 | |
| {
 | |
| 	const struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	u32 send_win, cong_win, limit, in_flight;
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *head;
 | |
| 	int win_divisor;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
 | |
| 		goto send_now;
 | |
| 
 | |
| 	/* Avoid bursty behavior by allowing defer
 | |
| 	 * only if the last write was recent (1 ms).
 | |
| 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
 | |
| 	 * packets waiting in a qdisc or device for EDT delivery.
 | |
| 	 */
 | |
| 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
 | |
| 	if (delta > 0)
 | |
| 		goto send_now;
 | |
| 
 | |
| 	in_flight = tcp_packets_in_flight(tp);
 | |
| 
 | |
| 	BUG_ON(tcp_skb_pcount(skb) <= 1);
 | |
| 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
 | |
| 
 | |
| 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
 | |
| 
 | |
| 	/* From in_flight test above, we know that cwnd > in_flight.  */
 | |
| 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
 | |
| 
 | |
| 	limit = min(send_win, cong_win);
 | |
| 
 | |
| 	/* If a full-sized TSO skb can be sent, do it. */
 | |
| 	if (limit >= max_segs * tp->mss_cache)
 | |
| 		goto send_now;
 | |
| 
 | |
| 	/* Middle in queue won't get any more data, full sendable already? */
 | |
| 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
 | |
| 		goto send_now;
 | |
| 
 | |
| 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
 | |
| 	if (win_divisor) {
 | |
| 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
 | |
| 
 | |
| 		/* If at least some fraction of a window is available,
 | |
| 		 * just use it.
 | |
| 		 */
 | |
| 		chunk /= win_divisor;
 | |
| 		if (limit >= chunk)
 | |
| 			goto send_now;
 | |
| 	} else {
 | |
| 		/* Different approach, try not to defer past a single
 | |
| 		 * ACK.  Receiver should ACK every other full sized
 | |
| 		 * frame, so if we have space for more than 3 frames
 | |
| 		 * then send now.
 | |
| 		 */
 | |
| 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
 | |
| 			goto send_now;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO : use tsorted_sent_queue ? */
 | |
| 	head = tcp_rtx_queue_head(sk);
 | |
| 	if (!head)
 | |
| 		goto send_now;
 | |
| 	delta = tp->tcp_clock_cache - head->tstamp;
 | |
| 	/* If next ACK is likely to come too late (half srtt), do not defer */
 | |
| 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
 | |
| 		goto send_now;
 | |
| 
 | |
| 	/* Ok, it looks like it is advisable to defer.
 | |
| 	 * Three cases are tracked :
 | |
| 	 * 1) We are cwnd-limited
 | |
| 	 * 2) We are rwnd-limited
 | |
| 	 * 3) We are application limited.
 | |
| 	 */
 | |
| 	if (cong_win < send_win) {
 | |
| 		if (cong_win <= skb->len) {
 | |
| 			*is_cwnd_limited = true;
 | |
| 			return true;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (send_win <= skb->len) {
 | |
| 			*is_rwnd_limited = true;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If this packet won't get more data, do not wait. */
 | |
| 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
 | |
| 	    TCP_SKB_CB(skb)->eor)
 | |
| 		goto send_now;
 | |
| 
 | |
| 	return true;
 | |
| 
 | |
| send_now:
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void tcp_mtu_check_reprobe(struct sock *sk)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct net *net = sock_net(sk);
 | |
| 	u32 interval;
 | |
| 	s32 delta;
 | |
| 
 | |
| 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
 | |
| 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
 | |
| 	if (unlikely(delta >= interval * HZ)) {
 | |
| 		int mss = tcp_current_mss(sk);
 | |
| 
 | |
| 		/* Update current search range */
 | |
| 		icsk->icsk_mtup.probe_size = 0;
 | |
| 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
 | |
| 			sizeof(struct tcphdr) +
 | |
| 			icsk->icsk_af_ops->net_header_len;
 | |
| 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
 | |
| 
 | |
| 		/* Update probe time stamp */
 | |
| 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
 | |
| {
 | |
| 	struct sk_buff *skb, *next;
 | |
| 
 | |
| 	skb = tcp_send_head(sk);
 | |
| 	tcp_for_write_queue_from_safe(skb, next, sk) {
 | |
| 		if (len <= skb->len)
 | |
| 			break;
 | |
| 
 | |
| 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
 | |
| 		    tcp_has_tx_tstamp(skb) ||
 | |
| 		    !skb_pure_zcopy_same(skb, next))
 | |
| 			return false;
 | |
| 
 | |
| 		len -= skb->len;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
 | |
| 			     int probe_size)
 | |
| {
 | |
| 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
 | |
| 	int i, todo, len = 0, nr_frags = 0;
 | |
| 	const struct sk_buff *skb;
 | |
| 
 | |
| 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	skb_queue_walk(&sk->sk_write_queue, skb) {
 | |
| 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
 | |
| 
 | |
| 		if (skb_headlen(skb))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
 | |
| 			if (len >= probe_size)
 | |
| 				goto commit;
 | |
| 			todo = min_t(int, skb_frag_size(fragfrom),
 | |
| 				     probe_size - len);
 | |
| 			len += todo;
 | |
| 			if (lastfrag &&
 | |
| 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
 | |
| 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
 | |
| 						      skb_frag_size(lastfrag)) {
 | |
| 				skb_frag_size_add(lastfrag, todo);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
 | |
| 				return -E2BIG;
 | |
| 			skb_frag_page_copy(fragto, fragfrom);
 | |
| 			skb_frag_off_copy(fragto, fragfrom);
 | |
| 			skb_frag_size_set(fragto, todo);
 | |
| 			nr_frags++;
 | |
| 			lastfrag = fragto++;
 | |
| 		}
 | |
| 	}
 | |
| commit:
 | |
| 	WARN_ON_ONCE(len != probe_size);
 | |
| 	for (i = 0; i < nr_frags; i++)
 | |
| 		skb_frag_ref(to, i);
 | |
| 
 | |
| 	skb_shinfo(to)->nr_frags = nr_frags;
 | |
| 	to->truesize += probe_size;
 | |
| 	to->len += probe_size;
 | |
| 	to->data_len += probe_size;
 | |
| 	__skb_header_release(to);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Create a new MTU probe if we are ready.
 | |
|  * MTU probe is regularly attempting to increase the path MTU by
 | |
|  * deliberately sending larger packets.  This discovers routing
 | |
|  * changes resulting in larger path MTUs.
 | |
|  *
 | |
|  * Returns 0 if we should wait to probe (no cwnd available),
 | |
|  *         1 if a probe was sent,
 | |
|  *         -1 otherwise
 | |
|  */
 | |
| static int tcp_mtu_probe(struct sock *sk)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb, *nskb, *next;
 | |
| 	struct net *net = sock_net(sk);
 | |
| 	int probe_size;
 | |
| 	int size_needed;
 | |
| 	int copy, len;
 | |
| 	int mss_now;
 | |
| 	int interval;
 | |
| 
 | |
| 	/* Not currently probing/verifying,
 | |
| 	 * not in recovery,
 | |
| 	 * have enough cwnd, and
 | |
| 	 * not SACKing (the variable headers throw things off)
 | |
| 	 */
 | |
| 	if (likely(!icsk->icsk_mtup.enabled ||
 | |
| 		   icsk->icsk_mtup.probe_size ||
 | |
| 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
 | |
| 		   tcp_snd_cwnd(tp) < 11 ||
 | |
| 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Use binary search for probe_size between tcp_mss_base,
 | |
| 	 * and current mss_clamp. if (search_high - search_low)
 | |
| 	 * smaller than a threshold, backoff from probing.
 | |
| 	 */
 | |
| 	mss_now = tcp_current_mss(sk);
 | |
| 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
 | |
| 				    icsk->icsk_mtup.search_low) >> 1);
 | |
| 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
 | |
| 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
 | |
| 	/* When misfortune happens, we are reprobing actively,
 | |
| 	 * and then reprobe timer has expired. We stick with current
 | |
| 	 * probing process by not resetting search range to its orignal.
 | |
| 	 */
 | |
| 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
 | |
| 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
 | |
| 		/* Check whether enough time has elaplased for
 | |
| 		 * another round of probing.
 | |
| 		 */
 | |
| 		tcp_mtu_check_reprobe(sk);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Have enough data in the send queue to probe? */
 | |
| 	if (tp->write_seq - tp->snd_nxt < size_needed)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (tp->snd_wnd < size_needed)
 | |
| 		return -1;
 | |
| 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
 | |
| 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
 | |
| 		if (!tcp_packets_in_flight(tp))
 | |
| 			return -1;
 | |
| 		else
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* We're allowed to probe.  Build it now. */
 | |
| 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
 | |
| 	if (!nskb)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* build the payload, and be prepared to abort if this fails. */
 | |
| 	if (tcp_clone_payload(sk, nskb, probe_size)) {
 | |
| 		tcp_skb_tsorted_anchor_cleanup(nskb);
 | |
| 		consume_skb(nskb);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	sk_wmem_queued_add(sk, nskb->truesize);
 | |
| 	sk_mem_charge(sk, nskb->truesize);
 | |
| 
 | |
| 	skb = tcp_send_head(sk);
 | |
| 	skb_copy_decrypted(nskb, skb);
 | |
| 	mptcp_skb_ext_copy(nskb, skb);
 | |
| 
 | |
| 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
 | |
| 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
 | |
| 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
 | |
| 
 | |
| 	tcp_insert_write_queue_before(nskb, skb, sk);
 | |
| 	tcp_highest_sack_replace(sk, skb, nskb);
 | |
| 
 | |
| 	len = 0;
 | |
| 	tcp_for_write_queue_from_safe(skb, next, sk) {
 | |
| 		copy = min_t(int, skb->len, probe_size - len);
 | |
| 
 | |
| 		if (skb->len <= copy) {
 | |
| 			/* We've eaten all the data from this skb.
 | |
| 			 * Throw it away. */
 | |
| 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
 | |
| 			/* If this is the last SKB we copy and eor is set
 | |
| 			 * we need to propagate it to the new skb.
 | |
| 			 */
 | |
| 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
 | |
| 			tcp_skb_collapse_tstamp(nskb, skb);
 | |
| 			tcp_unlink_write_queue(skb, sk);
 | |
| 			tcp_wmem_free_skb(sk, skb);
 | |
| 		} else {
 | |
| 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
 | |
| 						   ~(TCPHDR_FIN|TCPHDR_PSH);
 | |
| 			__pskb_trim_head(skb, copy);
 | |
| 			tcp_set_skb_tso_segs(skb, mss_now);
 | |
| 			TCP_SKB_CB(skb)->seq += copy;
 | |
| 		}
 | |
| 
 | |
| 		len += copy;
 | |
| 
 | |
| 		if (len >= probe_size)
 | |
| 			break;
 | |
| 	}
 | |
| 	tcp_init_tso_segs(nskb, nskb->len);
 | |
| 
 | |
| 	/* We're ready to send.  If this fails, the probe will
 | |
| 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
 | |
| 	 */
 | |
| 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
 | |
| 		/* Decrement cwnd here because we are sending
 | |
| 		 * effectively two packets. */
 | |
| 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
 | |
| 		tcp_event_new_data_sent(sk, nskb);
 | |
| 
 | |
| 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
 | |
| 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
 | |
| 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static bool tcp_pacing_check(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (!tcp_needs_internal_pacing(sk))
 | |
| 		return false;
 | |
| 
 | |
| 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
 | |
| 		hrtimer_start(&tp->pacing_timer,
 | |
| 			      ns_to_ktime(tp->tcp_wstamp_ns),
 | |
| 			      HRTIMER_MODE_ABS_PINNED_SOFT);
 | |
| 		sock_hold(sk);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
 | |
| {
 | |
| 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
 | |
| 
 | |
| 	/* No skb in the rtx queue. */
 | |
| 	if (!node)
 | |
| 		return true;
 | |
| 
 | |
| 	/* Only one skb in rtx queue. */
 | |
| 	return !node->rb_left && !node->rb_right;
 | |
| }
 | |
| 
 | |
| /* TCP Small Queues :
 | |
|  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
 | |
|  * (These limits are doubled for retransmits)
 | |
|  * This allows for :
 | |
|  *  - better RTT estimation and ACK scheduling
 | |
|  *  - faster recovery
 | |
|  *  - high rates
 | |
|  * Alas, some drivers / subsystems require a fair amount
 | |
|  * of queued bytes to ensure line rate.
 | |
|  * One example is wifi aggregation (802.11 AMPDU)
 | |
|  */
 | |
| static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
 | |
| 				  unsigned int factor)
 | |
| {
 | |
| 	unsigned long limit;
 | |
| 
 | |
| 	limit = max_t(unsigned long,
 | |
| 		      2 * skb->truesize,
 | |
| 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
 | |
| 	if (sk->sk_pacing_status == SK_PACING_NONE)
 | |
| 		limit = min_t(unsigned long, limit,
 | |
| 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
 | |
| 	limit <<= factor;
 | |
| 
 | |
| 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
 | |
| 	    tcp_sk(sk)->tcp_tx_delay) {
 | |
| 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
 | |
| 				  tcp_sk(sk)->tcp_tx_delay;
 | |
| 
 | |
| 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
 | |
| 		 * approximate our needs assuming an ~100% skb->truesize overhead.
 | |
| 		 * USEC_PER_SEC is approximated by 2^20.
 | |
| 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
 | |
| 		 */
 | |
| 		extra_bytes >>= (20 - 1);
 | |
| 		limit += extra_bytes;
 | |
| 	}
 | |
| 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
 | |
| 		/* Always send skb if rtx queue is empty or has one skb.
 | |
| 		 * No need to wait for TX completion to call us back,
 | |
| 		 * after softirq/tasklet schedule.
 | |
| 		 * This helps when TX completions are delayed too much.
 | |
| 		 */
 | |
| 		if (tcp_rtx_queue_empty_or_single_skb(sk))
 | |
| 			return false;
 | |
| 
 | |
| 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 | |
| 		/* It is possible TX completion already happened
 | |
| 		 * before we set TSQ_THROTTLED, so we must
 | |
| 		 * test again the condition.
 | |
| 		 */
 | |
| 		smp_mb__after_atomic();
 | |
| 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
 | |
| {
 | |
| 	const u32 now = tcp_jiffies32;
 | |
| 	enum tcp_chrono old = tp->chrono_type;
 | |
| 
 | |
| 	if (old > TCP_CHRONO_UNSPEC)
 | |
| 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
 | |
| 	tp->chrono_start = now;
 | |
| 	tp->chrono_type = new;
 | |
| }
 | |
| 
 | |
| void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	/* If there are multiple conditions worthy of tracking in a
 | |
| 	 * chronograph then the highest priority enum takes precedence
 | |
| 	 * over the other conditions. So that if something "more interesting"
 | |
| 	 * starts happening, stop the previous chrono and start a new one.
 | |
| 	 */
 | |
| 	if (type > tp->chrono_type)
 | |
| 		tcp_chrono_set(tp, type);
 | |
| }
 | |
| 
 | |
| void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 
 | |
| 	/* There are multiple conditions worthy of tracking in a
 | |
| 	 * chronograph, so that the highest priority enum takes
 | |
| 	 * precedence over the other conditions (see tcp_chrono_start).
 | |
| 	 * If a condition stops, we only stop chrono tracking if
 | |
| 	 * it's the "most interesting" or current chrono we are
 | |
| 	 * tracking and starts busy chrono if we have pending data.
 | |
| 	 */
 | |
| 	if (tcp_rtx_and_write_queues_empty(sk))
 | |
| 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
 | |
| 	else if (type == tp->chrono_type)
 | |
| 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
 | |
| }
 | |
| 
 | |
| /* This routine writes packets to the network.  It advances the
 | |
|  * send_head.  This happens as incoming acks open up the remote
 | |
|  * window for us.
 | |
|  *
 | |
|  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
 | |
|  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
 | |
|  * account rare use of URG, this is not a big flaw.
 | |
|  *
 | |
|  * Send at most one packet when push_one > 0. Temporarily ignore
 | |
|  * cwnd limit to force at most one packet out when push_one == 2.
 | |
| 
 | |
|  * Returns true, if no segments are in flight and we have queued segments,
 | |
|  * but cannot send anything now because of SWS or another problem.
 | |
|  */
 | |
| static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
 | |
| 			   int push_one, gfp_t gfp)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned int tso_segs, sent_pkts;
 | |
| 	int cwnd_quota;
 | |
| 	int result;
 | |
| 	bool is_cwnd_limited = false, is_rwnd_limited = false;
 | |
| 	u32 max_segs;
 | |
| 
 | |
| 	sent_pkts = 0;
 | |
| 
 | |
| 	tcp_mstamp_refresh(tp);
 | |
| 	if (!push_one) {
 | |
| 		/* Do MTU probing. */
 | |
| 		result = tcp_mtu_probe(sk);
 | |
| 		if (!result) {
 | |
| 			return false;
 | |
| 		} else if (result > 0) {
 | |
| 			sent_pkts = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	max_segs = tcp_tso_segs(sk, mss_now);
 | |
| 	while ((skb = tcp_send_head(sk))) {
 | |
| 		unsigned int limit;
 | |
| 
 | |
| 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
 | |
| 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
 | |
| 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
 | |
| 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
 | |
| 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
 | |
| 			tcp_init_tso_segs(skb, mss_now);
 | |
| 			goto repair; /* Skip network transmission */
 | |
| 		}
 | |
| 
 | |
| 		if (tcp_pacing_check(sk))
 | |
| 			break;
 | |
| 
 | |
| 		tso_segs = tcp_init_tso_segs(skb, mss_now);
 | |
| 		BUG_ON(!tso_segs);
 | |
| 
 | |
| 		cwnd_quota = tcp_cwnd_test(tp, skb);
 | |
| 		if (!cwnd_quota) {
 | |
| 			if (push_one == 2)
 | |
| 				/* Force out a loss probe pkt. */
 | |
| 				cwnd_quota = 1;
 | |
| 			else
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
 | |
| 			is_rwnd_limited = true;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (tso_segs == 1) {
 | |
| 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
 | |
| 						     (tcp_skb_is_last(sk, skb) ?
 | |
| 						      nonagle : TCP_NAGLE_PUSH))))
 | |
| 				break;
 | |
| 		} else {
 | |
| 			if (!push_one &&
 | |
| 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
 | |
| 						 &is_rwnd_limited, max_segs))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		limit = mss_now;
 | |
| 		if (tso_segs > 1 && !tcp_urg_mode(tp))
 | |
| 			limit = tcp_mss_split_point(sk, skb, mss_now,
 | |
| 						    min_t(unsigned int,
 | |
| 							  cwnd_quota,
 | |
| 							  max_segs),
 | |
| 						    nonagle);
 | |
| 
 | |
| 		if (skb->len > limit &&
 | |
| 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
 | |
| 			break;
 | |
| 
 | |
| 		if (tcp_small_queue_check(sk, skb, 0))
 | |
| 			break;
 | |
| 
 | |
| 		/* Argh, we hit an empty skb(), presumably a thread
 | |
| 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
 | |
| 		 * We do not want to send a pure-ack packet and have
 | |
| 		 * a strange looking rtx queue with empty packet(s).
 | |
| 		 */
 | |
| 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
 | |
| 			break;
 | |
| 
 | |
| 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
 | |
| 			break;
 | |
| 
 | |
| repair:
 | |
| 		/* Advance the send_head.  This one is sent out.
 | |
| 		 * This call will increment packets_out.
 | |
| 		 */
 | |
| 		tcp_event_new_data_sent(sk, skb);
 | |
| 
 | |
| 		tcp_minshall_update(tp, mss_now, skb);
 | |
| 		sent_pkts += tcp_skb_pcount(skb);
 | |
| 
 | |
| 		if (push_one)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (is_rwnd_limited)
 | |
| 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
 | |
| 	else
 | |
| 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
 | |
| 
 | |
| 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
 | |
| 	if (likely(sent_pkts || is_cwnd_limited))
 | |
| 		tcp_cwnd_validate(sk, is_cwnd_limited);
 | |
| 
 | |
| 	if (likely(sent_pkts)) {
 | |
| 		if (tcp_in_cwnd_reduction(sk))
 | |
| 			tp->prr_out += sent_pkts;
 | |
| 
 | |
| 		/* Send one loss probe per tail loss episode. */
 | |
| 		if (push_one != 2)
 | |
| 			tcp_schedule_loss_probe(sk, false);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return !tp->packets_out && !tcp_write_queue_empty(sk);
 | |
| }
 | |
| 
 | |
| bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	u32 timeout, timeout_us, rto_delta_us;
 | |
| 	int early_retrans;
 | |
| 
 | |
| 	/* Don't do any loss probe on a Fast Open connection before 3WHS
 | |
| 	 * finishes.
 | |
| 	 */
 | |
| 	if (rcu_access_pointer(tp->fastopen_rsk))
 | |
| 		return false;
 | |
| 
 | |
| 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
 | |
| 	/* Schedule a loss probe in 2*RTT for SACK capable connections
 | |
| 	 * not in loss recovery, that are either limited by cwnd or application.
 | |
| 	 */
 | |
| 	if ((early_retrans != 3 && early_retrans != 4) ||
 | |
| 	    !tp->packets_out || !tcp_is_sack(tp) ||
 | |
| 	    (icsk->icsk_ca_state != TCP_CA_Open &&
 | |
| 	     icsk->icsk_ca_state != TCP_CA_CWR))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Probe timeout is 2*rtt. Add minimum RTO to account
 | |
| 	 * for delayed ack when there's one outstanding packet. If no RTT
 | |
| 	 * sample is available then probe after TCP_TIMEOUT_INIT.
 | |
| 	 */
 | |
| 	if (tp->srtt_us) {
 | |
| 		timeout_us = tp->srtt_us >> 2;
 | |
| 		if (tp->packets_out == 1)
 | |
| 			timeout_us += tcp_rto_min_us(sk);
 | |
| 		else
 | |
| 			timeout_us += TCP_TIMEOUT_MIN_US;
 | |
| 		timeout = usecs_to_jiffies(timeout_us);
 | |
| 	} else {
 | |
| 		timeout = TCP_TIMEOUT_INIT;
 | |
| 	}
 | |
| 
 | |
| 	/* If the RTO formula yields an earlier time, then use that time. */
 | |
| 	rto_delta_us = advancing_rto ?
 | |
| 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
 | |
| 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
 | |
| 	if (rto_delta_us > 0)
 | |
| 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
 | |
| 
 | |
| 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Thanks to skb fast clones, we can detect if a prior transmit of
 | |
|  * a packet is still in a qdisc or driver queue.
 | |
|  * In this case, there is very little point doing a retransmit !
 | |
|  */
 | |
| static bool skb_still_in_host_queue(struct sock *sk,
 | |
| 				    const struct sk_buff *skb)
 | |
| {
 | |
| 	if (unlikely(skb_fclone_busy(sk, skb))) {
 | |
| 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 | |
| 		smp_mb__after_atomic();
 | |
| 		if (skb_fclone_busy(sk, skb)) {
 | |
| 			NET_INC_STATS(sock_net(sk),
 | |
| 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* When probe timeout (PTO) fires, try send a new segment if possible, else
 | |
|  * retransmit the last segment.
 | |
|  */
 | |
| void tcp_send_loss_probe(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb;
 | |
| 	int pcount;
 | |
| 	int mss = tcp_current_mss(sk);
 | |
| 
 | |
| 	/* At most one outstanding TLP */
 | |
| 	if (tp->tlp_high_seq)
 | |
| 		goto rearm_timer;
 | |
| 
 | |
| 	tp->tlp_retrans = 0;
 | |
| 	skb = tcp_send_head(sk);
 | |
| 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
 | |
| 		pcount = tp->packets_out;
 | |
| 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
 | |
| 		if (tp->packets_out > pcount)
 | |
| 			goto probe_sent;
 | |
| 		goto rearm_timer;
 | |
| 	}
 | |
| 	skb = skb_rb_last(&sk->tcp_rtx_queue);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		WARN_ONCE(tp->packets_out,
 | |
| 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
 | |
| 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
 | |
| 		inet_csk(sk)->icsk_pending = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_still_in_host_queue(sk, skb))
 | |
| 		goto rearm_timer;
 | |
| 
 | |
| 	pcount = tcp_skb_pcount(skb);
 | |
| 	if (WARN_ON(!pcount))
 | |
| 		goto rearm_timer;
 | |
| 
 | |
| 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
 | |
| 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
 | |
| 					  (pcount - 1) * mss, mss,
 | |
| 					  GFP_ATOMIC)))
 | |
| 			goto rearm_timer;
 | |
| 		skb = skb_rb_next(skb);
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
 | |
| 		goto rearm_timer;
 | |
| 
 | |
| 	if (__tcp_retransmit_skb(sk, skb, 1))
 | |
| 		goto rearm_timer;
 | |
| 
 | |
| 	tp->tlp_retrans = 1;
 | |
| 
 | |
| probe_sent:
 | |
| 	/* Record snd_nxt for loss detection. */
 | |
| 	tp->tlp_high_seq = tp->snd_nxt;
 | |
| 
 | |
| 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
 | |
| 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
 | |
| 	inet_csk(sk)->icsk_pending = 0;
 | |
| rearm_timer:
 | |
| 	tcp_rearm_rto(sk);
 | |
| }
 | |
| 
 | |
| /* Push out any pending frames which were held back due to
 | |
|  * TCP_CORK or attempt at coalescing tiny packets.
 | |
|  * The socket must be locked by the caller.
 | |
|  */
 | |
| void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 | |
| 			       int nonagle)
 | |
| {
 | |
| 	/* If we are closed, the bytes will have to remain here.
 | |
| 	 * In time closedown will finish, we empty the write queue and
 | |
| 	 * all will be happy.
 | |
| 	 */
 | |
| 	if (unlikely(sk->sk_state == TCP_CLOSE))
 | |
| 		return;
 | |
| 
 | |
| 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
 | |
| 			   sk_gfp_mask(sk, GFP_ATOMIC)))
 | |
| 		tcp_check_probe_timer(sk);
 | |
| }
 | |
| 
 | |
| /* Send _single_ skb sitting at the send head. This function requires
 | |
|  * true push pending frames to setup probe timer etc.
 | |
|  */
 | |
| void tcp_push_one(struct sock *sk, unsigned int mss_now)
 | |
| {
 | |
| 	struct sk_buff *skb = tcp_send_head(sk);
 | |
| 
 | |
| 	BUG_ON(!skb || skb->len < mss_now);
 | |
| 
 | |
| 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
 | |
| }
 | |
| 
 | |
| /* This function returns the amount that we can raise the
 | |
|  * usable window based on the following constraints
 | |
|  *
 | |
|  * 1. The window can never be shrunk once it is offered (RFC 793)
 | |
|  * 2. We limit memory per socket
 | |
|  *
 | |
|  * RFC 1122:
 | |
|  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
 | |
|  *  RECV.NEXT + RCV.WIN fixed until:
 | |
|  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
 | |
|  *
 | |
|  * i.e. don't raise the right edge of the window until you can raise
 | |
|  * it at least MSS bytes.
 | |
|  *
 | |
|  * Unfortunately, the recommended algorithm breaks header prediction,
 | |
|  * since header prediction assumes th->window stays fixed.
 | |
|  *
 | |
|  * Strictly speaking, keeping th->window fixed violates the receiver
 | |
|  * side SWS prevention criteria. The problem is that under this rule
 | |
|  * a stream of single byte packets will cause the right side of the
 | |
|  * window to always advance by a single byte.
 | |
|  *
 | |
|  * Of course, if the sender implements sender side SWS prevention
 | |
|  * then this will not be a problem.
 | |
|  *
 | |
|  * BSD seems to make the following compromise:
 | |
|  *
 | |
|  *	If the free space is less than the 1/4 of the maximum
 | |
|  *	space available and the free space is less than 1/2 mss,
 | |
|  *	then set the window to 0.
 | |
|  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
 | |
|  *	Otherwise, just prevent the window from shrinking
 | |
|  *	and from being larger than the largest representable value.
 | |
|  *
 | |
|  * This prevents incremental opening of the window in the regime
 | |
|  * where TCP is limited by the speed of the reader side taking
 | |
|  * data out of the TCP receive queue. It does nothing about
 | |
|  * those cases where the window is constrained on the sender side
 | |
|  * because the pipeline is full.
 | |
|  *
 | |
|  * BSD also seems to "accidentally" limit itself to windows that are a
 | |
|  * multiple of MSS, at least until the free space gets quite small.
 | |
|  * This would appear to be a side effect of the mbuf implementation.
 | |
|  * Combining these two algorithms results in the observed behavior
 | |
|  * of having a fixed window size at almost all times.
 | |
|  *
 | |
|  * Below we obtain similar behavior by forcing the offered window to
 | |
|  * a multiple of the mss when it is feasible to do so.
 | |
|  *
 | |
|  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
 | |
|  * Regular options like TIMESTAMP are taken into account.
 | |
|  */
 | |
| u32 __tcp_select_window(struct sock *sk)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct net *net = sock_net(sk);
 | |
| 	/* MSS for the peer's data.  Previous versions used mss_clamp
 | |
| 	 * here.  I don't know if the value based on our guesses
 | |
| 	 * of peer's MSS is better for the performance.  It's more correct
 | |
| 	 * but may be worse for the performance because of rcv_mss
 | |
| 	 * fluctuations.  --SAW  1998/11/1
 | |
| 	 */
 | |
| 	int mss = icsk->icsk_ack.rcv_mss;
 | |
| 	int free_space = tcp_space(sk);
 | |
| 	int allowed_space = tcp_full_space(sk);
 | |
| 	int full_space, window;
 | |
| 
 | |
| 	if (sk_is_mptcp(sk))
 | |
| 		mptcp_space(sk, &free_space, &allowed_space);
 | |
| 
 | |
| 	full_space = min_t(int, tp->window_clamp, allowed_space);
 | |
| 
 | |
| 	if (unlikely(mss > full_space)) {
 | |
| 		mss = full_space;
 | |
| 		if (mss <= 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Only allow window shrink if the sysctl is enabled and we have
 | |
| 	 * a non-zero scaling factor in effect.
 | |
| 	 */
 | |
| 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
 | |
| 		goto shrink_window_allowed;
 | |
| 
 | |
| 	/* do not allow window to shrink */
 | |
| 
 | |
| 	if (free_space < (full_space >> 1)) {
 | |
| 		icsk->icsk_ack.quick = 0;
 | |
| 
 | |
| 		if (tcp_under_memory_pressure(sk))
 | |
| 			tcp_adjust_rcv_ssthresh(sk);
 | |
| 
 | |
| 		/* free_space might become our new window, make sure we don't
 | |
| 		 * increase it due to wscale.
 | |
| 		 */
 | |
| 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
 | |
| 
 | |
| 		/* if free space is less than mss estimate, or is below 1/16th
 | |
| 		 * of the maximum allowed, try to move to zero-window, else
 | |
| 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
 | |
| 		 * new incoming data is dropped due to memory limits.
 | |
| 		 * With large window, mss test triggers way too late in order
 | |
| 		 * to announce zero window in time before rmem limit kicks in.
 | |
| 		 */
 | |
| 		if (free_space < (allowed_space >> 4) || free_space < mss)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (free_space > tp->rcv_ssthresh)
 | |
| 		free_space = tp->rcv_ssthresh;
 | |
| 
 | |
| 	/* Don't do rounding if we are using window scaling, since the
 | |
| 	 * scaled window will not line up with the MSS boundary anyway.
 | |
| 	 */
 | |
| 	if (tp->rx_opt.rcv_wscale) {
 | |
| 		window = free_space;
 | |
| 
 | |
| 		/* Advertise enough space so that it won't get scaled away.
 | |
| 		 * Import case: prevent zero window announcement if
 | |
| 		 * 1<<rcv_wscale > mss.
 | |
| 		 */
 | |
| 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
 | |
| 	} else {
 | |
| 		window = tp->rcv_wnd;
 | |
| 		/* Get the largest window that is a nice multiple of mss.
 | |
| 		 * Window clamp already applied above.
 | |
| 		 * If our current window offering is within 1 mss of the
 | |
| 		 * free space we just keep it. This prevents the divide
 | |
| 		 * and multiply from happening most of the time.
 | |
| 		 * We also don't do any window rounding when the free space
 | |
| 		 * is too small.
 | |
| 		 */
 | |
| 		if (window <= free_space - mss || window > free_space)
 | |
| 			window = rounddown(free_space, mss);
 | |
| 		else if (mss == full_space &&
 | |
| 			 free_space > window + (full_space >> 1))
 | |
| 			window = free_space;
 | |
| 	}
 | |
| 
 | |
| 	return window;
 | |
| 
 | |
| shrink_window_allowed:
 | |
| 	/* new window should always be an exact multiple of scaling factor */
 | |
| 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
 | |
| 
 | |
| 	if (free_space < (full_space >> 1)) {
 | |
| 		icsk->icsk_ack.quick = 0;
 | |
| 
 | |
| 		if (tcp_under_memory_pressure(sk))
 | |
| 			tcp_adjust_rcv_ssthresh(sk);
 | |
| 
 | |
| 		/* if free space is too low, return a zero window */
 | |
| 		if (free_space < (allowed_space >> 4) || free_space < mss ||
 | |
| 			free_space < (1 << tp->rx_opt.rcv_wscale))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (free_space > tp->rcv_ssthresh) {
 | |
| 		free_space = tp->rcv_ssthresh;
 | |
| 		/* new window should always be an exact multiple of scaling factor
 | |
| 		 *
 | |
| 		 * For this case, we ALIGN "up" (increase free_space) because
 | |
| 		 * we know free_space is not zero here, it has been reduced from
 | |
| 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
 | |
| 		 * (unlike sk_rcvbuf).
 | |
| 		 */
 | |
| 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
 | |
| 	}
 | |
| 
 | |
| 	return free_space;
 | |
| }
 | |
| 
 | |
| void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 | |
| 			     const struct sk_buff *next_skb)
 | |
| {
 | |
| 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
 | |
| 		const struct skb_shared_info *next_shinfo =
 | |
| 			skb_shinfo(next_skb);
 | |
| 		struct skb_shared_info *shinfo = skb_shinfo(skb);
 | |
| 
 | |
| 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
 | |
| 		shinfo->tskey = next_shinfo->tskey;
 | |
| 		TCP_SKB_CB(skb)->txstamp_ack |=
 | |
| 			TCP_SKB_CB(next_skb)->txstamp_ack;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Collapses two adjacent SKB's during retransmission. */
 | |
| static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *next_skb = skb_rb_next(skb);
 | |
| 	int next_skb_size;
 | |
| 
 | |
| 	next_skb_size = next_skb->len;
 | |
| 
 | |
| 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
 | |
| 
 | |
| 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
 | |
| 		return false;
 | |
| 
 | |
| 	tcp_highest_sack_replace(sk, next_skb, skb);
 | |
| 
 | |
| 	/* Update sequence range on original skb. */
 | |
| 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
 | |
| 
 | |
| 	/* Merge over control information. This moves PSH/FIN etc. over */
 | |
| 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
 | |
| 
 | |
| 	/* All done, get rid of second SKB and account for it so
 | |
| 	 * packet counting does not break.
 | |
| 	 */
 | |
| 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
 | |
| 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
 | |
| 
 | |
| 	/* changed transmit queue under us so clear hints */
 | |
| 	tcp_clear_retrans_hints_partial(tp);
 | |
| 	if (next_skb == tp->retransmit_skb_hint)
 | |
| 		tp->retransmit_skb_hint = skb;
 | |
| 
 | |
| 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
 | |
| 
 | |
| 	tcp_skb_collapse_tstamp(skb, next_skb);
 | |
| 
 | |
| 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Check if coalescing SKBs is legal. */
 | |
| static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
 | |
| {
 | |
| 	if (tcp_skb_pcount(skb) > 1)
 | |
| 		return false;
 | |
| 	if (skb_cloned(skb))
 | |
| 		return false;
 | |
| 	/* Some heuristics for collapsing over SACK'd could be invented */
 | |
| 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Collapse packets in the retransmit queue to make to create
 | |
|  * less packets on the wire. This is only done on retransmission.
 | |
|  */
 | |
| static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
 | |
| 				     int space)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb = to, *tmp;
 | |
| 	bool first = true;
 | |
| 
 | |
| 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
 | |
| 		return;
 | |
| 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
 | |
| 		return;
 | |
| 
 | |
| 	skb_rbtree_walk_from_safe(skb, tmp) {
 | |
| 		if (!tcp_can_collapse(sk, skb))
 | |
| 			break;
 | |
| 
 | |
| 		if (!tcp_skb_can_collapse(to, skb))
 | |
| 			break;
 | |
| 
 | |
| 		space -= skb->len;
 | |
| 
 | |
| 		if (first) {
 | |
| 			first = false;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (space < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
 | |
| 			break;
 | |
| 
 | |
| 		if (!tcp_collapse_retrans(sk, to))
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This retransmits one SKB.  Policy decisions and retransmit queue
 | |
|  * state updates are done by the caller.  Returns non-zero if an
 | |
|  * error occurred which prevented the send.
 | |
|  */
 | |
| int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	unsigned int cur_mss;
 | |
| 	int diff, len, err;
 | |
| 	int avail_wnd;
 | |
| 
 | |
| 	/* Inconclusive MTU probe */
 | |
| 	if (icsk->icsk_mtup.probe_size)
 | |
| 		icsk->icsk_mtup.probe_size = 0;
 | |
| 
 | |
| 	if (skb_still_in_host_queue(sk, skb))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
 | |
| 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
 | |
| 			WARN_ON_ONCE(1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
 | |
| 		return -EHOSTUNREACH; /* Routing failure or similar. */
 | |
| 
 | |
| 	cur_mss = tcp_current_mss(sk);
 | |
| 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
 | |
| 
 | |
| 	/* If receiver has shrunk his window, and skb is out of
 | |
| 	 * new window, do not retransmit it. The exception is the
 | |
| 	 * case, when window is shrunk to zero. In this case
 | |
| 	 * our retransmit of one segment serves as a zero window probe.
 | |
| 	 */
 | |
| 	if (avail_wnd <= 0) {
 | |
| 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
 | |
| 			return -EAGAIN;
 | |
| 		avail_wnd = cur_mss;
 | |
| 	}
 | |
| 
 | |
| 	len = cur_mss * segs;
 | |
| 	if (len > avail_wnd) {
 | |
| 		len = rounddown(avail_wnd, cur_mss);
 | |
| 		if (!len)
 | |
| 			len = avail_wnd;
 | |
| 	}
 | |
| 	if (skb->len > len) {
 | |
| 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
 | |
| 				 cur_mss, GFP_ATOMIC))
 | |
| 			return -ENOMEM; /* We'll try again later. */
 | |
| 	} else {
 | |
| 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		diff = tcp_skb_pcount(skb);
 | |
| 		tcp_set_skb_tso_segs(skb, cur_mss);
 | |
| 		diff -= tcp_skb_pcount(skb);
 | |
| 		if (diff)
 | |
| 			tcp_adjust_pcount(sk, skb, diff);
 | |
| 		avail_wnd = min_t(int, avail_wnd, cur_mss);
 | |
| 		if (skb->len < avail_wnd)
 | |
| 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
 | |
| 	}
 | |
| 
 | |
| 	/* RFC3168, section 6.1.1.1. ECN fallback */
 | |
| 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
 | |
| 		tcp_ecn_clear_syn(sk, skb);
 | |
| 
 | |
| 	/* Update global and local TCP statistics. */
 | |
| 	segs = tcp_skb_pcount(skb);
 | |
| 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
 | |
| 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
 | |
| 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
 | |
| 	tp->total_retrans += segs;
 | |
| 	tp->bytes_retrans += skb->len;
 | |
| 
 | |
| 	/* make sure skb->data is aligned on arches that require it
 | |
| 	 * and check if ack-trimming & collapsing extended the headroom
 | |
| 	 * beyond what csum_start can cover.
 | |
| 	 */
 | |
| 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
 | |
| 		     skb_headroom(skb) >= 0xFFFF)) {
 | |
| 		struct sk_buff *nskb;
 | |
| 
 | |
| 		tcp_skb_tsorted_save(skb) {
 | |
| 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
 | |
| 			if (nskb) {
 | |
| 				nskb->dev = NULL;
 | |
| 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
 | |
| 			} else {
 | |
| 				err = -ENOBUFS;
 | |
| 			}
 | |
| 		} tcp_skb_tsorted_restore(skb);
 | |
| 
 | |
| 		if (!err) {
 | |
| 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
 | |
| 			tcp_rate_skb_sent(sk, skb);
 | |
| 		}
 | |
| 	} else {
 | |
| 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
 | |
| 	}
 | |
| 
 | |
| 	/* To avoid taking spuriously low RTT samples based on a timestamp
 | |
| 	 * for a transmit that never happened, always mark EVER_RETRANS
 | |
| 	 */
 | |
| 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
 | |
| 
 | |
| 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
 | |
| 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
 | |
| 				  TCP_SKB_CB(skb)->seq, segs, err);
 | |
| 
 | |
| 	if (likely(!err)) {
 | |
| 		trace_tcp_retransmit_skb(sk, skb);
 | |
| 	} else if (err != -EBUSY) {
 | |
| 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int err = __tcp_retransmit_skb(sk, skb, segs);
 | |
| 
 | |
| 	if (err == 0) {
 | |
| #if FASTRETRANS_DEBUG > 0
 | |
| 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
 | |
| 			net_dbg_ratelimited("retrans_out leaked\n");
 | |
| 		}
 | |
| #endif
 | |
| 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
 | |
| 		tp->retrans_out += tcp_skb_pcount(skb);
 | |
| 	}
 | |
| 
 | |
| 	/* Save stamp of the first (attempted) retransmit. */
 | |
| 	if (!tp->retrans_stamp)
 | |
| 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
 | |
| 
 | |
| 	if (tp->undo_retrans < 0)
 | |
| 		tp->undo_retrans = 0;
 | |
| 	tp->undo_retrans += tcp_skb_pcount(skb);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* This gets called after a retransmit timeout, and the initially
 | |
|  * retransmitted data is acknowledged.  It tries to continue
 | |
|  * resending the rest of the retransmit queue, until either
 | |
|  * we've sent it all or the congestion window limit is reached.
 | |
|  */
 | |
| void tcp_xmit_retransmit_queue(struct sock *sk)
 | |
| {
 | |
| 	const struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct sk_buff *skb, *rtx_head, *hole = NULL;
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	bool rearm_timer = false;
 | |
| 	u32 max_segs;
 | |
| 	int mib_idx;
 | |
| 
 | |
| 	if (!tp->packets_out)
 | |
| 		return;
 | |
| 
 | |
| 	rtx_head = tcp_rtx_queue_head(sk);
 | |
| 	skb = tp->retransmit_skb_hint ?: rtx_head;
 | |
| 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
 | |
| 	skb_rbtree_walk_from(skb) {
 | |
| 		__u8 sacked;
 | |
| 		int segs;
 | |
| 
 | |
| 		if (tcp_pacing_check(sk))
 | |
| 			break;
 | |
| 
 | |
| 		/* we could do better than to assign each time */
 | |
| 		if (!hole)
 | |
| 			tp->retransmit_skb_hint = skb;
 | |
| 
 | |
| 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
 | |
| 		if (segs <= 0)
 | |
| 			break;
 | |
| 		sacked = TCP_SKB_CB(skb)->sacked;
 | |
| 		/* In case tcp_shift_skb_data() have aggregated large skbs,
 | |
| 		 * we need to make sure not sending too bigs TSO packets
 | |
| 		 */
 | |
| 		segs = min_t(int, segs, max_segs);
 | |
| 
 | |
| 		if (tp->retrans_out >= tp->lost_out) {
 | |
| 			break;
 | |
| 		} else if (!(sacked & TCPCB_LOST)) {
 | |
| 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
 | |
| 				hole = skb;
 | |
| 			continue;
 | |
| 
 | |
| 		} else {
 | |
| 			if (icsk->icsk_ca_state != TCP_CA_Loss)
 | |
| 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
 | |
| 			else
 | |
| 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
 | |
| 		}
 | |
| 
 | |
| 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
 | |
| 			continue;
 | |
| 
 | |
| 		if (tcp_small_queue_check(sk, skb, 1))
 | |
| 			break;
 | |
| 
 | |
| 		if (tcp_retransmit_skb(sk, skb, segs))
 | |
| 			break;
 | |
| 
 | |
| 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
 | |
| 
 | |
| 		if (tcp_in_cwnd_reduction(sk))
 | |
| 			tp->prr_out += tcp_skb_pcount(skb);
 | |
| 
 | |
| 		if (skb == rtx_head &&
 | |
| 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
 | |
| 			rearm_timer = true;
 | |
| 
 | |
| 	}
 | |
| 	if (rearm_timer)
 | |
| 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 | |
| 				     inet_csk(sk)->icsk_rto,
 | |
| 				     TCP_RTO_MAX);
 | |
| }
 | |
| 
 | |
| /* We allow to exceed memory limits for FIN packets to expedite
 | |
|  * connection tear down and (memory) recovery.
 | |
|  * Otherwise tcp_send_fin() could be tempted to either delay FIN
 | |
|  * or even be forced to close flow without any FIN.
 | |
|  * In general, we want to allow one skb per socket to avoid hangs
 | |
|  * with edge trigger epoll()
 | |
|  */
 | |
| void sk_forced_mem_schedule(struct sock *sk, int size)
 | |
| {
 | |
| 	int delta, amt;
 | |
| 
 | |
| 	delta = size - sk->sk_forward_alloc;
 | |
| 	if (delta <= 0)
 | |
| 		return;
 | |
| 	amt = sk_mem_pages(delta);
 | |
| 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
 | |
| 	sk_memory_allocated_add(sk, amt);
 | |
| 
 | |
| 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
 | |
| 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
 | |
| 					gfp_memcg_charge() | __GFP_NOFAIL);
 | |
| }
 | |
| 
 | |
| /* Send a FIN. The caller locks the socket for us.
 | |
|  * We should try to send a FIN packet really hard, but eventually give up.
 | |
|  */
 | |
| void tcp_send_fin(struct sock *sk)
 | |
| {
 | |
| 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	/* Optimization, tack on the FIN if we have one skb in write queue and
 | |
| 	 * this skb was not yet sent, or we are under memory pressure.
 | |
| 	 * Note: in the latter case, FIN packet will be sent after a timeout,
 | |
| 	 * as TCP stack thinks it has already been transmitted.
 | |
| 	 */
 | |
| 	tskb = tail;
 | |
| 	if (!tskb && tcp_under_memory_pressure(sk))
 | |
| 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
 | |
| 
 | |
| 	if (tskb) {
 | |
| 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
 | |
| 		TCP_SKB_CB(tskb)->end_seq++;
 | |
| 		tp->write_seq++;
 | |
| 		if (!tail) {
 | |
| 			/* This means tskb was already sent.
 | |
| 			 * Pretend we included the FIN on previous transmit.
 | |
| 			 * We need to set tp->snd_nxt to the value it would have
 | |
| 			 * if FIN had been sent. This is because retransmit path
 | |
| 			 * does not change tp->snd_nxt.
 | |
| 			 */
 | |
| 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
 | |
| 		if (unlikely(!skb))
 | |
| 			return;
 | |
| 
 | |
| 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 | |
| 		skb_reserve(skb, MAX_TCP_HEADER);
 | |
| 		sk_forced_mem_schedule(sk, skb->truesize);
 | |
| 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
 | |
| 		tcp_init_nondata_skb(skb, tp->write_seq,
 | |
| 				     TCPHDR_ACK | TCPHDR_FIN);
 | |
| 		tcp_queue_skb(sk, skb);
 | |
| 	}
 | |
| 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
 | |
| }
 | |
| 
 | |
| /* We get here when a process closes a file descriptor (either due to
 | |
|  * an explicit close() or as a byproduct of exit()'ing) and there
 | |
|  * was unread data in the receive queue.  This behavior is recommended
 | |
|  * by RFC 2525, section 2.17.  -DaveM
 | |
|  */
 | |
| void tcp_send_active_reset(struct sock *sk, gfp_t priority)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
 | |
| 
 | |
| 	/* NOTE: No TCP options attached and we never retransmit this. */
 | |
| 	skb = alloc_skb(MAX_TCP_HEADER, priority);
 | |
| 	if (!skb) {
 | |
| 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Reserve space for headers and prepare control bits. */
 | |
| 	skb_reserve(skb, MAX_TCP_HEADER);
 | |
| 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
 | |
| 			     TCPHDR_ACK | TCPHDR_RST);
 | |
| 	tcp_mstamp_refresh(tcp_sk(sk));
 | |
| 	/* Send it off. */
 | |
| 	if (tcp_transmit_skb(sk, skb, 0, priority))
 | |
| 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
 | |
| 
 | |
| 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
 | |
| 	 * skb here is different to the troublesome skb, so use NULL
 | |
| 	 */
 | |
| 	trace_tcp_send_reset(sk, NULL);
 | |
| }
 | |
| 
 | |
| /* Send a crossed SYN-ACK during socket establishment.
 | |
|  * WARNING: This routine must only be called when we have already sent
 | |
|  * a SYN packet that crossed the incoming SYN that caused this routine
 | |
|  * to get called. If this assumption fails then the initial rcv_wnd
 | |
|  * and rcv_wscale values will not be correct.
 | |
|  */
 | |
| int tcp_send_synack(struct sock *sk)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	skb = tcp_rtx_queue_head(sk);
 | |
| 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
 | |
| 		pr_err("%s: wrong queue state\n", __func__);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
 | |
| 		if (skb_cloned(skb)) {
 | |
| 			struct sk_buff *nskb;
 | |
| 
 | |
| 			tcp_skb_tsorted_save(skb) {
 | |
| 				nskb = skb_copy(skb, GFP_ATOMIC);
 | |
| 			} tcp_skb_tsorted_restore(skb);
 | |
| 			if (!nskb)
 | |
| 				return -ENOMEM;
 | |
| 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
 | |
| 			tcp_highest_sack_replace(sk, skb, nskb);
 | |
| 			tcp_rtx_queue_unlink_and_free(skb, sk);
 | |
| 			__skb_header_release(nskb);
 | |
| 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
 | |
| 			sk_wmem_queued_add(sk, nskb->truesize);
 | |
| 			sk_mem_charge(sk, nskb->truesize);
 | |
| 			skb = nskb;
 | |
| 		}
 | |
| 
 | |
| 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
 | |
| 		tcp_ecn_send_synack(sk, skb);
 | |
| 	}
 | |
| 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
 | |
|  * @sk: listener socket
 | |
|  * @dst: dst entry attached to the SYNACK. It is consumed and caller
 | |
|  *       should not use it again.
 | |
|  * @req: request_sock pointer
 | |
|  * @foc: cookie for tcp fast open
 | |
|  * @synack_type: Type of synack to prepare
 | |
|  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
 | |
|  */
 | |
| struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 | |
| 				struct request_sock *req,
 | |
| 				struct tcp_fastopen_cookie *foc,
 | |
| 				enum tcp_synack_type synack_type,
 | |
| 				struct sk_buff *syn_skb)
 | |
| {
 | |
| 	struct inet_request_sock *ireq = inet_rsk(req);
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct tcp_md5sig_key *md5 = NULL;
 | |
| 	struct tcp_out_options opts;
 | |
| 	struct tcp_key key = {};
 | |
| 	struct sk_buff *skb;
 | |
| 	int tcp_header_size;
 | |
| 	struct tcphdr *th;
 | |
| 	int mss;
 | |
| 	u64 now;
 | |
| 
 | |
| 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		dst_release(dst);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* Reserve space for headers. */
 | |
| 	skb_reserve(skb, MAX_TCP_HEADER);
 | |
| 
 | |
| 	switch (synack_type) {
 | |
| 	case TCP_SYNACK_NORMAL:
 | |
| 		skb_set_owner_w(skb, req_to_sk(req));
 | |
| 		break;
 | |
| 	case TCP_SYNACK_COOKIE:
 | |
| 		/* Under synflood, we do not attach skb to a socket,
 | |
| 		 * to avoid false sharing.
 | |
| 		 */
 | |
| 		break;
 | |
| 	case TCP_SYNACK_FASTOPEN:
 | |
| 		/* sk is a const pointer, because we want to express multiple
 | |
| 		 * cpu might call us concurrently.
 | |
| 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
 | |
| 		 */
 | |
| 		skb_set_owner_w(skb, (struct sock *)sk);
 | |
| 		break;
 | |
| 	}
 | |
| 	skb_dst_set(skb, dst);
 | |
| 
 | |
| 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
 | |
| 
 | |
| 	memset(&opts, 0, sizeof(opts));
 | |
| 	if (tcp_rsk(req)->req_usec_ts < 0)
 | |
| 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
 | |
| 	now = tcp_clock_ns();
 | |
| #ifdef CONFIG_SYN_COOKIES
 | |
| 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
 | |
| 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
 | |
| 				      true);
 | |
| 	else
 | |
| #endif
 | |
| 	{
 | |
| 		skb_set_delivery_time(skb, now, true);
 | |
| 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
 | |
| 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 	rcu_read_lock();
 | |
| 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
 | |
| 	if (md5)
 | |
| 		key.type = TCP_KEY_MD5;
 | |
| #endif
 | |
| 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
 | |
| 	/* bpf program will be interested in the tcp_flags */
 | |
| 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
 | |
| 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
 | |
| 					     foc, synack_type,
 | |
| 					     syn_skb) + sizeof(*th);
 | |
| 
 | |
| 	skb_push(skb, tcp_header_size);
 | |
| 	skb_reset_transport_header(skb);
 | |
| 
 | |
| 	th = (struct tcphdr *)skb->data;
 | |
| 	memset(th, 0, sizeof(struct tcphdr));
 | |
| 	th->syn = 1;
 | |
| 	th->ack = 1;
 | |
| 	tcp_ecn_make_synack(req, th);
 | |
| 	th->source = htons(ireq->ir_num);
 | |
| 	th->dest = ireq->ir_rmt_port;
 | |
| 	skb->mark = ireq->ir_mark;
 | |
| 	skb->ip_summed = CHECKSUM_PARTIAL;
 | |
| 	th->seq = htonl(tcp_rsk(req)->snt_isn);
 | |
| 	/* XXX data is queued and acked as is. No buffer/window check */
 | |
| 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
 | |
| 
 | |
| 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
 | |
| 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
 | |
| 	tcp_options_write(th, NULL, NULL, &opts, &key);
 | |
| 	th->doff = (tcp_header_size >> 2);
 | |
| 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
 | |
| 
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 	/* Okay, we have all we need - do the md5 hash if needed */
 | |
| 	if (md5)
 | |
| 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
 | |
| 					       md5, req_to_sk(req), skb);
 | |
| 	rcu_read_unlock();
 | |
| #endif
 | |
| 
 | |
| 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
 | |
| 				synack_type, &opts);
 | |
| 
 | |
| 	skb_set_delivery_time(skb, now, true);
 | |
| 	tcp_add_tx_delay(skb, tp);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_make_synack);
 | |
| 
 | |
| static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	const struct tcp_congestion_ops *ca;
 | |
| 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
 | |
| 
 | |
| 	if (ca_key == TCP_CA_UNSPEC)
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ca = tcp_ca_find_key(ca_key);
 | |
| 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
 | |
| 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
 | |
| 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
 | |
| 		icsk->icsk_ca_ops = ca;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* Do all connect socket setups that can be done AF independent. */
 | |
| static void tcp_connect_init(struct sock *sk)
 | |
| {
 | |
| 	const struct dst_entry *dst = __sk_dst_get(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	__u8 rcv_wscale;
 | |
| 	u32 rcv_wnd;
 | |
| 
 | |
| 	/* We'll fix this up when we get a response from the other end.
 | |
| 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
 | |
| 	 */
 | |
| 	tp->tcp_header_len = sizeof(struct tcphdr);
 | |
| 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
 | |
| 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
 | |
| 
 | |
| 	tcp_ao_connect_init(sk);
 | |
| 
 | |
| 	/* If user gave his TCP_MAXSEG, record it to clamp */
 | |
| 	if (tp->rx_opt.user_mss)
 | |
| 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
 | |
| 	tp->max_window = 0;
 | |
| 	tcp_mtup_init(sk);
 | |
| 	tcp_sync_mss(sk, dst_mtu(dst));
 | |
| 
 | |
| 	tcp_ca_dst_init(sk, dst);
 | |
| 
 | |
| 	if (!tp->window_clamp)
 | |
| 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
 | |
| 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
 | |
| 
 | |
| 	tcp_initialize_rcv_mss(sk);
 | |
| 
 | |
| 	/* limit the window selection if the user enforce a smaller rx buffer */
 | |
| 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
 | |
| 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
 | |
| 		tp->window_clamp = tcp_full_space(sk);
 | |
| 
 | |
| 	rcv_wnd = tcp_rwnd_init_bpf(sk);
 | |
| 	if (rcv_wnd == 0)
 | |
| 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
 | |
| 
 | |
| 	tcp_select_initial_window(sk, tcp_full_space(sk),
 | |
| 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
 | |
| 				  &tp->rcv_wnd,
 | |
| 				  &tp->window_clamp,
 | |
| 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
 | |
| 				  &rcv_wscale,
 | |
| 				  rcv_wnd);
 | |
| 
 | |
| 	tp->rx_opt.rcv_wscale = rcv_wscale;
 | |
| 	tp->rcv_ssthresh = tp->rcv_wnd;
 | |
| 
 | |
| 	WRITE_ONCE(sk->sk_err, 0);
 | |
| 	sock_reset_flag(sk, SOCK_DONE);
 | |
| 	tp->snd_wnd = 0;
 | |
| 	tcp_init_wl(tp, 0);
 | |
| 	tcp_write_queue_purge(sk);
 | |
| 	tp->snd_una = tp->write_seq;
 | |
| 	tp->snd_sml = tp->write_seq;
 | |
| 	tp->snd_up = tp->write_seq;
 | |
| 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
 | |
| 
 | |
| 	if (likely(!tp->repair))
 | |
| 		tp->rcv_nxt = 0;
 | |
| 	else
 | |
| 		tp->rcv_tstamp = tcp_jiffies32;
 | |
| 	tp->rcv_wup = tp->rcv_nxt;
 | |
| 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
 | |
| 
 | |
| 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
 | |
| 	inet_csk(sk)->icsk_retransmits = 0;
 | |
| 	tcp_clear_retrans(tp);
 | |
| }
 | |
| 
 | |
| static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 | |
| 
 | |
| 	tcb->end_seq += skb->len;
 | |
| 	__skb_header_release(skb);
 | |
| 	sk_wmem_queued_add(sk, skb->truesize);
 | |
| 	sk_mem_charge(sk, skb->truesize);
 | |
| 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
 | |
| 	tp->packets_out += tcp_skb_pcount(skb);
 | |
| }
 | |
| 
 | |
| /* Build and send a SYN with data and (cached) Fast Open cookie. However,
 | |
|  * queue a data-only packet after the regular SYN, such that regular SYNs
 | |
|  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
 | |
|  * only the SYN sequence, the data are retransmitted in the first ACK.
 | |
|  * If cookie is not cached or other error occurs, falls back to send a
 | |
|  * regular SYN with Fast Open cookie request option.
 | |
|  */
 | |
| static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct tcp_fastopen_request *fo = tp->fastopen_req;
 | |
| 	struct page_frag *pfrag = sk_page_frag(sk);
 | |
| 	struct sk_buff *syn_data;
 | |
| 	int space, err = 0;
 | |
| 
 | |
| 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
 | |
| 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
 | |
| 		goto fallback;
 | |
| 
 | |
| 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
 | |
| 	 * user-MSS. Reserve maximum option space for middleboxes that add
 | |
| 	 * private TCP options. The cost is reduced data space in SYN :(
 | |
| 	 */
 | |
| 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
 | |
| 	/* Sync mss_cache after updating the mss_clamp */
 | |
| 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
 | |
| 
 | |
| 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
 | |
| 		MAX_TCP_OPTION_SPACE;
 | |
| 
 | |
| 	space = min_t(size_t, space, fo->size);
 | |
| 
 | |
| 	if (space &&
 | |
| 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
 | |
| 				  pfrag, sk->sk_allocation))
 | |
| 		goto fallback;
 | |
| 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
 | |
| 	if (!syn_data)
 | |
| 		goto fallback;
 | |
| 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
 | |
| 	if (space) {
 | |
| 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
 | |
| 		space = tcp_wmem_schedule(sk, space);
 | |
| 	}
 | |
| 	if (space) {
 | |
| 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
 | |
| 					    space, &fo->data->msg_iter);
 | |
| 		if (unlikely(!space)) {
 | |
| 			tcp_skb_tsorted_anchor_cleanup(syn_data);
 | |
| 			kfree_skb(syn_data);
 | |
| 			goto fallback;
 | |
| 		}
 | |
| 		skb_fill_page_desc(syn_data, 0, pfrag->page,
 | |
| 				   pfrag->offset, space);
 | |
| 		page_ref_inc(pfrag->page);
 | |
| 		pfrag->offset += space;
 | |
| 		skb_len_add(syn_data, space);
 | |
| 		skb_zcopy_set(syn_data, fo->uarg, NULL);
 | |
| 	}
 | |
| 	/* No more data pending in inet_wait_for_connect() */
 | |
| 	if (space == fo->size)
 | |
| 		fo->data = NULL;
 | |
| 	fo->copied = space;
 | |
| 
 | |
| 	tcp_connect_queue_skb(sk, syn_data);
 | |
| 	if (syn_data->len)
 | |
| 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
 | |
| 
 | |
| 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
 | |
| 
 | |
| 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
 | |
| 
 | |
| 	/* Now full SYN+DATA was cloned and sent (or not),
 | |
| 	 * remove the SYN from the original skb (syn_data)
 | |
| 	 * we keep in write queue in case of a retransmit, as we
 | |
| 	 * also have the SYN packet (with no data) in the same queue.
 | |
| 	 */
 | |
| 	TCP_SKB_CB(syn_data)->seq++;
 | |
| 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
 | |
| 	if (!err) {
 | |
| 		tp->syn_data = (fo->copied > 0);
 | |
| 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
 | |
| 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* data was not sent, put it in write_queue */
 | |
| 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
 | |
| 	tp->packets_out -= tcp_skb_pcount(syn_data);
 | |
| 
 | |
| fallback:
 | |
| 	/* Send a regular SYN with Fast Open cookie request option */
 | |
| 	if (fo->cookie.len > 0)
 | |
| 		fo->cookie.len = 0;
 | |
| 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
 | |
| 	if (err)
 | |
| 		tp->syn_fastopen = 0;
 | |
| done:
 | |
| 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Build a SYN and send it off. */
 | |
| int tcp_connect(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *buff;
 | |
| 	int err;
 | |
| 
 | |
| 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
 | |
| 
 | |
| #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
 | |
| 	/* Has to be checked late, after setting daddr/saddr/ops.
 | |
| 	 * Return error if the peer has both a md5 and a tcp-ao key
 | |
| 	 * configured as this is ambiguous.
 | |
| 	 */
 | |
| 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
 | |
| 					       lockdep_sock_is_held(sk)))) {
 | |
| 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
 | |
| 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
 | |
| 		struct tcp_ao_info *ao_info;
 | |
| 
 | |
| 		ao_info = rcu_dereference_check(tp->ao_info,
 | |
| 						lockdep_sock_is_held(sk));
 | |
| 		if (ao_info) {
 | |
| 			/* This is an extra check: tcp_ao_required() in
 | |
| 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
 | |
| 			 * md5 keys on ao_required socket.
 | |
| 			 */
 | |
| 			needs_ao |= ao_info->ao_required;
 | |
| 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
 | |
| 		}
 | |
| 		if (needs_md5 && needs_ao)
 | |
| 			return -EKEYREJECTED;
 | |
| 
 | |
| 		/* If we have a matching md5 key and no matching tcp-ao key
 | |
| 		 * then free up ao_info if allocated.
 | |
| 		 */
 | |
| 		if (needs_md5) {
 | |
| 			tcp_ao_destroy_sock(sk, false);
 | |
| 		} else if (needs_ao) {
 | |
| 			tcp_clear_md5_list(sk);
 | |
| 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
 | |
| 						  lockdep_sock_is_held(sk)));
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| #ifdef CONFIG_TCP_AO
 | |
| 	if (unlikely(rcu_dereference_protected(tp->ao_info,
 | |
| 					       lockdep_sock_is_held(sk)))) {
 | |
| 		/* Don't allow connecting if ao is configured but no
 | |
| 		 * matching key is found.
 | |
| 		 */
 | |
| 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
 | |
| 			return -EKEYREJECTED;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
 | |
| 		return -EHOSTUNREACH; /* Routing failure or similar. */
 | |
| 
 | |
| 	tcp_connect_init(sk);
 | |
| 
 | |
| 	if (unlikely(tp->repair)) {
 | |
| 		tcp_finish_connect(sk, NULL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
 | |
| 	if (unlikely(!buff))
 | |
| 		return -ENOBUFS;
 | |
| 
 | |
| 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
 | |
| 	tcp_mstamp_refresh(tp);
 | |
| 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
 | |
| 	tcp_connect_queue_skb(sk, buff);
 | |
| 	tcp_ecn_send_syn(sk, buff);
 | |
| 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
 | |
| 
 | |
| 	/* Send off SYN; include data in Fast Open. */
 | |
| 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
 | |
| 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
 | |
| 	if (err == -ECONNREFUSED)
 | |
| 		return err;
 | |
| 
 | |
| 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
 | |
| 	 * in order to make this packet get counted in tcpOutSegs.
 | |
| 	 */
 | |
| 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
 | |
| 	tp->pushed_seq = tp->write_seq;
 | |
| 	buff = tcp_send_head(sk);
 | |
| 	if (unlikely(buff)) {
 | |
| 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
 | |
| 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
 | |
| 	}
 | |
| 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
 | |
| 
 | |
| 	/* Timer for repeating the SYN until an answer. */
 | |
| 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 | |
| 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_connect);
 | |
| 
 | |
| u32 tcp_delack_max(const struct sock *sk)
 | |
| {
 | |
| 	const struct dst_entry *dst = __sk_dst_get(sk);
 | |
| 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
 | |
| 
 | |
| 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
 | |
| 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 | |
| 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
 | |
| 
 | |
| 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
 | |
| 	}
 | |
| 	return delack_max;
 | |
| }
 | |
| 
 | |
| /* Send out a delayed ack, the caller does the policy checking
 | |
|  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
 | |
|  * for details.
 | |
|  */
 | |
| void tcp_send_delayed_ack(struct sock *sk)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	int ato = icsk->icsk_ack.ato;
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	if (ato > TCP_DELACK_MIN) {
 | |
| 		const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 		int max_ato = HZ / 2;
 | |
| 
 | |
| 		if (inet_csk_in_pingpong_mode(sk) ||
 | |
| 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
 | |
| 			max_ato = TCP_DELACK_MAX;
 | |
| 
 | |
| 		/* Slow path, intersegment interval is "high". */
 | |
| 
 | |
| 		/* If some rtt estimate is known, use it to bound delayed ack.
 | |
| 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
 | |
| 		 * directly.
 | |
| 		 */
 | |
| 		if (tp->srtt_us) {
 | |
| 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
 | |
| 					TCP_DELACK_MIN);
 | |
| 
 | |
| 			if (rtt < max_ato)
 | |
| 				max_ato = rtt;
 | |
| 		}
 | |
| 
 | |
| 		ato = min(ato, max_ato);
 | |
| 	}
 | |
| 
 | |
| 	ato = min_t(u32, ato, tcp_delack_max(sk));
 | |
| 
 | |
| 	/* Stay within the limit we were given */
 | |
| 	timeout = jiffies + ato;
 | |
| 
 | |
| 	/* Use new timeout only if there wasn't a older one earlier. */
 | |
| 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
 | |
| 		/* If delack timer is about to expire, send ACK now. */
 | |
| 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
 | |
| 			tcp_send_ack(sk);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (!time_before(timeout, icsk->icsk_ack.timeout))
 | |
| 			timeout = icsk->icsk_ack.timeout;
 | |
| 	}
 | |
| 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
 | |
| 	icsk->icsk_ack.timeout = timeout;
 | |
| 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
 | |
| }
 | |
| 
 | |
| /* This routine sends an ack and also updates the window. */
 | |
| void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
 | |
| {
 | |
| 	struct sk_buff *buff;
 | |
| 
 | |
| 	/* If we have been reset, we may not send again. */
 | |
| 	if (sk->sk_state == TCP_CLOSE)
 | |
| 		return;
 | |
| 
 | |
| 	/* We are not putting this on the write queue, so
 | |
| 	 * tcp_transmit_skb() will set the ownership to this
 | |
| 	 * sock.
 | |
| 	 */
 | |
| 	buff = alloc_skb(MAX_TCP_HEADER,
 | |
| 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
 | |
| 	if (unlikely(!buff)) {
 | |
| 		struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 		unsigned long delay;
 | |
| 
 | |
| 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
 | |
| 		if (delay < TCP_RTO_MAX)
 | |
| 			icsk->icsk_ack.retry++;
 | |
| 		inet_csk_schedule_ack(sk);
 | |
| 		icsk->icsk_ack.ato = TCP_ATO_MIN;
 | |
| 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Reserve space for headers and prepare control bits. */
 | |
| 	skb_reserve(buff, MAX_TCP_HEADER);
 | |
| 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
 | |
| 
 | |
| 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
 | |
| 	 * too much.
 | |
| 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
 | |
| 	 */
 | |
| 	skb_set_tcp_pure_ack(buff);
 | |
| 
 | |
| 	/* Send it off, this clears delayed acks for us. */
 | |
| 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__tcp_send_ack);
 | |
| 
 | |
| void tcp_send_ack(struct sock *sk)
 | |
| {
 | |
| 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
 | |
| }
 | |
| 
 | |
| /* This routine sends a packet with an out of date sequence
 | |
|  * number. It assumes the other end will try to ack it.
 | |
|  *
 | |
|  * Question: what should we make while urgent mode?
 | |
|  * 4.4BSD forces sending single byte of data. We cannot send
 | |
|  * out of window data, because we have SND.NXT==SND.MAX...
 | |
|  *
 | |
|  * Current solution: to send TWO zero-length segments in urgent mode:
 | |
|  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
 | |
|  * out-of-date with SND.UNA-1 to probe window.
 | |
|  */
 | |
| static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
 | |
| 	skb = alloc_skb(MAX_TCP_HEADER,
 | |
| 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
 | |
| 	if (!skb)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Reserve space for headers and set control bits. */
 | |
| 	skb_reserve(skb, MAX_TCP_HEADER);
 | |
| 	/* Use a previous sequence.  This should cause the other
 | |
| 	 * end to send an ack.  Don't queue or clone SKB, just
 | |
| 	 * send it.
 | |
| 	 */
 | |
| 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
 | |
| 	NET_INC_STATS(sock_net(sk), mib);
 | |
| 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
 | |
| }
 | |
| 
 | |
| /* Called from setsockopt( ... TCP_REPAIR ) */
 | |
| void tcp_send_window_probe(struct sock *sk)
 | |
| {
 | |
| 	if (sk->sk_state == TCP_ESTABLISHED) {
 | |
| 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
 | |
| 		tcp_mstamp_refresh(tcp_sk(sk));
 | |
| 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Initiate keepalive or window probe from timer. */
 | |
| int tcp_write_wakeup(struct sock *sk, int mib)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	if (sk->sk_state == TCP_CLOSE)
 | |
| 		return -1;
 | |
| 
 | |
| 	skb = tcp_send_head(sk);
 | |
| 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
 | |
| 		int err;
 | |
| 		unsigned int mss = tcp_current_mss(sk);
 | |
| 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
 | |
| 
 | |
| 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
 | |
| 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
 | |
| 
 | |
| 		/* We are probing the opening of a window
 | |
| 		 * but the window size is != 0
 | |
| 		 * must have been a result SWS avoidance ( sender )
 | |
| 		 */
 | |
| 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
 | |
| 		    skb->len > mss) {
 | |
| 			seg_size = min(seg_size, mss);
 | |
| 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 | |
| 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
 | |
| 					 skb, seg_size, mss, GFP_ATOMIC))
 | |
| 				return -1;
 | |
| 		} else if (!tcp_skb_pcount(skb))
 | |
| 			tcp_set_skb_tso_segs(skb, mss);
 | |
| 
 | |
| 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 | |
| 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
 | |
| 		if (!err)
 | |
| 			tcp_event_new_data_sent(sk, skb);
 | |
| 		return err;
 | |
| 	} else {
 | |
| 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
 | |
| 			tcp_xmit_probe_skb(sk, 1, mib);
 | |
| 		return tcp_xmit_probe_skb(sk, 0, mib);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* A window probe timeout has occurred.  If window is not closed send
 | |
|  * a partial packet else a zero probe.
 | |
|  */
 | |
| void tcp_send_probe0(struct sock *sk)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct net *net = sock_net(sk);
 | |
| 	unsigned long timeout;
 | |
| 	int err;
 | |
| 
 | |
| 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
 | |
| 
 | |
| 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
 | |
| 		/* Cancel probe timer, if it is not required. */
 | |
| 		icsk->icsk_probes_out = 0;
 | |
| 		icsk->icsk_backoff = 0;
 | |
| 		icsk->icsk_probes_tstamp = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	icsk->icsk_probes_out++;
 | |
| 	if (err <= 0) {
 | |
| 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
 | |
| 			icsk->icsk_backoff++;
 | |
| 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
 | |
| 	} else {
 | |
| 		/* If packet was not sent due to local congestion,
 | |
| 		 * Let senders fight for local resources conservatively.
 | |
| 		 */
 | |
| 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
 | |
| 	}
 | |
| 
 | |
| 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
 | |
| 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
 | |
| }
 | |
| 
 | |
| int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
 | |
| {
 | |
| 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
 | |
| 	struct flowi fl;
 | |
| 	int res;
 | |
| 
 | |
| 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
 | |
| 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
 | |
| 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
 | |
| 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
 | |
| 				  NULL);
 | |
| 	if (!res) {
 | |
| 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
 | |
| 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
 | |
| 		if (unlikely(tcp_passive_fastopen(sk))) {
 | |
| 			/* sk has const attribute because listeners are lockless.
 | |
| 			 * However in this case, we are dealing with a passive fastopen
 | |
| 			 * socket thus we can change total_retrans value.
 | |
| 			 */
 | |
| 			tcp_sk_rw(sk)->total_retrans++;
 | |
| 		}
 | |
| 		trace_tcp_retransmit_synack(sk, req);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_rtx_synack);
 |